forked from Kaiyotech/Opti
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathworker_selector.py
591 lines (521 loc) · 24.6 KB
/
worker_selector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
import sys
from redis import Redis
from redis.retry import Retry
from redis.backoff import ExponentialBackoff
from redis.exceptions import ConnectionError, TimeoutError
from rlgym.envs import Match
from rocket_learn.matchmaker.matchmaker import Matchmaker
from rlgym.utils.gamestates import GameState, PlayerData
from rlgym.utils.state_setters.default_state import DefaultState
from CoyoteObs import CoyoteObsBuilder
from rlgym.utils.terminal_conditions.common_conditions import GoalScoredCondition, TimeoutCondition, \
NoTouchTimeoutCondition
from rocket_learn.rollout_generator.redis.redis_rollout_worker import RedisRolloutWorker
from rocket_learn.utils.truncated_condition import TerminalToTruncatedWrapper
from CoyoteParser import SelectorParser
from rewards import ZeroSumReward
from torch import set_num_threads
from selection_listener import SelectionListener
from setter import CoyoteSetter
from mybots_statesets import EndKickoff, HalfFlip
from mybots_terminals import RandomTruncationBallGround
import Constants_selector
import numpy as np
import collections
import threading
import json
import os
from pretrained_agents.necto.necto_v1 import NectoV1
from pretrained_agents.nexto.nexto_v2 import NextoV2
from pretrained_agents.KBB.kbb import KBB
from pretrained_agents.GP.GP import GP
from rlgym.utils.common_values import BALL_RADIUS, BACK_WALL_Y
set_num_threads(1)
class ObsInfo:
"""keeps track of duplicate obs information"""
def __init__(self, tick_skip, selector_infinite_boost: dict, dtap_dict) -> None:
from rlgym.utils.common_values import BOOST_LOCATIONS
self.boost_locations = np.array(BOOST_LOCATIONS)
self.boost_timers = np.zeros(self.boost_locations.shape[0])
self.inverted_boost_timers = np.zeros(self.boost_locations.shape[0])
self.boosts_availability = np.zeros(self.boost_locations.shape[0])
self.inverted_boosts_availability = np.zeros(self.boost_locations.shape[0])
self.blue_obs = None
self.orange_obs = None
self.demo_timers = None
self.BOOST_TIMER_STD = 10
self.DEMO_TIMER_STD = 3
self.time_interval = tick_skip / 120
self.dodge_deadzone = 0.8
self.any_timers = True
self.boosttimes = [0] * 8
self.jumptimes = [0] * 8
self.fliptimes = [0] * 8
self.has_flippeds = [False] * 8
self.has_doublejumpeds = [False] * 8
self.flipdirs = [[0] * 2 for _ in range(8)]
self.airtimes = [0] * 8
self.on_grounds = [False] * 8
self.prev_prev_actions = [[0] * 8 for _ in range(8)]
self.is_jumpings = [False] * 8
self.has_jumpeds = [False] * 8
self.handbrakes = [0] * 8
self.selector_infinite_boost = selector_infinite_boost
self.floor_bounce = False
self.backboard_bounce = False
self.prev_ball_vel = np.asarray([0] * 3)
self.dtap_dict = dtap_dict
self.n = 0
def reset(self, initial_state: GameState):
self.n = 0
self.boost_timers = np.zeros(self.boost_locations.shape[0])
self.inverted_boost_timers = np.zeros(self.boost_locations.shape[0])
self.demo_timers = np.zeros(max(p.car_id for p in initial_state.players) + 1)
self.blue_obs = []
self.orange_obs = []
# timers
self.boosttimes = np.zeros(8)
#
# self.jumptimes = np.zeros(
# max(p.car_id for p in initial_state.players) + 1)
for i in range(len(initial_state.players) + 1):
if self.has_flippeds[i]:
self.fliptimes[i] = 78
self.has_flippeds = [False] * 8
# self.has_doublejumpeds = [False] * (max(p.car_id for p in initial_state.players) + 1)
# self.flipdirs = [[0] * 2 for _ in range(max(p.car_id for p in initial_state.players) + 1)]
# self.airtimes = np.zeros(
# max(p.car_id for p in initial_state.players) + 1)
self.prev_prev_actions = [[0] * 8 for _ in range(max(p.car_id for p in initial_state.players) + 1)]
self.is_jumpings = [False] * 8
# self.has_jumpeds = [False] * (max(p.car_id for p in initial_state.players) + 1)
self.on_grounds = [False] * 8
for p in initial_state.players:
self.on_grounds[p.car_id] = p.on_ground
# self.handbrakes = np.zeros(
# max(p.car_id for p in initial_state.players) + 1)
self.floor_bounce = False
self.backboard_bounce = False
self.prev_ball_vel = np.array(initial_state.ball.linear_velocity)
def pre_step(self, state: GameState):
self.n = 0
# create player/team agnostic items (do these even exist?)
self._update_timers(state)
# create team specific things
self.blue_obs = self.boost_timers / self.BOOST_TIMER_STD
self.orange_obs = self.inverted_boost_timers / self.BOOST_TIMER_STD
inf_boost = self.selector_infinite_boost["infinite_boost"]
if inf_boost:
for player in state.players:
player.boost_amount = 1
else:
for player in state.players:
player.boost_amount /= 1
# for double tap
touched = False
for player in state.players:
if player.ball_touched:
touched = True
ball_bounced_ground = self.prev_ball_vel[2] * state.ball.linear_velocity[2] < 0
ball_near_ground = state.ball.position[2] < BALL_RADIUS * 2
if not touched and ball_near_ground and ball_bounced_ground:
self.floor_bounce = True
ball_bounced_backboard = self.prev_ball_vel[1] * state.ball.linear_velocity[1] < 0
ball_near_wall = abs(state.ball.position[1]) > (BACK_WALL_Y - BALL_RADIUS * 2)
if not touched and ball_near_wall and ball_bounced_backboard:
self.backboard_bounce = True
self.dtap_dict["ball_hit_bb"] = False
if touched and not self.dtap_dict["hit_towards_bb"]:
self.dtap_dict["hit_towards_bb"] = True
if touched and self.dtap_dict["hit_towards_bb"] and self.dtap_dict["ball_hit_bb"]:
self.dtap_dict["hit_towards_goal"] = True
self.prev_ball_vel = np.array(state.ball.linear_velocity)
def _update_timers(self, state: GameState):
current_boosts = state.boost_pads
boost_locs = self.boost_locations
demo_states = [[p.car_id, p.is_demoed] for p in state.players]
for i in range(len(current_boosts)):
if current_boosts[i] == self.boosts_availability[i]:
if self.boosts_availability[i] == 0:
self.boost_timers[i] = max(0, self.boost_timers[i] - self.time_interval)
else:
if self.boosts_availability[i] == 0:
self.boosts_availability[i] = 1
self.boost_timers[i] = 0
else:
self.boosts_availability[i] = 0
if boost_locs[i][2] == 73:
self.boost_timers[i] = 10.0
else:
self.boost_timers[i] = 4.0
self.boosts_availability = current_boosts
self.inverted_boost_timers = self.boost_timers[::-1]
self.inverted_boosts_availability = self.boosts_availability[::-1]
for cid, dm in demo_states:
if dm == True: # Demoed
prev_timer = self.demo_timers[cid]
if prev_timer > 0:
self.demo_timers[cid] = max(0, prev_timer - self.time_interval)
else:
self.demo_timers[cid] = 3
else: # Not demoed
self.demo_timers[cid] = 0
def step(self, player: PlayerData, state: GameState, previous_action: np.ndarray):
self._update_addl_timers(player, state, previous_action)
self.prev_prev_actions[player.car_id] = previous_action # noqa
# def after_step(self):
# self.n += 1
def _update_addl_timers(self, player: PlayerData, state: GameState, prev_actions: np.ndarray):
cid = player.car_id
# if this player was not boosting last tick and their boosttime timer means they actually stopped boosting, set to 0
if prev_actions[6] == 0 and self.boosttimes[cid] == 12:
self.boosttimes[cid] = 0
# otherwise, just increment the boosttime
else:
self.boosttimes[cid] += self.time_interval * 120
self.boosttimes[cid] = min(12, self.boosttimes[cid])
# update jumptime
if self.on_grounds[cid] and not self.is_jumpings[cid]:
self.has_jumpeds[cid] = False
if self.is_jumpings[cid]:
# JUMP_MIN_TIME = 3 ticks
# JUMP_MAX_TIME = 24 ticks
# if not ((self.jumptimes[cid] < 3 or prev_actions[5] == 1) and self.jumptimes[cid] < 24):
# self.is_jumpings[cid] = self.jumptimes[cid] < 3
self.is_jumpings[cid] = self.jumptimes[cid] < 3 or (prev_actions[5] == 1 and self.jumptimes[cid] < 24)
elif prev_actions[5] == 1 and self.prev_prev_actions[cid][5] == 0 and self.on_grounds[cid]:
self.is_jumpings[cid] = True
self.jumptimes[cid] = 0
if self.is_jumpings[cid]:
self.has_jumpeds[cid] = True
self.jumptimes[cid] += self.time_interval * 120
self.jumptimes[cid] = min(
24, self.jumptimes[cid])
else:
self.jumptimes[cid] = 0
# update airtime and fliptime
if player.on_ground:
self.has_doublejumpeds[cid] = False
self.has_flippeds[cid] = False
self.airtimes[cid] = 0
self.fliptimes[cid] = 0
self.flipdirs[cid] = [0, 0]
self.on_grounds[cid] = True
else:
if self.has_jumpeds[cid] and not self.is_jumpings[cid]:
self.airtimes[cid] += self.time_interval * 120
# DOUBLEJUMP_MAX_DELAY = 150 ticks
self.airtimes[cid] = min(
150, self.airtimes[cid])
else:
self.airtimes[cid] = 0
if self.has_jumpeds[cid] and (prev_actions[5] == 1 and self.prev_prev_actions[cid][5] == 0) and \
self.airtimes[cid] < 150:
if not self.has_doublejumpeds[cid] and not self.has_flippeds[cid]:
should_flip = max(max(abs(prev_actions[3]), abs(prev_actions[2])), abs(
prev_actions[4])) >= self.dodge_deadzone
if should_flip:
self.fliptimes[cid] = 0
self.has_flippeds[cid] = True
flipdir = np.asarray(
[-prev_actions[2], prev_actions[3] + prev_actions[4]])
if np.any(flipdir):
self.flipdirs[cid] = list(
flipdir / np.linalg.norm(flipdir))
else:
self.flipdirs[cid] = [0, 0]
else:
self.has_doublejumpeds[cid] = True
if self.has_flippeds[cid]:
self.fliptimes[cid] += self.time_interval * 120
# FLIP_TORQUE_TIME = 78 ticks
self.fliptimes[cid] = min(
78, self.fliptimes[cid])
# update handbrake
if prev_actions[7] == 1:
# POWERSLIDE_RISE_RATE = 5
self.handbrakes[cid] += 5 * self.time_interval
self.handbrakes[cid] = min(
1, self.handbrakes[cid])
else:
# POWERSLIDE_FALL_RATE = 2
self.handbrakes[cid] -= 2 * self.time_interval
self.handbrakes[cid] = max(
0, self.handbrakes[cid])
class SelectionDispatcher(SelectionListener):
"""Dispatches model selection messages to redis channel"""
def __init__(self, redis, redis_channel) -> None:
super().__init__()
self.redis = redis
self.redis_channel = redis_channel
self.xthread_queue = collections.deque()
self.wake_event = threading.Event()
self.should_run = True
self.thread = threading.Thread(target=self._run, daemon=True)
self.thread.start()
# delete all stats on startup
for key in r.scan_iter("selector_stat*"):
r.delete(key)
def _flush_queue(self):
if len(self.xthread_queue) == 0:
return
pipe = self.redis.pipeline()
while len(self.xthread_queue) > 0:
selected_model_name, model_action = self.xthread_queue.popleft()
selection_message = dict(model=selected_model_name, actions=model_action.tolist())
selection_message = json.dumps(selection_message)
pipe.publish(self.redis_channel, selection_message)
pipe.execute()
self.wake_event.clear()
def _run(self):
while self.should_run:
self.wake_event.wait()
self._flush_queue()
def on_selection(self, selected_model_name: str, model_action: np.ndarray):
self.xthread_queue.append((selected_model_name, model_action))
self.wake_event.set()
def stop(self): # unused
self.xthread_queue.clear()
self.should_run = False
self.wake_event.set()
self.thread.join()
if __name__ == "__main__":
frame_skip = Constants_selector.FRAME_SKIP
dtap_status = {"hit_towards_bb": False,
"ball_hit_bb": False,
"hit_towards_goal": False,
}
rew = ZeroSumReward(zero_sum=Constants_selector.ZERO_SUM,
tick_skip=frame_skip,
goal_w=10,
concede_w=-10,
team_spirit=1,
# demo_w=3,
# got_demoed_w=-3,
# punish_action_change_w=0,
# decay_punish_action_change_w=0,
# flip_reset_w=0.25,
flip_reset_goal_w=5,
aerial_goal_w=3,
double_tap_w=5,
# cons_air_touches_w=,
# jump_touch_w=0.5,
# wall_touch_w=0.25,
# flatten_wall_height=True,
# pun_rew_ball_height_w=0.0005,
# exit_velocity_w=1,
# acel_ball_w=1,
# backboard_bounce_rew=2,
# velocity_pb_w=0, # 0.005,
# velocity_bg_w=0.02,
# kickoff_w=0.05,
# punish_dist_goal_score_w=-1,
# boost_gain_w=0.01,
# punish_boost=True,
# use_boost_punish_formula=True,
#boost_spend_w=-0.01, # -0.1,
#boost_gain_small_w=0.15,
#punish_low_boost_w=-0.01,
# cancel_jump_touch_indices=[0, 1, 2, 4, 5, 9, *range(10, 28)],
# cancel_wall_touch_indices=[0, 1, 2, 3, 4, 5, 9, *range(10, 28)],
# cancel_flip_reset_indices=[0, 1, 2, 4, 5, 9, *range(10, 28)],
# cancel_cons_air_touch_indices=[0, 1, 2, 4, 5, 9, *range(10, 28)],
# cancel_backboard_bounce_indices=[0, 1, 2, 4, 5, 9, *range(10, 28)],
dtap_dict=dtap_status,
# aerial_reward_w=0.01,
# ground_reward_w=0.001,
# defend_reward_w=0.001,
# wall_reward_w=0.01,
# aerial_indices=[3, 6, 7, 8, 28, 29],
# wall_indices=[8, 25, 26, 28, 29],
# ground_indices=[0, 1, 2, 4, 5, *range(9, 25), 27, 29],
# defend_indices=[3, 6, 7, 8, 28],
)
# obs_output = np.zeros()
# simple_actions = [32, 33, 34, 35, 36, 37]
selector_infinite_boost = {"infinite_boost": False}
obs_info = ObsInfo(tick_skip=Constants_selector.FRAME_SKIP, selector_infinite_boost=selector_infinite_boost,
dtap_dict=dtap_status)
parser = SelectorParser(obs_info=obs_info)
fps = 120 // frame_skip
name = "Default"
send_gamestate = False
streamer_mode = False
local = True
auto_minimize = True
game_speed = 100
evaluation_prob = 0.01
past_version_prob = 0.4
deterministic_streamer = False
force_old_deterministic = False
team_size = 3
dynamic_game = True
infinite_boost_odds = 0.2
host = "127.0.0.1"
non_latest_version_prob = [0.7, 0.175, 0.075, 0.05]
# non_latest_version_prob = [1, 0, 0, 0]
gamemode_weights = {'1v1': 0, '2v2': 1, '3v3': 0}
# gamemode_weights = {'1v1': 1, '2v2': 0, '3v3': 0}
simulator = True
visualize = False
batch_mode = True
selector_skip_k=0.0004
model_name = "necto-model-30Y.pt"
necto = NectoV1(model_string=model_name, n_players=6)
model_name = "nexto-model.pt"
nexto = NextoV2(model_string=model_name, n_players=6)
model_name = "kbb.pt"
kbb = KBB(model_string=model_name)
model_name = "gp_jit.pt"
gp = GP(model_string=model_name)
pretrained_agents = Constants_selector.pretrained_agents
# pretrained_agents = None
matchmaker = Matchmaker(sigma_target=0.5, pretrained_agents=pretrained_agents, past_version_prob=past_version_prob,
full_team_trainings=0.8, full_team_evaluations=1, force_non_latest_orange=False,
non_latest_version_prob=non_latest_version_prob)
terminals = [GoalScoredCondition(),
TerminalToTruncatedWrapper(RandomTruncationBallGround(avg_frames_per_mode=[fps * 20, fps * 30, fps * 40],
avg_frames=None,
min_frames=fps * 10)),
# TimeoutCondition(fps * 15),
# NoTouchTimeoutCondition(fps * 30),
]
if len(sys.argv) > 1:
host = sys.argv[1]
if host != "127.0.0.1" and host != "localhost":
local = False
if len(sys.argv) > 2:
name = sys.argv[2]
# local Redis
if local:
r = Redis(host=host,
username="user1",
password=os.environ["redis_user1_key"],
db=Constants_selector.DB_NUM,
)
# remote Redis
else:
# noinspection PyArgumentList
r = Redis(host=host,
username="user1",
password=os.environ["redis_user1_key"],
retry_on_error=[ConnectionError, TimeoutError],
retry=Retry(ExponentialBackoff(cap=20, base=1.5), 25),
db=Constants_selector.DB_NUM,
)
def setup_streamer():
global game_speed, evaluation_prob, past_version_prob, auto_minimize, infinite_boost_odds, streamer_mode, \
simulator, past_version_prob, pretrained_agents, non_latest_version_prob, matchmaker, terminals, selector_skip_k
streamer_mode = True
evaluation_prob = 0
game_speed = 1
auto_minimize = False
infinite_boost_odds = 0
simulator = False
past_version_prob = 0
# selector_skip_k = 5e-7
dispatcher = SelectionDispatcher(r, Constants_selector.SELECTION_CHANNEL)
parser.register_selection_listener(dispatcher)
pretrained_agents = {
nexto: {'prob': 1, 'eval': True, 'p_deterministic_training': 1., 'key': "Nexto"},
kbb: {'prob': 0, 'eval': True, 'p_deterministic_training': 1., 'key': "KBB"},
necto: {'prob': 0, 'eval': True, 'p_deterministic_training': 1., 'key': "Necto"},
}
non_latest_version_prob = [1, 0, 0, 0]
matchmaker = Matchmaker(sigma_target=1, pretrained_agents=pretrained_agents,
past_version_prob=past_version_prob,
full_team_trainings=1, full_team_evaluations=1,
force_non_latest_orange=True,
non_latest_version_prob=non_latest_version_prob,
showmatch=True,
orange_agent_text_file='orange_stream_file.txt'
)
if len(sys.argv) > 3:
if sys.argv[3] == 'GAMESTATE':
send_gamestate = True
elif sys.argv[3] == 'STREAMER':
setup_streamer()
elif sys.argv[3] == 'VISUALIZE':
visualize = True
if simulator:
from rlgym_sim.envs import Match as Sim_Match
from rlgym_sim.utils.terminal_conditions.common_conditions import GoalScoredCondition, TimeoutCondition, \
NoTouchTimeoutCondition
else:
from rlgym.envs import Match
from rlgym.utils.terminal_conditions.common_conditions import GoalScoredCondition, TimeoutCondition, \
NoTouchTimeoutCondition
obs_builder = CoyoteObsBuilder(expanding=True, tick_skip=Constants_selector.FRAME_SKIP, team_size=team_size,
extra_boost_info=True, embed_players=True,
stack_size=Constants_selector.STACK_SIZE,
action_parser=parser, infinite_boost_odds=infinite_boost_odds, selector=True,
selector_infinite_boost=selector_infinite_boost,
doubletap_indicator=True,
dtap_dict=dtap_status,
flip_reset_counter=True,
)
# TODO fix testing
setter = CoyoteSetter(mode="selector", dtap_dict=dtap_status)
# setter = CoyoteSetter(mode="test_mirror", dtap_dict=dtap_status)
# setter = HalfFlip()
match = Match(
game_speed=game_speed,
spawn_opponents=True,
team_size=team_size,
state_setter=setter,
obs_builder=obs_builder,
action_parser=parser,
terminal_conditions=terminals,
reward_function=rew,
tick_skip=frame_skip,
) if not simulator else Sim_Match(
spawn_opponents=True,
team_size=team_size,
state_setter=setter,
obs_builder=obs_builder,
action_parser=parser,
terminal_conditions=terminals,
reward_function=rew,
)
#
# pretrained_agents = {nectov1: 0.02, nexto: 0.02, kbb: 0.02, gp: 0}
# # pretrained_agents = {nectov1: 0.1, nexto: 0.1, kbb: 0.1, gp: 0.1}
worker = RedisRolloutWorker(r, name, match,
matchmaker=matchmaker,
sigma_target=2,
evaluation_prob=evaluation_prob,
force_paging=False,
dynamic_gm=dynamic_game,
send_obs=True,
auto_minimize=auto_minimize,
send_gamestates=send_gamestate,
gamemode_weights=gamemode_weights, # default 1/3
streamer_mode=streamer_mode,
deterministic_streamer=deterministic_streamer,
force_old_deterministic=force_old_deterministic,
pretrained_agents=pretrained_agents,
# testing
eval_setter=EndKickoff(),
simulator=simulator,
live_progress=False,
visualize=visualize,
batch_mode=batch_mode,
step_size=Constants_selector.STEP_SIZE,
selector_skip_k=True, # 1.6 seconds just need to have something here
# selector_boost_skip_k=0.0018, # 1 seconds
# unlock_selector_indices=simple_actions,
# unlock_indices_group=simple_actions,
# parser_boost_split=parser.get_model_action_size(),
# initial_choice_block_indices=[2, 37],
# initial_choice_block_weight=0.5,
tick_skip=Constants_selector.FRAME_SKIP,
)
worker.env._match._obs_builder.env = worker.env
parser.force_selector_choice = worker.force_selector_choice # ugh. I hate myself.
if simulator and visualize:
from rocketsimvisualizer import VisualizerThread
arena = worker.env._game.arena # noqa
v = VisualizerThread(arena, fps=60, tick_rate=120, tick_skip=frame_skip, step_arena=False, # noqa
overwrite_controls=False) # noqa
v.start()
worker.run()