Skip to content

Latest commit

 

History

History
27 lines (21 loc) · 1.29 KB

README.md

File metadata and controls

27 lines (21 loc) · 1.29 KB

Running Approximate Spatial Query Processing at Scale on Azure HDInsights

this blog shows an example of how to run an approximate stream processing on Azure HDInsights deployed with Apache Spark and Kafka.

this is an active and on-going project, contents will be updated regularly, stay tuned!

N.B. if you are using this code, please cite our works "...first ..." [1]. "...second ..." [2]. "...third ..." [3].

References

  • [1] Al Jawarneh, I. M., Bellavista, P., Corradi, A., Foschini, L., & Montanari, R.. (2021) "QoS-Aware Approximate Query Processing for Smart Cities Spatial Data Streams". Sensors 21, no. 12: 4160. https://doi.org/10.3390/s21124160
  • [2] Al Jawarneh, I. M., Bellavista, P., Corradi, A., Foschini, L., & Montanari, R. (2020, September). "Spatially Representative Online Big Data Sampling for Smart Cities". In 2020 IEEE 25th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD) (pp. 1-6). IEEE.
  • [3] Al Jawarneh, I. M., Bellavista, P., Foschini, L., & Montanari, R. (2019, December). "Spatial-aware approximate big data stream processing". In 2019 IEEE global communications conference (GLOBECOM) (pp. 1-6). IEEE.