From 6390d2e3a179dc50b7075a29e236d327482e85b2 Mon Sep 17 00:00:00 2001 From: lkchen Date: Mon, 4 Nov 2024 14:32:16 -0800 Subject: [PATCH] [Misc] Refactor benchmark_throughput.py (#9779) Signed-off-by: Linkun Chen Co-authored-by: Linkun Chen Co-authored-by: Linkun Chen Signed-off-by: Loc Huynh --- benchmarks/benchmark_throughput.py | 81 ++++++++++++++++++++---------- 1 file changed, 55 insertions(+), 26 deletions(-) diff --git a/benchmarks/benchmark_throughput.py b/benchmarks/benchmark_throughput.py index ee41c8ea38382..262b8652e49ff 100644 --- a/benchmarks/benchmark_throughput.py +++ b/benchmarks/benchmark_throughput.py @@ -4,7 +4,7 @@ import json import random import time -from typing import List, Optional, Tuple +from typing import List, Optional import torch import uvloop @@ -15,16 +15,35 @@ from vllm.engine.arg_utils import AsyncEngineArgs, EngineArgs from vllm.entrypoints.openai.api_server import ( build_async_engine_client_from_engine_args) +from vllm.inputs import TextPrompt +from vllm.multimodal import MultiModalDataDict from vllm.sampling_params import BeamSearchParams from vllm.utils import FlexibleArgumentParser, merge_async_iterators +@dataclasses.dataclass +class SampleRequest: + """A class representing a single inference request for benchmarking. + + Attributes: + prompt: The input text prompt for the model. + multi_modal_data: Optional dictionary containing multi-modal data (e.g. + images). + prompt_len: The length of the prompt in tokens. + expected_output_len: The expected length of the output in tokens. + """ + prompt: str + prompt_len: int + expected_output_len: int + multi_modal_data: Optional[MultiModalDataDict] = None + + def sample_requests( dataset_path: str, num_requests: int, tokenizer: PreTrainedTokenizerBase, fixed_output_len: Optional[int], -) -> List[Tuple[str, int, int]]: +) -> List[SampleRequest]: if fixed_output_len is not None and fixed_output_len < 4: raise ValueError("output_len too small") @@ -41,7 +60,7 @@ def sample_requests( random.shuffle(dataset) # Filter out sequences that are too long or too short - filtered_dataset: List[Tuple[str, int, int]] = [] + filtered_dataset: List[SampleRequest] = [] for i in range(len(dataset)): if len(filtered_dataset) == num_requests: break @@ -60,13 +79,16 @@ def sample_requests( if prompt_len > 1024 or prompt_len + output_len > 2048: # Prune too long sequences. continue - filtered_dataset.append((prompt, prompt_len, output_len)) + filtered_dataset.append( + SampleRequest(prompt=prompt, + prompt_len=prompt_len, + expected_output_len=output_len)) return filtered_dataset def run_vllm( - requests: List[Tuple[str, int, int]], + requests: List[SampleRequest], n: int, engine_args: EngineArgs, ) -> float: @@ -74,17 +96,17 @@ def run_vllm( llm = LLM(**dataclasses.asdict(engine_args)) # Add the requests to the engine. - prompts: List[str] = [] + prompts: List[TextPrompt] = [] sampling_params: List[SamplingParams] = [] - for prompt, _, output_len in requests: - prompts.append(prompt) + for request in requests: + prompts.append(TextPrompt(prompt=request.prompt)) sampling_params.append( SamplingParams( n=n, temperature=1.0, top_p=1.0, ignore_eos=True, - max_tokens=output_len, + max_tokens=request.expected_output_len, )) use_beam_search = False @@ -94,11 +116,11 @@ def run_vllm( llm.generate(prompts, sampling_params, use_tqdm=True) end = time.perf_counter() else: - prompts = [prompt for prompt, _, _ in requests] + prompts = [request.prompt for request in requests] # output_len should be the same for all requests. output_len = requests[0][2] - for prompt, input_len, _output_len in requests: - assert _output_len == output_len + for request in requests: + assert request.expected_output_len == output_len start = time.perf_counter() llm.beam_search( prompts, @@ -112,7 +134,7 @@ def run_vllm( async def run_vllm_async( - requests: List[Tuple[str, int, int]], + requests: List[SampleRequest], n: int, engine_args: AsyncEngineArgs, disable_frontend_multiprocessing: bool = False, @@ -123,17 +145,17 @@ async def run_vllm_async( engine_args, disable_frontend_multiprocessing) as llm: # Add the requests to the engine. - prompts: List[str] = [] + prompts: List[TextPrompt] = [] sampling_params: List[SamplingParams] = [] - for prompt, _, output_len in requests: - prompts.append(prompt) + for request in requests: + prompts.append(TextPrompt(prompt=request.prompt)) sampling_params.append( SamplingParams( n=n, temperature=1.0, top_p=1.0, ignore_eos=True, - max_tokens=output_len, + max_tokens=request.expected_output_len, )) generators = [] @@ -149,7 +171,7 @@ async def run_vllm_async( def run_hf( - requests: List[Tuple[str, int, int]], + requests: List[SampleRequest], model: str, tokenizer: PreTrainedTokenizerBase, n: int, @@ -207,14 +229,14 @@ def run_hf( def run_mii( - requests: List[Tuple[str, int, int]], + requests: List[SampleRequest], model: str, tensor_parallel_size: int, output_len: int, ) -> float: from mii import client, serve llm = serve(model, tensor_parallel=tensor_parallel_size) - prompts = [prompt for prompt, _, _ in requests] + prompts = [request.prompt for request in requests] start = time.perf_counter() llm.generate(prompts, max_new_tokens=output_len) @@ -243,8 +265,12 @@ def main(args: argparse.Namespace): else: raise ValueError( f"Failed to synthesize a prompt with {args.input_len} tokens.") - requests = [(prompt, args.input_len, args.output_len) - for _ in range(args.num_prompts)] + requests = [ + SampleRequest(prompt=prompt, + prompt_len=args.input_len, + expected_output_len=args.output_len) + for _ in range(args.num_prompts) + ] else: requests = sample_requests(args.dataset, args.num_prompts, tokenizer, args.output_len) @@ -270,9 +296,10 @@ def main(args: argparse.Namespace): args.output_len) else: raise ValueError(f"Unknown backend: {args.backend}") - total_num_tokens = sum(prompt_len + output_len - for _, prompt_len, output_len in requests) - total_output_tokens = sum(output_len for _, _, output_len in requests) + total_num_tokens = sum(request.prompt_len + request.expected_output_len + for request in requests) + total_output_tokens = sum(request.expected_output_len + for request in requests) print(f"Throughput: {len(requests) / elapsed_time:.2f} requests/s, " f"{total_num_tokens / elapsed_time:.2f} total tokens/s, " f"{total_output_tokens / elapsed_time:.2f} output tokens/s") @@ -299,7 +326,9 @@ def main(args: argparse.Namespace): parser.add_argument("--dataset", type=str, default=None, - help="Path to the dataset.") + help="Path to the dataset. The dataset is expected to " + "be a json in form of List[Dict[..., conversations: " + "List[Dict[..., value: ]]]]") parser.add_argument("--input-len", type=int, default=None,