diff --git a/docs/en/supported_models/supported_models.md b/docs/en/supported_models/supported_models.md index cd43e79c9..469ece487 100644 --- a/docs/en/supported_models/supported_models.md +++ b/docs/en/supported_models/supported_models.md @@ -51,47 +51,47 @@ The TurboMind engine doesn't support window attention. Therefore, for models tha | Llama | 7B - 65B | LLM | Yes | Yes | Yes | Yes | Yes | | Llama2 | 7B - 70B | LLM | Yes | Yes | Yes | Yes | Yes | | Llama3 | 8B, 70B | LLM | Yes | Yes | Yes | Yes | Yes | -| Llama3.1 | 8B, 70B | LLM | Yes | Yes | Yes | No | - | -| Llama3.2 | 1B, 3B | LLM | Yes | Yes | Yes | No | - | -| Llama3.2-VL | 11B, 90B | MLLM | Yes | Yes | Yes | No | - | -| InternLM | 7B - 20B | LLM | Yes | Yes | Yes | Yes | - | +| Llama3.1 | 8B, 70B | LLM | Yes | Yes | Yes | Yes | Yes | +| Llama3.2 | 1B, 3B | LLM | Yes | Yes | Yes | Yes | Yes | +| Llama3.2-VL | 11B, 90B | MLLM | Yes | Yes | Yes | - | - | +| InternLM | 7B - 20B | LLM | Yes | Yes | Yes | Yes | Yes | | InternLM2 | 7B - 20B | LLM | Yes | Yes | Yes | Yes | Yes | | InternLM2.5 | 7B | LLM | Yes | Yes | Yes | Yes | Yes | | Baichuan2 | 7B | LLM | Yes | Yes | Yes | Yes | No | | Baichuan2 | 13B | LLM | Yes | Yes | Yes | No | No | | ChatGLM2 | 6B | LLM | Yes | Yes | Yes | No | No | | Falcon | 7B - 180B | LLM | Yes | Yes | Yes | No | No | -| YI | 6B - 34B | LLM | Yes | Yes | Yes | No | Yes | -| Mistral | 7B | LLM | Yes | Yes | Yes | No | No | +| YI | 6B - 34B | LLM | Yes | Yes | Yes | Yes | Yes | +| Mistral | 7B | LLM | Yes | Yes | Yes | Yes | Yes | | Mixtral | 8x7B, 8x22B | LLM | Yes | Yes | Yes | No | No | -| QWen | 1.8B - 72B | LLM | Yes | Yes | Yes | No | Yes | -| QWen1.5 | 0.5B - 110B | LLM | Yes | Yes | Yes | No | Yes | +| QWen | 1.8B - 72B | LLM | Yes | Yes | Yes | Yes | Yes | +| QWen1.5 | 0.5B - 110B | LLM | Yes | Yes | Yes | Yes | Yes | | QWen1.5-MoE | A2.7B | LLM | Yes | Yes | Yes | No | No | -| QWen2 | 0.5B - 72B | LLM | Yes | Yes | No | No | Yes | +| QWen2 | 0.5B - 72B | LLM | Yes | Yes | No | Yes | Yes | | QWen2-VL | 2B, 7B | MLLM | Yes | Yes | No | No | No | | DeepSeek-MoE | 16B | LLM | Yes | No | No | No | No | | DeepSeek-V2 | 16B, 236B | LLM | Yes | No | No | No | No | | MiniCPM3 | 4B | LLM | Yes | Yes | Yes | No | No | -| MiniCPM-V-2_6 | 8B | LLM | Yes | No | No | No | Yes | +| MiniCPM-V-2_6 | 8B | LLM | Yes | No | No | Yes | Yes | | Gemma | 2B-7B | LLM | Yes | Yes | Yes | No | No | | Dbrx | 132B | LLM | Yes | Yes | Yes | No | No | | StarCoder2 | 3B-15B | LLM | Yes | Yes | Yes | No | No | -| Phi-3-mini | 3.8B | LLM | Yes | Yes | Yes | No | Yes | -| Phi-3-vision | 4.2B | MLLM | Yes | Yes | Yes | No | - | -| CogVLM-Chat | 17B | MLLM | Yes | Yes | Yes | No | - | -| CogVLM2-Chat | 19B | MLLM | Yes | Yes | Yes | No | - | -| LLaVA(1.5,1.6) | 7B-34B | MLLM | Yes | Yes | Yes | No | - | -| InternVL(v1.5) | 2B-26B | MLLM | Yes | Yes | Yes | No | Yes | -| InternVL2 | 1B-40B | MLLM | Yes | Yes | Yes | No | - | -| Mono-InternVL | 2B | MLLM | Yes\* | Yes | Yes | No | - | -| ChemVLM | 8B-26B | MLLM | Yes | Yes | No | No | - | -| Gemma2 | 9B-27B | LLM | Yes | Yes | Yes | No | - | +| Phi-3-mini | 3.8B | LLM | Yes | Yes | Yes | Yes | Yes | +| Phi-3-vision | 4.2B | MLLM | Yes | Yes | Yes | - | - | +| CogVLM-Chat | 17B | MLLM | Yes | Yes | Yes | - | - | +| CogVLM2-Chat | 19B | MLLM | Yes | Yes | Yes | - | - | +| LLaVA(1.5,1.6) | 7B-34B | MLLM | Yes | Yes | Yes | - | - | +| InternVL(v1.5) | 2B-26B | MLLM | Yes | Yes | Yes | Yes | Yes | +| InternVL2 | 1B-40B | MLLM | Yes | Yes | Yes | - | - | +| Mono-InternVL | 2B | MLLM | Yes\* | Yes | Yes | - | - | +| ChemVLM | 8B-26B | MLLM | Yes | Yes | No | - | - | +| Gemma2 | 9B-27B | LLM | Yes | Yes | Yes | - | - | | GLM4 | 9B | LLM | Yes | Yes | Yes | No | No | | GLM-4V | 9B | MLLM | Yes | Yes | Yes | No | No | -| CodeGeeX4 | 9B | LLM | Yes | Yes | Yes | No | - | -| Phi-3.5-mini | 3.8B | LLM | Yes | Yes | No | No | - | -| Phi-3.5-MoE | 16x3.8B | LLM | Yes | Yes | No | No | - | -| Phi-3.5-vision | 4.2B | MLLM | Yes | Yes | No | No | - | +| CodeGeeX4 | 9B | LLM | Yes | Yes | Yes | - | - | +| Phi-3.5-mini | 3.8B | LLM | Yes | Yes | No | - | - | +| Phi-3.5-MoE | 16x3.8B | LLM | Yes | Yes | No | - | - | +| Phi-3.5-vision | 4.2B | MLLM | Yes | Yes | No | - | - | ```{note} * Currently Mono-InternVL does not support FP16 due to numerical instability. Please use BF16 instead. diff --git a/docs/zh_cn/supported_models/supported_models.md b/docs/zh_cn/supported_models/supported_models.md index 7ec36d235..d73452328 100644 --- a/docs/zh_cn/supported_models/supported_models.md +++ b/docs/zh_cn/supported_models/supported_models.md @@ -51,47 +51,47 @@ turbomind 引擎不支持 window attention。所以,对于应用了 window att | Llama | 7B - 65B | LLM | Yes | Yes | Yes | Yes | Yes | | Llama2 | 7B - 70B | LLM | Yes | Yes | Yes | Yes | Yes | | Llama3 | 8B, 70B | LLM | Yes | Yes | Yes | Yes | Yes | -| Llama3.1 | 8B, 70B | LLM | Yes | Yes | Yes | No | - | -| Llama3.2 | 1B, 3B | LLM | Yes | Yes | Yes | No | - | -| Llama3.2-VL | 11B, 90B | MLLM | Yes | Yes | Yes | No | - | -| InternLM | 7B - 20B | LLM | Yes | Yes | Yes | Yes | - | +| Llama3.1 | 8B, 70B | LLM | Yes | Yes | Yes | Yes | Yes | +| Llama3.2 | 1B, 3B | LLM | Yes | Yes | Yes | Yes | Yes | +| Llama3.2-VL | 11B, 90B | MLLM | Yes | Yes | Yes | - | - | +| InternLM | 7B - 20B | LLM | Yes | Yes | Yes | Yes | Yes | | InternLM2 | 7B - 20B | LLM | Yes | Yes | Yes | Yes | Yes | | InternLM2.5 | 7B | LLM | Yes | Yes | Yes | Yes | Yes | | Baichuan2 | 7B | LLM | Yes | Yes | Yes | Yes | No | | Baichuan2 | 13B | LLM | Yes | Yes | Yes | No | No | | ChatGLM2 | 6B | LLM | Yes | Yes | Yes | No | No | | Falcon | 7B - 180B | LLM | Yes | Yes | Yes | No | No | -| YI | 6B - 34B | LLM | Yes | Yes | Yes | No | Yes | -| Mistral | 7B | LLM | Yes | Yes | Yes | No | No | +| YI | 6B - 34B | LLM | Yes | Yes | Yes | Yes | Yes | +| Mistral | 7B | LLM | Yes | Yes | Yes | Yes | Yes | | Mixtral | 8x7B, 8x22B | LLM | Yes | Yes | Yes | No | No | -| QWen | 1.8B - 72B | LLM | Yes | Yes | Yes | No | Yes | -| QWen1.5 | 0.5B - 110B | LLM | Yes | Yes | Yes | No | Yes | +| QWen | 1.8B - 72B | LLM | Yes | Yes | Yes | Yes | Yes | +| QWen1.5 | 0.5B - 110B | LLM | Yes | Yes | Yes | Yes | Yes | | QWen1.5-MoE | A2.7B | LLM | Yes | Yes | Yes | No | No | -| QWen2 | 0.5B - 72B | LLM | Yes | Yes | No | No | Yes | +| QWen2 | 0.5B - 72B | LLM | Yes | Yes | No | Yes | Yes | | QWen2-VL | 2B, 7B | MLLM | Yes | Yes | No | No | No | | DeepSeek-MoE | 16B | LLM | Yes | No | No | No | No | | DeepSeek-V2 | 16B, 236B | LLM | Yes | No | No | No | No | | MiniCPM3 | 4B | LLM | Yes | Yes | Yes | No | No | -| MiniCPM-V-2_6 | 8B | LLM | Yes | No | No | No | Yes | +| MiniCPM-V-2_6 | 8B | LLM | Yes | No | No | Yes | Yes | | Gemma | 2B-7B | LLM | Yes | Yes | Yes | No | No | | Dbrx | 132B | LLM | Yes | Yes | Yes | No | No | | StarCoder2 | 3B-15B | LLM | Yes | Yes | Yes | No | No | -| Phi-3-mini | 3.8B | LLM | Yes | Yes | Yes | No | Yes | -| Phi-3-vision | 4.2B | MLLM | Yes | Yes | Yes | No | - | -| CogVLM-Chat | 17B | MLLM | Yes | Yes | Yes | No | - | -| CogVLM2-Chat | 19B | MLLM | Yes | Yes | Yes | No | - | -| LLaVA(1.5,1.6) | 7B-34B | MLLM | Yes | Yes | Yes | No | - | -| InternVL(v1.5) | 2B-26B | MLLM | Yes | Yes | Yes | No | Yes | -| InternVL2 | 1B-40B | MLLM | Yes | Yes | Yes | No | - | -| Mono-InternVL | 2B | MLLM | Yes\* | Yes | Yes | No | - | -| ChemVLM | 8B-26B | MLLM | Yes | Yes | No | No | - | -| Gemma2 | 9B-27B | LLM | Yes | Yes | Yes | No | - | +| Phi-3-mini | 3.8B | LLM | Yes | Yes | Yes | Yes | Yes | +| Phi-3-vision | 4.2B | MLLM | Yes | Yes | Yes | - | - | +| CogVLM-Chat | 17B | MLLM | Yes | Yes | Yes | - | - | +| CogVLM2-Chat | 19B | MLLM | Yes | Yes | Yes | - | - | +| LLaVA(1.5,1.6) | 7B-34B | MLLM | Yes | Yes | Yes | - | - | +| InternVL(v1.5) | 2B-26B | MLLM | Yes | Yes | Yes | Yes | Yes | +| InternVL2 | 1B-40B | MLLM | Yes | Yes | Yes | - | - | +| Mono-InternVL | 2B | MLLM | Yes\* | Yes | Yes | - | - | +| ChemVLM | 8B-26B | MLLM | Yes | Yes | No | - | - | +| Gemma2 | 9B-27B | LLM | Yes | Yes | Yes | - | - | | GLM4 | 9B | LLM | Yes | Yes | Yes | No | No | | GLM-4V | 9B | MLLM | Yes | Yes | Yes | No | No | -| CodeGeeX4 | 9B | LLM | Yes | Yes | Yes | No | - | -| Phi-3.5-mini | 3.8B | LLM | Yes | Yes | No | No | - | -| Phi-3.5-MoE | 16x3.8B | LLM | Yes | Yes | No | No | - | -| Phi-3.5-vision | 4.2B | MLLM | Yes | Yes | No | No | - | +| CodeGeeX4 | 9B | LLM | Yes | Yes | Yes | - | - | +| Phi-3.5-mini | 3.8B | LLM | Yes | Yes | No | - | - | +| Phi-3.5-MoE | 16x3.8B | LLM | Yes | Yes | No | - | - | +| Phi-3.5-vision | 4.2B | MLLM | Yes | Yes | No | - | - | ```{note} * Currently Mono-InternVL does not support FP16 due to numerical instability. Please use BF16 instead. diff --git a/lmdeploy/lite/apis/calibrate.py b/lmdeploy/lite/apis/calibrate.py index 0780e9359..71f7a5900 100644 --- a/lmdeploy/lite/apis/calibrate.py +++ b/lmdeploy/lite/apis/calibrate.py @@ -27,6 +27,7 @@ 'ChatGLMForConditionalGeneration': 'GLMBlock', 'MixtralForCausalLM': 'MixtralDecoderLayer', 'Qwen2VLForConditionalGeneration': 'Qwen2VLDecoderLayer', + 'MistralForCausalLM': 'MistralDecoderLayer', } NORM_TYPE_MAP = { @@ -44,6 +45,7 @@ 'ChatGLMForConditionalGeneration': 'RMSNorm', 'MixtralForCausalLM': 'MixtralRMSNorm', 'Qwen2VLForConditionalGeneration': 'Qwen2RMSNorm', + 'MistralForCausalLM': 'MistralRMSNorm', } HEAD_NAME_MAP = { @@ -61,6 +63,7 @@ 'ChatGLMForConditionalGeneration': 'output_layer', 'MixtralForCausalLM': 'lm_head', 'Qwen2VLForConditionalGeneration': 'lm_head', + 'MistralForCausalLM': 'lm_head', } diff --git a/lmdeploy/lite/apis/smooth_quant.py b/lmdeploy/lite/apis/smooth_quant.py index 45684602b..c8df67355 100644 --- a/lmdeploy/lite/apis/smooth_quant.py +++ b/lmdeploy/lite/apis/smooth_quant.py @@ -1,70 +1,15 @@ # Copyright (c) OpenMMLab. All rights reserved. - -import os.path as osp -import shutil - import fire import torch from torch import nn -import lmdeploy -from lmdeploy.lite.apis.calibrate import calibrate +from lmdeploy.lite.apis.calibrate import (LAYER_TYPE_MAP, NORM_TYPE_MAP, + calibrate) from lmdeploy.lite.quantization.awq import (FC_FCS_MAP, NORM_FCS_MAP, awq_layers, smooth_layers) from lmdeploy.lite.utils import collect_target_modules from lmdeploy.pytorch.models import QLinear, QRMSNorm -LAYER_TYPE_MAP = { - 'InternLMForCausalLM': 'InternLMDecoderLayer', - 'InternLM2ForCausalLM': 'InternLM2DecoderLayer', - 'QWenLMHeadModel': 'QWenBlock', - 'BaiChuanForCausalLM': 'DecoderLayer', - 'LlamaForCausalLM': 'LlamaDecoderLayer', - 'ChatGLMForConditionalGeneration': 'GLMBlock', -} -NORM_TYPE_MAP = { - 'InternLMForCausalLM': 'InternLMRMSNorm', - 'InternLM2ForCausalLM': 'InternLM2RMSNorm', - 'QWenLMHeadModel': 'RMSNorm', - 'BaiChuanForCausalLM': 'RMSNorm', - 'LlamaForCausalLM': 'LlamaRMSNorm', - 'ChatGLMForConditionalGeneration': 'RMSNorm', -} - -LMDEPLOY_ROOT = lmdeploy.__path__[0] - -MODEL_PATH_MAP = { - 'InternLMForCausalLM': - osp.join(LMDEPLOY_ROOT, 'pytorch/modeling/modeling_internlm.py'), - 'InternLM2ForCausalLM': - osp.join(LMDEPLOY_ROOT, 'pytorch/modeling/modeling_internlm2.py'), - 'LlamaForCausalLM': - osp.join(LMDEPLOY_ROOT, 'pytorch/modeling/modeling_llama.py'), - 'BaiChuanForCausalLM': - osp.join(LMDEPLOY_ROOT, 'pytorch/modeling/modeling_baichuan.py') -} - -AUTO_MAP = { - 'InternLMForCausalLM': { - 'AutoConfig': 'configuration_internlm.InternLMConfig', - 'AutoModel': 'modeling_internlm.InternLMForCausalLM', - 'AutoModelForCausalLM': 'modeling_internlm.InternLMForCausalLM' - }, - 'InternLM2ForCausalLM': { - 'AutoConfig': 'configuration_internlm2.InternLMConfig', - 'AutoModelForCausalLM': 'modeling_internlm2.InternLM2ForCausalLM', - 'AutoModel': 'modeling_internlm2.InternLM2ForCausalLM' - }, - 'LlamaForCausalLM': { - 'AutoModel': 'modeling_llama.LlamaForCausalLM', - 'AutoModelForCausalLM': 'modeling_llama.LlamaForCausalLM' - }, - 'BaiChuanForCausalLM': { - 'AutoConfig': 'configuration_baichuan.BaiChuanConfig', - 'AutoModelForCausalLM': 'modeling_baichuan.BaiChuanForCausalLM' - } -} - def smooth_quant(model: str, work_dir: str = './work_dir', @@ -146,11 +91,6 @@ def smooth_quant(model: str, setattr(parent, child_name, q_norm) norm.to('cpu') - if hasattr(model.config, 'auto_map'): - model.config.auto_map.update(AUTO_MAP[type(model).__name__]) - else: - model.config.auto_map = AUTO_MAP[type(model).__name__] - if vl_model: from .auto_awq import save_vl_model save_vl_model(vl_model, model_path, work_dir) @@ -162,8 +102,6 @@ def smooth_quant(model: str, safe_serialization=False) tokenizer.save_pretrained(work_dir) - shutil.copy(MODEL_PATH_MAP[type(model).__name__], work_dir) - if __name__ == '__main__': fire.Fire(smooth_quant) diff --git a/lmdeploy/lite/quantization/awq.py b/lmdeploy/lite/quantization/awq.py index 2efe41b6d..cf03a7521 100644 --- a/lmdeploy/lite/quantization/awq.py +++ b/lmdeploy/lite/quantization/awq.py @@ -50,7 +50,12 @@ 'input_layernorm': ['self_attn.k_proj', 'self_attn.q_proj', 'self_attn.v_proj'], 'post_attention_layernorm': ['mlp.gate_proj', 'mlp.up_proj'] - } + }, + 'MistralDecoderLayer': { + 'input_layernorm': + ['self_attn.k_proj', 'self_attn.q_proj', 'self_attn.v_proj'], + 'post_attention_layernorm': ['mlp.gate_proj', 'mlp.up_proj'] + }, } FC_FCS_MAP = { @@ -92,6 +97,10 @@ 'Qwen2VLDecoderLayer': { 'self_attn.v_proj': ['self_attn.o_proj'], 'mlp.up_proj': ['mlp.down_proj'] + }, + 'MistralDecoderLayer': { + 'self_attn.v_proj': ['self_attn.o_proj'], + 'mlp.up_proj': ['mlp.down_proj'] } } diff --git a/lmdeploy/pytorch/modeling/__init__.py b/lmdeploy/pytorch/modeling/__init__.py deleted file mode 100644 index ef101fec6..000000000 --- a/lmdeploy/pytorch/modeling/__init__.py +++ /dev/null @@ -1 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. diff --git a/lmdeploy/pytorch/modeling/convert_to_qmodules.py b/lmdeploy/pytorch/modeling/convert_to_qmodules.py deleted file mode 100644 index 4a95c9f16..000000000 --- a/lmdeploy/pytorch/modeling/convert_to_qmodules.py +++ /dev/null @@ -1,59 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -import torch.nn as nn - -from lmdeploy.pytorch.models import QLinear, QRMSNorm - -LAYER_TYPE_MAP = { - 'InternLMForCausalLM': 'InternLMDecoderLayer', - 'InternLM2ForCausalLM': 'InternLM2DecoderLayer', - 'QWenLMHeadModel': 'QWenBlock', - 'BaiChuanForCausalLM': 'DecoderLayer', - 'LlamaForCausalLM': 'LlamaDecoderLayer', -} -NORM_TYPE_MAP = { - 'InternLMForCausalLM': 'InternLMRMSNorm', - 'InternLM2ForCausalLM': 'InternLM2RMSNorm', - 'QWenLMHeadModel': 'RMSNorm', - 'BaiChuanForCausalLM': 'RMSNorm', - 'LlamaForCausalLM': 'LlamaRMSNorm', -} - - -def convert_decoder_layer(module, norm_type): - """Converts a given module's child layers from regular Linear or RMSNorm to - their Quantized versions (QLinear, QRMSNorm). - - The conversion is done in place. - """ - for name, child in module.named_children(): - if isinstance(child, nn.Linear): - new_child = QLinear.from_float(child, initialization=False) - setattr(module, name, new_child) - elif type(child).__name__ == norm_type: - new_child = QRMSNorm.from_float(child, initialization=False) - setattr(module, name, new_child) - else: - convert_decoder_layer(child, norm_type) - - -def convert(module, layer_type, norm_type): - """Recursively traverses through given PyTorch module and identifies child - layers that match the specified layer_type and norm_type for conversion to - their Quantized counterparts. - - The conversion is done using the `convert_decoder_layer` function. - """ - for child in module.children(): - if type(child).__name__ == layer_type: - convert_decoder_layer(child, norm_type) - else: - convert(child, layer_type, norm_type) - - -def convert_to_qmodules(model): - """Convert all Linear and RMSNorm in the decoder layers of the model into - their Quantized versions (QLinear, QRMSNorm).""" - layer_type = LAYER_TYPE_MAP[type(model).__name__] - norm_type = NORM_TYPE_MAP[type(model).__name__] - convert(model, layer_type, norm_type) - return diff --git a/lmdeploy/pytorch/modeling/modeling_baichuan.py b/lmdeploy/pytorch/modeling/modeling_baichuan.py deleted file mode 100644 index a790e81d0..000000000 --- a/lmdeploy/pytorch/modeling/modeling_baichuan.py +++ /dev/null @@ -1,824 +0,0 @@ -# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. -# -# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX -# and OPT implementations in this library. It has been modified from its -# original forms to accommodate minor architectural differences compared -# to GPT-NeoX and OPT used by the Meta AI team that trained the model. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -import math -from typing import List, Optional, Tuple, Union - -import torch -import torch.utils.checkpoint -from torch import nn -from torch.nn import CrossEntropyLoss -from transformers import PreTrainedModel -from transformers.activations import ACT2FN -from transformers.modeling_outputs import (BaseModelOutputWithPast, - CausalLMOutputWithPast) - -from lmdeploy.pytorch.modeling.convert_to_qmodules import convert_to_qmodules -from lmdeploy.utils import get_logger - -from .configuration_baichuan import BaiChuanConfig - -logger = get_logger('lmdeploy') - - -# Copied from transformers.models.bart.modeling_bart._make_causal_mask -def _make_causal_mask(input_ids_shape: torch.Size, - dtype: torch.dtype, - device: torch.device, - past_key_values_length: int = 0): - """Make causal mask used for bi-directional self-attention.""" - bsz, tgt_len = input_ids_shape - mask = torch.full((tgt_len, tgt_len), - torch.tensor(torch.finfo(dtype).min, device=device), - device=device) - mask_cond = torch.arange(mask.size(-1), device=device) - mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) - mask = mask.to(dtype) - - if past_key_values_length > 0: - mask = torch.cat([ - torch.zeros( - tgt_len, past_key_values_length, dtype=dtype, device=device), - mask - ], - dim=-1) - return mask[None, None, :, :].expand(bsz, 1, tgt_len, - tgt_len + past_key_values_length) - - -# Copied from transformers.models.bart.modeling_bart._expand_mask -def _expand_mask(mask: torch.Tensor, - dtype: torch.dtype, - tgt_len: Optional[int] = None): - """Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, - src_seq_len]`.""" - bsz, src_len = mask.size() - tgt_len = tgt_len if tgt_len is not None else src_len - - expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, - src_len).to(dtype) - - inverted_mask = 1.0 - expanded_mask - - return inverted_mask.masked_fill(inverted_mask.to(torch.bool), - torch.finfo(dtype).min) - - -class RMSNorm(nn.Module): - - def __init__(self, hidden_size, eps=1e-6): - """RMSNorm is equivalent to T5LayerNorm.""" - super().__init__() - self.weight = nn.Parameter(torch.ones(hidden_size)) - self.variance_epsilon = eps - - def forward(self, hidden_states): - variance = hidden_states.to(torch.float32).pow(2).mean(-1, - keepdim=True) - hidden_states = hidden_states * torch.rsqrt(variance + - self.variance_epsilon) - - # convert into half-precision if necessary - if self.weight.dtype in [torch.float16, torch.bfloat16]: - hidden_states = hidden_states.to(self.weight.dtype) - - return self.weight * hidden_states - - -class RotaryEmbedding(torch.nn.Module): - """RotaryEmbedding for Baichuan Model. - - This module generates sine and cosine positional encodings based on - the paper "RoFormer: Enhanced Transformer with Rotary Position Embedding". - The purpose of this class is to provide positional embeddings to the - input tensors. It utilizes a cache mechanism to store precomputed - sine and cosine values for speedup. - - Args: - dim (int): The dimensionality of the embeddings. - max_position_embeddings (int, optional): The maximum number of - position embeddings. Default is 2048. - base (int, optional): The base value for the inverse frequency - calculation. Default is 10000. - device (str, optional): The device to run operations on. - If None, defaults to the device of the model. - """ - - def __init__(self, - dim, - max_position_embeddings=2048, - base=10000, - device=None): - super().__init__() - index = (torch.arange(0, dim, 2).float().to(device) / dim) - inv_freq = 1.0 / (base**index) - self.register_buffer('inv_freq', inv_freq) - - # Build here to make `torch.jit.trace` work. - self.max_seq_len_cached = max_position_embeddings - t = torch.arange(self.max_seq_len_cached, - device=self.inv_freq.device, - dtype=self.inv_freq.dtype) - freqs = torch.einsum('i,j->ij', t, self.inv_freq) - # Different from paper, but it uses a different permutation in order - # to obtain the same calculation - emb = torch.cat((freqs, freqs), dim=-1) - self.register_buffer('cos_cached', - emb.cos()[None, None, :, :], - persistent=False) - self.register_buffer('sin_cached', - emb.sin()[None, None, :, :], - persistent=False) - - def forward(self, x, seq_len=None): - """Forward propagation method for the embedding layer. - - Generates positional embeddings for the given input tensor. - """ - # x: [bs, num_attention_heads, seq_len, head_size] - # This `if` block is unlikely to be run after we build sin/cos in - # `__init__`. Keep the logic here just in case. - if seq_len > self.max_seq_len_cached: - self.max_seq_len_cached = seq_len - t = torch.arange(self.max_seq_len_cached, - device=x.device, - dtype=self.inv_freq.dtype) - freqs = torch.einsum('i,j->ij', t, self.inv_freq) - # Different from paper, but it uses a different permutation in - # order to obtain the same calculation - emb = torch.cat((freqs, freqs), dim=-1).to(x.device) - self.register_buffer('cos_cached', - emb.cos()[None, None, :, :], - persistent=False) - self.register_buffer('sin_cached', - emb.sin()[None, None, :, :], - persistent=False) - return ( - self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype), - self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype), - ) - - -def rotate_half(x): - """Rotates half the hidden dims of the input.""" - x1 = x[..., :x.shape[-1] // 2] - x2 = x[..., x.shape[-1] // 2:] - return torch.cat((-x2, x1), dim=-1) - - -def apply_rotary_pos_emb(q, k, cos, sin, position_ids): - """Apply rotary positional embeddings to query and key tensors. - - This function applies the cosine and sine positional embeddings on the - input query (q) and key (k) tensors using element-wise multiplication and - addition. - """ - # The first two dimensions of cos and sin are always 1, - # so we can `squeeze` them. - cos = cos.squeeze(1).squeeze(0) # [seq_len, dim] - sin = sin.squeeze(1).squeeze(0) # [seq_len, dim] - cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim] - sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim] - q_embed = (q * cos) + (rotate_half(q) * sin) - k_embed = (k * cos) + (rotate_half(k) * sin) - return q_embed, k_embed - - -class MLP(nn.Module): - """MLP for Baichuan Model.""" - - def __init__( - self, - hidden_size: int, - intermediate_size: int, - hidden_act: str, - ): - super().__init__() - self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False) - self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False) - self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False) - self.act_fn = ACT2FN[hidden_act] - - def forward(self, x): - return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) - - -class Attention(nn.Module): - """Multi-headed attention from 'Attention Is All You Need' paper.""" - - def __init__(self, config: BaiChuanConfig): - super().__init__() - self.config = config - self.hidden_size = config.hidden_size - self.num_heads = config.num_attention_heads - self.head_dim = self.hidden_size // self.num_heads - self.max_position_embeddings = config.max_position_embeddings - - if (self.head_dim * self.num_heads) != self.hidden_size: - raise ValueError('hidden_size must be divisible by num_heads ' - f'(got `hidden_size`: {self.hidden_size}' - f' and `num_heads`: {self.num_heads}).') - self.W_pack = nn.Linear(self.hidden_size, - 3 * self.hidden_size, - bias=False) - self.o_proj = nn.Linear(self.num_heads * self.head_dim, - self.hidden_size, - bias=False) - self.rotary_emb = RotaryEmbedding( - self.head_dim, - max_position_embeddings=self.max_position_embeddings) - - def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): - return tensor.view(bsz, seq_len, self.num_heads, - self.head_dim).transpose(1, 2).contiguous() - - def forward( - self, - hidden_states: torch.Tensor, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_value: Optional[Tuple[torch.Tensor]] = None, - output_attentions: bool = False, - use_cache: bool = False, - ) -> Tuple[torch.Tensor, Optional[torch.Tensor], - Optional[Tuple[torch.Tensor]]]: - """Forward propagation method for the attention layer.""" - bsz, q_len, _ = hidden_states.size() - - proj = self.W_pack(hidden_states) - proj = proj.unflatten(-1, - (3, self.hidden_size)).unsqueeze(0).transpose( - 0, -2).squeeze(-2) - query_states = proj[0].view( - bsz, q_len, self.num_heads, self.head_dim).transpose( - 1, 2) # batch_size x source_len x hidden_size - key_states = proj[1].view(bsz, q_len, - self.num_heads, self.head_dim).transpose( - 1, - 2) # batch_size x target_len x head_size - value_states = proj[2].view( - bsz, q_len, self.num_heads, self.head_dim).transpose( - 1, 2) # batch_size x source_len x hidden_size - - kv_seq_len = key_states.shape[-2] - if past_key_value is not None: - kv_seq_len += past_key_value[0].shape[-2] - cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) - query_states, key_states = apply_rotary_pos_emb( - query_states, key_states, cos, sin, position_ids) - # [bsz, nh, t, hd] - - if past_key_value is not None: - # reuse k, v, self_attention - key_states = torch.cat([past_key_value[0], key_states], dim=2) - value_states = torch.cat([past_key_value[1], value_states], dim=2) - - past_key_value = (key_states, value_states) if use_cache else None - - attn_weights = torch.matmul(query_states, key_states.transpose( - 2, 3)) / math.sqrt(self.head_dim) - - if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): - raise ValueError( - 'Attention weights should be of size ' - f'{(bsz, self.num_heads, q_len, kv_seq_len)}, but is' - f' {attn_weights.size()}') - - if attention_mask is not None: - if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): - raise ValueError('Attention mask should be of size ' - f'{(bsz, 1, q_len, kv_seq_len)},' - f' but is {attention_mask.size()}') - attn_weights = attn_weights + attention_mask - attn_weights = torch.max( - attn_weights, - torch.tensor(torch.finfo(attn_weights.dtype).min)) - - # upcast attention to fp32 - attn_weights = nn.functional.softmax(attn_weights, - dim=-1, - dtype=torch.float32).to( - query_states.dtype) - attn_output = torch.matmul(attn_weights, value_states) - - if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): - raise ValueError( - '`attn_output` should be of size ' - f'{(bsz, self.num_heads, q_len, self.head_dim)}, but is' - f' {attn_output.size()}') - - attn_output = attn_output.transpose(1, 2) - attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) - - attn_output = self.o_proj(attn_output) - - if not output_attentions: - attn_weights = None - - return attn_output, attn_weights, past_key_value - - -class DecoderLayer(nn.Module): - """Decoder layer for Baichuan Model.""" - - def __init__(self, config: BaiChuanConfig): - super().__init__() - self.hidden_size = config.hidden_size - self.self_attn = Attention(config=config) - self.mlp = MLP( - hidden_size=self.hidden_size, - intermediate_size=config.intermediate_size, - hidden_act=config.hidden_act, - ) - self.input_layernorm = RMSNorm(config.hidden_size, - eps=config.rms_norm_eps) - self.post_attention_layernorm = RMSNorm(config.hidden_size, - eps=config.rms_norm_eps) - - def forward( - self, - hidden_states: torch.Tensor, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_value: Optional[Tuple[torch.Tensor]] = None, - output_attentions: Optional[bool] = False, - use_cache: Optional[bool] = False, - ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, - torch.FloatTensor]]]: - """ # noqa: E501 - Args: - hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` - attention_mask (`torch.FloatTensor`, *optional*): attention mask of size - `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. - output_attentions (`bool`, *optional*): - Whether or not to return the attentions tensors of all attention layers. See `attentions` under - returned tensors for more detail. - use_cache (`bool`, *optional*): - If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding - (see `past_key_values`). - past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states - """ - - residual = hidden_states - - hidden_states = self.input_layernorm(hidden_states) - - # Self Attention - hidden_states, self_attn_weights, present_key_value = self.self_attn( - hidden_states=hidden_states, - attention_mask=attention_mask, - position_ids=position_ids, - past_key_value=past_key_value, - output_attentions=output_attentions, - use_cache=use_cache, - ) - hidden_states = residual + hidden_states - - # Fully Connected - residual = hidden_states - hidden_states = self.post_attention_layernorm(hidden_states) - hidden_states = self.mlp(hidden_states) - hidden_states = residual + hidden_states - - outputs = (hidden_states, ) - - if output_attentions: - outputs += (self_attn_weights, ) - - if use_cache: - outputs += (present_key_value, ) - - return outputs - - -class PreTrainedModel(PreTrainedModel): - config_class = BaiChuanConfig - base_model_prefix = 'model' - supports_gradient_checkpointing = True - _no_split_modules = ['DecoderLayer'] - _keys_to_ignore_on_load_unexpected = [r'decoder\.version'] - - def _init_weights(self, module): - std = self.config.initializer_range - if isinstance(module, nn.Linear): - module.weight.data.normal_(mean=0.0, std=std) - if module.bias is not None: - module.bias.data.zero_() - elif isinstance(module, nn.Embedding): - module.weight.data.normal_(mean=0.0, std=std) - if module.padding_idx is not None: - module.weight.data[module.padding_idx].zero_() - - def _set_gradient_checkpointing(self, module, value=False): - if isinstance(module, Model): - module.gradient_checkpointing = value - - -class Model(PreTrainedModel): - """Transformer decoder consisting of *config.num_hidden_layers* layers. - Each layer is a [`DecoderLayer`] - - Args: - config: BaiChuanConfig - """ - - def __init__(self, config: BaiChuanConfig): - super().__init__(config) - self.padding_idx = config.pad_token_id - self.vocab_size = config.vocab_size - - self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, - self.padding_idx) - self.layers = nn.ModuleList( - [DecoderLayer(config) for _ in range(config.num_hidden_layers)]) - self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) - - self.gradient_checkpointing = False - # Initialize weights and apply final processing - self.post_init() - - def get_input_embeddings(self): - return self.embed_tokens - - def set_input_embeddings(self, value): - self.embed_tokens = value - - # Copied from transformers.models.bart.modeling_bart.BartDecoder. - # prepare_decoder_attention_mask - def _prepare_decoder_attention_mask(self, attention_mask, input_shape, - inputs_embeds, past_key_values_length): - # create causal mask - # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] - combined_attention_mask = None - if input_shape[-1] > 1: - combined_attention_mask = _make_causal_mask( - input_shape, - inputs_embeds.dtype, - device=inputs_embeds.device, - past_key_values_length=past_key_values_length, - ) - - if attention_mask is not None: - # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] - expanded_attn_mask = _expand_mask(attention_mask, - inputs_embeds.dtype, - tgt_len=input_shape[-1]).to( - inputs_embeds.device) - combined_attention_mask = (expanded_attn_mask - if combined_attention_mask is None else - expanded_attn_mask + - combined_attention_mask) - - return combined_attention_mask - - def forward( - self, - input_ids: torch.LongTensor = None, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_values: Optional[List[torch.FloatTensor]] = None, - inputs_embeds: Optional[torch.FloatTensor] = None, - use_cache: Optional[bool] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> Union[Tuple, BaseModelOutputWithPast]: - output_attentions = (output_attentions if output_attentions is not None - else self.config.output_attentions) - output_hidden_states = (output_hidden_states - if output_hidden_states is not None else - self.config.output_hidden_states) - use_cache = (use_cache - if use_cache is not None else self.config.use_cache) - - return_dict = (return_dict if return_dict is not None else - self.config.use_return_dict) - - # retrieve input_ids and inputs_embeds - if input_ids is not None and inputs_embeds is not None: - raise ValueError('You cannot specify both decoder_input_ids ' - 'and decoder_inputs_embeds at the same time') - elif input_ids is not None: - batch_size, seq_length = input_ids.shape - elif inputs_embeds is not None: - batch_size, seq_length, _ = inputs_embeds.shape - else: - raise ValueError('You have to specify either decoder_input_ids ' - 'or decoder_inputs_embeds') - - seq_length_with_past = seq_length - past_key_values_length = 0 - - if past_key_values is not None: - past_key_values_length = past_key_values[0][0].shape[2] - seq_length_with_past = (seq_length_with_past + - past_key_values_length) - - if position_ids is None: - device = (input_ids.device - if input_ids is not None else inputs_embeds.device) - position_ids = torch.arange(past_key_values_length, - seq_length + past_key_values_length, - dtype=torch.long, - device=device) - position_ids = position_ids.unsqueeze(0).view(-1, seq_length) - else: - position_ids = position_ids.view(-1, seq_length).long() - - if inputs_embeds is None: - inputs_embeds = self.embed_tokens(input_ids) - # embed positions - if attention_mask is None: - attention_mask = torch.ones((batch_size, seq_length_with_past), - dtype=torch.bool, - device=inputs_embeds.device) - attention_mask = self._prepare_decoder_attention_mask( - attention_mask, (batch_size, seq_length), inputs_embeds, - past_key_values_length) - - hidden_states = inputs_embeds - - if self.gradient_checkpointing and self.training: - if use_cache: - logger.warning_once( - '`use_cache=True` is incompatible with gradient ' - 'checkpointing. Setting `use_cache=False`...') - use_cache = False - - # decoder layers - all_hidden_states = () if output_hidden_states else None - all_self_attns = () if output_attentions else None - next_decoder_cache = () if use_cache else None - - for idx, decoder_layer in enumerate(self.layers): - if output_hidden_states: - all_hidden_states += (hidden_states, ) - - past_key_value = past_key_values[ - idx] if past_key_values is not None else None - - if self.gradient_checkpointing and self.training: - - def create_custom_forward(module): - - def custom_forward(*inputs): - # None for past_key_value - return module(*inputs, output_attentions, None) - - return custom_forward - - layer_outputs = torch.utils.checkpoint.checkpoint( - create_custom_forward(decoder_layer), - hidden_states, - attention_mask, - position_ids, - None, - ) - else: - layer_outputs = decoder_layer( - hidden_states, - attention_mask=attention_mask, - position_ids=position_ids, - past_key_value=past_key_value, - output_attentions=output_attentions, - use_cache=use_cache, - ) - - hidden_states = layer_outputs[0] - - if use_cache: - next_decoder_cache += ( - layer_outputs[2 if output_attentions else 1], ) - - if output_attentions: - all_self_attns += (layer_outputs[1], ) - - hidden_states = self.norm(hidden_states) - - # add hidden states from the last decoder layer - if output_hidden_states: - all_hidden_states += (hidden_states, ) - - next_cache = next_decoder_cache if use_cache else None - if not return_dict: - return tuple( - v for v in - [hidden_states, next_cache, all_hidden_states, all_self_attns] - if v is not None) - return BaseModelOutputWithPast( - last_hidden_state=hidden_states, - past_key_values=next_cache, - hidden_states=all_hidden_states, - attentions=all_self_attns, - ) - - -class BaiChuanForCausalLM(PreTrainedModel): - """This class extends the `PreTrainedModel` to enable causal language - modeling. - - It wraps the basic Baichuan model (`Model`) and includes a linear layer as - a language model head (`lm_head`). The purpose is to predict token - probabilities, given the previous tokens in the sequence. - """ - - def __init__(self, config): - super().__init__(config) - self.model = Model(config) - - self.lm_head = nn.Linear(config.hidden_size, - config.vocab_size, - bias=False) - - # Initialize weights and apply final processing - self.post_init() - convert_to_qmodules(self) - - def get_input_embeddings(self): - """Get the token embedding layer.""" - return self.model.embed_tokens - - def set_input_embeddings(self, value): - """Set the token embedding layer.""" - self.model.embed_tokens = value - - def get_output_embeddings(self): - """Get the output embedding layer.""" - return self.lm_head - - def set_output_embeddings(self, new_embeddings): - """Set the output embedding layer.""" - self.lm_head = new_embeddings - - def set_decoder(self, decoder): - """Set the decoder model.""" - self.model = decoder - - def get_decoder(self): - """Get the decoder model.""" - return self.model - - def forward( - self, - input_ids: torch.LongTensor = None, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_values: Optional[List[torch.FloatTensor]] = None, - inputs_embeds: Optional[torch.FloatTensor] = None, - labels: Optional[torch.LongTensor] = None, - use_cache: Optional[bool] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> Union[Tuple, CausalLMOutputWithPast]: - r""" # noqa: E501 - Args: - labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): - Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., - config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored - (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. - - Returns: - - Example: - - ```python - >>> from transformers import AutoTokenizer, ModelForCausalLM - - >>> model = ModelForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) - >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) - - >>> prompt = "Hey, are you consciours? Can you talk to me?" - >>> inputs = tokenizer(prompt, return_tensors="pt") - - >>> # Generate - >>> generate_ids = model.generate(inputs.input_ids, max_length=30) - >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] - "Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you." - ```""" - - output_attentions = (output_attentions if output_attentions is not None - else self.config.output_attentions) - output_hidden_states = (output_hidden_states - if output_hidden_states is not None else - self.config.output_hidden_states) - return_dict = (return_dict if return_dict is not None else - self.config.use_return_dict) - - # decoder outputs consists of - # (dec_features, layer_state, dec_hidden, dec_attn) - outputs = self.model( - input_ids=input_ids, - attention_mask=attention_mask, - position_ids=position_ids, - past_key_values=past_key_values, - inputs_embeds=inputs_embeds, - use_cache=use_cache, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - ) - - hidden_states = outputs[0] - logits = self.lm_head(hidden_states) - - loss = None - if labels is not None: - # Shift so that tokens < n predict n - shift_logits = logits[..., :-1, :].contiguous() - shift_labels = labels[..., 1:].contiguous() - # Flatten the tokens - loss_fct = CrossEntropyLoss() - shift_logits = shift_logits.view(-1, self.config.vocab_size) - shift_labels = shift_labels.view(-1) - # Enable model parallelism - shift_labels = shift_labels.to(shift_logits.device) - loss = loss_fct(shift_logits, shift_labels) - - if not return_dict: - output = (logits, ) + outputs[1:] - return (loss, ) + output if loss is not None else output - - return CausalLMOutputWithPast( - loss=loss, - logits=logits, - past_key_values=outputs.past_key_values, - hidden_states=outputs.hidden_states, - attentions=outputs.attentions, - ) - - def prepare_inputs_for_generation(self, - input_ids, - past_key_values=None, - attention_mask=None, - inputs_embeds=None, - **kwargs): - """Prepare inputs for generating sequences using the model. - - Args: - input_ids (torch.Tensor): Input token ids. - past_key_values (list[torch.Tensor], optional): List of past key - and value states. - attention_mask (torch.Tensor, optional): Mask indicating which - tokens should be attended to. - inputs_embeds (torch.FloatTensor, optional): Optionally, - the input embeddings instead of token ids. - - Returns: - dict: Dictionary containing prepared inputs for model generation. - """ - if past_key_values: - input_ids = input_ids[:, -1:] - - position_ids = kwargs.get('position_ids', None) - if attention_mask is not None and position_ids is None: - # create position_ids on the fly for batch generation - position_ids = attention_mask.long().cumsum(-1) - 1 - position_ids.masked_fill_(attention_mask == 0, 1) - if past_key_values: - position_ids = position_ids[:, -1].unsqueeze(-1) - - # if `inputs_embeds` are passed, - # we only want to use them in the 1st generation step - if inputs_embeds is not None and past_key_values is None: - model_inputs = {'inputs_embeds': inputs_embeds} - else: - model_inputs = {'input_ids': input_ids} - - model_inputs.update({ - 'position_ids': position_ids, - 'past_key_values': past_key_values, - 'use_cache': kwargs.get('use_cache'), - 'attention_mask': attention_mask, - }) - return model_inputs - - @staticmethod - def _reorder_cache(past_key_values, beam_idx): - """Reorder cached past key-values during generation using beam search. - - This function reorders the cached past key-values according to the - given indices. It's useful in beam search where the order of hypotheses - can change from one time-step to another. - """ - reordered_past = () - for layer_past in past_key_values: - reordered_past += (tuple( - past_state.index_select(0, beam_idx) - for past_state in layer_past), ) - return reordered_past diff --git a/lmdeploy/pytorch/modeling/modeling_internlm.py b/lmdeploy/pytorch/modeling/modeling_internlm.py deleted file mode 100644 index c64064113..000000000 --- a/lmdeploy/pytorch/modeling/modeling_internlm.py +++ /dev/null @@ -1,1171 +0,0 @@ -# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. -# -# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX -# and OPT implementations in this library. It has been modified from its -# original forms to accommodate minor architectural differences compared -# to GPT-NeoX and OPT used by the Meta AI team that trained the model. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -"""PyTorch InternLM model.""" -import math -import queue -import threading -from typing import List, Optional, Tuple, Union - -import torch -import torch.utils.checkpoint -from torch import nn -from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss -from transformers.activations import ACT2FN -from transformers.generation.streamers import BaseStreamer -from transformers.modeling_outputs import (BaseModelOutputWithPast, - CausalLMOutputWithPast, - SequenceClassifierOutputWithPast) -from transformers.modeling_utils import PreTrainedModel -from transformers.utils import (add_start_docstrings, - add_start_docstrings_to_model_forward, - replace_return_docstrings) - -from lmdeploy.pytorch.modeling.convert_to_qmodules import convert_to_qmodules -from lmdeploy.utils import get_logger - -from .configuration_internlm import InternLMConfig - -logger = get_logger('lmdeploy') - -_CONFIG_FOR_DOC = 'InternLMConfig' - - -# Copied from transformers.models.bart.modeling_bart._make_causal_mask -def _make_causal_mask(input_ids_shape: torch.Size, - dtype: torch.dtype, - device: torch.device, - past_key_values_length: int = 0): - """Make causal mask used for bi-directional self-attention.""" - bsz, tgt_len = input_ids_shape - mask = torch.full((tgt_len, tgt_len), - torch.tensor(torch.finfo(dtype).min, device=device), - device=device) - mask_cond = torch.arange(mask.size(-1), device=device) - mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) - mask = mask.to(dtype) - - if past_key_values_length > 0: - mask = torch.cat([ - torch.zeros( - tgt_len, past_key_values_length, dtype=dtype, device=device), - mask - ], - dim=-1) - return mask[None, None, :, :].expand(bsz, 1, tgt_len, - tgt_len + past_key_values_length) - - -# Copied from transformers.models.bart.modeling_bart._expand_mask -def _expand_mask(mask: torch.Tensor, - dtype: torch.dtype, - tgt_len: Optional[int] = None): - """Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, - src_seq_len]`.""" - bsz, src_len = mask.size() - tgt_len = tgt_len if tgt_len is not None else src_len - - expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, - src_len).to(dtype) - - inverted_mask = 1.0 - expanded_mask - - return inverted_mask.masked_fill(inverted_mask.to(torch.bool), - torch.finfo(dtype).min) - - -class InternLMRMSNorm(nn.Module): - - def __init__(self, hidden_size, eps=1e-6): - """InternLMRMSNorm is equivalent to T5LayerNorm.""" - super().__init__() - self.weight = nn.Parameter(torch.ones(hidden_size)) - self.variance_epsilon = eps - - def forward(self, hidden_states): - variance = hidden_states.to(torch.float32).pow(2).mean(-1, - keepdim=True) - hidden_states = hidden_states * torch.rsqrt(variance + - self.variance_epsilon) - - # convert into half-precision if necessary - if self.weight.dtype in [torch.float16, torch.bfloat16]: - hidden_states = hidden_states.to(self.weight.dtype) - - return self.weight * hidden_states - - -class InternLMRotaryEmbedding(torch.nn.Module): - """RotaryEmbedding for InternLM Model. - - This module generates sine and cosine positional encodings based on - the paper "RoFormer: Enhanced Transformer with Rotary Position Embedding". - The purpose of this class is to provide positional embeddings to the - input tensors. It utilizes a cache mechanism to store precomputed - sine and cosine values for speedup. - - Args: - dim (int): The dimensionality of the embeddings. - max_position_embeddings (int, optional): The maximum number of - position embeddings. Default is 2048. - base (int, optional): The base value for the inverse frequency - calculation. Default is 10000. - device (str, optional): The device to run operations on. - If None, defaults to the device of the model. - """ - - def __init__(self, - dim, - max_position_embeddings=2048, - base=10000, - device=None): - super().__init__() - index = (torch.arange(0, dim, 2).float().to(device) / dim) - inv_freq = 1.0 / (base**index) - self.register_buffer('inv_freq', inv_freq, persistent=False) - - # Build here to make `torch.jit.trace` work. - self.max_seq_len_cached = max_position_embeddings - t = torch.arange(self.max_seq_len_cached, - device=self.inv_freq.device, - dtype=self.inv_freq.dtype) - freqs = torch.einsum('i,j->ij', t, self.inv_freq) - # Different from paper, but it uses a different permutation in order - # to obtain the same calculation - emb = torch.cat((freqs, freqs), dim=-1) - self.register_buffer('cos_cached', - emb.cos()[None, None, :, :], - persistent=False) - self.register_buffer('sin_cached', - emb.sin()[None, None, :, :], - persistent=False) - - def forward(self, x, seq_len=None): - """Forward propagation method for the embedding layer. - - Generates positional embeddings for the given input tensor. - """ - # x: [bs, num_attention_heads, seq_len, head_size] - # This `if` block is unlikely to be run after we build sin/cos in - # `__init__`. Keep the logic here just in case. - if seq_len > self.max_seq_len_cached: - self.max_seq_len_cached = seq_len - t = torch.arange(self.max_seq_len_cached, - device=x.device, - dtype=self.inv_freq.dtype) - freqs = torch.einsum('i,j->ij', t, self.inv_freq) - # Different from paper, but it uses a different permutation in - # order to obtain the same calculation - emb = torch.cat((freqs, freqs), dim=-1).to(x.device) - self.register_buffer('cos_cached', - emb.cos()[None, None, :, :], - persistent=False) - self.register_buffer('sin_cached', - emb.sin()[None, None, :, :], - persistent=False) - return ( - self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype), - self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype), - ) - - -def rotate_half(x): - """Rotates half the hidden dims of the input.""" - x1 = x[..., :x.shape[-1] // 2] - x2 = x[..., x.shape[-1] // 2:] - return torch.cat((-x2, x1), dim=-1) - - -def apply_rotary_pos_emb(q, k, cos, sin, position_ids): - """Apply rotary positional embeddings to query and key tensors. - - This function applies the cosine and sine positional embeddings on the - input query (q) and key (k) tensors using element-wise multiplication and - addition. - """ - # The first two dimensions of cos and sin are always 1, so we can - # `squeeze` them. - cos = cos.squeeze(1).squeeze(0) # [seq_len, dim] - sin = sin.squeeze(1).squeeze(0) # [seq_len, dim] - cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim] - sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim] - q_embed = (q * cos) + (rotate_half(q) * sin) - k_embed = (k * cos) + (rotate_half(k) * sin) - return q_embed, k_embed - - -class InternLMMLP(nn.Module): - """MLP for InternLM Model.""" - - def __init__( - self, - hidden_size: int, - intermediate_size: int, - hidden_act: str, - ): - super().__init__() - self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False) - self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False) - self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False) - self.act_fn = ACT2FN[hidden_act] - - def forward(self, x): - return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) - - -class InternLMAttention(nn.Module): - """Multi-headed attention from 'Attention Is All You Need' paper.""" - - def __init__(self, config: InternLMConfig): - super().__init__() - self.config = config - self.hidden_size = config.hidden_size - self.num_heads = config.num_attention_heads - self.head_dim = self.hidden_size // self.num_heads - self.max_position_embeddings = config.max_position_embeddings - - if (self.head_dim * self.num_heads) != self.hidden_size: - raise ValueError('hidden_size must be divisible by num_heads ' - f'(got `hidden_size`: {self.hidden_size}' - f' and `num_heads`: {self.num_heads}).') - self.q_proj = nn.Linear(self.hidden_size, - self.num_heads * self.head_dim, - bias=config.bias) - self.k_proj = nn.Linear(self.hidden_size, - self.num_heads * self.head_dim, - bias=config.bias) - self.v_proj = nn.Linear(self.hidden_size, - self.num_heads * self.head_dim, - bias=config.bias) - self.o_proj = nn.Linear(self.num_heads * self.head_dim, - self.hidden_size, - bias=config.bias) - self.rotary_emb = InternLMRotaryEmbedding( - self.head_dim, - max_position_embeddings=self.max_position_embeddings) - - def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): - return tensor.view(bsz, seq_len, self.num_heads, - self.head_dim).transpose(1, 2).contiguous() - - def forward( - self, - hidden_states: torch.Tensor, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_value: Optional[Tuple[torch.Tensor]] = None, - output_attentions: bool = False, - use_cache: bool = False, - ) -> Tuple[torch.Tensor, Optional[torch.Tensor], - Optional[Tuple[torch.Tensor]]]: - """Forward propagation method for the attention layer.""" - bsz, q_len, _ = hidden_states.size() - - query_states = self.q_proj(hidden_states).view( - bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) - key_states = self.k_proj(hidden_states).view( - bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) - value_states = self.v_proj(hidden_states).view( - bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) - - kv_seq_len = key_states.shape[-2] - if past_key_value is not None: - kv_seq_len += past_key_value[0].shape[-2] - cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) - query_states, key_states = apply_rotary_pos_emb( - query_states, key_states, cos, sin, position_ids) - # [bsz, nh, t, hd] - - if past_key_value is not None: - # reuse k, v, self_attention - key_states = torch.cat([past_key_value[0], key_states], dim=2) - value_states = torch.cat([past_key_value[1], value_states], dim=2) - - past_key_value = (key_states, value_states) if use_cache else None - - attn_weights = torch.matmul(query_states, key_states.transpose( - 2, 3)) / math.sqrt(self.head_dim) - - if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): - raise ValueError( - 'Attention weights should be of size ' - f'{(bsz, self.num_heads, q_len, kv_seq_len)}, but is' - f' {attn_weights.size()}') - - if attention_mask is not None: - if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): - raise ValueError('Attention mask should be of size ' - f'{(bsz, 1, q_len, kv_seq_len)}, ' - f'but is {attention_mask.size()}') - attn_weights = attn_weights + attention_mask - attn_weights = torch.max( - attn_weights, - torch.tensor(torch.finfo(attn_weights.dtype).min)) - - # upcast attention to fp32 - attn_weights = nn.functional.softmax(attn_weights, - dim=-1, - dtype=torch.float32).to( - query_states.dtype) - attn_output = torch.matmul(attn_weights, value_states) - - if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): - raise ValueError( - 'attn_output` should be of size ' - f'`{(bsz, self.num_heads, q_len, self.head_dim)}, but is' - f' {attn_output.size()}') - - attn_output = attn_output.transpose(1, 2) - attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) - - attn_output = self.o_proj(attn_output) - - if not output_attentions: - attn_weights = None - - return attn_output, attn_weights, past_key_value - - -class InternLMDecoderLayer(nn.Module): - """Decoder layer for InternLM Model.""" - - def __init__(self, config: InternLMConfig): - super().__init__() - self.hidden_size = config.hidden_size - self.self_attn = InternLMAttention(config=config) - self.mlp = InternLMMLP( - hidden_size=self.hidden_size, - intermediate_size=config.intermediate_size, - hidden_act=config.hidden_act, - ) - self.input_layernorm = InternLMRMSNorm(config.hidden_size, - eps=config.rms_norm_eps) - self.post_attention_layernorm = InternLMRMSNorm( - config.hidden_size, eps=config.rms_norm_eps) - - def forward( - self, - hidden_states: torch.Tensor, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_value: Optional[Tuple[torch.Tensor]] = None, - output_attentions: Optional[bool] = False, - use_cache: Optional[bool] = False, - ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, - torch.FloatTensor]]]: - """ # noqa: E501 - Args: - hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` - attention_mask (`torch.FloatTensor`, *optional*): attention mask of size - `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. - output_attentions (`bool`, *optional*): - Whether or not to return the attentions tensors of all attention layers. See `attentions` under - returned tensors for more detail. - use_cache (`bool`, *optional*): - If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding - (see `past_key_values`). - past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states - """ - - residual = hidden_states - - hidden_states = self.input_layernorm(hidden_states) - - # Self Attention - hidden_states, self_attn_weights, present_key_value = self.self_attn( - hidden_states=hidden_states, - attention_mask=attention_mask, - position_ids=position_ids, - past_key_value=past_key_value, - output_attentions=output_attentions, - use_cache=use_cache, - ) - hidden_states = residual + hidden_states - - # Fully Connected - residual = hidden_states - hidden_states = self.post_attention_layernorm(hidden_states) - hidden_states = self.mlp(hidden_states) - hidden_states = residual + hidden_states - - outputs = (hidden_states, ) - - if output_attentions: - outputs += (self_attn_weights, ) - - if use_cache: - outputs += (present_key_value, ) - - return outputs - - -INTERNLM_START_DOCSTRING = r""" # noqa: E501 - This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the - library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads - etc.) - - This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. - Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage - and behavior. - - Parameters: - config ([`InternLMConfig`]): - Model configuration class with all the parameters of the model. Initializing with a config file does not - load the weights associated with the model, only the configuration. Check out the - [`~PreTrainedModel.from_pretrained`] method to load the model weights. -""" - - -@add_start_docstrings( - 'The bare InternLM Model outputting raw hidden-states without any specific head on top.', # noqa: E501 - INTERNLM_START_DOCSTRING, -) -class InternLMPreTrainedModel(PreTrainedModel): - config_class = InternLMConfig - base_model_prefix = 'model' - supports_gradient_checkpointing = True - _no_split_modules = ['InternLMDecoderLayer'] - _keys_to_ignore_on_load_unexpected = [r'decoder\.version'] - - def _init_weights(self, module): - std = self.config.initializer_range - if isinstance(module, nn.Linear): - module.weight.data.normal_(mean=0.0, std=std) - if module.bias is not None: - module.bias.data.zero_() - elif isinstance(module, nn.Embedding): - module.weight.data.normal_(mean=0.0, std=std) - if module.padding_idx is not None: - module.weight.data[module.padding_idx].zero_() - - def _set_gradient_checkpointing(self, module, value=False): - if isinstance(module, InternLMModel): - module.gradient_checkpointing = value - - -INTERNLM_INPUTS_DOCSTRING = r""" # noqa: E501 - Args: - input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): - Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide - it. - - Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and - [`PreTrainedTokenizer.__call__`] for details. - - [What are input IDs?](../glossary#input-ids) - attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): - Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - - - 1 for tokens that are **not masked**, - - 0 for tokens that are **masked**. - - [What are attention masks?](../glossary#attention-mask) - - Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and - [`PreTrainedTokenizer.__call__`] for details. - - If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see - `past_key_values`). - - If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] - and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more - information on the default strategy. - - - 1 indicates the head is **not masked**, - - 0 indicates the head is **masked**. - position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): - Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, - config.n_positions - 1]`. - - [What are position IDs?](../glossary#position-ids) - past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape - `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape - `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. - - Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention - blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. - - If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that - don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all - `decoder_input_ids` of shape `(batch_size, sequence_length)`. - inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): - Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This - is useful if you want more control over how to convert `input_ids` indices into associated vectors than the - model's internal embedding lookup matrix. - use_cache (`bool`, *optional*): - If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see - `past_key_values`). - output_attentions (`bool`, *optional*): - Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned - tensors for more detail. - output_hidden_states (`bool`, *optional*): - Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for - more detail. - return_dict (`bool`, *optional*): - Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. -""" - - -@add_start_docstrings( - 'The bare InternLM Model outputting raw hidden-states without any specific head on top.', # noqa: E501 - INTERNLM_START_DOCSTRING, -) -class InternLMModel(InternLMPreTrainedModel): - """Transformer decoder consisting of *config.num_hidden_layers* layers. - Each layer is a [`InternLMDecoderLayer`] - - Args: - config: InternLMConfig - """ - _auto_class = 'AutoModel' - - def __init__(self, config: InternLMConfig): - super().__init__(config) - self.padding_idx = config.pad_token_id - self.vocab_size = config.vocab_size - - self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, - self.padding_idx) - self.layers = nn.ModuleList([ - InternLMDecoderLayer(config) - for _ in range(config.num_hidden_layers) - ]) - self.norm = InternLMRMSNorm(config.hidden_size, - eps=config.rms_norm_eps) - - self.gradient_checkpointing = False - # Initialize weights and apply final processing - self.post_init() - - def get_input_embeddings(self): - return self.embed_tokens - - def set_input_embeddings(self, value): - self.embed_tokens = value - - # Copied from transformers.models.bart.modeling_bart.BartDecoder. - # prepare_decoder_attention_mask - def _prepare_decoder_attention_mask(self, attention_mask, input_shape, - inputs_embeds, past_key_values_length): - # create causal mask - # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] - combined_attention_mask = None - if input_shape[-1] > 1: - combined_attention_mask = _make_causal_mask( - input_shape, - inputs_embeds.dtype, - device=inputs_embeds.device, - past_key_values_length=past_key_values_length, - ) - - if attention_mask is not None: - # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] - expanded_attn_mask = _expand_mask(attention_mask, - inputs_embeds.dtype, - tgt_len=input_shape[-1]).to( - inputs_embeds.device) - combined_attention_mask = (expanded_attn_mask - if combined_attention_mask is None else - expanded_attn_mask + - combined_attention_mask) - - return combined_attention_mask - - @add_start_docstrings_to_model_forward(INTERNLM_INPUTS_DOCSTRING) - def forward( - self, - input_ids: torch.LongTensor = None, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_values: Optional[List[torch.FloatTensor]] = None, - inputs_embeds: Optional[torch.FloatTensor] = None, - use_cache: Optional[bool] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> Union[Tuple, BaseModelOutputWithPast]: - output_attentions = output_attentions or self.config.output_attentions - output_hidden_states = (output_hidden_states - or self.config.output_hidden_states) - use_cache = use_cache or self.config.use_cache - - return_dict = (return_dict if return_dict is not None else - self.config.use_return_dict) - - # retrieve input_ids and inputs_embeds - if input_ids is not None and inputs_embeds is not None: - raise ValueError('You cannot specify both decoder_input_ids ' - 'and decoder_inputs_embeds at the same time') - elif input_ids is not None: - batch_size, seq_length = input_ids.shape - elif inputs_embeds is not None: - batch_size, seq_length, _ = inputs_embeds.shape - else: - raise ValueError('You have to specify either decoder_input_ids ' - 'or decoder_inputs_embeds') - - seq_length_with_past = seq_length - past_key_values_length = 0 - - if past_key_values is not None: - past_key_values_length = past_key_values[0][0].shape[2] - seq_length_with_past = (seq_length_with_past + - past_key_values_length) - - if position_ids is None: - device = (input_ids.device - if input_ids is not None else inputs_embeds.device) - position_ids = torch.arange(past_key_values_length, - seq_length + past_key_values_length, - dtype=torch.long, - device=device) - position_ids = position_ids.unsqueeze(0).view(-1, seq_length) - else: - position_ids = position_ids.view(-1, seq_length).long() - - if inputs_embeds is None: - inputs_embeds = self.embed_tokens(input_ids) - # embed positions - if attention_mask is None: - attention_mask = torch.ones((batch_size, seq_length_with_past), - dtype=torch.bool, - device=inputs_embeds.device) - attention_mask = self._prepare_decoder_attention_mask( - attention_mask, (batch_size, seq_length), inputs_embeds, - past_key_values_length) - - hidden_states = inputs_embeds - - if self.gradient_checkpointing and self.training: - if use_cache: - logger.warning_once( - '`use_cache=True` is incompatible with gradient ' - 'checkpointing. Setting `use_cache=False`...') - use_cache = False - - # decoder layers - all_hidden_states = () if output_hidden_states else None - all_self_attns = () if output_attentions else None - next_decoder_cache = () if use_cache else None - - for idx, decoder_layer in enumerate(self.layers): - if output_hidden_states: - all_hidden_states += (hidden_states, ) - - past_key_value = past_key_values[ - idx] if past_key_values is not None else None - - if self.gradient_checkpointing and self.training: - - def create_custom_forward(module): - - def custom_forward(*inputs): - # None for past_key_value - return module(*inputs, output_attentions, None) - - return custom_forward - - layer_outputs = torch.utils.checkpoint.checkpoint( - create_custom_forward(decoder_layer), - hidden_states, - attention_mask, - position_ids, - None, - ) - else: - layer_outputs = decoder_layer( - hidden_states, - attention_mask=attention_mask, - position_ids=position_ids, - past_key_value=past_key_value, - output_attentions=output_attentions, - use_cache=use_cache, - ) - - hidden_states = layer_outputs[0] - - if use_cache: - next_decoder_cache += ( - layer_outputs[2 if output_attentions else 1], ) - - if output_attentions: - all_self_attns += (layer_outputs[1], ) - - hidden_states = self.norm(hidden_states) - - # add hidden states from the last decoder layer - if output_hidden_states: - all_hidden_states += (hidden_states, ) - - next_cache = next_decoder_cache if use_cache else None - if not return_dict: - return tuple( - v for v in - [hidden_states, next_cache, all_hidden_states, all_self_attns] - if v is not None) - return BaseModelOutputWithPast( - last_hidden_state=hidden_states, - past_key_values=next_cache, - hidden_states=all_hidden_states, - attentions=all_self_attns, - ) - - -class InternLMForCausalLM(InternLMPreTrainedModel): - """This class extends the `InternLMPreTrainedModel` to enable causal - language modeling. - - It wraps the basic InternLM model (`InternLMModel`) and includes a linear - layer as a language model head (`lm_head`). The purpose is to predict token - probabilities, given the previous tokens in the sequence. - """ - _auto_class = 'AutoModelForCausalLM' - - def __init__(self, config): - super().__init__(config) - self.model = InternLMModel(config) - - self.lm_head = nn.Linear(config.hidden_size, - config.vocab_size, - bias=False) - - # Initialize weights and apply final processing - self.post_init() - convert_to_qmodules(self) - - def get_input_embeddings(self): - """Get the token embedding layer.""" - return self.model.embed_tokens - - def set_input_embeddings(self, value): - """Set the token embedding layer.""" - self.model.embed_tokens = value - - def get_output_embeddings(self): - """Get the output embedding layer.""" - return self.lm_head - - def set_output_embeddings(self, new_embeddings): - """Set the output embedding layer.""" - self.lm_head = new_embeddings - - def set_decoder(self, decoder): - """Set the decoder model.""" - self.model = decoder - - def get_decoder(self): - """Get the decoder model.""" - return self.model - - @add_start_docstrings_to_model_forward(INTERNLM_INPUTS_DOCSTRING) - @replace_return_docstrings(output_type=CausalLMOutputWithPast, - config_class=_CONFIG_FOR_DOC) - def forward( - self, - input_ids: torch.LongTensor = None, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_values: Optional[List[torch.FloatTensor]] = None, - inputs_embeds: Optional[torch.FloatTensor] = None, - labels: Optional[torch.LongTensor] = None, - use_cache: Optional[bool] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> Union[Tuple, CausalLMOutputWithPast]: - r""" # noqa: E501 - Args: - labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): - Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., - config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored - (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. - - Returns: - - Example: - - ```python - >>> from transformers import AutoTokenizer, InternLMForCausalLM - - >>> model = InternLMForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) - >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) - - >>> prompt = "Hey, are you consciours? Can you talk to me?" - >>> inputs = tokenizer(prompt, return_tensors="pt") - - >>> # Generate - >>> generate_ids = model.generate(inputs.input_ids, max_length=30) - >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] - "Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you." - ```""" - - output_attentions = output_attentions or self.config.output_attentions - output_hidden_states = (output_hidden_states - if output_hidden_states is not None else - self.config.output_hidden_states) - return_dict = (return_dict if return_dict is not None else - self.config.use_return_dict) - - # decoder outputs consists of - # (dec_features, layer_state, dec_hidden, dec_attn) - outputs = self.model( - input_ids=input_ids, - attention_mask=attention_mask, - position_ids=position_ids, - past_key_values=past_key_values, - inputs_embeds=inputs_embeds, - use_cache=use_cache, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - ) - - hidden_states = outputs[0] - logits = self.lm_head(hidden_states) - - loss = None - if labels is not None: - # Shift so that tokens < n predict n - shift_logits = logits[..., :-1, :].contiguous() - shift_labels = labels[..., 1:].contiguous() - # Flatten the tokens - loss_fct = CrossEntropyLoss() - shift_logits = shift_logits.view(-1, self.config.vocab_size) - shift_labels = shift_labels.view(-1) - # Enable model parallelism - shift_labels = shift_labels.to(shift_logits.device) - loss = loss_fct(shift_logits, shift_labels) - - if not return_dict: - output = (logits, ) + outputs[1:] - return (loss, ) + output if loss is not None else output - - return CausalLMOutputWithPast( - loss=loss, - logits=logits, - past_key_values=outputs.past_key_values, - hidden_states=outputs.hidden_states, - attentions=outputs.attentions, - ) - - def prepare_inputs_for_generation(self, - input_ids, - past_key_values=None, - attention_mask=None, - inputs_embeds=None, - **kwargs): - """Prepare inputs for generating sequences using the model. - - Args: - input_ids (torch.Tensor): Input token ids. - past_key_values (list[torch.Tensor], optional): List of past key - and value states. - attention_mask (torch.Tensor, optional): Mask indicating which - tokens should be attended to. - inputs_embeds (torch.FloatTensor, optional): Optionally, - the input embeddings instead of token ids. - - Returns: - dict: Dictionary containing prepared inputs for model generation. - """ - if past_key_values: - input_ids = input_ids[:, -1:] - - position_ids = kwargs.get('position_ids', None) - if attention_mask is not None and position_ids is None: - # create position_ids on the fly for batch generation - position_ids = attention_mask.long().cumsum(-1) - 1 - position_ids.masked_fill_(attention_mask == 0, 1) - if past_key_values: - position_ids = position_ids[:, -1].unsqueeze(-1) - - # if `inputs_embeds` are passed, - # we only want to use them in the 1st generation step - if inputs_embeds is not None and past_key_values is None: - model_inputs = {'inputs_embeds': inputs_embeds} - else: - model_inputs = {'input_ids': input_ids} - - model_inputs.update({ - 'position_ids': position_ids, - 'past_key_values': past_key_values, - 'use_cache': kwargs.get('use_cache'), - 'attention_mask': attention_mask, - }) - return model_inputs - - @staticmethod - def _reorder_cache(past_key_values, beam_idx): - """Reorder cached past key-values during generation using beam search. - - This function reorders the cached past key-values according to the - given indices. It's useful in beam search where the order of hypotheses - can change from one time-step to another. - """ - reordered_past = () - for layer_past in past_key_values: - reordered_past += (tuple( - past_state.index_select(0, beam_idx) - for past_state in layer_past), ) - return reordered_past - - def build_inputs(self, - tokenizer, - query: str, - history: List[Tuple[str, str]] = []): - """Builds the input for the model.""" - prompt = '' - for record in history: - prompt += f"""<|User|>:{record[0]}\n<|Bot|>:{record[1]}\n""" # noqa: E501 - prompt += f"""<|User|>:{query}\n<|Bot|>:""" - return tokenizer([prompt], return_tensors='pt') - - @torch.no_grad() - def chat(self, - tokenizer, - query: str, - history: List[Tuple[str, str]] = [], - streamer: Optional[BaseStreamer] = None, - max_new_tokens: int = 1024, - do_sample: bool = True, - temperature: float = 0.8, - top_p: float = 0.8, - **kwargs): - """Provides a chatting functionality for the model.""" - inputs = self.build_inputs(tokenizer, query, history) - inputs = { - k: v.to(self.device) - for k, v in inputs.items() if torch.is_tensor(v) - } - outputs = self.generate(**inputs, - streamer=streamer, - max_new_tokens=max_new_tokens, - do_sample=do_sample, - temperature=temperature, - top_p=top_p, - **kwargs) - outputs = outputs[0].cpu().tolist()[len(inputs['input_ids'][0]):] - response = tokenizer.decode(outputs, skip_special_tokens=True) - response = response.split('')[0] - history = history + [(query, response)] - return response, history - - @torch.no_grad() - def stream_chat(self, - tokenizer, - query: str, - history: List[Tuple[str, str]] = [], - max_new_tokens: int = 1024, - do_sample: bool = True, - temperature: float = 0.8, - top_p: float = 0.8, - **kwargs): - """Return a generator in format: (response, history) Eg. - - ('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')]) ('你好,有什么可以帮助您的吗?', [('你好', - '你好,有什么可以帮助您的吗?')]) - """ - - response_queue = queue.Queue(maxsize=20) - - class ChatStreamer(BaseStreamer): - - def __init__(self, tokenizer) -> None: - super().__init__() - self.tokenizer = tokenizer - self.queue = response_queue - self.query = query - self.history = history - self.response = '' - self.received_inputs = False - self.queue.put( - (self.response, history + [(self.query, self.response)])) - - def put(self, value): - if len(value.shape) > 1 and value.shape[0] > 1: - raise ValueError('ChatStreamer only supports batch size 1') - elif len(value.shape) > 1: - value = value[0] - - if not self.received_inputs: - # The first received value is input_ids, ignore here - self.received_inputs = True - return - - token = self.tokenizer.decode([value[-1]], - skip_special_tokens=True) - if token.strip() != '': - self.response = self.response + token - history = self.history + [(self.query, self.response)] - self.queue.put((self.response, history)) - - def end(self): - self.queue.put(None) - - def stream_producer(): - return self.chat(tokenizer=tokenizer, - query=query, - streamer=ChatStreamer(tokenizer=tokenizer), - history=history, - max_new_tokens=max_new_tokens, - do_sample=do_sample, - temperature=temperature, - top_p=top_p, - **kwargs) - - def consumer(): - producer = threading.Thread(target=stream_producer) - producer.start() - while True: - res = response_queue.get() - if res is None: - return - yield res - - return consumer() - - -@add_start_docstrings( - """ # noqa: E501 - The InternLM Model transformer with a sequence classification head on top (linear layer). - - [`InternLMForSequenceClassification`] uses the last token in order to do the classification, as other causal models - (e.g. GPT-2) do. - - Since it does classification on the last token, it requires to know the position of the last token. If a - `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If - no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the - padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in - each row of the batch). - """, - INTERNLM_START_DOCSTRING, -) -class InternLMForSequenceClassification(InternLMPreTrainedModel): - _keys_to_ignore_on_load_missing = [r'lm_head.weight'] - - def __init__(self, config): - super().__init__(config) - self.num_labels = config.num_labels - self.model = InternLMModel(config) - self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) - - # Initialize weights and apply final processing - self.post_init() - - def get_input_embeddings(self): - return self.model.embed_tokens - - def set_input_embeddings(self, value): - self.model.embed_tokens = value - - @add_start_docstrings_to_model_forward(INTERNLM_INPUTS_DOCSTRING) - def forward( - self, - input_ids: torch.LongTensor = None, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_values: Optional[List[torch.FloatTensor]] = None, - inputs_embeds: Optional[torch.FloatTensor] = None, - labels: Optional[torch.LongTensor] = None, - use_cache: Optional[bool] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> Union[Tuple, SequenceClassifierOutputWithPast]: - r""" # noqa: E501 - labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): - Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., - config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If - `config.num_labels > 1` a classification loss is computed (Cross-Entropy). - """ - return_dict = (return_dict if return_dict is not None else - self.config.use_return_dict) - - transformer_outputs = self.model( - input_ids, - attention_mask=attention_mask, - position_ids=position_ids, - past_key_values=past_key_values, - inputs_embeds=inputs_embeds, - use_cache=use_cache, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - ) - hidden_states = transformer_outputs[0] - logits = self.score(hidden_states) - - if input_ids is not None: - batch_size = input_ids.shape[0] - else: - batch_size = inputs_embeds.shape[0] - - if self.config.pad_token_id is None and batch_size != 1: - raise ValueError( - 'Cannot handle batch sizes > 1 if no padding token is defined.' - ) - if self.config.pad_token_id is None: - sequence_lengths = -1 - else: - if input_ids is not None: - sequence_lengths = ( - torch.ne(input_ids, self.config.pad_token_id).sum(-1) - - 1).to(logits.device) - else: - sequence_lengths = -1 - - pooled_logits = logits[torch.arange(batch_size, device=logits.device), - sequence_lengths] - - loss = None - if labels is not None: - labels = labels.to(logits.device) - if self.config.problem_type is None: - if self.num_labels == 1: - self.config.problem_type = 'regression' - elif self.num_labels > 1 and (labels.dtype == torch.long - or labels.dtype == torch.int): - self.config.problem_type = 'single_label_classification' - else: - self.config.problem_type = 'multi_label_classification' - - if self.config.problem_type == 'regression': - loss_fct = MSELoss() - if self.num_labels == 1: - loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) - else: - loss = loss_fct(pooled_logits, labels) - elif self.config.problem_type == 'single_label_classification': - loss_fct = CrossEntropyLoss() - loss = loss_fct(pooled_logits.view(-1, self.num_labels), - labels.view(-1)) - elif self.config.problem_type == 'multi_label_classification': - loss_fct = BCEWithLogitsLoss() - loss = loss_fct(pooled_logits, labels) - if not return_dict: - output = (pooled_logits, ) + transformer_outputs[1:] - return ((loss, ) + output) if loss is not None else output - - return SequenceClassifierOutputWithPast( - loss=loss, - logits=pooled_logits, - past_key_values=transformer_outputs.past_key_values, - hidden_states=transformer_outputs.hidden_states, - attentions=transformer_outputs.attentions, - ) diff --git a/lmdeploy/pytorch/modeling/modeling_internlm2.py b/lmdeploy/pytorch/modeling/modeling_internlm2.py deleted file mode 100644 index cb61df025..000000000 --- a/lmdeploy/pytorch/modeling/modeling_internlm2.py +++ /dev/null @@ -1,1940 +0,0 @@ -# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved. -# -# This code is based on transformers/src/transformers/models/llama/modeling_llama.py -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -"""PyTorch InternLM2 model.""" -import math -import queue -import threading -from typing import List, Optional, Tuple, Union - -import torch -import torch.nn.functional as F -import torch.utils.checkpoint -from einops import rearrange -from torch import nn -from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss -from transformers.activations import ACT2FN -from transformers.cache_utils import Cache, DynamicCache, StaticCache -from transformers.modeling_attn_mask_utils import AttentionMaskConverter -from transformers.modeling_outputs import (BaseModelOutputWithPast, - CausalLMOutputWithPast, - QuestionAnsweringModelOutput, - SequenceClassifierOutputWithPast, - TokenClassifierOutput) -from transformers.modeling_utils import PreTrainedModel -from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS -from transformers.utils import (add_start_docstrings, - add_start_docstrings_to_model_forward, - is_flash_attn_2_available, - is_flash_attn_greater_or_equal_2_10, logging, - replace_return_docstrings) - -from lmdeploy.pytorch.modeling.convert_to_qmodules import convert_to_qmodules - -try: - from transformers.generation.streamers import BaseStreamer -except Exception: - BaseStreamer = None - -from .configuration_internlm2 import InternLM2Config - -if is_flash_attn_2_available(): - from flash_attn import flash_attn_func, flash_attn_varlen_func - from flash_attn.bert_padding import (index_first_axis, pad_input, - unpad_input) - -logger = logging.get_logger(__name__) - -_CONFIG_FOR_DOC = 'InternLM2Config' - - -def _get_unpad_data(attention_mask): - seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) - indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() - max_seqlen_in_batch = seqlens_in_batch.max().item() - cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, - dtype=torch.int32), (1, 0)) # pylint: disable=E1102 - return ( - indices, - cu_seqlens, - max_seqlen_in_batch, - ) - - -class InternLM2RMSNorm(nn.Module): - """InternLM2RMSNorm is equivalent to T5LayerNorm.""" - - def __init__(self, hidden_size, eps=1e-6): - super().__init__() - self.weight = nn.Parameter(torch.ones(hidden_size)) - self.variance_epsilon = eps - - def forward(self, hidden_states): - input_dtype = hidden_states.dtype - hidden_states = hidden_states.to(torch.float32) - variance = hidden_states.pow(2).mean(-1, keepdim=True) - hidden_states = hidden_states * torch.rsqrt(variance + - self.variance_epsilon) - return self.weight * hidden_states.to(input_dtype) - - -ALL_LAYERNORM_LAYERS.append(InternLM2RMSNorm) - - -class InternLM2RotaryEmbedding(nn.Module): - """Rotary Position Embedding for the InternLM2 model. - - Credits to the Reddit user /u/lucidrains. - """ - - def __init__(self, - dim, - max_position_embeddings=2048, - base=10000, - device=None, - scaling_factor=1.0): - super().__init__() - self.scaling_factor = scaling_factor - self.dim = dim - self.max_position_embeddings = max_position_embeddings - self.base = base - inv_freq = 1.0 / (self.base**(torch.arange( - 0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) - self.register_buffer('inv_freq', inv_freq, persistent=False) - # For BC we register cos and sin cached - self.max_seq_len_cached = max_position_embeddings - - @torch.no_grad() - def forward(self, x, position_ids): - # x: [bs, num_attention_heads, seq_len, head_size] - inv_freq_expanded = self.inv_freq[None, :, None].float().expand( - position_ids.shape[0], -1, 1) - position_ids_expanded = position_ids[:, None, :].float() - # Force float32 since bfloat16 loses precision on long contexts - # See https://github.com/huggingface/transformers/pull/29285 - device_type = x.device.type - device_type = device_type if isinstance( - device_type, str) and device_type != 'mps' else 'cpu' - with torch.autocast(device_type=device_type, enabled=False): - freqs = (inv_freq_expanded.float() - @ position_ids_expanded.float()).transpose(1, 2) - emb = torch.cat((freqs, freqs), dim=-1) - cos = emb.cos() - sin = emb.sin() - return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) - - -class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding): - """InternLM2RotaryEmbedding extended with linear scaling. - - Credits to the Reddit user /u/kaiokendev - """ - - def forward(self, x, position_ids): - # difference to the original RoPE: a scaling factor is applied to the position ids - position_ids = position_ids.float() / self.scaling_factor - cos, sin = super().forward(x, position_ids) - return cos, sin - - -class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding): - """InternLM2RotaryEmbedding extended with Dynamic NTK scaling. - - Credits to the Reddit users /u/bloc97 and /u/emozilla - """ - - def forward(self, x, position_ids): - # difference to the original RoPE: inv_freq is recomputed when the sequence length > original length - seq_len = torch.max(position_ids) + 1 - if seq_len > self.max_position_embeddings: - base = self.base * ((self.scaling_factor * seq_len / - self.max_position_embeddings) - - (self.scaling_factor - 1))**(self.dim / - (self.dim - 2)) - inv_freq = 1.0 / (base**(torch.arange( - 0, self.dim, 2, dtype=torch.int64).float().to(x.device) / - self.dim)) - self.register_buffer( - 'inv_freq', inv_freq, - persistent=False) # TODO joao: this may break with compilation - - cos, sin = super().forward(x, position_ids) - return cos, sin - - -def rotate_half(x): - """Rotates half the hidden dims of the input.""" - x1 = x[..., :x.shape[-1] // 2] - x2 = x[..., x.shape[-1] // 2:] - return torch.cat((-x2, x1), dim=-1) - - -def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): # pylint: disable=unused-argument - """Applies Rotary Position Embedding to the query and key tensors. - - Args: - q (`torch.Tensor`): The query tensor. - k (`torch.Tensor`): The key tensor. - cos (`torch.Tensor`): The cosine part of the rotary embedding. - sin (`torch.Tensor`): The sine part of the rotary embedding. - position_ids (`torch.Tensor`, *optional*): - Deprecated and unused. - unsqueeze_dim (`int`, *optional*, defaults to 1): - The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and - sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note - that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and - k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes - cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have - the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. - Returns: - `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. - """ - cos = cos.unsqueeze(unsqueeze_dim) - sin = sin.unsqueeze(unsqueeze_dim) - q_embed = (q * cos) + (rotate_half(q) * sin) - k_embed = (k * cos) + (rotate_half(k) * sin) - return q_embed, k_embed - - -class InternLM2MLP(nn.Module): - """MLP for InternLM2 model.""" - - def __init__(self, config): - super().__init__() - self.config = config - self.hidden_size = config.hidden_size - self.intermediate_size = config.intermediate_size - self.w1 = nn.Linear(self.hidden_size, - self.intermediate_size, - bias=False) - self.w3 = nn.Linear(self.hidden_size, - self.intermediate_size, - bias=False) - self.w2 = nn.Linear(self.intermediate_size, - self.hidden_size, - bias=False) - self.act_fn = ACT2FN[config.hidden_act] - - def forward(self, x): - down_proj = self.w2(self.act_fn(self.w1(x)) * self.w3(x)) - - return down_proj - - -def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: - """This is the equivalent of torch.repeat_interleave(x, dim=1, - repeats=n_rep). - - The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to - (batch, num_attention_heads, seqlen, head_dim) - """ - batch, num_key_value_heads, slen, head_dim = hidden_states.shape - if n_rep == 1: - return hidden_states - hidden_states = hidden_states[:, :, - None, :, :].expand(batch, - num_key_value_heads, - n_rep, slen, head_dim) - return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, - head_dim) - - -class InternLM2Attention(nn.Module): - """Multi-headed attention from 'Attention Is All You Need' paper.""" - - def __init__(self, - config: InternLM2Config, - layer_idx: Optional[int] = None): - super().__init__() - self.config = config - self.layer_idx = layer_idx - if layer_idx is None: - logger.warning_once( - f'Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will ' - 'lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` ' - 'when creating this class.') - - self.hidden_size = config.hidden_size - self.num_heads = config.num_attention_heads - self.head_dim = self.hidden_size // self.num_heads - self.num_key_value_heads = config.num_key_value_heads - self.num_key_value_groups = self.num_heads // self.num_key_value_heads - self.max_position_embeddings = config.max_position_embeddings - self.rope_theta = config.rope_theta - self.is_causal = True - - if (self.head_dim * self.num_heads) != self.hidden_size: - raise ValueError( - f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}' - f' and `num_heads`: {self.num_heads}).') - - self.wqkv = nn.Linear( - self.hidden_size, - (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim, - bias=config.bias, - ) - self.wo = nn.Linear(self.num_heads * self.head_dim, - self.hidden_size, - bias=config.bias) - - self._init_rope() - - def _init_rope(self): - if self.config.rope_scaling is None: - self.rotary_emb = InternLM2RotaryEmbedding( - self.head_dim, - max_position_embeddings=self.max_position_embeddings, - base=self.rope_theta, - ) - else: - scaling_type = self.config.rope_scaling['type'] - scaling_factor = self.config.rope_scaling['factor'] - if scaling_type == 'linear': - self.rotary_emb = InternLM2LinearScalingRotaryEmbedding( - self.head_dim, - max_position_embeddings=self.max_position_embeddings, - scaling_factor=scaling_factor, - base=self.rope_theta, - ) - elif scaling_type == 'dynamic': - self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding( - self.head_dim, - max_position_embeddings=self.max_position_embeddings, - scaling_factor=scaling_factor, - base=self.rope_theta, - ) - else: - raise ValueError(f'Unknown RoPE scaling type {scaling_type}') - - def forward( - self, - hidden_states: torch.Tensor, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_value: Optional[Cache] = None, - output_attentions: bool = False, - use_cache: bool = False, # pylint: disable=unused-argument - cache_position: Optional[torch.LongTensor] = None, - ) -> Tuple[torch.Tensor, Optional[torch.Tensor], - Optional[Tuple[torch.Tensor]]]: - bsz, q_len, _ = hidden_states.size() - - if self.config.pretraining_tp > 1: - # split qkv_states by tp size - key_value_slicing = (self.num_key_value_heads * - self.head_dim) // self.config.pretraining_tp - qkv_slices = self.wqkv.weight.split(key_value_slicing, dim=0) - qkv_states = torch.cat( - [ - F.linear(hidden_states, qkv_slice) - for qkv_slice in qkv_slices - ], - dim=-1 # pylint: disable=E1102 - ) - else: - qkv_states = self.wqkv(hidden_states) - - qkv_states = rearrange( - qkv_states, - 'b q (h gs d) -> b q h gs d', - gs=2 + self.num_key_value_groups, - d=self.head_dim, - ) - - query_states = qkv_states[..., :self.num_key_value_groups, :] - query_states = rearrange(query_states, - 'b q h gs d -> b q (h gs) d').transpose(1, 2) - key_states = qkv_states[..., -2, :].transpose(1, 2) - value_states = qkv_states[..., -1, :].transpose(1, 2) - - cos, sin = self.rotary_emb(value_states, position_ids) - query_states, key_states = apply_rotary_pos_emb( - query_states, key_states, cos, sin, position_ids) - - if past_key_value is not None: - # sin and cos are specific to RoPE models; cache_position needed for the static cache - cache_kwargs = { - 'sin': sin, - 'cos': cos, - 'cache_position': cache_position - } - key_states, value_states = past_key_value.update( - key_states, value_states, self.layer_idx, cache_kwargs) - - key_states = repeat_kv(key_states, self.num_key_value_groups) - value_states = repeat_kv(value_states, self.num_key_value_groups) - - attn_weights = torch.matmul(query_states, key_states.transpose( - 2, 3)) / math.sqrt(self.head_dim) - - if attention_mask is not None: # no matter the length, we just slice it - causal_mask = attention_mask[:, :, :, :key_states.shape[-2]] - attn_weights = attn_weights + causal_mask - - # upcast attention to fp32 - attn_weights = nn.functional.softmax(attn_weights, - dim=-1, - dtype=torch.float32).to( - query_states.dtype) - attn_output = torch.matmul(attn_weights, value_states) - - if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): - raise ValueError( - f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is' - f' {attn_output.size()}') - - attn_output = attn_output.transpose(1, 2).contiguous() - - attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) - - if self.config.pretraining_tp > 1: - attn_output = attn_output.split(self.hidden_size // - self.config.pretraining_tp, - dim=2) - o_proj_slices = self.wo.weight.split(self.hidden_size // - self.config.pretraining_tp, - dim=1) - attn_output = sum([ - F.linear(attn_output[i], o_proj_slices[i]) # pylint: disable=E1102 - for i in range(self.config.pretraining_tp) - ]) - else: - attn_output = self.wo(attn_output) - - if not output_attentions: - attn_weights = None - - return attn_output, attn_weights, past_key_value - - -class InternLM2FlashAttention2(InternLM2Attention): - """InternLM2 flash attention module. - - This module inherits from `InternLM2Attention` as the weights of the module - stays untouched. The only required change would be on the forward pass - where it needs to correctly call the public API of flash attention and deal - with padding tokens in case the input contains any of them. - """ - - def __init__(self, *args, **kwargs): - super().__init__(*args, **kwargs) - - # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. - # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignment, - # that was made default for flash_attn>=2.1. This attribute is used to handle this difference. - # Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. - # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) - # produces a wrong mask (top-left). - self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10( - ) - - def forward( - self, - hidden_states: torch.Tensor, - attention_mask: Optional[torch.LongTensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_value: Optional[Cache] = None, - output_attentions: bool = False, - use_cache: bool = False, - cache_position: Optional[torch.LongTensor] = None, - ) -> Tuple[torch.Tensor, Optional[torch.Tensor], - Optional[Tuple[torch.Tensor]]]: - if isinstance(past_key_value, StaticCache): - raise ValueError( - '`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` ' - 'make sure to use `sdpa` in the mean time, and open an issue at ' - 'https://github.com/huggingface/transformers') - - output_attentions = False - - bsz, q_len, _ = hidden_states.size() - - qkv_states = self.wqkv(hidden_states) - - qkv_states = rearrange( - qkv_states, - 'b q (h gs d) -> b q h gs d', - gs=2 + self.num_key_value_groups, - d=self.head_dim, - ) - - query_states = qkv_states[..., :self.num_key_value_groups, :] - query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d') - key_states = qkv_states[..., -2, :] - value_states = qkv_states[..., -1, :] - - query_states = query_states.transpose(1, 2) - key_states = key_states.transpose(1, 2) - value_states = value_states.transpose(1, 2) - - cos, sin = self.rotary_emb(value_states, position_ids) - query_states, key_states = apply_rotary_pos_emb( - query_states, key_states, cos, sin) - - if past_key_value is not None: - # sin and cos are specific to RoPE models; cache_position needed for the static cache - cache_kwargs = { - 'sin': sin, - 'cos': cos, - 'cache_position': cache_position - } - key_states, value_states = past_key_value.update( - key_states, value_states, self.layer_idx, cache_kwargs) - - # TODO: These transpose are quite inefficient but Flash Attention requires the layout - # [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache - # to be able to avoid many of these transpose/reshape/view. - query_states = query_states.transpose(1, 2) - key_states = key_states.transpose(1, 2) - value_states = value_states.transpose(1, 2) - - # dropout_rate = self.attention_dropout if self.training else 0.0 - dropout_rate = 0.0 - - # In PEFT, usually we cast the layer norms in float32 for training stability reasons - # therefore the input hidden states gets silently casted in float32. Hence, we need - # cast them back in the correct dtype just to be sure everything works as expected. - # This might slowdown training & inference so it is recommended to not cast the LayerNorms - # in fp32. (InternLM2RMSNorm handles it correctly) - - input_dtype = query_states.dtype - if input_dtype == torch.float32: - if torch.is_autocast_enabled(): - target_dtype = torch.get_autocast_gpu_dtype() - # Handle the case where the model is quantized - elif hasattr(self.config, '_pre_quantization_dtype'): - target_dtype = self.config._pre_quantization_dtype - else: - target_dtype = self.wqkv.weight.dtype - - logger.warning_once( - f'The input hidden states seems to be silently casted in float32, this might be related to' - f' the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in' - f' {target_dtype}.') - - query_states = query_states.to(target_dtype) - key_states = key_states.to(target_dtype) - value_states = value_states.to(target_dtype) - - attn_output = self._flash_attention_forward(query_states, - key_states, - value_states, - attention_mask, - q_len, - dropout=dropout_rate) - - attn_output = attn_output.reshape(bsz, q_len, - self.hidden_size).contiguous() - attn_output = self.wo(attn_output) - - if not output_attentions: - attn_weights = None - - return attn_output, attn_weights, past_key_value # pylint: disable=E0606 - - def _flash_attention_forward(self, - query_states, - key_states, - value_states, - attention_mask, - query_length, - dropout=0.0, - softmax_scale=None): - """ - Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token - first unpad the input, then computes the attention scores and pad the final attention scores. - - Args: - query_states (`torch.Tensor`): - Input query states to be passed to Flash Attention API - key_states (`torch.Tensor`): - Input key states to be passed to Flash Attention API - value_states (`torch.Tensor`): - Input value states to be passed to Flash Attention API - attention_mask (`torch.Tensor`): - The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the - position of padding tokens and 1 for the position of non-padding tokens. - dropout (`float`): - Attention dropout - softmax_scale (`float`, *optional*): - The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) - """ - if not self._flash_attn_uses_top_left_mask: - causal = self.is_causal - else: - # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. - # For details, please see the comment in InternLM2FlashAttention2 __init__. - causal = self.is_causal and query_length != 1 - - # Contains at least one padding token in the sequence - if attention_mask is not None: - batch_size = query_states.shape[0] - query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( - query_states, key_states, value_states, attention_mask, - query_length) - - cu_seqlens_q, cu_seqlens_k = cu_seq_lens - max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens - - attn_output_unpad = flash_attn_varlen_func( # pylint: disable=E0606 - query_states, - key_states, - value_states, - cu_seqlens_q=cu_seqlens_q, - cu_seqlens_k=cu_seqlens_k, - max_seqlen_q=max_seqlen_in_batch_q, - max_seqlen_k=max_seqlen_in_batch_k, - dropout_p=dropout, - softmax_scale=softmax_scale, - causal=causal, - ) - - attn_output = pad_input(attn_output_unpad, indices_q, batch_size, - query_length) # pylint: disable=E0606 - else: - attn_output = flash_attn_func( # pylint: disable=E0606 - query_states, - key_states, - value_states, - dropout, - softmax_scale=softmax_scale, - causal=causal) - - return attn_output - - def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, - query_length): - indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data( - attention_mask) - batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape - - key_layer = index_first_axis( # pylint: disable=E0606 - key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, - head_dim), indices_k) - value_layer = index_first_axis( # pylint: disable=E0606 - value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, - head_dim), indices_k) - if query_length == kv_seq_len: - query_layer = index_first_axis( # pylint: disable=E0606 - query_layer.reshape(batch_size * kv_seq_len, self.num_heads, - head_dim), indices_k) - cu_seqlens_q = cu_seqlens_k - max_seqlen_in_batch_q = max_seqlen_in_batch_k - indices_q = indices_k - elif query_length == 1: - max_seqlen_in_batch_q = 1 - cu_seqlens_q = torch.arange( - batch_size + 1, dtype=torch.int32, device=query_layer.device - ) # There is a memcpy here, that is very bad. - indices_q = cu_seqlens_q[:-1] - query_layer = query_layer.squeeze(1) - else: - # The -q_len: slice assumes left padding. - attention_mask = attention_mask[:, -query_length:] - query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input( # pylint: disable=E0606 - query_layer, attention_mask) - - return ( - query_layer, - key_layer, - value_layer, - indices_q, - (cu_seqlens_q, cu_seqlens_k), - (max_seqlen_in_batch_q, max_seqlen_in_batch_k), - ) - - -# Copied from transformers.models.llama.modeling_llama.LllamaSdpaAttention with Llama->InternLM2 -class InternLM2SdpaAttention(InternLM2Attention): - """InternLM2 attention module using - torch.nn.functional.scaled_dot_product_attention. - - This module inherits from `InternLM2Attention` as the weights of the module - stays untouched. The only changes are on the forward pass to adapt to SDPA - API. - """ - - # Adapted from InternLM2Attention.forward - def forward( - self, - hidden_states: torch.Tensor, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_value: Optional[Cache] = None, - output_attentions: bool = False, - use_cache: bool = False, - cache_position: Optional[torch.LongTensor] = None, - ) -> Tuple[torch.Tensor, Optional[torch.Tensor], - Optional[Tuple[torch.Tensor]]]: - if output_attentions: - # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` - # once this is implemented. - logger.warning_once( - 'InternLM2Model uses InternLM2SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` ' - 'does not support `output_attentions=True`. Falling back to the manual attention implementation, ' - 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. ' - 'This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' - ) - return super().forward( - hidden_states=hidden_states, - attention_mask=attention_mask, - position_ids=position_ids, - past_key_value=past_key_value, - output_attentions=output_attentions, - use_cache=use_cache, - cache_position=cache_position, - ) - - bsz, q_len, _ = hidden_states.size() - - qkv_states = self.wqkv(hidden_states) - - qkv_states = rearrange( - qkv_states, - 'b q (h gs d) -> b q h gs d', - gs=2 + self.num_key_value_groups, - d=self.head_dim, - ) - - query_states = qkv_states[..., :self.num_key_value_groups, :] - query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d') - key_states = qkv_states[..., -2, :] - value_states = qkv_states[..., -1, :] - - query_states = query_states.transpose(1, 2) - key_states = key_states.transpose(1, 2) - value_states = value_states.transpose(1, 2) - - cos, sin = self.rotary_emb(value_states, position_ids) - query_states, key_states = apply_rotary_pos_emb( - query_states, key_states, cos, sin) - - if past_key_value is not None: - # sin and cos are specific to RoPE models; cache_position needed for the static cache - cache_kwargs = { - 'sin': sin, - 'cos': cos, - 'cache_position': cache_position - } - key_states, value_states = past_key_value.update( - key_states, value_states, self.layer_idx, cache_kwargs) - - key_states = repeat_kv(key_states, self.num_key_value_groups) - value_states = repeat_kv(value_states, self.num_key_value_groups) - - causal_mask = attention_mask - if attention_mask is not None: - causal_mask = causal_mask[:, :, :, :key_states.shape[-2]] - - # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with - # custom attn_mask, Reference: https://github.com/pytorch/pytorch/issues/112577. - if query_states.device.type == 'cuda' and causal_mask is not None: - query_states = query_states.contiguous() - key_states = key_states.contiguous() - value_states = value_states.contiguous() - - # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of - # an inline conditional assignment in SDPA to support both torch.compile's dynamic shapes and full graph - # options. An inline conditional prevents dynamic shapes from compiling. - is_causal = bool(causal_mask is None and q_len > 1) - - attn_output = torch.nn.functional.scaled_dot_product_attention( # pylint: disable=E1102 - query_states, - key_states, - value_states, - attn_mask=causal_mask, - dropout_p=0.0, - is_causal=is_causal, - ) - - attn_output = attn_output.transpose(1, 2).contiguous() - attn_output = attn_output.view(bsz, q_len, self.hidden_size) - - attn_output = self.wo(attn_output) - - return attn_output, None, past_key_value - - -INTERNLM2_ATTENTION_CLASSES = { - 'eager': InternLM2Attention, - 'flash_attention_2': InternLM2FlashAttention2, - 'sdpa': InternLM2SdpaAttention, -} - - -# Modified from transformers.models.llama.modeling_llama.LlamaDecoderLayer with Llama->InternLM2 -class InternLM2DecoderLayer(nn.Module): - """InternLM2 Decoder Layer. - - This module is a single layer of the InternLM2 model. - """ - - def __init__(self, config: InternLM2Config, layer_idx: int): - super().__init__() - self.hidden_size = config.hidden_size - self.layer_idx = layer_idx - - self.attention = INTERNLM2_ATTENTION_CLASSES[ - config.attn_implementation](config=config, layer_idx=layer_idx) - - self.feed_forward = InternLM2MLP(config) - self.attention_norm = InternLM2RMSNorm(config.hidden_size, - eps=config.rms_norm_eps) - self.ffn_norm = InternLM2RMSNorm(config.hidden_size, - eps=config.rms_norm_eps) - - def forward( - self, - hidden_states: torch.Tensor, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_value: Optional[Cache] = None, - output_attentions: Optional[bool] = False, - use_cache: Optional[bool] = False, - cache_position: Optional[torch.LongTensor] = None, - ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, - torch.FloatTensor]]]: - """ - Args: - hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` - attention_mask (`torch.FloatTensor`, *optional*): - attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, - query_sequence_length, key_sequence_length)` if default attention is used. - output_attentions (`bool`, *optional*): - Whether or not to return the attentions tensors of all attention layers. See `attentions` under - returned tensors for more detail. - use_cache (`bool`, *optional*): - If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding - (see `past_key_values`). - past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states - """ - residual = hidden_states - - hidden_states = self.attention_norm(hidden_states) - - # Self Attention - hidden_states, self_attn_weights, present_key_value = self.attention( - hidden_states=hidden_states, - attention_mask=attention_mask, - position_ids=position_ids, - past_key_value=past_key_value, - output_attentions=output_attentions, - use_cache=use_cache, - cache_position=cache_position, - ) - hidden_states = residual + hidden_states - - # Fully Connected - residual = hidden_states - hidden_states = self.ffn_norm(hidden_states) - hidden_states = self.feed_forward(hidden_states) - hidden_states = residual + hidden_states - - outputs = (hidden_states, ) - - if output_attentions: - outputs += (self_attn_weights, ) - - if use_cache: - outputs += (present_key_value, ) - - return outputs - - -InternLM2_START_DOCSTRING = r""" - This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the - library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads - etc.) - - This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. - Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage - and behavior. - - Parameters: - config ([`InternLM2Config`]): - Model configuration class with all the parameters of the model. Initializing with a config file does not - load the weights associated with the model, only the configuration. Check out the - [`~PreTrainedModel.from_pretrained`] method to load the model weights. -""" - - -# Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->InternLM2 -@add_start_docstrings( - 'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.', - InternLM2_START_DOCSTRING, -) -class InternLM2PreTrainedModel(PreTrainedModel): - """InternLM2 pretraiend model's base class.""" - - config_class = InternLM2Config - base_model_prefix = 'model' - supports_gradient_checkpointing = True - _no_split_modules = ['InternLM2DecoderLayer'] - _skip_keys_device_placement = ['past_key_values'] - _supports_flash_attn_2 = True - _supports_sdpa = True - _supports_cache_class = True - _supports_quantized_cache = True - _supports_static_cache = True - - def _init_weights(self, module): - std = self.config.initializer_range - if isinstance(module, nn.Linear): - module.weight.data.normal_(mean=0.0, std=std) - if module.bias is not None: - module.bias.data.zero_() - elif isinstance(module, nn.Embedding): - module.weight.data.normal_(mean=0.0, std=std) - if module.padding_idx is not None: - module.weight.data[module.padding_idx].zero_() - - -InternLM2_INPUTS_DOCSTRING = r""" - Args: - input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): - Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide - it. - - Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and - [`PreTrainedTokenizer.__call__`] for details. - - [What are input IDs?](../glossary#input-ids) - attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): - Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - - - 1 for tokens that are **not masked**, - - 0 for tokens that are **masked**. - - [What are attention masks?](../glossary#attention-mask) - - Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and - [`PreTrainedTokenizer.__call__`] for details. - - If `past_key_values` is used, optionally only the last `input_ids` have to be input (see - `past_key_values`). - - If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] - and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more - information on the default strategy. - - - 1 indicates the head is **not masked**, - - 0 indicates the head is **masked**. - position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): - Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, - config.n_positions - 1]`. - - [What are position IDs?](../glossary#position-ids) - past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): - Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention - blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` - returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. - - Two formats are allowed: - - a [`~cache_utils.Cache`] instance; - - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of - shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy - cache format. - - The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the - legacy cache format will be returned. - - If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't - have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` - of shape `(batch_size, sequence_length)`. - inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): - Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This - is useful if you want more control over how to convert `input_ids` indices into associated vectors than the - model's internal embedding lookup matrix. - use_cache (`bool`, *optional*): - If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see - `past_key_values`). - output_attentions (`bool`, *optional*): - Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned - tensors for more detail. - output_hidden_states (`bool`, *optional*): - Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for - more detail. - return_dict (`bool`, *optional*): - Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. - cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): - Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, - this tensor is not affected by padding. It is used to update the cache in the correct position and to infer - the complete sequence length. -""" - - -# Modified from transformers.models.llama.modeling_llama.LlamaModel with Llama->InternLM2 -@add_start_docstrings( - 'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.', - InternLM2_START_DOCSTRING, -) -class InternLM2Model(InternLM2PreTrainedModel): - """Transformer decoder consisting of *config.num_hidden_layers* layers. - Each layer is a [`InternLM2DecoderLayer`] - - Args: - config: InternLM2Config - """ - - _auto_class = 'AutoModel' - - def __init__(self, config: InternLM2Config): - super().__init__(config) - self.padding_idx = config.pad_token_id - self.vocab_size = config.vocab_size - self.config = config - - self.tok_embeddings = nn.Embedding(config.vocab_size, - config.hidden_size, - self.padding_idx) - - self.layers = nn.ModuleList([ - InternLM2DecoderLayer(config, layer_idx) - for layer_idx in range(config.num_hidden_layers) - ]) - self.norm = InternLM2RMSNorm(config.hidden_size, - eps=config.rms_norm_eps) - - self.gradient_checkpointing = False - # Initialize weights and apply final processing - self.post_init() - - def get_input_embeddings(self): - return self.tok_embeddings - - def set_input_embeddings(self, value): - self.tok_embeddings = value - - @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING) - def forward( - self, - input_ids: torch.LongTensor = None, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_values: Optional[Union[Cache, - List[torch.FloatTensor]]] = None, - inputs_embeds: Optional[torch.FloatTensor] = None, - use_cache: Optional[bool] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - cache_position: Optional[torch.LongTensor] = None, - ) -> Union[Tuple, BaseModelOutputWithPast]: - output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions - output_hidden_states = (output_hidden_states - if output_hidden_states is not None else - self.config.output_hidden_states) - use_cache = use_cache if use_cache is not None else self.config.use_cache - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - if (input_ids is None) ^ (inputs_embeds is not None): - raise ValueError( - 'You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one' - ) - - if self.gradient_checkpointing and self.training and use_cache: - logger.warning_once( - '`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`.' - ) - use_cache = False - - if inputs_embeds is None: - inputs_embeds = self.tok_embeddings(input_ids) - - return_legacy_cache = False - if use_cache and not isinstance( - past_key_values, - Cache): # kept for BC (non `Cache` `past_key_values` inputs) - return_legacy_cache = True - past_key_values = DynamicCache.from_legacy_cache(past_key_values) - - if cache_position is None: - past_seen_tokens = past_key_values.get_seq_length( - ) if past_key_values is not None else 0 - cache_position = torch.arange(past_seen_tokens, - past_seen_tokens + - inputs_embeds.shape[1], - device=inputs_embeds.device) - if position_ids is None: - position_ids = cache_position.unsqueeze(0) - - causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, - cache_position, past_key_values, - output_attentions) - - # embed positions - hidden_states = inputs_embeds - - # decoder layers - all_hidden_states = () if output_hidden_states else None - all_self_attns = () if output_attentions else None - next_decoder_cache = None - - for decoder_layer in self.layers: - if output_hidden_states: - all_hidden_states += (hidden_states, ) - - if self.gradient_checkpointing and self.training: - layer_outputs = self._gradient_checkpointing_func( - decoder_layer.__call__, - hidden_states, - causal_mask, - position_ids, - past_key_values, - output_attentions, - use_cache, - cache_position, - ) - else: - layer_outputs = decoder_layer( - hidden_states, - attention_mask=causal_mask, - position_ids=position_ids, - past_key_value=past_key_values, - output_attentions=output_attentions, - use_cache=use_cache, - cache_position=cache_position, - ) - - hidden_states = layer_outputs[0] - - if use_cache: - next_decoder_cache = layer_outputs[ - 2 if output_attentions else 1] - - if output_attentions: - all_self_attns += (layer_outputs[1], ) - - hidden_states = self.norm(hidden_states) - - # add hidden states from the last decoder layer - if output_hidden_states: - all_hidden_states += (hidden_states, ) - - next_cache = next_decoder_cache if use_cache else None - if return_legacy_cache: - next_cache = next_cache.to_legacy_cache() - - if not return_dict: - return tuple( - v for v in - [hidden_states, next_cache, all_hidden_states, all_self_attns] - if v is not None) - return BaseModelOutputWithPast( - last_hidden_state=hidden_states, - past_key_values=next_cache, - hidden_states=all_hidden_states, - attentions=all_self_attns, - ) - - def _update_causal_mask( - self, - attention_mask: torch.Tensor, - input_tensor: torch.Tensor, - cache_position: torch.Tensor, - past_key_values: Cache, - output_attentions: bool, - ): - # TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length - # even when the static KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at - # each decode steps due to the dynamic shapes. (`recording cudagraph tree for symint key 13`, etc.), which is - # VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using `fullgraph=True`. - # See more context in https://github.com/huggingface/transformers/pull/29114 - - if self.config.attn_implementation == 'flash_attention_2': - if attention_mask is not None and 0.0 in attention_mask: - return attention_mask - return None - - # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in - # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail - # to infer the attention mask. - past_seen_tokens = past_key_values.get_seq_length( - ) if past_key_values is not None else 0 - using_static_cache = isinstance(past_key_values, StaticCache) - - # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward - if self.config.attn_implementation == 'sdpa' and not using_static_cache and not output_attentions: - if AttentionMaskConverter._ignore_causal_mask_sdpa( - attention_mask, - inputs_embeds=input_tensor, - past_key_values_length=past_seen_tokens, - is_training=self.training, - ): - return None - - dtype, device = input_tensor.dtype, input_tensor.device - min_dtype = torch.finfo(dtype).min - sequence_length = input_tensor.shape[1] - if using_static_cache: - target_length = past_key_values.get_max_length() - else: - target_length = (attention_mask.shape[-1] if isinstance( - attention_mask, torch.Tensor) else past_seen_tokens + - sequence_length + 1) - - if attention_mask is not None and attention_mask.dim() == 4: - # in this case we assume that the mask comes already in inverted form and requires no inversion or slicing - if attention_mask.max() != 0: - raise ValueError( - 'Custom 4D attention mask should be passed in inverted form with max==0`' - ) - causal_mask = attention_mask - else: - causal_mask = torch.full((sequence_length, target_length), - fill_value=min_dtype, - dtype=dtype, - device=device) - if sequence_length != 1: - causal_mask = torch.triu(causal_mask, diagonal=1) - causal_mask *= torch.arange( - target_length, device=device) > cache_position.reshape(-1, 1) - causal_mask = causal_mask[None, None, :, :].expand( - input_tensor.shape[0], 1, -1, -1) - if attention_mask is not None: - causal_mask = causal_mask.clone( - ) # copy to contiguous memory for in-place edit - mask_length = attention_mask.shape[-1] - padding_mask = causal_mask[:, :, :, : - mask_length] + attention_mask[:, - None, - None, :] - padding_mask = padding_mask == 0 - causal_mask[:, :, :, : - mask_length] = causal_mask[:, :, :, : - mask_length].masked_fill( - padding_mask, - min_dtype) - if (self.config.attn_implementation == 'sdpa' - and attention_mask is not None - and attention_mask.device.type == 'cuda' - and not output_attentions): - # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when - # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. - # Details: https://github.com/pytorch/pytorch/issues/110213 - causal_mask = AttentionMaskConverter._unmask_unattended( - causal_mask, min_dtype) # pylint: disable=E1120 - - return causal_mask - - -# Modified from transformers.models.llama.modeling_llama.LlamaForCausalLM -class InternLM2ForCausalLM(InternLM2PreTrainedModel): - """Causal language model (CLM) for InternLM2.""" - - _auto_class = 'AutoModelForCausalLM' - _tied_weights_keys = ['output.weight'] - - def __init__(self, config): - super().__init__(config) - self.model = InternLM2Model(config) - self.vocab_size = config.vocab_size - self.output = nn.Linear(config.hidden_size, - config.vocab_size, - bias=False) - - # Initialize weights and apply final processing - self.post_init() - convert_to_qmodules(self) - - def get_input_embeddings(self): - return self.model.tok_embeddings - - def set_input_embeddings(self, value): - self.model.tok_embeddings = value - - def get_output_embeddings(self): - return self.output - - def set_output_embeddings(self, new_embeddings): - self.output = new_embeddings - - def set_decoder(self, decoder): - self.model = decoder - - def get_decoder(self): - return self.model - - @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING) - @replace_return_docstrings(output_type=CausalLMOutputWithPast, - config_class=_CONFIG_FOR_DOC) - def forward( - self, - input_ids: torch.LongTensor = None, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_values: Optional[Union[Cache, - List[torch.FloatTensor]]] = None, - inputs_embeds: Optional[torch.FloatTensor] = None, - labels: Optional[torch.LongTensor] = None, - use_cache: Optional[bool] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - cache_position: Optional[torch.LongTensor] = None, - ) -> Union[Tuple, CausalLMOutputWithPast]: - r""" - Args: - labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): - Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., - config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored - (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. - - Returns: - - Example: - - ```python - >>> from transformers import AutoTokenizer, InternLM2ForCausalLM - - >>> model = InternLM2ForCausalLM.from_pretrained("meta-InternLM2/InternLM2-2-7b-hf") - >>> tokenizer = AutoTokenizer.from_pretrained("meta-InternLM2/InternLM2-2-7b-hf") - - >>> prompt = "Hey, are you conscious? Can you talk to me?" - >>> inputs = tokenizer(prompt, return_tensors="pt") - - >>> # Generate - >>> generate_ids = model.generate(inputs.input_ids, max_length=30) - >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] - "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." - ```""" - - output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions - output_hidden_states = (output_hidden_states - if output_hidden_states is not None else - self.config.output_hidden_states) - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) - outputs = self.model( - input_ids=input_ids, - attention_mask=attention_mask, - position_ids=position_ids, - past_key_values=past_key_values, - inputs_embeds=inputs_embeds, - use_cache=use_cache, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - cache_position=cache_position, - ) - - hidden_states = outputs[0] - if self.config.pretraining_tp > 1: - output_slices = self.output.weight.split( - self.vocab_size // self.config.pretraining_tp, dim=0) - logits = [ - F.linear(hidden_states, output_slices[i]) # pylint: disable=not-callable - for i in range(self.config.pretraining_tp) - ] - logits = torch.cat(logits, dim=-1) - else: - logits = self.output(hidden_states) - logits = logits.float() - - loss = None - if labels is not None: - # Shift so that tokens < n predict n - shift_logits = logits[..., :-1, :].contiguous() - shift_labels = labels[..., 1:].contiguous() - # Flatten the tokens - loss_fct = CrossEntropyLoss() - shift_logits = shift_logits.view(-1, self.config.vocab_size) - shift_labels = shift_labels.view(-1) - # Enable model parallelism - shift_labels = shift_labels.to(shift_logits.device) - loss = loss_fct(shift_logits, shift_labels) - - if not return_dict: - output = (logits, ) + outputs[1:] - return (loss, ) + output if loss is not None else output - - return CausalLMOutputWithPast( - loss=loss, - logits=logits, - past_key_values=outputs.past_key_values, - hidden_states=outputs.hidden_states, - attentions=outputs.attentions, - ) - - def prepare_inputs_for_generation( - self, - input_ids, - past_key_values=None, - attention_mask=None, - inputs_embeds=None, - cache_position=None, - use_cache=True, - **kwargs, - ): - past_length = 0 - if past_key_values is not None: - if isinstance(past_key_values, Cache): - past_length = cache_position[ - 0] if cache_position is not None else past_key_values.get_seq_length( - ) - max_cache_length = (torch.tensor( - past_key_values.get_max_length(), device=input_ids.device) - if past_key_values.get_max_length() - is not None else None) - cache_length = past_length if max_cache_length is None else torch.min( - max_cache_length, past_length) - # TODO joao: remove this `else` after `generate` prioritizes `Cache` objects - else: - cache_length = past_length = past_key_values[0][0].shape[2] - max_cache_length = None - - # Keep only the unprocessed tokens: - # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where - # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as input) - if attention_mask is not None and attention_mask.shape[ - 1] > input_ids.shape[1]: - input_ids = input_ids[:, -(attention_mask.shape[1] - - past_length):] - # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard - # input_ids based on the past_length. - elif past_length < input_ids.shape[1]: - input_ids = input_ids[:, past_length:] - # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. - - # If we are about to go beyond the maximum cache length, we need to crop the input attention mask. - if (max_cache_length is not None and attention_mask is not None - and cache_length + input_ids.shape[1] > max_cache_length): - attention_mask = attention_mask[:, -max_cache_length:] # pylint: disable=E1130 - - position_ids = kwargs.get('position_ids', None) - if attention_mask is not None and position_ids is None: - # create position_ids on the fly for batch generation - position_ids = attention_mask.long().cumsum(-1) - 1 - position_ids.masked_fill_(attention_mask == 0, 1) - if past_key_values: - position_ids = position_ids[:, -input_ids.shape[1]:] - - # if `inputs_embeds` are passed, we only want to use them in the 1st generation step - if inputs_embeds is not None and past_key_values is None: - model_inputs = {'inputs_embeds': inputs_embeds} - else: - # The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise - # recompiles graphs as the stride of the inputs is a guard. - # Ref: https://github.com/huggingface/transformers/pull/29114 - # TODO: use `next_tokens` directly instead. - model_inputs = {'input_ids': input_ids.contiguous()} - - input_length = position_ids.shape[ - -1] if position_ids is not None else input_ids.shape[-1] - if cache_position is None: - cache_position = torch.arange(past_length, - past_length + input_length, - device=input_ids.device) - elif use_cache: - cache_position = cache_position[-input_length:] - - model_inputs.update({ - 'position_ids': position_ids, - 'cache_position': cache_position, - 'past_key_values': past_key_values, - 'use_cache': use_cache, - 'attention_mask': attention_mask, - }) - return model_inputs - - @staticmethod - def _reorder_cache(past_key_values, beam_idx): - reordered_past = () - for layer_past in past_key_values: - reordered_past += (tuple( - past_state.index_select(0, beam_idx.to(past_state.device)) - for past_state in layer_past), ) - return reordered_past - - def build_inputs(self, - tokenizer, - query: str, - history: List[Tuple[str, str]] = None, - meta_instruction=''): - if history is None: - history = [] - if tokenizer.add_bos_token: - prompt = '' - else: - prompt = tokenizer.bos_token - if meta_instruction: - prompt += f"""<|im_start|>system\n{meta_instruction}<|im_end|>\n""" - for record in history: - prompt += f"""<|im_start|>user\n{record[0]}<|im_end|>\n<|im_start|>assistant\n{record[1]}<|im_end|>\n""" - prompt += f"""<|im_start|>user\n{query}<|im_end|>\n<|im_start|>assistant\n""" - return tokenizer([prompt], return_tensors='pt') - - @torch.no_grad() - def chat( - self, - tokenizer, - query: str, - history: Optional[List[Tuple[str, str]]] = None, - streamer: Optional[BaseStreamer] = None, - max_new_tokens: int = 1024, - do_sample: bool = True, - temperature: float = 0.8, - top_p: float = 0.8, - meta_instruction: - str = 'You are an AI assistant whose name is InternLM (书生·浦语).\n' - '- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory ' - '(上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n' - '- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such ' - 'as English and 中文.', - **kwargs, - ): - if history is None: - history = [] - inputs = self.build_inputs(tokenizer, query, history, meta_instruction) - inputs = { - k: v.to(self.device) - for k, v in inputs.items() if torch.is_tensor(v) - } - # also add end-of-assistant token in eos token id to avoid unnecessary generation - eos_token_id = [ - tokenizer.eos_token_id, - tokenizer.convert_tokens_to_ids(['<|im_end|>'])[0] - ] - outputs = self.generate( - **inputs, - streamer=streamer, - max_new_tokens=max_new_tokens, - do_sample=do_sample, - temperature=temperature, - top_p=top_p, - eos_token_id=eos_token_id, - **kwargs, - ) - outputs = outputs[0].cpu().tolist()[len(inputs['input_ids'][0]):] - response = tokenizer.decode(outputs, skip_special_tokens=True) - response = response.split('<|im_end|>')[0] - history = history + [(query, response)] - return response, history - - @torch.no_grad() - def stream_chat( - self, - tokenizer, - query: str, - history: List[Tuple[str, str]] = None, - max_new_tokens: int = 1024, - do_sample: bool = True, - temperature: float = 0.8, - top_p: float = 0.8, - **kwargs, - ): - if history is None: - history = [] - """ - Return a generator in format: (response, history) - Eg. - ('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')]) - ('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')]) - """ - if BaseStreamer is None: - raise ModuleNotFoundError( - 'The version of `transformers` is too low. Please make sure ' - 'that you have installed `transformers>=4.28.0`.') - - response_queue = queue.Queue(maxsize=20) - - class ChatStreamer(BaseStreamer): - """Streamer used in generate to print words one by one.""" - - def __init__(self, tokenizer) -> None: - super().__init__() - self.tokenizer = tokenizer - self.queue = response_queue - self.query = query - self.history = history - self.response = '' - self.cache = [] - self.received_inputs = False - self.queue.put( - (self.response, history + [(self.query, self.response)])) - - def put(self, value): - if len(value.shape) > 1 and value.shape[0] > 1: - raise ValueError('ChatStreamer only supports batch size 1') - elif len(value.shape) > 1: - value = value[0] - - if not self.received_inputs: - # The first received value is input_ids, ignore here - self.received_inputs = True - return - - self.cache.extend(value.tolist()) - token = self.tokenizer.decode(self.cache, - skip_special_tokens=True) - if token.strip() != '<|im_end|>': - self.response = self.response + token - history = self.history + [(self.query, self.response)] - self.queue.put((self.response, history)) - self.cache = [] - else: - self.end() - - def end(self): - self.queue.put(None) - - def stream_producer(): - return self.chat( - tokenizer=tokenizer, - query=query, - streamer=ChatStreamer(tokenizer=tokenizer), - history=history, - max_new_tokens=max_new_tokens, - do_sample=do_sample, - temperature=temperature, - top_p=top_p, - **kwargs, - ) - - def consumer(): - producer = threading.Thread(target=stream_producer) - producer.start() - while True: - res = response_queue.get() - if res is None: - return - yield res - - return consumer() - - -# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->InternLM2 -@add_start_docstrings( - """ - The InternLM2 Model transformer with a sequence classification head on top (linear layer). - - [`InternLM2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models - (e.g. GPT-2) do. - - Since it does classification on the last token, it requires to know the position of the last token. If a - `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If - no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the - padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in - each row of the batch). - """, - InternLM2_START_DOCSTRING, -) -class InternLM2ForSequenceClassification(InternLM2PreTrainedModel): - """Sequence Classification Head for InternLM2 Model.""" - - def __init__(self, config): - super().__init__(config) - self.num_labels = config.num_labels - self.model = InternLM2Model(config) - self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) - - # Initialize weights and apply final processing - self.post_init() - - def get_input_embeddings(self): - return self.model.tok_embeddings - - def set_input_embeddings(self, value): - self.model.tok_embeddings = value - - @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING) - def forward( - self, - input_ids: torch.LongTensor = None, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_values: Optional[Union[Cache, - List[torch.FloatTensor]]] = None, - inputs_embeds: Optional[torch.FloatTensor] = None, - labels: Optional[torch.LongTensor] = None, - use_cache: Optional[bool] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> Union[Tuple, SequenceClassifierOutputWithPast]: - r""" - labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): - Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., - config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If - `config.num_labels > 1` a classification loss is computed (Cross-Entropy). - """ - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - transformer_outputs = self.model( - input_ids, - attention_mask=attention_mask, - position_ids=position_ids, - past_key_values=past_key_values, - inputs_embeds=inputs_embeds, - use_cache=use_cache, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - ) - hidden_states = transformer_outputs[0] - logits = self.score(hidden_states) - - if input_ids is not None: - batch_size = input_ids.shape[0] - else: - batch_size = inputs_embeds.shape[0] - - if self.config.pad_token_id is None and batch_size != 1: - raise ValueError( - 'Cannot handle batch sizes > 1 if no padding token is defined.' - ) - if self.config.pad_token_id is None: - sequence_lengths = -1 - else: - if input_ids is not None: - # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility - sequence_lengths = torch.eq( - input_ids, self.config.pad_token_id).int().argmax(-1) - 1 - sequence_lengths = sequence_lengths % input_ids.shape[-1] - sequence_lengths = sequence_lengths.to(logits.device) - else: - sequence_lengths = -1 - - pooled_logits = logits[torch.arange(batch_size, device=logits.device), - sequence_lengths] - - loss = None - if labels is not None: - labels = labels.to(logits.device) - if self.config.problem_type is None: - if self.num_labels == 1: - self.config.problem_type = 'regression' - elif self.num_labels > 1 and (labels.dtype - in (torch.long, torch.int)): - self.config.problem_type = 'single_label_classification' - else: - self.config.problem_type = 'multi_label_classification' - - if self.config.problem_type == 'regression': - loss_fct = MSELoss() - if self.num_labels == 1: - loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) - else: - loss = loss_fct(pooled_logits, labels) - elif self.config.problem_type == 'single_label_classification': - loss_fct = CrossEntropyLoss() - loss = loss_fct(pooled_logits.view(-1, self.num_labels), - labels.view(-1)) - elif self.config.problem_type == 'multi_label_classification': - loss_fct = BCEWithLogitsLoss() - loss = loss_fct(pooled_logits, labels) - if not return_dict: - output = (pooled_logits, ) + transformer_outputs[1:] - return ((loss, ) + output) if loss is not None else output - - return SequenceClassifierOutputWithPast( - loss=loss, - logits=pooled_logits, - past_key_values=transformer_outputs.past_key_values, - hidden_states=transformer_outputs.hidden_states, - attentions=transformer_outputs.attentions, - ) - - -# Copied from transformers.models.llama.modeling_llama.LlamaForQuestionAnswering with Llama->InternLM2 -@add_start_docstrings( - """ -The InternLM2 Model transformer with a span classification head on top for extractive question-answering tasks like -SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`). - """, - InternLM2_START_DOCSTRING, -) -class InternLM2ForQuestionAnswering(InternLM2PreTrainedModel): - """Question Answering model for InternLM2.""" - - base_model_prefix = 'transformer' - - def __init__(self, config): - super().__init__(config) - self.transformer = InternLM2Model(config) - self.qa_outputs = nn.Linear(config.hidden_size, 2) - - # Initialize weights and apply final processing - self.post_init() - - def get_input_embeddings(self): - return self.transformer.embed_tokens - - def set_input_embeddings(self, value): - self.transformer.embed_tokens = value - - @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING) - def forward( - self, - input_ids: Optional[torch.LongTensor] = None, - attention_mask: Optional[torch.FloatTensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_values: Optional[Union[Cache, - List[torch.FloatTensor]]] = None, - inputs_embeds: Optional[torch.FloatTensor] = None, - start_positions: Optional[torch.LongTensor] = None, - end_positions: Optional[torch.LongTensor] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> Union[Tuple, QuestionAnsweringModelOutput]: - r""" - start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): - Labels for position (index) of the start of the labelled span for computing the token classification loss. - Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence - are not taken into account for computing the loss. - end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): - Labels for position (index) of the end of the labelled span for computing the token classification loss. - Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence - are not taken into account for computing the loss. - """ - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - outputs = self.transformer( - input_ids, - attention_mask=attention_mask, - position_ids=position_ids, - past_key_values=past_key_values, - inputs_embeds=inputs_embeds, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - ) - - sequence_output = outputs[0] - - logits = self.qa_outputs(sequence_output) - start_logits, end_logits = logits.split(1, dim=-1) - start_logits = start_logits.squeeze(-1).contiguous() - end_logits = end_logits.squeeze(-1).contiguous() - - total_loss = None - if start_positions is not None and end_positions is not None: - # If we are on multi-GPU, split add a dimension - if len(start_positions.size()) > 1: - start_positions = start_positions.squeeze(-1).to( - start_logits.device) - if len(end_positions.size()) > 1: - end_positions = end_positions.squeeze(-1).to(end_logits.device) - # sometimes the start/end positions are outside our model inputs, we ignore these terms - ignored_index = start_logits.size(1) - start_positions = start_positions.clamp(0, ignored_index) - end_positions = end_positions.clamp(0, ignored_index) - - loss_fct = CrossEntropyLoss(ignore_index=ignored_index) - start_loss = loss_fct(start_logits, start_positions) - end_loss = loss_fct(end_logits, end_positions) - total_loss = (start_loss + end_loss) / 2 - - if not return_dict: - output = (start_logits, end_logits) + outputs[2:] - return ((total_loss, ) + - output) if total_loss is not None else output - - return QuestionAnsweringModelOutput( - loss=total_loss, - start_logits=start_logits, - end_logits=end_logits, - hidden_states=outputs.hidden_states, - attentions=outputs.attentions, - ) - - -# Copied from transformers.models.llama.modeling_llama.LlamaForTokenClassification with Llama->InternLM2 -@add_start_docstrings( - """ - The InternLM2 Model transformer with a token classification head on top (a linear layer on top of the hidden-states - output) e.g. for Named-Entity-Recognition (NER) tasks. - """, - InternLM2_START_DOCSTRING, -) -class InternLM2ForTokenClassification(InternLM2PreTrainedModel): - """Token classification model for InternLM2.""" - - def __init__(self, config): - super().__init__(config) - self.num_labels = config.num_labels - self.model = InternLM2Model(config) - if getattr(config, 'classifier_dropout', None) is not None: - classifier_dropout = config.classifier_dropout - elif getattr(config, 'hidden_dropout', None) is not None: - classifier_dropout = config.hidden_dropout - else: - classifier_dropout = 0.1 - self.dropout = nn.Dropout(classifier_dropout) - self.score = nn.Linear(config.hidden_size, config.num_labels) - - # Initialize weights and apply final processing - self.post_init() - - def get_input_embeddings(self): - return self.model.embed_tokens - - def set_input_embeddings(self, value): - self.model.embed_tokens = value - - @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING) - def forward( - self, - input_ids: torch.LongTensor = None, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_values: Optional[List[torch.FloatTensor]] = None, - inputs_embeds: Optional[torch.FloatTensor] = None, - labels: Optional[torch.LongTensor] = None, - use_cache: Optional[bool] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> Union[Tuple, SequenceClassifierOutputWithPast]: - r""" - labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): - Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., - config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If - `config.num_labels > 1` a classification loss is computed (Cross-Entropy). - """ - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - outputs = self.model( - input_ids, - attention_mask=attention_mask, - position_ids=position_ids, - past_key_values=past_key_values, - inputs_embeds=inputs_embeds, - use_cache=use_cache, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - ) - sequence_output = outputs[0] - sequence_output = self.dropout(sequence_output) - logits = self.score(sequence_output) - - loss = None - if labels is not None: - loss_fct = CrossEntropyLoss() - loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) - - if not return_dict: - output = (logits, ) + outputs[2:] - return ((loss, ) + output) if loss is not None else output - - return TokenClassifierOutput( - loss=loss, - logits=logits, - hidden_states=outputs.hidden_states, - attentions=outputs.attentions, - ) diff --git a/lmdeploy/pytorch/modeling/modeling_llama.py b/lmdeploy/pytorch/modeling/modeling_llama.py deleted file mode 100644 index c37d1e9ae..000000000 --- a/lmdeploy/pytorch/modeling/modeling_llama.py +++ /dev/null @@ -1,1297 +0,0 @@ -# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. -# -# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX -# and OPT implementations in this library. It has been modified from its -# original forms to accommodate minor architectural differences compared -# to GPT-NeoX and OPT used by the Meta AI team that trained the model. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -"""PyTorch LLaMA model.""" -import math -from typing import List, Optional, Tuple, Union - -import torch -import torch.nn.functional as F -import torch.utils.checkpoint -from torch import nn -from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss -from transformers.activations import ACT2FN -from transformers.modeling_outputs import (BaseModelOutputWithPast, - CausalLMOutputWithPast, - SequenceClassifierOutputWithPast) -from transformers.modeling_utils import PreTrainedModel -from transformers.models.llama.configuration_llama import LlamaConfig -from transformers.utils import (add_start_docstrings, - add_start_docstrings_to_model_forward, - replace_return_docstrings) - -from lmdeploy.pytorch.modeling.convert_to_qmodules import convert_to_qmodules -from lmdeploy.utils import get_logger - -logger = get_logger('lmdeploy') - -_CONFIG_FOR_DOC = 'LlamaConfig' - - -# Copied from transformers.models.bart.modeling_bart._make_causal_mask -def _make_causal_mask(input_ids_shape: torch.Size, - dtype: torch.dtype, - device: torch.device, - past_key_values_length: int = 0): - """Make causal mask used for bi-directional self-attention.""" - bsz, tgt_len = input_ids_shape - mask = torch.full((tgt_len, tgt_len), - torch.finfo(dtype).min, - device=device) - mask_cond = torch.arange(mask.size(-1), device=device) - mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) - mask = mask.to(dtype) - - if past_key_values_length > 0: - mask = torch.cat([ - torch.zeros( - tgt_len, past_key_values_length, dtype=dtype, device=device), - mask - ], - dim=-1) - return mask[None, None, :, :].expand(bsz, 1, tgt_len, - tgt_len + past_key_values_length) - - -# Copied from transformers.models.bart.modeling_bart._expand_mask -def _expand_mask(mask: torch.Tensor, - dtype: torch.dtype, - tgt_len: Optional[int] = None): - """Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, - src_seq_len]`.""" - bsz, src_len = mask.size() - tgt_len = tgt_len if tgt_len is not None else src_len - - expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, - src_len).to(dtype) - - inverted_mask = 1.0 - expanded_mask - - return inverted_mask.masked_fill(inverted_mask.to(torch.bool), - torch.finfo(dtype).min) - - -class LlamaRMSNorm(nn.Module): - - def __init__(self, hidden_size, eps=1e-6): - """LlamaRMSNorm is equivalent to T5LayerNorm.""" - super().__init__() - self.weight = nn.Parameter(torch.ones(hidden_size)) - self.variance_epsilon = eps - - def forward(self, hidden_states): - input_dtype = hidden_states.dtype - hidden_states = hidden_states.to(torch.float32) - variance = hidden_states.pow(2).mean(-1, keepdim=True) - hidden_states = hidden_states * torch.rsqrt(variance + - self.variance_epsilon) - return self.weight * hidden_states.to(input_dtype) - - -class LlamaRotaryEmbedding(torch.nn.Module): - """RotaryEmbedding for Llama Model. - - This module generates sine and cosine positional encodings based on - the paper "RoFormer: Enhanced Transformer with Rotary Position Embedding". - The purpose of this class is to provide positional embeddings to the - input tensors. It utilizes a cache mechanism to store precomputed - sine and cosine values for speedup. - - Args: - dim (int): The dimensionality of the embeddings. - max_position_embeddings (int, optional): The maximum number of - position embeddings. Default is 2048. - base (int, optional): The base value for the inverse frequency - calculation. Default is 10000. - device (str, optional): The device to run operations on. - If None, defaults to the device of the model. - """ - - def __init__(self, - dim, - max_position_embeddings=2048, - base=10000, - device=None): - super().__init__() - - self.dim = dim - self.max_position_embeddings = max_position_embeddings - self.base = base - inv_freq = 1.0 / (self.base**( - torch.arange(0, self.dim, 2).float().to(device) / self.dim)) - self.register_buffer('inv_freq', inv_freq, persistent=False) - - # Build here to make `torch.jit.trace` work. - self._set_cos_sin_cache(seq_len=max_position_embeddings, - device=self.inv_freq.device, - dtype=torch.get_default_dtype()) - - def _set_cos_sin_cache(self, seq_len, device, dtype): - """Sets the cached sine and cosine values for the specified sequence - length. - - Args: - seq_len (int): The sequence length for which to set the cache. - device (str): The device to use for computation. - dtype (torch.dtype): The data type to be used for tensors. - """ - self.max_seq_len_cached = seq_len - t = torch.arange(self.max_seq_len_cached, - device=device, - dtype=self.inv_freq.dtype) - - freqs = torch.einsum('i,j->ij', t, self.inv_freq) - # Different from paper, but it uses a different permutation in order - # to obtain the same calculation - emb = torch.cat((freqs, freqs), dim=-1) - self.register_buffer('cos_cached', - emb.cos()[None, None, :, :].to(dtype), - persistent=False) - self.register_buffer('sin_cached', - emb.sin()[None, None, :, :].to(dtype), - persistent=False) - - def forward(self, x, seq_len=None): - """Forward propagation method for the embedding layer. Generates - positional embeddings for the given input tensor. - - If the sequence length is larger than the cache, it resets the cache. - - Args: - x (torch.Tensor): Input tensor of shape - [batch_size, num_attention_heads, seq_len, head_size]. - seq_len (int, optional): Sequence length. If None, it is obtained - from `x`. - - Returns: - tuple: Tuple containing cosine and sine positional embeddings. - """ - # x: [bs, num_attention_heads, seq_len, head_size] - if seq_len > self.max_seq_len_cached: - self._set_cos_sin_cache(seq_len=seq_len, - device=x.device, - dtype=x.dtype) - - return ( - self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype), - self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype), - ) - - -class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding): - """This class extends the `LlamaRotaryEmbedding` with linear scaling. - - It provides a mechanism for adjusting the scale of the positional - embeddings by dividing the tensor generated by the range of sequence length - with a scaling factor. This is useful when dealing with sequences of - varying lengths. - - Credits to Reddit User /u/kaiokendev for this extension. - - Args: - dim (int): The dimensionality of the embeddings. - max_position_embeddings (int, optional): The maximum number of - position embeddings. Default is 2048. - base (int, optional): The base value for the inverse frequency - calculation. Default is 10000. - device (str, optional): The device to run operations on. If None, - defaults to the device of the model. - scaling_factor (float, optional): Scaling factor used in adjusting - the scale of positional embeddings. Default is 1.0. - """ - - def __init__(self, - dim, - max_position_embeddings=2048, - base=10000, - device=None, - scaling_factor=1.0): - self.scaling_factor = scaling_factor - super().__init__(dim, max_position_embeddings, base, device) - - def _set_cos_sin_cache(self, seq_len, device, dtype): - """Sets the cached sine and cosine values for the specified sequence - length. - - Args: - seq_len (int): The sequence length for which to set the cache. - device (str): The device to use for computation. - dtype (torch.dtype): The data type to use for tensors. - """ - self.max_seq_len_cached = seq_len - t = torch.arange(self.max_seq_len_cached, - device=device, - dtype=self.inv_freq.dtype) - t = t / self.scaling_factor - - freqs = torch.einsum('i,j->ij', t, self.inv_freq) - # Different from paper, but it uses a different permutation in order - # to obtain the same calculation - emb = torch.cat((freqs, freqs), dim=-1) - self.register_buffer('cos_cached', - emb.cos()[None, None, :, :].to(dtype), - persistent=False) - self.register_buffer('sin_cached', - emb.sin()[None, None, :, :].to(dtype), - persistent=False) - - -class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding): - """LlamaRotaryEmbedding extended with Dynamic NTK scaling. - - Credits to the Reddit users /u/bloc97 and /u/emozilla - """ - - def __init__(self, - dim, - max_position_embeddings=2048, - base=10000, - device=None, - scaling_factor=1.0): - self.scaling_factor = scaling_factor - super().__init__(dim, max_position_embeddings, base, device) - - def _set_cos_sin_cache(self, seq_len, device, dtype): - self.max_seq_len_cached = seq_len - - if seq_len > self.max_position_embeddings: - base = self.base * ((self.scaling_factor * seq_len / - self.max_position_embeddings) - - (self.scaling_factor - 1))**(self.dim / - (self.dim - 2)) - inv_freq = 1.0 / (base**( - torch.arange(0, self.dim, 2).float().to(device) / self.dim)) - self.register_buffer('inv_freq', inv_freq, persistent=False) - - t = torch.arange(self.max_seq_len_cached, - device=device, - dtype=self.inv_freq.dtype) - - freqs = torch.einsum('i,j->ij', t, self.inv_freq) - # Different from paper, but it uses a different permutation in order - # to obtain the same calculation - emb = torch.cat((freqs, freqs), dim=-1) - self.register_buffer('cos_cached', - emb.cos()[None, None, :, :].to(dtype), - persistent=False) - self.register_buffer('sin_cached', - emb.sin()[None, None, :, :].to(dtype), - persistent=False) - - -def rotate_half(x): - """Rotates half the hidden dims of the input.""" - x1 = x[..., :x.shape[-1] // 2] - x2 = x[..., x.shape[-1] // 2:] - return torch.cat((-x2, x1), dim=-1) - - -def apply_rotary_pos_emb(q, k, cos, sin, position_ids): - """Apply rotary positional embeddings to query and key tensors. - - This function applies the cosine and sine positional embeddings on the - input query (q) and key (k) tensors using element-wise multiplication and - addition. - """ - # The first two dimensions of cos and sin are always 1, - # so we can `squeeze` them. - cos = cos.squeeze(1).squeeze(0) # [seq_len, dim] - sin = sin.squeeze(1).squeeze(0) # [seq_len, dim] - cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim] - sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim] - q_embed = (q * cos) + (rotate_half(q) * sin) - k_embed = (k * cos) + (rotate_half(k) * sin) - return q_embed, k_embed - - -class LlamaMLP(nn.Module): - """MLP for Llama Model.""" - - def __init__(self, config): - super().__init__() - self.config = config - self.hidden_size = config.hidden_size - self.intermediate_size = config.intermediate_size - self.gate_proj = nn.Linear(self.hidden_size, - self.intermediate_size, - bias=False) - self.up_proj = nn.Linear(self.hidden_size, - self.intermediate_size, - bias=False) - self.down_proj = nn.Linear(self.intermediate_size, - self.hidden_size, - bias=False) - self.act_fn = ACT2FN[config.hidden_act] - - def forward(self, x): - if self.config.pretraining_tp > 1: - slice = self.intermediate_size // self.config.pretraining_tp - gate_proj_slices = self.gate_proj.weight.split(slice, dim=0) - up_proj_slices = self.up_proj.weight.split(slice, dim=0) - down_proj_slices = self.down_proj.weight.split(slice, dim=1) - - gate_proj = torch.cat([ - F.linear(x, gate_proj_slices[i]) - for i in range(self.config.pretraining_tp) - ], - dim=-1) - up_proj = torch.cat([ - F.linear(x, up_proj_slices[i]) - for i in range(self.config.pretraining_tp) - ], - dim=-1) - - intermediate_states = (self.act_fn(gate_proj) * up_proj).split( - slice, dim=2) - down_proj = [ - F.linear(intermediate_states[i], down_proj_slices[i]) - for i in range(self.config.pretraining_tp) - ] - down_proj = sum(down_proj) - else: - down_proj = self.down_proj( - self.act_fn(self.gate_proj(x)) * self.up_proj(x)) - - return down_proj - - -def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: - """This is the equivalent of torch.repeat_interleave(x, dim=1, - repeats=n_rep). - - The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to - (batch, num_attention_heads, seqlen, head_dim) - """ - batch, num_key_value_heads, slen, head_dim = hidden_states.shape - if n_rep == 1: - return hidden_states - hidden_states = hidden_states[:, :, - None, :, :].expand(batch, - num_key_value_heads, - n_rep, slen, head_dim) - return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, - head_dim) - - -class LlamaAttention(nn.Module): - """Multi-headed attention from 'Attention Is All You Need' paper.""" - - def __init__(self, config: LlamaConfig): - super().__init__() - self.config = config - self.hidden_size = config.hidden_size - self.num_heads = config.num_attention_heads - self.head_dim = self.hidden_size // self.num_heads - self.num_key_value_heads = config.num_key_value_heads - self.num_key_value_groups = self.num_heads // self.num_key_value_heads - self.max_position_embeddings = config.max_position_embeddings - self.rope_theta = config.rope_theta - - if (self.head_dim * self.num_heads) != self.hidden_size: - raise ValueError('hidden_size must be divisible by num_heads ' - f'(got `hidden_size`: {self.hidden_size}' - f' and `num_heads`: {self.num_heads}).') - self.q_proj = nn.Linear(self.hidden_size, - self.num_heads * self.head_dim, - bias=False) - self.k_proj = nn.Linear(self.hidden_size, - self.num_key_value_heads * self.head_dim, - bias=False) - self.v_proj = nn.Linear(self.hidden_size, - self.num_key_value_heads * self.head_dim, - bias=False) - self.o_proj = nn.Linear(self.num_heads * self.head_dim, - self.hidden_size, - bias=False) - self._init_rope() - - def _init_rope(self): - """Initialize the Rotary Embedding Module.""" - if self.config.rope_scaling is None: - self.rotary_emb = LlamaRotaryEmbedding( - self.head_dim, - max_position_embeddings=self.max_position_embeddings, - base=self.rope_theta, - ) - else: - scaling_type = self.config.rope_scaling['type'] - scaling_factor = self.config.rope_scaling['factor'] - if scaling_type == 'linear': - self.rotary_emb = LlamaLinearScalingRotaryEmbedding( - self.head_dim, - max_position_embeddings=self.max_position_embeddings, - scaling_factor=scaling_factor, - base=self.rope_theta, - ) - elif scaling_type == 'dynamic': - self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding( - self.head_dim, - max_position_embeddings=self.max_position_embeddings, - scaling_factor=scaling_factor, - base=self.rope_theta, - ) - else: - raise ValueError(f'Unknown RoPE scaling type {scaling_type}') - - def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): - return tensor.view(bsz, seq_len, self.num_heads, - self.head_dim).transpose(1, 2).contiguous() - - def forward( - self, - hidden_states: torch.Tensor, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_value: Optional[Tuple[torch.Tensor]] = None, - output_attentions: bool = False, - use_cache: bool = False, - ) -> Tuple[torch.Tensor, Optional[torch.Tensor], - Optional[Tuple[torch.Tensor]]]: - """Forward propagation method for the attention layer.""" - bsz, q_len, _ = hidden_states.size() - - if self.config.pretraining_tp > 1: - key_value_slicing = (self.num_key_value_heads * - self.head_dim) // self.config.pretraining_tp - query_slices = self.q_proj.weight.split( - (self.num_heads * self.head_dim) // self.config.pretraining_tp, - dim=0) - key_slices = self.k_proj.weight.split(key_value_slicing, dim=0) - value_slices = self.v_proj.weight.split(key_value_slicing, dim=0) - - query_states = [ - F.linear(hidden_states, query_slices[i]) - for i in range(self.config.pretraining_tp) - ] - query_states = torch.cat(query_states, dim=-1) - - key_states = [ - F.linear(hidden_states, key_slices[i]) - for i in range(self.config.pretraining_tp) - ] - key_states = torch.cat(key_states, dim=-1) - - value_states = [ - F.linear(hidden_states, value_slices[i]) - for i in range(self.config.pretraining_tp) - ] - value_states = torch.cat(value_states, dim=-1) - - else: - query_states = self.q_proj(hidden_states) - key_states = self.k_proj(hidden_states) - value_states = self.v_proj(hidden_states) - - query_states = query_states.view(bsz, q_len, self.num_heads, - self.head_dim).transpose(1, 2) - key_states = key_states.view(bsz, q_len, self.num_key_value_heads, - self.head_dim).transpose(1, 2) - value_states = value_states.view(bsz, q_len, self.num_key_value_heads, - self.head_dim).transpose(1, 2) - - kv_seq_len = key_states.shape[-2] - if past_key_value is not None: - kv_seq_len += past_key_value[0].shape[-2] - cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) - query_states, key_states = apply_rotary_pos_emb( - query_states, key_states, cos, sin, position_ids) - - if past_key_value is not None: - # reuse k, v, self_attention - key_states = torch.cat([past_key_value[0], key_states], dim=2) - value_states = torch.cat([past_key_value[1], value_states], dim=2) - - past_key_value = (key_states, value_states) if use_cache else None - - # repeat k/v heads if n_kv_heads < n_heads - key_states = repeat_kv(key_states, self.num_key_value_groups) - value_states = repeat_kv(value_states, self.num_key_value_groups) - - attn_weights = torch.matmul(query_states, key_states.transpose( - 2, 3)) / math.sqrt(self.head_dim) - - if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): - raise ValueError( - 'Attention weights should be of size ' - f'{(bsz, self.num_heads, q_len, kv_seq_len)}, but is' - f' {attn_weights.size()}') - - if attention_mask is not None: - if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): - raise ValueError('Attention mask should be of size ' - f'{(bsz, 1, q_len, kv_seq_len)}, ' - f'but is {attention_mask.size()}') - attn_weights = attn_weights + attention_mask - - # upcast attention to fp32 - attn_weights = nn.functional.softmax(attn_weights, - dim=-1, - dtype=torch.float32).to( - query_states.dtype) - attn_output = torch.matmul(attn_weights, value_states) - - if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): - raise ValueError( - '`attn_output` should be of size ' - f'{(bsz, self.num_heads, q_len, self.head_dim)}, but is' - f' {attn_output.size()}') - - attn_output = attn_output.transpose(1, 2).contiguous() - attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) - - if self.config.pretraining_tp > 1: - attn_output = attn_output.split(self.hidden_size // - self.config.pretraining_tp, - dim=2) - o_proj_slices = self.o_proj.weight.split( - self.hidden_size // self.config.pretraining_tp, dim=1) - attn_output = sum([ - F.linear(attn_output[i], o_proj_slices[i]) - for i in range(self.config.pretraining_tp) - ]) - else: - attn_output = self.o_proj(attn_output) - - if not output_attentions: - attn_weights = None - - return attn_output, attn_weights, past_key_value - - -class LlamaDecoderLayer(nn.Module): - """Decoder layer for Llama Model.""" - - def __init__(self, config: LlamaConfig): - super().__init__() - self.hidden_size = config.hidden_size - self.self_attn = LlamaAttention(config=config) - self.mlp = LlamaMLP(config) - self.input_layernorm = LlamaRMSNorm(config.hidden_size, - eps=config.rms_norm_eps) - self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, - eps=config.rms_norm_eps) - - def forward( - self, - hidden_states: torch.Tensor, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_value: Optional[Tuple[torch.Tensor]] = None, - output_attentions: Optional[bool] = False, - use_cache: Optional[bool] = False, - ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, - torch.FloatTensor]]]: - """ - Args: - hidden_states (`torch.FloatTensor`): input to the layer of shape - `(batch, seq_len, embed_dim)` - attention_mask (`torch.FloatTensor`, *optional*): attention mask - of size `(batch, 1, tgt_len, src_len)` where padding elements - are indicated by very large negative values. - output_attentions (`bool`, *optional*): - Whether or not to return the attentions tensors of all - attention layers. See `attentions` under - returned tensors for more detail. - use_cache (`bool`, *optional*): - If set to `True`, `past_key_values` key value states are - returned and can be used to speed up decoding - (see `past_key_values`). - past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached - past key and value projection states - """ - - residual = hidden_states - - hidden_states = self.input_layernorm(hidden_states) - - # Self Attention - hidden_states, self_attn_weights, present_key_value = self.self_attn( - hidden_states=hidden_states, - attention_mask=attention_mask, - position_ids=position_ids, - past_key_value=past_key_value, - output_attentions=output_attentions, - use_cache=use_cache, - ) - hidden_states = residual + hidden_states - - # Fully Connected - residual = hidden_states - hidden_states = self.post_attention_layernorm(hidden_states) - hidden_states = self.mlp(hidden_states) - hidden_states = residual + hidden_states - - outputs = (hidden_states, ) - - if output_attentions: - outputs += (self_attn_weights, ) - - if use_cache: - outputs += (present_key_value, ) - - return outputs - - -LLAMA_START_DOCSTRING = r""" # noqa: E501 - This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the - library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads - etc.) - - This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. - Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage - and behavior. - - Parameters: - config ([`LlamaConfig`]): - Model configuration class with all the parameters of the model. Initializing with a config file does not - load the weights associated with the model, only the configuration. Check out the - [`~PreTrainedModel.from_pretrained`] method to load the model weights. -""" - - -@add_start_docstrings( - 'The bare LLaMA Model outputting raw hidden-states without any specific head on top.', # noqa: E501 - LLAMA_START_DOCSTRING, -) -class LlamaPreTrainedModel(PreTrainedModel): - config_class = LlamaConfig - base_model_prefix = 'model' - supports_gradient_checkpointing = True - _no_split_modules = ['LlamaDecoderLayer'] - _skip_keys_device_placement = 'past_key_values' - - def _init_weights(self, module): - std = self.config.initializer_range - if isinstance(module, nn.Linear): - module.weight.data.normal_(mean=0.0, std=std) - if module.bias is not None: - module.bias.data.zero_() - elif isinstance(module, nn.Embedding): - module.weight.data.normal_(mean=0.0, std=std) - if module.padding_idx is not None: - module.weight.data[module.padding_idx].zero_() - - def _set_gradient_checkpointing(self, module, value=False): - if isinstance(module, LlamaModel): - module.gradient_checkpointing = value - - -LLAMA_INPUTS_DOCSTRING = r""" # noqa: E501 - Args: - input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): - Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide - it. - - Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and - [`PreTrainedTokenizer.__call__`] for details. - - [What are input IDs?](../glossary#input-ids) - attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): - Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - - - 1 for tokens that are **not masked**, - - 0 for tokens that are **masked**. - - [What are attention masks?](../glossary#attention-mask) - - Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and - [`PreTrainedTokenizer.__call__`] for details. - - If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see - `past_key_values`). - - If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] - and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more - information on the default strategy. - - - 1 indicates the head is **not masked**, - - 0 indicates the head is **masked**. - position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): - Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, - config.n_positions - 1]`. - - [What are position IDs?](../glossary#position-ids) - past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape - `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape - `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. - - Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention - blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. - - If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that - don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all - `decoder_input_ids` of shape `(batch_size, sequence_length)`. - inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): - Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This - is useful if you want more control over how to convert `input_ids` indices into associated vectors than the - model's internal embedding lookup matrix. - use_cache (`bool`, *optional*): - If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see - `past_key_values`). - output_attentions (`bool`, *optional*): - Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned - tensors for more detail. - output_hidden_states (`bool`, *optional*): - Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for - more detail. - return_dict (`bool`, *optional*): - Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. -""" - - -@add_start_docstrings( - 'The bare LLaMA Model outputting raw hidden-states without any specific head on top.', # noqa: E501 - LLAMA_START_DOCSTRING, -) -class LlamaModel(LlamaPreTrainedModel): - """Transformer decoder consisting of *config.num_hidden_layers* layers. - Each layer is a [`LlamaDecoderLayer`] - - Args: - config: LlamaConfig - """ - - def __init__(self, config: LlamaConfig): - super().__init__(config) - self.padding_idx = config.pad_token_id - self.vocab_size = config.vocab_size - - self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, - self.padding_idx) - self.layers = nn.ModuleList([ - LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers) - ]) - self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) - - self.gradient_checkpointing = False - # Initialize weights and apply final processing - self.post_init() - - def get_input_embeddings(self): - return self.embed_tokens - - def set_input_embeddings(self, value): - self.embed_tokens = value - - # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask # noqa - def _prepare_decoder_attention_mask(self, attention_mask, input_shape, - inputs_embeds, past_key_values_length): - # create causal mask - # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] - combined_attention_mask = None - if input_shape[-1] > 1: - combined_attention_mask = _make_causal_mask( - input_shape, - inputs_embeds.dtype, - device=inputs_embeds.device, - past_key_values_length=past_key_values_length, - ) - - if attention_mask is not None: - # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] - expanded_attn_mask = _expand_mask(attention_mask, - inputs_embeds.dtype, - tgt_len=input_shape[-1]).to( - inputs_embeds.device) - combined_attention_mask = (expanded_attn_mask - if combined_attention_mask is None else - expanded_attn_mask + - combined_attention_mask) - - return combined_attention_mask - - @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING) - def forward( - self, - input_ids: torch.LongTensor = None, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_values: Optional[List[torch.FloatTensor]] = None, - inputs_embeds: Optional[torch.FloatTensor] = None, - use_cache: Optional[bool] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> Union[Tuple, BaseModelOutputWithPast]: - output_attentions = (output_attentions if output_attentions is not None - else self.config.output_attentions) - output_hidden_states = (output_hidden_states - if output_hidden_states is not None else - self.config.output_hidden_states) - use_cache = (use_cache - if use_cache is not None else self.config.use_cache) - - return_dict = (return_dict if return_dict is not None else - self.config.use_return_dict) - - # retrieve input_ids and inputs_embeds - if input_ids is not None and inputs_embeds is not None: - raise ValueError('You cannot specify both decoder_input_ids' - 'and decoder_inputs_embeds at the same time') - elif input_ids is not None: - batch_size, seq_length = input_ids.shape - elif inputs_embeds is not None: - batch_size, seq_length, _ = inputs_embeds.shape - else: - raise ValueError('You have to specify either decoder_input_ids' - 'or decoder_inputs_embeds') - - seq_length_with_past = seq_length - past_key_values_length = 0 - - if past_key_values is not None: - past_key_values_length = past_key_values[0][0].shape[2] - seq_length_with_past = (seq_length_with_past + - past_key_values_length) - - if position_ids is None: - device = (input_ids.device - if input_ids is not None else inputs_embeds.device) - position_ids = torch.arange(past_key_values_length, - seq_length + past_key_values_length, - dtype=torch.long, - device=device) - position_ids = position_ids.unsqueeze(0).view(-1, seq_length) - else: - position_ids = position_ids.view(-1, seq_length).long() - - if inputs_embeds is None: - inputs_embeds = self.embed_tokens(input_ids) - # embed positions - if attention_mask is None: - attention_mask = torch.ones((batch_size, seq_length_with_past), - dtype=torch.bool, - device=inputs_embeds.device) - attention_mask = self._prepare_decoder_attention_mask( - attention_mask, (batch_size, seq_length), inputs_embeds, - past_key_values_length) - - hidden_states = inputs_embeds - - if self.gradient_checkpointing and self.training: - if use_cache: - logger.warning_once( - '`use_cache=True` is incompatible with gradient' - ' checkpointing. Setting `use_cache=False`...') - use_cache = False - - # decoder layers - all_hidden_states = () if output_hidden_states else None - all_self_attns = () if output_attentions else None - next_decoder_cache = () if use_cache else None - - for idx, decoder_layer in enumerate(self.layers): - if output_hidden_states: - all_hidden_states += (hidden_states, ) - - past_key_value = past_key_values[ - idx] if past_key_values is not None else None - - if self.gradient_checkpointing and self.training: - - def create_custom_forward(module): - - def custom_forward(*inputs): - # None for past_key_value - return module(*inputs, past_key_value, - output_attentions) - - return custom_forward - - layer_outputs = torch.utils.checkpoint.checkpoint( - create_custom_forward(decoder_layer), - hidden_states, - attention_mask, - position_ids, - ) - else: - layer_outputs = decoder_layer( - hidden_states, - attention_mask=attention_mask, - position_ids=position_ids, - past_key_value=past_key_value, - output_attentions=output_attentions, - use_cache=use_cache, - ) - - hidden_states = layer_outputs[0] - - if use_cache: - next_decoder_cache += ( - layer_outputs[2 if output_attentions else 1], ) - - if output_attentions: - all_self_attns += (layer_outputs[1], ) - - hidden_states = self.norm(hidden_states) - - # add hidden states from the last decoder layer - if output_hidden_states: - all_hidden_states += (hidden_states, ) - - next_cache = next_decoder_cache if use_cache else None - if not return_dict: - return tuple( - v for v in - [hidden_states, next_cache, all_hidden_states, all_self_attns] - if v is not None) - return BaseModelOutputWithPast( - last_hidden_state=hidden_states, - past_key_values=next_cache, - hidden_states=all_hidden_states, - attentions=all_self_attns, - ) - - -class LlamaForCausalLM(LlamaPreTrainedModel): - """This class extends the `LlamaPreTrainedModel` to enable causal language - modeling. - - It wraps the basic Llama model (`LlamaModel`) and includes a linear layer - as a language model head (`lm_head`). The purpose is to predict token - probabilities, given the previous tokens in the sequence. - """ - _tied_weights_keys = ['lm_head.weight'] - - def __init__(self, config): - super().__init__(config) - self.model = LlamaModel(config) - self.vocab_size = config.vocab_size - self.lm_head = nn.Linear(config.hidden_size, - config.vocab_size, - bias=False) - - # Initialize weights and apply final processing - self.post_init() - convert_to_qmodules(self) - - def get_input_embeddings(self): - """Get the token embedding layer.""" - return self.model.embed_tokens - - def set_input_embeddings(self, value): - """Set the token embedding layer.""" - self.model.embed_tokens = value - - def get_output_embeddings(self): - """Get the output embedding layer.""" - return self.lm_head - - def set_output_embeddings(self, new_embeddings): - """Set the output embedding layer.""" - self.lm_head = new_embeddings - - def set_decoder(self, decoder): - """Set the decoder model.""" - self.model = decoder - - def get_decoder(self): - """Get the decoder model.""" - return self.model - - @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING) - @replace_return_docstrings(output_type=CausalLMOutputWithPast, - config_class=_CONFIG_FOR_DOC) - def forward( - self, - input_ids: torch.LongTensor = None, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_values: Optional[List[torch.FloatTensor]] = None, - inputs_embeds: Optional[torch.FloatTensor] = None, - labels: Optional[torch.LongTensor] = None, - use_cache: Optional[bool] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> Union[Tuple, CausalLMOutputWithPast]: - r""" # noqa: E501 - Args: - labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): - Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., - config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored - (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. - - Returns: - - Example: - - ```python - >>> from transformers import AutoTokenizer, LlamaForCausalLM - - >>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) - >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) - - >>> prompt = "Hey, are you conscious? Can you talk to me?" - >>> inputs = tokenizer(prompt, return_tensors="pt") - - >>> # Generate - >>> generate_ids = model.generate(inputs.input_ids, max_length=30) - >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] - "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." - ```""" - - output_attentions = (output_attentions if output_attentions is not None - else self.config.output_attentions) - output_hidden_states = (output_hidden_states - if output_hidden_states is not None else - self.config.output_hidden_states) - return_dict = (return_dict if return_dict is not None else - self.config.use_return_dict) - - # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) # noqa: E501 - outputs = self.model( - input_ids=input_ids, - attention_mask=attention_mask, - position_ids=position_ids, - past_key_values=past_key_values, - inputs_embeds=inputs_embeds, - use_cache=use_cache, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - ) - - hidden_states = outputs[0] - if self.config.pretraining_tp > 1: - lm_head_slices = self.lm_head.weight.split( - self.vocab_size // self.config.pretraining_tp, dim=0) - logits = [ - F.linear(hidden_states, lm_head_slices[i]) - for i in range(self.config.pretraining_tp) - ] - logits = torch.cat(logits, dim=-1) - else: - logits = self.lm_head(hidden_states) - logits = logits.float() - - loss = None - if labels is not None: - # Shift so that tokens < n predict n - shift_logits = logits[..., :-1, :].contiguous() - shift_labels = labels[..., 1:].contiguous() - # Flatten the tokens - loss_fct = CrossEntropyLoss() - shift_logits = shift_logits.view(-1, self.config.vocab_size) - shift_labels = shift_labels.view(-1) - # Enable model parallelism - shift_labels = shift_labels.to(shift_logits.device) - loss = loss_fct(shift_logits, shift_labels) - - if not return_dict: - output = (logits, ) + outputs[1:] - return (loss, ) + output if loss is not None else output - - return CausalLMOutputWithPast( - loss=loss, - logits=logits, - past_key_values=outputs.past_key_values, - hidden_states=outputs.hidden_states, - attentions=outputs.attentions, - ) - - def prepare_inputs_for_generation(self, - input_ids, - past_key_values=None, - attention_mask=None, - inputs_embeds=None, - **kwargs): - """Prepare inputs for generating sequences using the model. - - Args: - input_ids (torch.Tensor): Input token ids. - past_key_values (list[torch.Tensor], optional): List of past key - and value states. - attention_mask (torch.Tensor, optional): Mask indicating which - tokens should be attended to. - inputs_embeds (torch.FloatTensor, optional): Optionally, - the input embeddings instead of token ids. - - Returns: - dict: Dictionary containing prepared inputs for model generation. - """ - if past_key_values: - input_ids = input_ids[:, -1:] - - position_ids = kwargs.get('position_ids', None) - if attention_mask is not None and position_ids is None: - # create position_ids on the fly for batch generation - position_ids = attention_mask.long().cumsum(-1) - 1 - position_ids.masked_fill_(attention_mask == 0, 1) - if past_key_values: - position_ids = position_ids[:, -1].unsqueeze(-1) - - # if `inputs_embeds` are passed, we only want to use them - # in the 1st generation step - if inputs_embeds is not None and past_key_values is None: - model_inputs = {'inputs_embeds': inputs_embeds} - else: - model_inputs = {'input_ids': input_ids} - - model_inputs.update({ - 'position_ids': position_ids, - 'past_key_values': past_key_values, - 'use_cache': kwargs.get('use_cache'), - 'attention_mask': attention_mask, - }) - return model_inputs - - @staticmethod - def _reorder_cache(past_key_values, beam_idx): - """Reorder cached past key-values during generation using beam search. - - This function reorders the cached past key-values according to the - given indices. It's useful in beam search where the order of hypotheses - can change from one time-step to another. - """ - reordered_past = () - for layer_past in past_key_values: - reordered_past += (tuple( - past_state.index_select(0, beam_idx.to(past_state.device)) - for past_state in layer_past), ) - return reordered_past - - -@add_start_docstrings( - """ # noqa: E501 - The LLaMa Model transformer with a sequence classification head on top (linear layer). - - [`LlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal models - (e.g. GPT-2) do. - - Since it does classification on the last token, it requires to know the position of the last token. If a - `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If - no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the - padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in - each row of the batch). - """, - LLAMA_START_DOCSTRING, -) -class LlamaForSequenceClassification(LlamaPreTrainedModel): - - def __init__(self, config): - super().__init__(config) - self.num_labels = config.num_labels - self.model = LlamaModel(config) - self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) - - # Initialize weights and apply final processing - self.post_init() - - def get_input_embeddings(self): - return self.model.embed_tokens - - def set_input_embeddings(self, value): - self.model.embed_tokens = value - - @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING) - def forward( - self, - input_ids: torch.LongTensor = None, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_values: Optional[List[torch.FloatTensor]] = None, - inputs_embeds: Optional[torch.FloatTensor] = None, - labels: Optional[torch.LongTensor] = None, - use_cache: Optional[bool] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> Union[Tuple, SequenceClassifierOutputWithPast]: - r""" # noqa: E501 - labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): - Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., - config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If - `config.num_labels > 1` a classification loss is computed (Cross-Entropy). - """ - return_dict = (return_dict if return_dict is not None else - self.config.use_return_dict) - - transformer_outputs = self.model( - input_ids, - attention_mask=attention_mask, - position_ids=position_ids, - past_key_values=past_key_values, - inputs_embeds=inputs_embeds, - use_cache=use_cache, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - ) - hidden_states = transformer_outputs[0] - logits = self.score(hidden_states) - - if input_ids is not None: - batch_size = input_ids.shape[0] - else: - batch_size = inputs_embeds.shape[0] - - if self.config.pad_token_id is None and batch_size != 1: - raise ValueError( - 'Cannot handle batch sizes > 1 if no padding token is defined.' - ) - if self.config.pad_token_id is None: - sequence_lengths = -1 - else: - if input_ids is not None: - sequence_lengths = (torch.eq( - input_ids, self.config.pad_token_id).long().argmax(-1) - - 1).to(logits.device) - else: - sequence_lengths = -1 - - pooled_logits = logits[torch.arange(batch_size, device=logits.device), - sequence_lengths] - - loss = None - if labels is not None: - labels = labels.to(logits.device) - if self.config.problem_type is None: - if self.num_labels == 1: - self.config.problem_type = 'regression' - elif self.num_labels > 1 and (labels.dtype == torch.long - or labels.dtype == torch.int): - self.config.problem_type = 'single_label_classification' - else: - self.config.problem_type = 'multi_label_classification' - - if self.config.problem_type == 'regression': - loss_fct = MSELoss() - if self.num_labels == 1: - loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) - else: - loss = loss_fct(pooled_logits, labels) - elif self.config.problem_type == 'single_label_classification': - loss_fct = CrossEntropyLoss() - loss = loss_fct(pooled_logits.view(-1, self.num_labels), - labels.view(-1)) - elif self.config.problem_type == 'multi_label_classification': - loss_fct = BCEWithLogitsLoss() - loss = loss_fct(pooled_logits, labels) - if not return_dict: - output = (pooled_logits, ) + transformer_outputs[1:] - return ((loss, ) + output) if loss is not None else output - - return SequenceClassifierOutputWithPast( - loss=loss, - logits=pooled_logits, - past_key_values=transformer_outputs.past_key_values, - hidden_states=transformer_outputs.hidden_states, - attentions=transformer_outputs.attentions, - )