-
Notifications
You must be signed in to change notification settings - Fork 5
/
LassoRegression.cpp
174 lines (131 loc) · 4.98 KB
/
LassoRegression.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
//
// Created by user on 08.10.2018.
//
#include "LassoRegression.h"
#include "matrix.h"
#include <cmath>
#include <iostream>
#include <fstream>
LassoRegression::LassoRegression(std::vector<std::vector<double>> samples, std::vector<double> target) {
this->numberOfSamples = samples.size();
this->numberOfFeatures = samples[0].size();
this->features = featuresMatrix(samples);
this->features = normalizeFeatures(this->features);
this->weights = initialWeights();
this->target = targetAsArray(target);
}
double *LassoRegression::predictions() {
double *result = new double[numberOfSamples];
for (int sampleIdx = 0; sampleIdx < numberOfSamples; sampleIdx++) {
double prediction = 0.0;
for (int featureIdx = 0; featureIdx < numberOfFeatures; featureIdx++) {
prediction += features[sampleIdx][featureIdx] * weights[featureIdx];
}
result[sampleIdx] = prediction;
}
return result;
}
double *LassoRegression::ro() {
double *results = new double[numberOfFeatures];
for (int idx = 0; idx < numberOfFeatures; idx++) {
double *penaltyVector = vectorMultiply(feature(idx), numberOfSamples, weights[idx]);
double *predictionDiff = vectorAdd(target, vectorMultiply(predictions(), numberOfSamples, -1), numberOfSamples);
double *roVector = vectorMultiplyComponentWise(feature(idx),
vectorAdd(predictionDiff, penaltyVector, numberOfSamples),
numberOfSamples);
double roValue = vectorSum(roVector, numberOfSamples);
results[idx] = roValue;
}
return results;
}
double LassoRegression::coordinateDescentStep(int weightIdx, double alpha) {
double *roValues = ro();
double newWeight;
if (weightIdx == 0) {
newWeight = roValues[weightIdx];
} else if (roValues[weightIdx] < (-1.0) * alpha / 2.0) {
newWeight = roValues[weightIdx] + alpha / 2.0;
} else if (roValues[weightIdx] > alpha / 2.0) {
newWeight = roValues[weightIdx] - alpha / 2.0;
} else {
newWeight = 0.0;
}
return newWeight;
}
double *LassoRegression::cyclicalCoordinateDescent(double tolerance, double alpha) {
bool condition = true;
double maxChange;
while (condition) {
maxChange = 0.0;
double *newWeights = new double[numberOfFeatures];
for (int weightIdx = 0; weightIdx < numberOfFeatures; ++weightIdx) {
double oldWeight = weights[weightIdx];
double newWeight = coordinateDescentStep(weightIdx, alpha);
newWeights[weightIdx] = newWeight;
weights[weightIdx] = newWeight;
double coordinateChange = fabs(oldWeight - newWeight);
if (coordinateChange > maxChange) {
maxChange = coordinateChange;
std::cout << "MAX CHANGE: " << maxChange << " " << weightIdx << std::endl;
}
}
if (maxChange < tolerance) {
condition = false;
}
}
return weights;
}
double **LassoRegression::featuresMatrix(std::vector<std::vector<double>> samples) {
double **matrix = emptyMatrix();
for (int sampleIdx = 0; sampleIdx < numberOfSamples; sampleIdx++) {
for (int featureIdx = 0; featureIdx < numberOfFeatures; featureIdx++) {
matrix[sampleIdx][featureIdx] = samples[sampleIdx][featureIdx];
}
}
return matrix;
}
double **LassoRegression::normalizeFeatures(double **matrix) {
for (int featureIdx = 0; featureIdx < numberOfFeatures; ++featureIdx) {
double featureNorm = norm(feature(featureIdx), numberOfSamples);
for (int sampleIdx = 0; sampleIdx < numberOfSamples; ++sampleIdx) {
matrix[sampleIdx][featureIdx] /= featureNorm;
}
}
return matrix;
}
double **LassoRegression::emptyMatrix() {
double **result = new double *[numberOfSamples];
for (int sampleIdx = 0; sampleIdx < numberOfSamples; sampleIdx++) {
result[sampleIdx] = new double[numberOfFeatures];
}
return result;
}
double *LassoRegression::initialWeights() {
double *weights = new double[numberOfFeatures];
for (int idx = 0; idx < numberOfFeatures; idx++) {
weights[idx] = 0.5;
}
return weights;
}
double *LassoRegression::targetAsArray(std::vector<double> target) {
double *result = new double[target.size()];
for (int targetIdx = 0; targetIdx < target.size(); targetIdx++) {
result[targetIdx] = target[targetIdx];
}
return result;
}
double *LassoRegression::feature(int featureIdx) {
double *result = new double[numberOfSamples];
for (int idx = 0; idx < numberOfSamples; idx++) {
result[idx] = features[idx][featureIdx];
}
return result;
}
void LassoRegression::dumpWeightsToFile() {
std::ofstream file;
file.open("weights.txt");
for (int weightIdx = 0; weightIdx < numberOfFeatures; ++weightIdx) {
file << weights[weightIdx] << " ";
}
file.close();
}