Skip to content

Latest commit

 

History

History
215 lines (156 loc) · 9.1 KB

vl_pipeline.md

File metadata and controls

215 lines (156 loc) · 9.1 KB

Offline Inference Pipeline

LMDeploy abstracts the complex inference process of multi-modal Vision-Language Models (VLM) into an easy-to-use pipeline, similar to the Large Language Model (LLM) inference pipeline.

The supported models are listed here. We genuinely invite the community to contribute new VLM support to LMDeploy. Your involvement is truly appreciated.

This article showcases the VLM pipeline using the OpenGVLab/InternVL2_5-8B model as a case study. You'll learn about the simplest ways to leverage the pipeline and how to gradually unlock more advanced features by adjusting engine parameters and generation arguments, such as tensor parallelism, context window sizing, random sampling, and chat template customization. Moreover, we will provide practical inference examples tailored to scenarios with multiple images, batch prompts etc.

Using the pipeline interface to infer other VLM models is similar, with the main difference being the configuration and installation dependencies of the models. You can read here for environment installation and configuration methods for different models.

A 'Hello, world' example

from lmdeploy import pipeline
from lmdeploy.vl import load_image

pipe = pipeline('OpenGVLab/InternVL2_5-8B')

image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
response = pipe(('describe this image', image))
print(response)

If ImportError occurs while executing this case, please install the required dependency packages as prompted.

In the above example, the inference prompt is a tuple structure consisting of (prompt, image). Besides this structure, the pipeline also supports prompts in the OpenAI format:

from lmdeploy import pipeline

pipe = pipeline('OpenGVLab/InternVL2_5-8B')

prompts = [
    {
        'role': 'user',
        'content': [
            {'type': 'text', 'text': 'describe this image'},
            {'type': 'image_url', 'image_url': {'url': 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg'}}
        ]
    }
]
response = pipe(prompts)
print(response)

Set tensor parallelism

Tensor paramllelism can be activated by setting the engine parameter tp

from lmdeploy import pipeline, TurbomindEngineConfig
from lmdeploy.vl import load_image

pipe = pipeline('OpenGVLab/InternVL2_5-8B',
                backend_config=TurbomindEngineConfig(tp=2))

image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
response = pipe(('describe this image', image))
print(response)

Set context window size

When creating the pipeline, you can customize the size of the context window by setting the engine parameter session_len.

from lmdeploy import pipeline, TurbomindEngineConfig
from lmdeploy.vl import load_image

pipe = pipeline('OpenGVLab/InternVL2_5-8B',
                backend_config=TurbomindEngineConfig(session_len=8192))

image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
response = pipe(('describe this image', image))
print(response)

Set sampling parameters

You can change the default sampling parameters of pipeline by passing GenerationConfig

from lmdeploy import pipeline, GenerationConfig, TurbomindEngineConfig
from lmdeploy.vl import load_image

pipe = pipeline('OpenGVLab/InternVL2_5-8B',
                backend_config=TurbomindEngineConfig(tp=2, session_len=8192))
gen_config = GenerationConfig(top_k=40, top_p=0.8, temperature=0.6)
image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
response = pipe(('describe this image', image), gen_config=gen_config)
print(response)

Customize image token position

By default, LMDeploy inserts the special image token into the user prompt following the chat template defined by the upstream algorithm repository. However, for certain models where the image token's position is unrestricted, such as deepseek-vl, or when users require a customized image token placement, manual insertion of the special image token into the prompt is necessary. LMDeploy use <IMAGE_TOKEN> as the special image token.

from lmdeploy import pipeline
from lmdeploy.vl import load_image
from lmdeploy.vl.constants import IMAGE_TOKEN

pipe = pipeline('deepseek-ai/deepseek-vl-1.3b-chat')

image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
response = pipe((f'describe this image{IMAGE_TOKEN}', image))
print(response)

Set chat template

While performing inference, LMDeploy identifies an appropriate chat template from its builtin collection based on the model path and subsequently applies this template to the input prompts. However, when a chat template cannot be told from its model path, users have to specify it. For example, liuhaotian/llava-v1.5-7b employs the 'llava-v1' chat template, if user have a custom folder name instead of the official 'llava-v1.5-7b', the user needs to specify it by setting 'llava-v1' to ChatTemplateConfig as follows:

from lmdeploy import pipeline, ChatTemplateConfig
from lmdeploy.vl import load_image
pipe = pipeline('local_model_folder',
                chat_template_config=ChatTemplateConfig(model_name='llava-v1'))
image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
response = pipe(('describe this image', image))
print(response)

For more information about customizing a chat template, please refer to this guide

Setting vision model parameters

The default parameters of the visual model can be modified by setting VisionConfig.

from lmdeploy import pipeline, VisionConfig
from lmdeploy.vl import load_image
vision_config=VisionConfig(max_batch_size=16)
pipe = pipeline('liuhaotian/llava-v1.5-7b', vision_config=vision_config)
image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
response = pipe(('describe this image', image))
print(response)

Output logits for generated tokens

from lmdeploy import pipeline, GenerationConfig
from lmdeploy.vl import load_image
pipe = pipeline('OpenGVLab/InternVL2_5-8B')

image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')

response = pipe(('describe this image', image),
                gen_config=GenerationConfig(output_logits='generation'))
logits = response.logits
print(logits)

Multi-images inference

When dealing with multiple images, you can put them all in one list. Keep in mind that multiple images will lead to a higher number of input tokens, and as a result, the size of the context window typically needs to be increased.

from lmdeploy import pipeline, TurbomindEngineConfig
from lmdeploy.vl import load_image

pipe = pipeline('OpenGVLab/InternVL2_5-8B',
                backend_config=TurbomindEngineConfig(session_len=8192))

image_urls=[
    'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg',
    'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg'
]

images = [load_image(img_url) for img_url in image_urls]
response = pipe(('describe these images', images))
print(response)

Batch prompts inference

Conducting inference with batch prompts is quite straightforward; just place them within a list structure:

from lmdeploy import pipeline, TurbomindEngineConfig
from lmdeploy.vl import load_image

pipe = pipeline('OpenGVLab/InternVL2_5-8B',
                backend_config=TurbomindEngineConfig(session_len=8192))

image_urls=[
    "https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg",
    "https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg"
]
prompts = [('describe this image', load_image(img_url)) for img_url in image_urls]
response = pipe(prompts)
print(response)

Multi-turn conversation

There are two ways to do the multi-turn conversations with the pipeline. One is to construct messages according to the format of OpenAI and use above introduced method, the other is to use the pipeline.chat interface.

from lmdeploy import pipeline, TurbomindEngineConfig, GenerationConfig
from lmdeploy.vl import load_image

pipe = pipeline('OpenGVLab/InternVL2_5-8B',
                backend_config=TurbomindEngineConfig(session_len=8192))

image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg')
gen_config = GenerationConfig(top_k=40, top_p=0.8, temperature=0.8)
sess = pipe.chat(('describe this image', image), gen_config=gen_config)
print(sess.response.text)
sess = pipe.chat('What is the woman doing?', session=sess, gen_config=gen_config)
print(sess.response.text)