forked from PaddlePaddle/Research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
reader.py
executable file
·157 lines (131 loc) · 4.88 KB
/
reader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import math
import random
import functools
import numpy as np
import paddle
import cv2
import io
random.seed(0)
np.random.seed(0)
THREAD = 8
BUF_SIZE = 128
img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
def rotate_image(img):
""" rotate_image """
(h, w) = img.shape[:2]
center = (w / 2, h / 2)
angle = np.random.randint(-10, 11)
M = cv2.getRotationMatrix2D(center, angle, 1.0)
rotated = cv2.warpAffine(img, M, (w, h))
return rotated
def random_crop(img, size, scale=None, ratio=None):
""" random_crop """
scale = [0.08, 1.0] if scale is None else scale
ratio = [3. / 4., 4. / 3.] if ratio is None else ratio
aspect_ratio = math.sqrt(np.random.uniform(*ratio))
w = 1. * aspect_ratio
h = 1. / aspect_ratio
bound = min((float(img.shape[1]) / img.shape[0]) / (w ** 2),
(float(img.shape[0]) / img.shape[1]) / (h ** 2))
scale_max = min(scale[1], bound)
scale_min = min(scale[0], bound)
target_area = img.shape[0] * img.shape[1] * np.random.uniform(scale_min,
scale_max)
target_size = math.sqrt(target_area)
w = int(target_size * w)
h = int(target_size * h)
i = np.random.randint(0, img.size[0] - w + 1)
j = np.random.randint(0, img.size[1] - h + 1)
img = img[i:i+h, j:j+w, :]
resized = cv2.resize(img, (size, size),
interpolation=cv2.INTER_CUBIC
)
return resized
def distort_color(img):
return img
def resize_short(img, target_size):
""" resize_short """
percent = float(target_size) / min(img.shape[0], img.shape[1])
resized_width = int(round(img.shape[1] * percent))
resized_height = int(round(img.shape[0] * percent))
resized = cv2.resize(img, (resized_width, resized_height),
interpolation=cv2.INTER_CUBIC
)
return resized
def crop_image(img, target_size, center):
""" crop_image """
height, width = img.shape[:2]
size = target_size
if center == True:
w_start = (width - size) / 2
h_start = (height - size) / 2
else:
w_start = np.random.randint(0, width - size + 1)
h_start = np.random.randint(0, height - size + 1)
w_end = w_start + size
h_end = h_start + size
img = img[h_start:h_end, w_start:w_end, :]
return img
def process_image(sample, mode, color_jitter, rotate,
crop_size=224, mean=None, std=None):
""" process_image """
mean = [0.485, 0.456, 0.406] if mean is None else mean
std = [0.229, 0.224, 0.225] if std is None else std
img_path = sample[0]
img = cv2.imread(img_path)
img = cv2.resize(img, (crop_size, crop_size))
img = img[:, :, ::-1].astype('float32').transpose((2, 0, 1)) / 255
img_mean = np.array(mean).reshape((3, 1, 1))
img_std = np.array(std).reshape((3, 1, 1))
img -= img_mean
img /= img_std
return (img, )
def image_mapper(**kwargs):
""" image_mapper """
return functools.partial(process_image, **kwargs)
def _reader_creator(file_list,
mode,
shuffle=False,
color_jitter=False,
rotate=False,
data_dir=None,
crop_size=224):
def reader():
with open(file_list) as flist:
full_lines = [line.strip() for line in flist]
if shuffle:
np.random.shuffle(lines)
lines = full_lines
for line in lines:
img_path, label = line.strip().split()
img_path = os.path.join(data_dir, img_path)
yield [img_path]
image_mapper = functools.partial(process_image,
mode=mode, color_jitter=color_jitter, rotate=rotate, crop_size=crop_size)
reader = paddle.reader.xmap_readers(
image_mapper, reader, THREAD, BUF_SIZE, order=True)
return reader
def create_img_reader(args):
def reader():
img_path = args.img_path
yield [img_path]
return reader
def test(settings, crop_size):
file_list = settings.img_list
data_dir = settings.img_path
return _reader_creator(file_list, 'test', shuffle=False, data_dir=data_dir, crop_size=crop_size)