forked from facebookresearch/chameleon
-
Notifications
You must be signed in to change notification settings - Fork 0
/
generation.py
162 lines (131 loc) · 5.52 KB
/
generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the Chameleon License found in the
# LICENSE file in the root directory of this source tree.
from dataclasses import dataclass
import torch
from transformers import (
LogitsProcessor,
LogitsProcessorList,
)
from transformers.generation.streamers import BaseStreamer
from chameleon.inference.alignment import AlignPromptLeft, PromptAlignment
from chameleon.inference.model_adapter import ModelAdapter
from chameleon.inference.stopping_criteria import StoppingCriteria, StoppingCriteriaList
from chameleon.inference.token_selector import MultinomialTokenSelector, TokenSelector
class ChameleonGenerator:
@dataclass
class Token:
id: torch.LongTensor
logits: torch.Tensor | None
def __init__(
self,
model: ModelAdapter,
input_ids: list[list[int]],
stopping_criteria: StoppingCriteriaList | list[StoppingCriteria] | None = None,
logits_processors: LogitsProcessorList | list[LogitsProcessor] | None = None,
probability_processors: LogitsProcessorList
| list[LogitsProcessor]
| None = None,
token_selector: TokenSelector | None = None,
alignment: PromptAlignment = AlignPromptLeft(),
):
assert model.supports_alignment(alignment)
self.model = model
self.stopping_criteria = stopping_criteria
self.logits_processors = logits_processors
self.probability_processors = probability_processors
self.token_selector: TokenSelector = (
token_selector or MultinomialTokenSelector()
)
self.alignment = alignment
self.model.initialize(input_ids)
self._inputs = self.alignment.prepare_inputs(
input_ids
) # inputs.shape = [batch, seq-len]
self._idx = 0
self._start_idx = self.alignment.start_index(input_ids)
self._original_inputs = self._inputs.clone()
self._inputs = self._inputs[:, : self._start_idx]
def __iter__(self):
return self
@torch.inference_mode()
def __next__(self) -> Token:
# Are we done?
if self.stopping_criteria(self._inputs, None):
raise StopIteration
# Emit initial tokens.
# Model is not run for these.
# If you want the logits, you can do a separate forward pass outside generation.
if self._idx < self._start_idx:
idx, self._idx = self._idx, self._idx + 1
return ChameleonGenerator.Token(id=self._inputs[:, idx], logits=None)
# Run the model for the next token.
self._inputs = self._inputs.contiguous()
outputs = self.model(self._inputs) # outputs.shape = [batch, seq-len, vocab]
# Pull out and process the logits.
logits = outputs[:, -1, :] # logits.shape = [batch, vocab]
logits = self.logits_processors(self._inputs, logits)
probs = logits.softmax(dim=1) # probs.shape = [batch, vocab]
probs = self.probability_processors(self._inputs, probs)
# Select a token and add it to the inputs.
next_tokens = self.token_selector(
self._inputs, probs
) # next_tokens.shape = [batch]
self._inputs = torch.cat([self._inputs, next_tokens[:, None]], dim=1)
# Run alignment specific postprocessing.
self._inputs = self.alignment.postprocess_inputs(
self._inputs, self._original_inputs
)
# Return the next step result.
return ChameleonGenerator.Token(id=self._inputs[:, -1], logits=logits)
@property
def stopping_criteria(self) -> StoppingCriteriaList:
return self._stopping_criteria
@stopping_criteria.setter
def stopping_criteria(
self, value: StoppingCriteriaList | list[StoppingCriteria] | None
):
self._stopping_criteria = StoppingCriteriaList(value or [])
@property
def logits_processors(self) -> LogitsProcessorList:
return self._logits_processors
@logits_processors.setter
def logits_processors(
self, value: LogitsProcessorList | list[LogitsProcessor] | None
):
self._logits_processors = LogitsProcessorList(value or [])
@property
def probability_processors(self) -> LogitsProcessorList:
return self._probability_processors
@probability_processors.setter
def probability_processors(
self, value: LogitsProcessorList | list[LogitsProcessor] | None
):
self._probability_processors = LogitsProcessorList(value or [])
def run_generation(
model: torch.nn.Module,
input_ids: list[list[int]],
stopping_criteria: StoppingCriteriaList | list[StoppingCriteria],
logits_processors: LogitsProcessorList | list[LogitsProcessor] | None = None,
probability_processors: LogitsProcessorList | list[LogitsProcessor] | None = None,
token_selector: TokenSelector | None = None,
alignment: PromptAlignment = AlignPromptLeft(),
streamer: BaseStreamer | None = None,
) -> torch.LongTensor:
result = torch.empty((len(input_ids), 0), dtype=int)
for tok in ChameleonGenerator(
model=model,
input_ids=input_ids,
stopping_criteria=stopping_criteria,
logits_processors=logits_processors,
probability_processors=probability_processors,
token_selector=token_selector,
alignment=alignment,
):
if streamer is not None:
streamer.put(tok.id)
result = torch.cat([result, tok.id.view(-1, 1)], dim=1)
if streamer is not None:
streamer.end()
return result