forked from PaddlePaddle/Research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
118 lines (94 loc) · 3.78 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import random
import functools
import math
import cv2
import numpy as np
import pandas as pd
import paddle
import paddle.fluid as fluid
from clfnet import create_model
from parser import args_parser
import opencv_transforms as transforms
def create_evaluate_graph(use_cuda, args):
"""
Create Paddle Compute Graph for evaluate
"""
assert os.path.exists(args.resumed_checkpoint_path), "Pretrained model path {} not exist!".format(
args.resumed_checkpoint_path)
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
startup_prog = fluid.Program()
val_prog = fluid.Program()
with fluid.program_guard(val_prog, startup_prog):
# Use fluid.unique_name.guard() to share parameters with train network
with fluid.unique_name.guard():
clf = create_model(data_shape=[1024, 1024, 3],
loss_type=args.loss_type,
main_arch=args.arch,
name='infer')
# (val_loss, val_acc, val_output, val_img_id), val_reader
val_tensor_collector, val_reader = clf.net(class_dim=int(args.infer_classdim))
for tensor in val_tensor_collector:
tensor.persistable = True
val_prog = val_prog.clone(for_test=True)
# Executor
exe = fluid.Executor(place)
exe.run(startup_prog)
def func(var):
return os.path.exists(os.path.join(args.resumed_checkpoint_path, var.name))
fluid.io.load_vars(
exe, args.resumed_checkpoint_path, main_program=val_prog, predicate=func)
return exe, (val_prog, val_tensor_collector, val_reader)
def inference(exe, val_prog, file_paths, fetch_list):
"""
load images and feed into Compute Graph, accumulate running results.
"""
prediction = []
file_paths = list(map(str.strip, file_paths))
trans = transforms.Compose([
transforms.ResizeShort(size=1024),
transforms.CenterCrop(size=1024),
transforms.LocalMedianSubtract(size=1024, radius=90)
])
for img_id, file_path in enumerate(file_paths):
img = cv2.imread(file_path).astype("uint8")[:, :, ::-1]
img = trans(img)
img = np.expand_dims(img, 0)
val_out = exe.run(
program=val_prog,
feed={"infer_input": img,
"infer_label": np.array(0).reshape(1, 1),
"infer_img_id": np.array(img_id).reshape(1, 1)},
fetch_list=fetch_list, #[val_loss, val_acc, val_output, val_img_id]
use_program_cache=True)
prediction.append(val_out[2][0])
prediction = np.array(prediction).argmax(1)
return pd.DataFrame(prediction, index=file_paths, columns=['pred'])
def main(args):
"""Main"""
fluid.install_check.run_check()
use_cuda = True
exe, val_prog_tensors = create_evaluate_graph(use_cuda, args)
val_prog, val_tensor_collector, val_reader = val_prog_tensors
file_paths = open(args.infer_file, "r").readlines()
prediction = inference(exe, val_prog, file_paths,
fetch_list=val_tensor_collector)
print(prediction)
if __name__ == '__main__':
args = args_parser().parse_args()
print(args)
# Infer
main(args)