-
Notifications
You must be signed in to change notification settings - Fork 79
/
train.py
executable file
·378 lines (318 loc) · 14.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
import argparse
import time
import yaml
import os
import sys
import logging
from collections import OrderedDict
from contextlib import suppress
from datetime import datetime
import torch
import torch.nn as nn
import torchvision.utils
from torch.nn.parallel import DistributedDataParallel as NativeDDP
from config import cfg, resolve_data_config, pop_unused_value
from datasets import Dataset, create_loader, resolve_data_config, Mixup, FastCollateMixup, AugMixDataset
from models import create_model, resume_checkpoint, convert_splitbn_model, load_checkpoint, model_parameters
from utils import *
from loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy, JsdCrossEntropy
from optim import create_optimizer
from scheduler import create_scheduler
from utils import ApexScaler, NativeScaler
from utils.logger import logger_info, setup_default_logging
import utils.distributed as dist
from utils.flops_counter import get_model_complexity_info
from evaler.evaler import Evaler
#from torchcontrib.optim import SWA
if cfg.amp == True:
from apex import amp
from apex.parallel import DistributedDataParallel as ApexDDP
from apex.parallel import convert_syncbn_model
torch.backends.cudnn.benchmark = True
def parse_args():
"""
Parse input arguments
"""
parser = argparse.ArgumentParser(description='Imagenet Model')
parser.add_argument('--folder', dest='folder', type=str, default=None)
parser.add_argument("--local_rank", type=int, default=0)
if len(sys.argv) == 1:
parser.print_help()
sys.exit(1)
args = parser.parse_args()
return args
def setup_model():
model = create_model(
cfg.model.name,
pretrained=cfg.model.pretrained,
num_classes=cfg.model.num_classes,
drop_rate=cfg.model.drop,
drop_connect_rate=None, # DEPRECATED, use drop_path
drop_path_rate=cfg.model.drop_path if 'drop_path' in cfg.model else None,
drop_block_rate=cfg.model.drop_block if 'drop_block' in cfg.model else None,
global_pool=cfg.model.gp,
bn_tf=cfg.BN.bn_tf,
bn_momentum=cfg.BN.bn_momentum if 'bn_momentum' in cfg.BN else None,
bn_eps=cfg.BN.bn_eps if 'bn_eps' in cfg.BN else None,
checkpoint_path=cfg.model.initial_checkpoint)
data_config = resolve_data_config(cfg, model=model)
flops_count, params_count = get_model_complexity_info(model, data_config['input_size'], as_strings=True,
print_per_layer_stat=False, verbose=False)
logger_info('Model %s created, flops_count: %s, param count: %s' % (cfg.model.name, flops_count, params_count))
if cfg.BN.split_bn:
assert cfg.augmentation.aug_splits > 1 or cfg.augmentation.resplit
model = convert_splitbn_model(model, max(cfg.augmentation.aug_splits, 2))
model.cuda()
return model, data_config
def setup_resume(local_rank, model, optimizer):
loss_scaler = None
if cfg.amp == True:
model, optimizer = amp.initialize(model, optimizer, opt_level='O1')
loss_scaler = ApexScaler()
else:
logger_info('AMP not enabled. Training in float32.')
# optionally resume from a checkpoint
resume_epoch = None
if cfg.model.resume:
resume_epoch = resume_checkpoint(
model, cfg.model.resume,
optimizer=None if cfg.model.no_resume_opt else optimizer,
loss_scaler=None if cfg.model.no_resume_opt else loss_scaler,
log_info=local_rank == 0)
if cfg.distributed:
if cfg.BN.sync_bn:
assert not cfg.BN.split_bn
try:
if cfg.amp:
# Apex SyncBN preferred unless native amp is activated
model = convert_syncbn_model(model)
else:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
logger_info(
'Converted model to use Synchronized BatchNorm. WARNING: You may have issues if using '
'zero initialized BN layers (enabled by default for ResNets) while sync-bn enabled.')
except Exception as e:
logger_info('Failed to enable Synchronized BatchNorm. Install Apex or Torch >= 1.1')
if cfg.amp:
# Apex DDP preferred unless native amp is activated
logger_info("Using NVIDIA APEX DistributedDataParallel.")
model = ApexDDP(model, delay_allreduce=True)
else:
logger_info("Using native Torch DistributedDataParallel.")
model = NativeDDP(model, device_ids=[local_rank]) # can use device str in Torch >= 1.1
# NOTE: EMA model does not need to be wrapped by DDP
model_ema = None
if cfg.model.model_ema == True:
model_ema = ModelEmaV2(
unwrap_model(model),
decay=cfg.model.model_ema_decay,
device='cpu' if cfg.model.model_ema_force_cpu else None
)
if cfg.model.resume:
load_checkpoint(model_ema.module, cfg.model.resume, use_ema=True)
return model, model_ema, optimizer, resume_epoch, loss_scaler
def setup_scheduler(optimizer, resume_epoch):
lr_scheduler, num_epochs = create_scheduler(cfg, optimizer)
start_epoch = 0
if 'start_epoch' in cfg.solver:
# a specified start_epoch will always override the resume epoch
start_epoch = cfg.solver.start_epoch
elif resume_epoch is not None:
start_epoch = resume_epoch
if lr_scheduler is not None and start_epoch > 0:
lr_scheduler.step(start_epoch)
return lr_scheduler, start_epoch, num_epochs
def setup_loader(data_config):
train_dir = os.path.join(cfg.data_loader.data_path, 'train')
assert os.path.exists(train_dir)
dataset_train = Dataset(train_dir)
collate_fn = None
mixup_fn = None
mixup_active = cfg.augmentation.mixup > 0 or cfg.augmentation.cutmix > 0. or len(cfg.augmentation.cutmix_minmax) > 0
if mixup_active:
mixup_args = dict(
mixup_alpha=cfg.augmentation.mixup, cutmix_alpha=cfg.augmentation.cutmix, cutmix_minmax=cfg.augmentation.cutmix_minmax,
prob=cfg.augmentation.mixup_prob, switch_prob=cfg.augmentation.mixup_switch_prob, mode=cfg.augmentation.mixup_mode,
label_smoothing=cfg.loss.smoothing, num_classes=cfg.model.num_classes)
if cfg.data_loader.prefetcher:
assert not cfg.augmentation.aug_splits # collate conflict (need to support deinterleaving in collate mixup)
collate_fn = FastCollateMixup(**mixup_args)
else:
mixup_fn = Mixup(**mixup_args)
if cfg.augmentation.aug_splits > 1:
dataset_train = AugMixDataset(dataset_train, num_splits=cfg.augmentation.aug_splits)
train_interpolation = cfg.augmentation.train_interpolation
if cfg.augmentation.no_aug:
train_interpolation = data_config['interpolation']
loader_train = create_loader(
dataset_train,
input_size=data_config['input_size'],
batch_size=cfg.data_loader.batch_size,
is_training=True,
use_prefetcher=cfg.data_loader.prefetcher,
no_aug=cfg.augmentation.no_aug,
re_prob=cfg.augmentation.reprob,
re_mode=cfg.augmentation.remode,
re_count=cfg.augmentation.recount,
re_split=cfg.augmentation.resplit,
scale=cfg.augmentation.scale,
ratio=cfg.augmentation.ratio,
hflip=cfg.augmentation.hflip,
vflip=cfg.augmentation.vflip,
color_jitter=cfg.augmentation.color_jitter if cfg.augmentation.color_jitter > 0 else None,
auto_augment=cfg.augmentation.aa if 'aa' in cfg.augmentation else None,
num_aug_splits=cfg.augmentation.aug_splits,
interpolation=train_interpolation,
mean=data_config['mean'],
std=data_config['std'],
num_workers=cfg.data_loader.workers,
distributed=cfg.distributed,
collate_fn=collate_fn,
pin_memory=cfg.data_loader.pin_mem,
use_multi_epochs_loader=cfg.data_loader.use_multi_epochs_loader
)
return loader_train, mixup_active, mixup_fn
def setup_loss(mixup_active):
if cfg.loss.jsd:
assert cfg.augmentation.aug_splits > 1 # JSD only valid with aug splits set
train_loss_fn = JsdCrossEntropy(num_splits=cfg.augmentation.aug_splits, smoothing=cfg.loss.smoothing).cuda()
elif mixup_active: # smoothing is handled with mixup label transform
train_loss_fn = SoftTargetCrossEntropy().cuda()
elif cfg.loss.smoothing:
train_loss_fn = LabelSmoothingCrossEntropy(smoothing=cfg.loss.smoothing).cuda()
else:
train_loss_fn = nn.CrossEntropyLoss().cuda()
return train_loss_fn
def setup_env(args):
if args.folder is not None:
cfg.merge_from_file(os.path.join(args.folder, 'config.yaml'))
cfg.root_dir = args.folder
setup_default_logging()
world_size = 1
rank = 0 # global rank
cfg.distributed = torch.cuda.device_count() > 1
if cfg.distributed:
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(backend='nccl', init_method='env://')
world_size = torch.distributed.get_world_size()
rank = torch.distributed.get_rank()
cfg.num_gpus = world_size
pop_unused_value(cfg)
cfg.freeze()
if cfg.distributed:
logger_info('Training in distributed mode with multiple processes, 1 GPU per process. Process %d, total %d.' % (rank, cfg.num_gpus))
else:
logger_info('Training with a single process on %d GPUs.' % cfg.num_gpus)
torch.manual_seed(cfg.seed + rank)
def train_epoch(
epoch, model, loader, optimizer, loss_fn, cfg,
lr_scheduler=None, saver=None, train_meter=None, amp_autocast=suppress,
loss_scaler=None, model_ema=None, mixup_fn=None):
if cfg.augmentation.mixup_off_epoch and epoch >= cfg.augmentation.mixup_off_epoch:
if cfg.data_loader.prefetcher and loader.mixup_enabled:
loader.mixup_enabled = False
elif mixup_fn is not None:
mixup_fn.mixup_enabled = False
second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order
model.train()
num_updates = epoch * len(loader)
train_meter.iter_tic()
for batch_idx, (input, target) in enumerate(loader):
if not cfg.data_loader.prefetcher:
input, target = input.cuda(), target.cuda()
if mixup_fn is not None:
input, target = mixup_fn(input, target)
with amp_autocast():
output = model(input)
loss = loss_fn(output, target)
optimizer.zero_grad()
if loss_scaler is not None:
loss_scaler(
loss, optimizer, parameters=model.parameters(), create_graph=second_order)
else:
loss.backward(create_graph=second_order)
if cfg.solver.clip_grad is not None and cfg.solver.clip_grad > 0:
dispatch_clip_grad(
model_parameters(model, exclude_head='agc' in cfg.solver.clip_mode),
value=cfg.solver.clip_grad, mode=cfg.solver.clip_mode)
optimizer.step()
if model_ema is not None:
model_ema.update(model)
#if (cfg.solver.use_swa) and (cfg.solver.swa_start >= epoch) and (epoch % cfg.solver.swa_freq == 0):
# optimizer.update_swa()
torch.cuda.synchronize()
if lr_scheduler is not None:
lr_scheduler.step_update(num_updates=num_updates, metric=None)
num_updates += 1
loss = dist.scaled_all_reduce([loss.data])[0]
mb_size = input.size(0) * cfg.num_gpus
lr_str = str(list(set([param_group['lr'] for param_group in optimizer.param_groups])))
train_meter.update_stats(loss.item(), lr_str, mb_size)
train_meter.iter_toc()
train_meter.log_iter_stats(epoch, batch_idx)
train_meter.iter_tic()
if hasattr(optimizer, 'sync_lookahead'):
optimizer.sync_lookahead()
train_meter.reset()
def main():
args = parse_args()
print('Called with args:')
print(args)
setup_env(args)
if cfg.distributed:
global_rank = torch.distributed.get_rank()
else:
global_rank = 0
model, data_config = setup_model()
optimizer = create_optimizer(cfg, model)
amp_autocast = suppress # do nothing
model, model_ema, optimizer, resume_epoch, loss_scaler = setup_resume(args.local_rank, model, optimizer)
lr_scheduler, start_epoch, num_epochs = setup_scheduler(optimizer, resume_epoch)
#if cfg.solver.use_swa == True:
# optimizer = SWA(optimizer)
loader_train, mixup_active, mixup_fn = setup_loader(data_config)
train_loss_fn = setup_loss(mixup_active)
train_meter = TrainMeter(start_epoch, num_epochs, len(loader_train))
evaler = Evaler(data_config)
best_metric = None
best_epoch = None
saver = None
if global_rank == 0:
snapshot_dir = os.path.join(cfg.root_dir, 'snapshot')
if not os.path.exists(snapshot_dir):
os.makedirs(snapshot_dir)
saver = CheckpointSaver(
model=model, optimizer=optimizer, cfg=cfg, model_ema=model_ema, amp_scaler=loss_scaler,
checkpoint_dir=snapshot_dir, recovery_dir=snapshot_dir, decreasing=False)
try:
for epoch in range(start_epoch, num_epochs):
if cfg.distributed:
loader_train.sampler.set_epoch(epoch)
train_epoch(
epoch, model, loader_train, optimizer, train_loss_fn, cfg,
lr_scheduler=lr_scheduler, saver=saver, train_meter=train_meter,
amp_autocast=amp_autocast, loss_scaler=loss_scaler, model_ema=model_ema, mixup_fn=mixup_fn)
if cfg.distributed and cfg.BN.dist_bn in ('broadcast', 'reduce'):
logger_info("Distributing BatchNorm running means and vars")
distribute_bn(model, cfg.num_gpus, cfg.BN.dist_bn == 'reduce')
top1_acc, top5_acc = evaler(epoch, model, amp_autocast=amp_autocast)
if model_ema is not None and not cfg.model.model_ema_force_cpu:
if cfg.distributed and cfg.BN.dist_bn in ('broadcast', 'reduce'):
distribute_bn(model_ema, cfg.num_gpus, cfg.BN.dist_bn == 'reduce')
top1_acc, top5_acc = evaler(epoch, model_ema.module, amp_autocast=amp_autocast)
if (saver is not None) and (epoch + 1) % cfg.solver.recovery_interval == 0:
saver.save_recovery(epoch + 1)
if lr_scheduler is not None:
lr_scheduler.step(epoch + 1, None)
if saver is not None:
best_metric, best_epoch = saver.save_checkpoint(epoch + 1, metric=top1_acc)
except KeyboardInterrupt:
pass
if best_metric is not None:
logger_info('*** Best metric: {0} (epoch {1})'.format(best_metric, best_epoch))
#if cfg.solver.use_swa:
# optimizer.swap_swa_sgd()
# top1_acc, top5_acc = evaler(epoch, model, amp_autocast=amp_autocast)
# saver.save_recovery(epoch + 2)
if __name__ == '__main__':
main()