forked from PaddlePaddle/Research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer.py
executable file
·113 lines (96 loc) · 4 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import time
import sys
import math
import numpy as np
import argparse
import functools
import paddle
import paddle.fluid as fluid
import reader
import models
import utils
from utils.utility import add_arguments,print_arguments
parser = argparse.ArgumentParser(description=__doc__)
# yapf: disable
add_arg = functools.partial(add_arguments, argparser=parser)
add_arg('use_gpu', bool, True, "Whether to use GPU or not.")
add_arg('class_dim', int, 5000, "Class number.")
add_arg('image_shape', str, "3,224,224", "Input image size")
add_arg('pretrained_model', str, None, "Whether to use pretrained model.")
add_arg('model', str, "ResNeXt101_32x4d", "Set the network to use.")
add_arg('save_inference', bool, False, "Whether to save inference model or not")
add_arg('resize_short_size', int, 256, "Set resize short size")
add_arg('img_list', str, None, "list of valset")
add_arg('img_path', str, None, "path of valset")
# yapf: enable
def infer(args):
# parameters from arguments
class_dim = args.class_dim
model_name = args.model
save_inference = args.save_inference
pretrained_model = args.pretrained_model
image_shape = [int(m) for m in args.image_shape.split(",")]
model_list = [m for m in dir(models) if "__" not in m]
assert model_name in model_list, "{} is not in lists: {}".format(args.model,
model_list)
image = fluid.layers.data(name='image', shape=image_shape, dtype='float32')
# model definition
model = models.__dict__[model_name]()
if model_name == "GoogleNet":
out, _, _ = model.net(input=image, class_dim=class_dim)
else:
out = model.net(input=image, class_dim=class_dim)
test_program = fluid.default_main_program().clone(for_test=True)
fetch_list = [out.name]
place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
fluid.io.load_persistables(exe, pretrained_model)
if save_inference:
fluid.io.save_inference_model(
dirname=model_name,
feeded_var_names=['image'],
main_program=test_program,
target_vars=out,
executor=exe,
model_filename='model',
params_filename='params')
print("model: ",model_name," is already saved")
exit(0)
test_batch_size = 1
img_size = image_shape[1]
test_reader = paddle.batch(reader.test(args, img_size), batch_size=test_batch_size)
feeder = fluid.DataFeeder(place=place, feed_list=[image])
TOPK = 1
for batch_id, data in enumerate(test_reader()):
result = exe.run(test_program,
fetch_list=fetch_list,
feed=feeder.feed(data))
result = result[0][0]
pred_label = np.argsort(result)[::-1][:TOPK]
print("Test-{0}-score: {1}, class {2}"
.format(batch_id, result[pred_label], pred_label))
sys.stdout.flush()
def main():
args = parser.parse_args()
print_arguments(args)
infer(args)
if __name__ == '__main__':
main()