-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathBERT_Hierarchical.py
215 lines (145 loc) · 6.97 KB
/
BERT_Hierarchical.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
##############################################################
#
# BERT_Hierarchical.py
# This file contains the code to fine-tune BERT by computing
# segment tensors as a pooled result from all the segments
# obtained after tokenization.
#
##############################################################
import pandas as pd
import numpy as np
import time
import re
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader, random_split
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from torch.utils.data.sampler import SubsetRandomSampler
import transformers
from transformers import BertTokenizer
from transformers import BertForSequenceClassification, AdamW, BertConfig
# get_linear_schedule_with_warmup
from transformers import RobertaTokenizer, BertTokenizer, RobertaModel, BertModel, AdamW
from transformers import get_linear_schedule_with_warmup
from TransformerLayer import BERT
class BERT_Hierarchical_Model(nn.Module):
def __init__(self, device,pooling_method="mean"):
super(BERT_Hierarchical_Model, self).__init__()
self.pooling_method = pooling_method
self.device = device
self.bert_path = 'bert-base-uncased'
self.bert = transformers.BertModel.from_pretrained(self.bert_path)
self.out = nn.Linear(768, 10)
def forward(self, ids, mask, token_type_ids, lengt):
# import pdb;pdb.set_trace()
results = self.bert(ids, attention_mask=mask, token_type_ids=token_type_ids)
chunks_emb = results[1].split_with_sizes(lengt)
if self.pooling_method == "mean":
emb_pool = torch.stack([torch.mean(x, 0) for x in chunks_emb])
elif self.pooling_method == "max":
emb_pool = torch.stack([torch.max(x, 0)[0] for x in chunks_emb])
# emb_pool: torch.Size([3, 768])
return self.out(emb_pool)
class BERT_Hierarchical_LSTM_Model(nn.Module):
def __init__(self, device, pooling_method="mean",lstm_layer_number=1,lstm_hidden_size=64):
super(BERT_Hierarchical_LSTM_Model, self).__init__()
self.pooling_method = pooling_method
self.device = device
self.bert_path = 'bert-base-uncased'
self.bert = transformers.BertModel.from_pretrained(self.bert_path)
self.lstm_layer_number = lstm_layer_number
self.lstm_hidden_size = lstm_hidden_size
self.lstm = nn.LSTM(
input_size=768,
hidden_size=self.lstm_hidden_size,
num_layers=self.lstm_layer_number,
dropout=0.2,
)
self.out = nn.Linear(self.lstm_hidden_size, 10)
def forward(self, ids, mask, token_type_ids, lengt):
# lengt is a list [2,2,2]
results = self.bert(ids, attention_mask=mask, token_type_ids=token_type_ids)
chunks_emb = results[1].split_with_sizes(lengt)
'lstm starts'
max_step = max(lengt)
batch_size = len(lengt)
lstm_input = torch.zeros(batch_size,max_step,768).to(self.device)
for current_id, element in enumerate(lstm_input):
'todo: deal with different shapes'
lstm_input[current_id] = chunks_emb[current_id]
lstm_input = lstm_input.permute(1,0,2)
h0 = c0 = torch.zeros(self.lstm_layer_number,batch_size,self.lstm_hidden_size).to(self.device)
outputs, (ht, ct) = self.lstm(lstm_input, (h0, c0))
emb_pool = outputs[-1]
'lstm ends'
import pdb;pdb.set_trace()
'outputs.shape torch.Size([2, 3, 64]),emb_pool shape torch.Size([3, 64])'
return self.out(emb_pool)
class BERT_Hierarchical_BERT_Model(nn.Module):
def __init__(self, device, pooling_method="mean",lstm_layer_number=1,lstm_hidden_size=32):
super(BERT_Hierarchical_BERT_Model, self).__init__()
self.pooling_method = pooling_method
self.device = device
self.bert_path = 'bert-base-uncased'
self.bert = transformers.BertModel.from_pretrained(self.bert_path)
self.lstm_layer_number = lstm_layer_number
self.lstm_hidden_size = lstm_hidden_size
self.mapping = nn.Linear(768,lstm_hidden_size)
self.BERTLayer = BERT(hidden=lstm_hidden_size, n_layers=1, attn_heads=8).to(device)
self.out = nn.Linear(self.lstm_hidden_size, 10)
def forward(self, ids, mask, token_type_ids, lengt):
# lengt is a list [2,2,2]
results = self.bert(ids, attention_mask=mask, token_type_ids=token_type_ids)
chunks_emb = results[1].split_with_sizes(lengt)
'lstm starts'
max_step = max(lengt)
batch_size = len(lengt)
lstm_input = torch.zeros(batch_size,max_step,768).to(self.device)
for current_id, element in enumerate(lstm_input):
'todo: deal with different shapes'
lstm_input[current_id] = chunks_emb[current_id]
lstm_input = lstm_input.permute(1,0,2)
# shape: torch.Size([2, 3, 768]) [len, batch_size, dim]
'lstm ends'
# import pdb;pdb.set_trace()
lstm_input = self.mapping(lstm_input)
lstm_output=self.BERTLayer(lstm_input)
'outputs.shape torch.Size([2, 3, 64]),emb_pool shape torch.Size([3, 64])'
return self.out(lstm_output[-1])
class BERT_Hierarchical_BERT_Model(nn.Module):
def __init__(self, device, pooling_method="mean",lstm_layer_number=1,lstm_hidden_size=32):
super(BERT_Hierarchical_BERT_Model, self).__init__()
self.pooling_method = pooling_method
self.device = device
self.bert_path = 'bert-base-uncased'
self.bert = transformers.BertModel.from_pretrained(self.bert_path)
self.lstm_layer_number = lstm_layer_number
self.lstm_hidden_size = lstm_hidden_size
self.mapping = nn.Linear(768,lstm_hidden_size)
self.BERTLayer = BERT(hidden=lstm_hidden_size, n_layers=1, attn_heads=8).to(device)
self.out = nn.Linear(self.lstm_hidden_size, 10)
def forward(self, ids, mask, token_type_ids, lengt):
# lengt is a list [2,2,2]
results = self.bert(ids, attention_mask=mask, token_type_ids=token_type_ids)
chunks_emb = results[1].split_with_sizes(lengt)
'lstm starts'
max_step = max(lengt)
batch_size = len(lengt)
lstm_input = torch.zeros(batch_size,max_step,768).to(self.device)
for current_id, element in enumerate(lstm_input):
'todo: deal with different shapes'
lstm_input[current_id] = chunks_emb[current_id]
lstm_input = lstm_input.permute(1,0,2)
# shape: torch.Size([2, 3, 768]) [len, batch_size, dim]
'lstm ends'
# import pdb;pdb.set_trace()
lstm_input = self.mapping(lstm_input)
lstm_output=self.BERTLayer(lstm_input)
'outputs.shape torch.Size([2, 3, 64]),emb_pool shape torch.Size([3, 64])'
return self.out(lstm_output[-1])
# layer num, head num
# 1,1, 0.823220536756126
# 2,1, 0.8165110851808635
# 1,8, 0.8211785297549592