forked from facebookresearch/chameleon
-
Notifications
You must be signed in to change notification settings - Fork 0
/
vocab.py
122 lines (96 loc) · 3.5 KB
/
vocab.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the Chameleon License found in the
# LICENSE file in the root directory of this source tree.
from functools import cached_property
import torch
class VocabInfo:
def __init__(self, vocab_map: dict[str, int]):
self.name2val = vocab_map
self.bos_id = vocab_map.get("<s>")
self.eos_id = vocab_map.get("</s>")
self.boi_id = vocab_map.get("<racm3:break>")
self.eoi_id = vocab_map.get("<eoss>")
self.pad_id = vocab_map.get("<pad>")
self.eot_id = vocab_map.get("<reserved08706>")
@property
def begin_sequence(self) -> int:
return self.bos_id
@property
def end_sequence(self) -> int:
return self.eos_id
@property
def begin_image(self) -> int:
return self.boi_id
@property
def end_image(self) -> int:
return self.eoi_id
@property
def padding(self) -> int:
return self.pad_id
@property
def end_turn(self) -> int:
return self.eot_id
@cached_property
def val2name(self) -> dict[int, str]:
return {v: k for k, v in self.name2val.items()}
@cached_property
def all_tokens(self) -> list[int]:
return sorted(self.name2val.values())
@cached_property
def image_tokens(self) -> list[int]:
return sorted(
[val for name, val in self.name2val.items() if name.startswith("IMGIMG")]
)
@cached_property
def special_tokens(self) -> list[int]:
return sorted(
[
val
for name, val in self.name2val.items()
if name.startswith("<") and name != "<"
]
)
@cached_property
def text_tokens(self) -> list[int]:
return sorted(
set(self.all_tokens) - set(self.image_tokens) - set(self.special_tokens)
)
class VocabTranslation:
def __init__(self, vocab_info: VocabInfo, device: str | None = None):
self._vocab = vocab_info
self._device = device
@cached_property
def bpe2img(self) -> dict[int, int]:
img_tkn_chr_mapping = {chr(ord("A") + i): str(i) for i in range(10)}
def remap(old_name: str) -> str:
return "".join(
img_tkn_chr_mapping.get(c, c) for c in old_name[len("IMGIMG") : -1]
)
return {
tok: int(remap(self._vocab.val2name[tok]))
for tok in self._vocab.image_tokens
}
@cached_property
def img2bpe(self) -> dict[int, int]:
return {v: k for k, v in self.bpe2img.items()}
@cached_property
def bpe2img_search_tensors(self) -> tuple[torch.Tensor, torch.Tensor]:
sorted_bpe = torch.tensor(sorted(self.bpe2img.keys()), device=self._device)
sorted_img = torch.tensor(sorted(self.bpe2img.values()), device=self._device)
return sorted_bpe, sorted_img
@cached_property
def img2bpe_mapping_tensor(self) -> torch.LongTensor:
mapping = torch.zeros(
max(self.img2bpe.keys()) + 1,
dtype=torch.int,
device=self._device,
)
for k, v in self.img2bpe.items():
mapping[k] = v
return mapping
def convert_bpe2img(self, bpe_batch: torch.Tensor) -> torch.Tensor:
bpe_tok, img_tok = self.bpe2img_search_tensors
return img_tok[torch.searchsorted(bpe_tok, bpe_batch)]
def convert_img2bp2(self, img_batch: torch.Tensor) -> torch.Tensor:
return self.img2bpe_mapping_tensor[img_batch]