diff --git a/_sources/sobolevspaces/exercises.ipynb b/_sources/sobolevspaces/exercises.ipynb index b9ac9ed9..ed0c2732 100644 --- a/_sources/sobolevspaces/exercises.ipynb +++ b/_sources/sobolevspaces/exercises.ipynb @@ -43,16 +43,35 @@ "source": [ "## Poincaré inequality\n", "\n", + "### Eqivalent versions of the Poincaré inequality\n", + "\n", + "Prove that the following inequalities are equivalent\n", + "\n", + "\n", + "1. There exists a constant $c_p$ such that\n", + "\n", + " $$ \\| u - \\overline u \\|_{L_2}^2 \\leq c_P^2 \\, \\| \\nabla u \\|^2_{L_2} \\; \\forall \\, u \\in H^1(\\Omega)$$\n", + "\n", + "Here, $\\overline u$ is the mean value of $u$, which is $\\frac{1}{|\\Omega|} \\int_\\Omega u(x) dx$, understood as a constant function.\n", + "\n", + "2. There exists a constant $c_p$ such that\n", + "\n", + " $$ \\| u \\|_{L_2}^2 \\leq c_P^2 \\, \\| \\nabla u \\|_{L_2}^2 + \\frac{1}{|\\Omega|} \\left( \\int_\\Omega u \\right)^2 $$\n", + "\n", + "Hint: Pythagoras. First, observe that $\\overline u$ and $u - \\overline u$ are orthogonal with respect to the $L_2$ inner product.\n", + "\n", "### Poincaré inequality in 1D\n", "\n", "Prove the Poincaré inequality on the interval $I = (a,b)$ with elementary tools:\n", "\n", "$$\n", - "\\| u \\|_{L_2(I)}^2 \\leq c_P \\left( \\| u^\\prime \\|_{L_2(I)}^2 + \\big( \\int_I u dx \\big)^2 \\right)\n", + "\\| u - \\overline u \\|_{L_2(I)}^2 \\leq c_P^2 \\| u^\\prime \\|_{L_2(I)}^2\n", "\\qquad \\forall \\, u \\in C^1(\\overline I)\n", "$$\n", "\n", - "Hint: ..." + "How does the Poincaré constant depend on $a$ and $b$ ? \n", + "\n", + "Hint: Bring the left hand side to something similar to $\\int \\left( \\int u(y) - u(x) dx\\right) ^2 dy$. Then, use the fundamental theorem of calculus: $u(y)-u(x) = \\int_x^y u^\\prime(s) \\, ds$. finally: Cauchy-Schwarz" ] }, { @@ -71,7 +90,7 @@ "$$ \n", "where $\\overline u := | \\Omega |^{-1} \\int_\\Omega u \\, dx$ is the mean value.\n", "\n", - "Hint: apply the Bramble-Hilbert theorem\n", + "Use the Bramble-Hilbert theorem\n", "\n", "### Scaled domain\n", "\n", @@ -79,10 +98,11 @@ "constant $c$, independent of $r$ and $p$, such that\n", "\n", "$$\n", - "\\| u - \\overline u \\|_{L_2(\\Omega)} \\leq c r \\, \\| \\nabla u \\|_{L_2(\\Omega)} \\qquad \\forall \\, u \\in H^1(\\Omega)\n", + "\\| u - \\overline u \\|_{L_2} \\leq c r \\, \\| \\nabla u \\|_{L_2} \\qquad \\forall \\, u \\in H^1(B_r(p))\n", "$$ \n", "\n", - "Hint: Prove the estimate for the unit ball $B_1(0)$. Define a function $\\Phi$ mapping the unit-ball to the arbitrary ball $B_r(p)$. For $u \\in H^1(B_r(p))$, define the pull-back $u \\circ \\Phi \\in H^1(B_1(0))$\n" + "Hint: Prove the estimate for the unit ball $B_1(0)$. Define a function $\\Phi$ mapping the unit-ball to the arbitrary ball $B_r(p)$. For $u \\in H^1(B_r(p))$, define the pull-back $u \\circ \\Phi \\in H^1(B_1(0))$.\n", + "Does mean-value and pull-back commute, i.e. does there hold $\\overline u \\circ \\Phi = \\overline{ u \\circ \\Phi}$ ? \n" ] }, { diff --git a/searchindex.js b/searchindex.js index ca1f0d8d..03e156bd 100644 --- a/searchindex.js +++ b/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["DG/Nitsche", "DG/elliptic", "DG/elliptic_stdDG", "DG/fourthorder", "DG/instationary", "DG/splitting", "DG/stationary", "DG/stokes", "FEM/erroranalysis", "FEM/finiteelements", "FEM/myFiniteElement", "FEM/nonconforming", "FEM/sytemassembling", "MPIparallel/PETSc_interface", "MPIparallel/distmesh", "MPIparallel/hdivnstsimple/NavierStokesMT", "MPIparallel/hdivnstsimple/TestConvert", "MPIparallel/hdivnstsimple/veclaplace", "MPIparallel/hdivnstsimple/veclaplace-auxiliary", "MPIparallel/intro", "MPIparallel/paralleliteration", "MPIparallel/parallelstokes", "MPIparallel/petsc", "MPIparallel/vectypes", "README", "abstracttheory/BasicProperties", "abstracttheory/Coercive", "abstracttheory/RieszRepresentation", "abstracttheory/exercises", "abstracttheory/infsup", "abstracttheory/subspaceprojection", "aposteriori/aposteriori", "aposteriori/equilibrated", "aposteriori/goaldriven", "aposteriori/residualEE", "domaindecomposition/BDDC", "domaindecomposition/FETI", "domaindecomposition/FETI-DP", "domaindecomposition/introduction", "domaindecomposition/traces", "ex20210609", "helmholtz/absorbing", "helmholtz/grating", "iFEM", "intro", "iterative/Chebyshev", "iterative/Richardson", "iterative/conjugategradients", "iterative/gradientmethod", "iterative/preconditioning", "iterative/simple", "mixed/abstract", "mixed/abstractfem", "mixed/boundary", "mixed/pardep", "mixed/secondorder", "mixed/stokes", "mixedelasticity/dynamics", "mixedelasticity/hellingerreissner", "mixedelasticity/reducedsymmetry", "mixedelasticity/tdnns", "multigrid/algorithms", "multigrid/analysisMG", "multigrid/analysisML", "multigrid/multilevel-extension", "plates/hhj", "plates/hhj-tdnns", "plates/reissnermindlin", "plates/shells", "plates/tdnnsplate", "preamble", "primal/boundary_conditions", "primal/elasticity3D", "primal/exercises", "primal/first_example", "primal/solvers", "primal/subdomains", "pversion/hpfem", "saddlepoint/bramblepasciak", "saddlepoint/fewconstraints", "saddlepoint/parameterdependent", "saddlepoint/structure", "saddlepoint/useBP", "secondorder/erroranalysis", "secondorder/erroranalysisl2h1", "secondorder/finiteelements", "secondorder/framework", "secondorder/hdiv", "secondorder/hybridization", "sobolev/Friedrichs", "sobolev/Untitled", "sobolev/Untitled1", "sobolev/Untitled2", "sobolev/poincare", "sobolev/trace", "sobolevspaces/GeneralizedDerivatives", "sobolevspaces/SobolevSpaces", "sobolevspaces/Traces", "sobolevspaces/equivalentnorms", "sobolevspaces/exercises", "sobolevspaces/experiments", "sobolevspaces/preciseweak", "subspacecorrection/asm", "subspacecorrection/examples", "subspacecorrection/exercise", "subspacecorrection/minimaldd", "subspacecorrection/overlapping", "subspacecorrection/pversion", "timedependent/ODEs/runge_kutta", "timedependent/ODEs/singlestep", "timedependent/intro/heatequation", "timedependent/intro/waveequation", "timedependent/parabolic/exponential", "timedependent/waves/Maxwell-DG", "timedependent/waves/Untitled", "timedependent/waves/lts", "timedependent/waves/ringresonator", "timedependent/waves/testpml/ringresonator", "timedependent/waves/wave-leapfrogDG"], "filenames": ["DG/Nitsche.ipynb", "DG/elliptic.ipynb", "DG/elliptic_stdDG.ipynb", "DG/fourthorder.ipynb", "DG/instationary.ipynb", "DG/splitting.ipynb", "DG/stationary.ipynb", "DG/stokes.ipynb", "FEM/erroranalysis.ipynb", "FEM/finiteelements.ipynb", "FEM/myFiniteElement.ipynb", "FEM/nonconforming.ipynb", "FEM/sytemassembling.ipynb", "MPIparallel/PETSc_interface.ipynb", "MPIparallel/distmesh.ipynb", "MPIparallel/hdivnstsimple/NavierStokesMT.ipynb", "MPIparallel/hdivnstsimple/TestConvert.ipynb", "MPIparallel/hdivnstsimple/veclaplace.ipynb", "MPIparallel/hdivnstsimple/veclaplace-auxiliary.ipynb", "MPIparallel/intro.ipynb", "MPIparallel/paralleliteration.ipynb", "MPIparallel/parallelstokes.ipynb", "MPIparallel/petsc.ipynb", "MPIparallel/vectypes.ipynb", "README.md", "abstracttheory/BasicProperties.ipynb", "abstracttheory/Coercive.ipynb", "abstracttheory/RieszRepresentation.ipynb", "abstracttheory/exercises.ipynb", "abstracttheory/infsup.ipynb", "abstracttheory/subspaceprojection.ipynb", "aposteriori/aposteriori.ipynb", "aposteriori/equilibrated.ipynb", "aposteriori/goaldriven.ipynb", "aposteriori/residualEE.ipynb", "domaindecomposition/BDDC.ipynb", "domaindecomposition/FETI.ipynb", "domaindecomposition/FETI-DP.ipynb", "domaindecomposition/introduction.ipynb", "domaindecomposition/traces.ipynb", "ex20210609.ipynb", "helmholtz/absorbing.ipynb", "helmholtz/grating.ipynb", "iFEM.ipynb", "intro.md", "iterative/Chebyshev.ipynb", "iterative/Richardson.ipynb", "iterative/conjugategradients.ipynb", "iterative/gradientmethod.ipynb", "iterative/preconditioning.ipynb", "iterative/simple.ipynb", "mixed/abstract.ipynb", "mixed/abstractfem.ipynb", "mixed/boundary.ipynb", "mixed/pardep.ipynb", "mixed/secondorder.ipynb", "mixed/stokes.ipynb", "mixedelasticity/dynamics.ipynb", "mixedelasticity/hellingerreissner.ipynb", "mixedelasticity/reducedsymmetry.ipynb", "mixedelasticity/tdnns.ipynb", "multigrid/algorithms.ipynb", "multigrid/analysisMG.ipynb", "multigrid/analysisML.ipynb", "multigrid/multilevel-extension.ipynb", "plates/hhj.ipynb", "plates/hhj-tdnns.ipynb", "plates/reissnermindlin.ipynb", "plates/shells.ipynb", "plates/tdnnsplate.ipynb", "preamble.ipynb", "primal/boundary_conditions.ipynb", "primal/elasticity3D.ipynb", "primal/exercises.ipynb", "primal/first_example.ipynb", "primal/solvers.ipynb", "primal/subdomains.ipynb", "pversion/hpfem.ipynb", "saddlepoint/bramblepasciak.ipynb", "saddlepoint/fewconstraints.ipynb", "saddlepoint/parameterdependent.ipynb", "saddlepoint/structure.ipynb", "saddlepoint/useBP.ipynb", "secondorder/erroranalysis.ipynb", "secondorder/erroranalysisl2h1.ipynb", "secondorder/finiteelements.ipynb", "secondorder/framework.ipynb", "secondorder/hdiv.ipynb", "secondorder/hybridization.ipynb", "sobolev/Friedrichs.ipynb", "sobolev/Untitled.ipynb", "sobolev/Untitled1.ipynb", "sobolev/Untitled2.ipynb", "sobolev/poincare.ipynb", "sobolev/trace.ipynb", "sobolevspaces/GeneralizedDerivatives.ipynb", "sobolevspaces/SobolevSpaces.ipynb", "sobolevspaces/Traces.ipynb", "sobolevspaces/equivalentnorms.ipynb", "sobolevspaces/exercises.ipynb", "sobolevspaces/experiments.ipynb", "sobolevspaces/preciseweak.ipynb", "subspacecorrection/asm.ipynb", "subspacecorrection/examples.ipynb", "subspacecorrection/exercise.ipynb", "subspacecorrection/minimaldd.ipynb", "subspacecorrection/overlapping.ipynb", "subspacecorrection/pversion.ipynb", "timedependent/ODEs/runge_kutta.ipynb", "timedependent/ODEs/singlestep.ipynb", "timedependent/intro/heatequation.ipynb", "timedependent/intro/waveequation.ipynb", "timedependent/parabolic/exponential.ipynb", "timedependent/waves/Maxwell-DG.ipynb", "timedependent/waves/Untitled.ipynb", "timedependent/waves/lts.ipynb", "timedependent/waves/ringresonator.ipynb", "timedependent/waves/testpml/ringresonator.ipynb", "timedependent/waves/wave-leapfrogDG.ipynb"], "titles": ["38. Nitsche\u2019s Method for boundary and interface conditions", "40. Hybrid DG for elliptic equations", "DG - Methods for elliptic problems", "42. Fourth Order Equation", "37. Instationary Transport Equation", "41. Splitting Methods for the time-dependent convection diffusion equation", "36. Stationary Transport Equation", "43. H(div)-conforming Stokes", "22. Finite element error analysis", "20. Finite Element Method", "24. Implementation of Finite Elements", "23. Non-conforming Finite Element Methods", "21. Finite element system assembling", "84. NGSolve - PETSc interface", "79. Distributed Meshes and Spaces", "<no title>", "<no title>", "<no title>", "<no title>", "78. Introduction to MPI with mpi4py", "82. Iteration methods in parallel", "85. Solving Stokes in parallel", "83. Using PETSc", "81. Consistent and Distributed Vectors", "This repository contains an interactive introduction to the Finite Element Method", "7. Basic properties", "10. Coercive variational problems and their approximation", "9. Riesz representation theorem and symmetric variational problems", "12. Exercises", "11. Inf-sup stable variational problems", "8. Projection onto subspaces", "25. A posteriori error estimates", "28. Equilibrated Residual Error Estimates", "27. Goal driven error estimates", "26. The residual error estimator", "77. BDDC - Preconditioner", "75. FETI methods", "76. FETI-DP", "72. Introduction to Non-overlapping Domain Decomposition", "73. Traces spaces", "Implement a parallel BDDC preconditioner", "Helmholtz Equation", "Grating", "An Interactive Introduction to the Finite Element Method", "An Interactive Introduction to the Finite Element Method", "54. The Chebyshev Method", "51. The Richardson Iteration", "55. Conjugate Gradients", "52. The Gradient Method", "53. Preconditioning", "50. Basic Iterative Methods", "33. Abstract Theory", "34. Abstract theory for mixed finite element methods", "31. Boundary Conditions", "35. Parameter Dependent Problems", "32. Mixed Methods for second order equations", "30. Stokes Equation", "Non-linear dynamics", "\\(\\DeclareMathOperator{\\opdiv}{div}\\)\nHellinger Reissner mixed formulation", "\\(\\DeclareMathOperator{\\opdiv}{div}\\)\n\\(\\DeclareMathOperator{\\opcurl}{curl}\\)\n\\(\\DeclareMathOperator{\\eps}{\\varepsilon}\\)\nReduced symmetry methods", "Tangential displacement normal normal stress continuous finite elements", "62. Multigrid and Multilevel Methods", "64. Analysis of the Multigrid Iteration", "63. Analysis of the multi-level preconditioner", "65. Multi-level Extension", "The Hellan Herrmann Johnson Method for Kirchhoff plates", "Relationship between HHJ and TDNNS", "Reissner Mindlin Plates", "Nonlinear Shells", "3D-TDNNS Elasticity and Reissner Mindlin Plate elements", "Preamble", "2. Boundary Conditions", "5. 3D Solid Mechanics", "6. Exercises", "1. Solving the Poisson Equation", "4. Iterative Solvers", "3. Variable Coefficients", "29. hp - Finite Elements", "67. The Bramble-Pasciak Transformation", "68. A Small Number of Constraints", "70. Parameter Dependent Problems", "66. Structure of Saddle-point Problems", "<no title>", "47. Finite Element Error Analysis", "48. Error Analysis in \\(L_2 \\times H^1\\)", "46. Finite Elements in \\(H(\\operatorname{div})\\)", "44. Application of the abstract theory", "45. The function space \\(H(\\operatorname{div})\\)", "49. Hybridization Techniques", "Friedrichs\u2019 Inequality", "<no title>", "<no title>", "Friedrichs\u2019 Inequality", "The Poincar\u00e9 inequality", "The Trace Inequality", "13. Generalized derivatives", "14. Sobolev spaces", "15. Trace theorems and their applications", "16. Equivalent norms on \\(H^1\\) and on sub-spaces", "19. Exercises", "18. Experiments with norms", "17. The weak formulation of the Poisson equation", "56. Additive Schwarz Methods", "57. Some Examples of ASM preconditioners", "61. Exercise: Robust preconditioners", "59. Domain Decomposition with minimal overlap", "60. Overlapping Domain Decomposition Methods", "58. Schwarz preconditioners for high order finite elements", "Runge Kutta Methods", "Single-step methods", "Heat Equation", "Wave Equation", "Exponential Integrators for Parabolic Equations", "<no title>", "<no title>", "Mass-lumping and Local time-stepping", "Nano-optics: A ring-resonator", "Nano-optics: A ring-resonator", "Discontinuous Galerkin for the Wave Equation"], "terms": {"from": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 29, 31, 32, 34, 35, 36, 37, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 60, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 93, 94, 95, 97, 98, 100, 102, 103, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118], "netgen": [0, 1, 2, 3, 4, 5, 6, 7, 14, 15, 17, 18, 21, 35, 36, 37, 40, 41, 42, 44, 45, 53, 55, 56, 60, 61, 62, 64, 65, 67, 68, 70, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 88, 100, 105, 110, 111, 112, 115, 118], "occ": [0, 15, 17, 18, 21, 72, 75, 76, 82, 100, 105, 110, 111, 112, 115, 118], "import": [0, 1, 2, 3, 4, 5, 6, 7, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 26, 35, 36, 37, 40, 41, 42, 44, 45, 46, 47, 48, 49, 52, 53, 55, 56, 60, 61, 62, 64, 65, 67, 68, 71, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 86, 88, 89, 93, 94, 96, 100, 103, 105, 106, 107, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118], "ngsolv": [0, 1, 2, 3, 4, 5, 6, 7, 10, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 35, 36, 37, 40, 41, 42, 45, 46, 47, 48, 49, 53, 55, 56, 60, 61, 62, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 88, 89, 93, 94, 100, 103, 105, 106, 107, 110, 111, 112, 113, 114, 115, 116, 117, 118], "webgui": [0, 1, 2, 3, 4, 5, 6, 7, 10, 13, 14, 15, 16, 17, 18, 20, 21, 22, 24, 35, 36, 37, 40, 41, 44, 45, 46, 47, 53, 55, 56, 61, 62, 64, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 88, 89, 93, 94, 100, 105, 106, 107, 110, 111, 112, 113, 115, 116, 117, 118], "draw": [0, 1, 2, 3, 4, 5, 6, 7, 10, 13, 14, 15, 16, 17, 18, 20, 21, 22, 35, 36, 37, 40, 41, 42, 44, 45, 46, 47, 53, 55, 56, 60, 61, 62, 64, 65, 67, 68, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 88, 89, 93, 94, 100, 105, 106, 107, 110, 111, 112, 113, 115, 116, 117, 118], "mesh": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 13, 15, 16, 17, 18, 20, 21, 22, 23, 31, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 53, 55, 56, 60, 61, 62, 63, 64, 65, 67, 68, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 86, 88, 89, 93, 94, 97, 100, 103, 106, 107, 110, 111, 112, 113, 115, 116, 117, 118], "unit_squar": [0, 1, 2, 3, 4, 5, 6, 10, 13, 14, 16, 20, 22, 23, 40, 41, 45, 46, 47, 48, 49, 53, 55, 56, 61, 62, 64, 65, 67, 71, 74, 81, 83, 85, 88, 100, 103, 105, 106, 107, 110, 111, 112, 115, 118], "generatemesh": [0, 1, 2, 3, 4, 5, 6, 7, 10, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 35, 36, 37, 40, 41, 42, 45, 46, 47, 48, 49, 53, 55, 56, 60, 61, 62, 64, 65, 67, 68, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 88, 100, 103, 105, 106, 107, 110, 111, 112, 113, 115, 118], "maxh": [0, 1, 2, 3, 4, 5, 6, 7, 10, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 35, 36, 37, 40, 41, 42, 45, 46, 47, 48, 49, 53, 55, 56, 60, 61, 62, 64, 65, 67, 68, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 88, 100, 103, 105, 106, 107, 110, 111, 112, 113, 115, 118], "0": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 115, 116, 117, 118], "05": [0, 6, 7, 15, 17, 18, 20, 21, 36, 37, 40, 41, 46, 56, 61, 74, 75, 76, 78, 80, 81, 82, 88, 103, 105, 107, 110, 111, 112, 116, 117, 118], "A": [0, 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 45, 46, 47, 48, 49, 50, 51, 52, 54, 58, 59, 60, 61, 62, 63, 67, 70, 71, 73, 74, 76, 77, 78, 80, 81, 82, 88, 96, 98, 100, 101, 102, 103, 105, 106, 108, 109, 110, 111, 112, 115, 118], "penalti": [0, 1, 37, 67, 74], "approxim": [0, 11, 12, 25, 31, 34, 38, 44, 45, 46, 49, 52, 60, 61, 63, 65, 74, 75, 77, 80, 83, 94, 106, 108, 109, 110, 111, 112, 115], "dirichlet": [0, 1, 3, 5, 7, 10, 11, 12, 13, 17, 18, 20, 21, 26, 29, 31, 34, 35, 36, 37, 39, 40, 41, 42, 53, 56, 60, 61, 64, 65, 67, 68, 71, 72, 74, 75, 76, 77, 78, 79, 81, 82, 86, 88, 89, 97, 100, 101, 103, 104, 105, 106, 110], "u": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 88, 89, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 115, 118], "u_d": [0, 8, 12, 39, 51, 53, 71, 72, 80, 81, 86, 101, 110], "i": [0, 1, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 83, 84, 85, 86, 87, 88, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 107, 108, 109, 110, 111, 112, 115, 116, 117, 118], "int_": [0, 1, 3, 4, 6, 8, 11, 12, 26, 27, 28, 32, 34, 36, 38, 39, 40, 41, 49, 51, 52, 53, 54, 55, 60, 63, 65, 68, 71, 72, 73, 74, 76, 77, 79, 80, 81, 83, 84, 85, 86, 87, 88, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 108, 109, 110, 118], "omega": [0, 1, 4, 6, 8, 9, 11, 12, 25, 26, 27, 28, 31, 32, 34, 38, 39, 41, 42, 49, 51, 53, 55, 56, 59, 63, 64, 71, 72, 73, 74, 76, 81, 83, 84, 86, 87, 88, 89, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 109, 110, 111], "nabla": [0, 1, 3, 5, 6, 11, 12, 26, 27, 28, 29, 31, 32, 34, 36, 37, 38, 39, 40, 41, 47, 48, 49, 51, 53, 54, 55, 56, 59, 60, 63, 65, 66, 67, 68, 71, 72, 73, 74, 76, 77, 80, 81, 83, 84, 85, 86, 87, 89, 92, 93, 94, 97, 98, 99, 100, 101, 103, 104, 106, 109, 110, 118], "v": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 64, 65, 66, 67, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 115, 118], "gamma_d": [0, 8, 11, 12, 53, 54, 71, 72, 80, 81, 86, 89, 92, 98, 100, 101, 104], "alpha": [0, 1, 2, 3, 5, 8, 9, 11, 12, 28, 31, 47, 48, 49, 51, 71, 77, 78, 80, 95, 96, 98, 99, 101, 103, 105, 118], "f": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 17, 20, 21, 22, 23, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 63, 65, 67, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 88, 97, 99, 101, 105, 107, 108, 109, 110, 111, 118], "qquad": [0, 6, 8, 9, 11, 12, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 39, 41, 45, 47, 48, 49, 50, 51, 55, 60, 61, 62, 63, 64, 65, 71, 72, 74, 77, 79, 80, 81, 85, 86, 89, 92, 94, 95, 97, 98, 99, 100, 101, 102, 103, 108, 109, 110, 111, 112], "foral": [0, 8, 9, 11, 12, 25, 26, 27, 28, 29, 30, 32, 33, 34, 38, 39, 47, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63, 65, 67, 71, 73, 74, 77, 79, 80, 81, 83, 86, 87, 88, 89, 92, 95, 97, 98, 99, 100, 101, 102, 106, 109, 110, 111, 112], "fe": [0, 1, 2, 4, 5, 6, 10, 13, 14, 20, 22, 23, 31, 35, 36, 37, 40, 41, 42, 45, 46, 47, 48, 49, 61, 62, 64, 68, 71, 72, 74, 75, 76, 79, 80, 86, 89, 93, 94, 100, 103, 105, 106, 107, 110, 111, 112, 115, 118], "h1": [0, 3, 10, 13, 14, 20, 21, 22, 23, 35, 36, 37, 40, 41, 42, 45, 46, 47, 48, 49, 53, 56, 61, 62, 64, 65, 67, 68, 71, 72, 74, 75, 76, 81, 82, 86, 89, 93, 94, 100, 103, 105, 106, 107, 110, 111, 112, 115], "order": [0, 1, 2, 4, 5, 6, 7, 10, 11, 13, 14, 15, 16, 17, 18, 21, 22, 23, 32, 38, 41, 42, 45, 46, 47, 48, 49, 53, 56, 60, 61, 62, 64, 65, 67, 68, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 88, 89, 93, 94, 96, 97, 98, 100, 102, 103, 105, 106, 108, 109, 110, 111, 112, 113, 115, 116, 117, 118], "2": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 59, 60, 61, 62, 63, 64, 65, 67, 68, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 93, 94, 95, 96, 98, 99, 100, 101, 102, 103, 104, 105, 107, 108, 109, 110, 111, 112, 113, 115, 116, 118], "tnt": [0, 2, 10, 13, 16, 20, 21, 22, 23, 35, 36, 37, 40, 41, 45, 46, 47, 48, 49, 61, 62, 64, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 89, 93, 94, 100, 103, 105, 106, 107, 110, 111, 112, 113, 115, 118], "pen": 0, "100": [0, 5, 15, 20, 36, 37, 46, 62, 75, 80, 86, 105, 107, 110, 111, 112, 113, 115, 118], "bilinearform": [0, 1, 2, 3, 4, 5, 6, 7, 10, 13, 16, 17, 18, 20, 21, 22, 35, 36, 37, 40, 41, 42, 45, 46, 47, 48, 49, 53, 55, 56, 60, 61, 62, 64, 65, 67, 68, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 86, 88, 89, 93, 94, 100, 103, 105, 106, 107, 110, 111, 112, 113, 115, 118], "grad": [0, 1, 2, 3, 4, 5, 6, 7, 10, 13, 20, 21, 22, 35, 36, 37, 40, 41, 42, 45, 46, 47, 48, 49, 53, 56, 61, 62, 64, 65, 67, 68, 71, 72, 74, 75, 76, 78, 79, 81, 82, 83, 86, 89, 93, 94, 100, 103, 105, 106, 107, 110, 111, 112, 115, 118], "dx": [0, 1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 13, 16, 17, 18, 20, 21, 22, 23, 25, 26, 27, 28, 34, 35, 36, 37, 39, 40, 41, 42, 45, 46, 47, 48, 49, 53, 55, 56, 61, 62, 63, 64, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 86, 88, 89, 93, 94, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 118], "d": [0, 1, 2, 5, 6, 7, 8, 11, 12, 13, 17, 18, 22, 25, 26, 27, 30, 32, 34, 35, 36, 37, 41, 42, 44, 45, 49, 51, 53, 55, 56, 57, 58, 59, 61, 62, 63, 64, 70, 71, 72, 73, 74, 77, 79, 80, 81, 85, 86, 87, 89, 92, 94, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110, 112, 118], "assembl": [0, 1, 2, 3, 4, 5, 6, 7, 10, 13, 16, 17, 18, 20, 21, 22, 23, 35, 36, 37, 40, 41, 42, 44, 45, 46, 47, 48, 49, 53, 55, 56, 60, 61, 62, 64, 65, 67, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 86, 88, 89, 93, 94, 100, 103, 105, 106, 107, 110, 111, 112, 113, 115, 118], "linearform": [0, 1, 2, 3, 4, 5, 6, 7, 10, 13, 16, 17, 20, 22, 23, 35, 36, 37, 40, 41, 42, 45, 46, 47, 48, 49, 53, 55, 56, 60, 61, 65, 67, 71, 72, 74, 75, 76, 79, 80, 81, 83, 86, 88, 93, 105, 107, 110, 111], "10": [0, 1, 2, 4, 5, 17, 18, 20, 36, 37, 38, 40, 41, 42, 45, 46, 47, 48, 49, 53, 56, 60, 61, 62, 63, 71, 75, 78, 79, 80, 81, 82, 88, 89, 93, 94, 102, 107, 111, 112, 115, 117, 118], "gfu": [0, 1, 2, 4, 5, 6, 7, 10, 13, 14, 16, 17, 18, 20, 21, 22, 23, 35, 36, 37, 40, 41, 42, 45, 46, 47, 48, 49, 53, 55, 56, 61, 62, 64, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 86, 88, 89, 93, 94, 100, 105, 107, 110, 111, 112, 115, 116, 117, 118], "gridfunct": [0, 1, 2, 3, 4, 5, 6, 7, 10, 13, 14, 16, 17, 18, 20, 21, 22, 23, 35, 36, 37, 40, 41, 42, 45, 46, 47, 48, 49, 53, 55, 56, 60, 61, 62, 64, 65, 67, 68, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 88, 89, 93, 94, 100, 103, 105, 106, 107, 110, 111, 112, 113, 115, 118], "vec": [0, 1, 2, 3, 4, 5, 6, 7, 10, 13, 14, 16, 17, 18, 20, 21, 22, 23, 35, 36, 37, 40, 41, 42, 45, 46, 47, 48, 49, 53, 55, 56, 60, 61, 62, 64, 65, 67, 68, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 88, 89, 93, 94, 100, 103, 105, 106, 107, 110, 111, 112, 113, 115, 116, 117, 118], "data": [0, 1, 2, 3, 4, 5, 6, 7, 10, 13, 14, 16, 17, 18, 19, 20, 21, 31, 32, 35, 36, 37, 38, 39, 40, 41, 42, 45, 46, 47, 48, 49, 53, 55, 56, 60, 61, 62, 65, 67, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 86, 88, 89, 93, 94, 100, 105, 106, 107, 110, 111, 112, 113, 115, 116, 117, 118], "mat": [0, 1, 2, 3, 5, 6, 7, 10, 13, 16, 17, 18, 20, 21, 22, 35, 36, 37, 40, 41, 42, 45, 46, 47, 48, 49, 53, 55, 56, 60, 61, 62, 64, 65, 67, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 86, 88, 89, 93, 94, 100, 103, 105, 106, 107, 110, 111, 112, 113, 115, 116, 117, 118], "invers": [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 16, 17, 21, 35, 36, 37, 40, 41, 42, 49, 50, 53, 55, 56, 60, 61, 63, 64, 65, 67, 71, 74, 75, 76, 78, 79, 81, 82, 83, 86, 88, 89, 93, 94, 102, 103, 105, 106, 110, 111, 112, 113, 115, 118], "print": [0, 1, 2, 4, 10, 14, 17, 19, 20, 21, 22, 23, 36, 37, 40, 44, 45, 46, 48, 49, 53, 60, 61, 64, 65, 68, 74, 75, 76, 78, 79, 80, 82, 85, 89, 93, 94, 100, 103, 105, 106, 107, 112, 113, 115, 116, 117, 118], "error": [0, 11, 13, 20, 21, 22, 26, 27, 29, 43, 45, 46, 47, 48, 49, 62, 65, 69, 73, 74, 80, 88, 102, 106, 112], "bc": [0, 7, 35, 36, 37, 42, 53, 60, 68, 71, 78, 82, 86, 105, 118], "sqrt": [0, 28, 29, 32, 39, 45, 47, 48, 49, 50, 62, 63, 77, 78, 81, 85, 89, 94, 97, 100, 108, 109, 116], "integr": [0, 1, 6, 8, 10, 11, 12, 14, 23, 32, 33, 34, 43, 52, 53, 55, 63, 73, 74, 77, 81, 85, 86, 87, 88, 89, 93, 94, 95, 100, 103, 108, 110, 115, 118], "052752210661407825": 0, "exercis": [0, 10, 11, 26, 29, 32, 39, 43, 44, 49, 71, 72, 75, 76, 77, 97, 103, 105, 107], "how": [0, 10, 19, 22, 28, 38, 45, 46, 71, 75, 99], "doe": [0, 3, 8, 14, 20, 23, 29, 44, 46, 47, 62, 71, 74, 81, 94, 97, 99, 100, 105, 106, 115], "depend": [0, 4, 8, 11, 19, 29, 31, 32, 44, 49, 52, 60, 63, 73, 75, 77, 94, 99, 100, 103, 107, 109, 110, 116, 117], "paramet": [0, 1, 8, 10, 12, 36, 43, 44, 45, 48, 49, 59, 67, 68, 74, 79, 81, 88, 94, 96], "get": [0, 3, 10, 14, 23, 31, 32, 34, 36, 38, 44, 45, 47, 49, 51, 52, 54, 59, 62, 63, 64, 74, 77, 81, 83, 85, 86, 87, 89, 97, 100, 102, 103, 106, 107, 118], "reduc": [0, 12, 14, 28, 38, 43, 46, 47, 48, 62, 65, 71, 79, 98, 109, 111], "when": [0, 24, 38, 45, 46, 61, 95], "space": [0, 3, 6, 8, 9, 10, 11, 13, 25, 26, 27, 28, 29, 30, 32, 35, 36, 37, 38, 45, 51, 52, 53, 54, 55, 58, 59, 60, 61, 62, 63, 64, 67, 71, 73, 76, 77, 79, 80, 81, 83, 85, 86, 88, 95, 100, 101, 103, 106, 107, 111, 112, 118], "enrichr": 0, "modifi": [0, 39, 45, 46], "right": [0, 5, 6, 8, 10, 11, 20, 22, 23, 26, 28, 29, 32, 33, 34, 35, 36, 39, 42, 45, 46, 47, 49, 50, 51, 53, 59, 60, 62, 63, 66, 67, 71, 74, 76, 77, 78, 79, 80, 81, 86, 87, 88, 89, 93, 95, 96, 97, 98, 99, 100, 101, 102, 103, 109, 110, 111, 118], "hand": [0, 8, 10, 20, 22, 23, 29, 32, 33, 34, 35, 39, 62, 63, 71, 74, 79, 80, 86, 88, 95, 98, 101, 102, 109, 118], "side": [0, 8, 10, 11, 20, 22, 23, 28, 29, 32, 33, 34, 35, 39, 62, 63, 71, 74, 76, 77, 79, 86, 88, 95, 97, 98, 100, 101, 102, 103, 109, 118], "set": [0, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 16, 17, 18, 21, 23, 25, 26, 28, 32, 35, 36, 37, 39, 46, 49, 51, 52, 54, 56, 60, 61, 62, 64, 68, 71, 73, 74, 77, 78, 80, 82, 84, 85, 88, 95, 96, 98, 101, 102, 103, 105, 106, 110, 111, 112, 113, 115, 118], "x": [0, 4, 5, 6, 8, 9, 10, 13, 14, 15, 16, 17, 18, 21, 22, 26, 28, 34, 35, 36, 37, 39, 40, 41, 45, 46, 47, 48, 49, 50, 53, 55, 56, 60, 61, 62, 64, 65, 67, 71, 72, 73, 74, 75, 76, 77, 78, 81, 82, 83, 85, 86, 88, 89, 93, 94, 95, 96, 97, 98, 99, 100, 101, 105, 106, 107, 109, 110, 111, 112, 113, 115, 118], "y": [0, 4, 5, 6, 7, 9, 10, 14, 15, 16, 17, 18, 21, 28, 35, 36, 37, 39, 40, 41, 42, 45, 46, 47, 48, 49, 50, 53, 61, 64, 68, 72, 73, 74, 76, 77, 78, 81, 82, 85, 89, 93, 94, 97, 98, 99, 105, 106, 107, 108, 109, 110, 111, 112, 113, 115, 118], "partial": [0, 1, 3, 4, 5, 6, 8, 11, 12, 26, 31, 32, 34, 36, 38, 39, 40, 41, 44, 50, 51, 52, 53, 54, 55, 56, 59, 60, 63, 64, 65, 71, 73, 74, 76, 77, 81, 84, 86, 87, 89, 92, 94, 95, 96, 97, 98, 100, 101, 105, 110, 111, 115, 118], "frac": [0, 1, 4, 5, 8, 11, 12, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 39, 40, 41, 45, 46, 47, 48, 49, 51, 52, 53, 54, 59, 62, 63, 64, 67, 71, 73, 74, 76, 77, 79, 80, 81, 83, 84, 86, 87, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 106, 108, 109, 110, 111, 112, 115, 118], "n": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 29, 30, 32, 34, 38, 39, 41, 42, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 60, 61, 63, 65, 66, 67, 68, 71, 72, 74, 76, 77, 79, 81, 84, 86, 87, 88, 93, 94, 95, 96, 97, 100, 101, 103, 105, 109, 110, 112, 113, 115, 118], "p": [0, 1, 7, 8, 9, 21, 25, 30, 31, 32, 40, 45, 47, 48, 49, 51, 52, 54, 56, 73, 77, 78, 79, 80, 81, 82, 83, 84, 85, 88, 96, 98, 99, 100, 103, 106, 107, 115, 118], "h": [0, 1, 2, 3, 5, 8, 11, 16, 21, 28, 31, 32, 33, 34, 36, 38, 40, 43, 44, 46, 51, 53, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 71, 72, 73, 75, 76, 77, 80, 81, 82, 83, 86, 88, 89, 92, 94, 95, 96, 99, 100, 101, 104, 105, 106, 109, 110, 113, 118], "4": [0, 5, 7, 8, 10, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 30, 36, 37, 38, 45, 46, 53, 61, 63, 64, 65, 68, 73, 74, 75, 77, 78, 80, 81, 82, 85, 88, 100, 101, 102, 103, 105, 107, 108, 111, 112, 118], "5": [0, 2, 3, 4, 5, 6, 7, 11, 15, 17, 18, 20, 21, 32, 35, 36, 37, 41, 42, 45, 46, 53, 56, 60, 61, 62, 68, 72, 74, 75, 76, 77, 78, 80, 81, 82, 88, 89, 93, 94, 100, 105, 107, 109, 110, 111, 112, 113, 115, 118], "specialcf": [0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 21, 55, 60, 65, 67, 68, 82, 88, 113, 116, 118], "mesh_siz": [0, 1, 2, 3, 5, 7, 21, 82], "normal": [0, 1, 2, 3, 4, 5, 6, 7, 11, 16, 17, 18, 32, 34, 38, 52, 55, 58, 65, 67, 68, 81, 85, 86, 88, 89, 93, 94, 97, 100, 108, 113, 118], "dim": [0, 7, 10, 15, 17, 18, 23, 29, 55, 61, 64, 68, 74, 76, 82, 88, 100, 105, 106, 115, 118], "skeleton": [0, 2, 6, 36, 118], "true": [0, 1, 2, 3, 4, 5, 6, 7, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 26, 27, 31, 33, 34, 40, 41, 42, 45, 46, 48, 49, 51, 52, 53, 60, 61, 64, 65, 67, 68, 71, 72, 74, 78, 79, 80, 81, 82, 85, 88, 89, 97, 98, 100, 101, 105, 106, 107, 110, 111, 112, 113, 115, 118], "sparsecholeski": [0, 1, 2, 5, 36, 37, 42, 60, 75, 82, 100, 106, 118], "3": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 36, 37, 41, 42, 45, 46, 53, 56, 60, 61, 63, 64, 68, 71, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 85, 86, 88, 89, 93, 94, 95, 98, 100, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 115, 116, 117, 118], "421484801697196e": [], "06": [0, 20, 36, 37, 46, 61, 74, 75, 78, 80, 81, 82, 88, 107, 112], "The": [0, 1, 3, 4, 5, 6, 8, 9, 10, 12, 13, 20, 22, 23, 24, 25, 26, 27, 29, 30, 32, 33, 35, 36, 37, 38, 39, 41, 47, 50, 51, 52, 53, 55, 56, 58, 59, 61, 63, 64, 67, 70, 71, 72, 73, 75, 76, 79, 80, 81, 83, 84, 85, 86, 88, 95, 96, 98, 100, 103, 105, 106, 107, 108, 109, 110, 112, 118], "bilinear": [0, 1, 4, 8, 11, 12, 25, 26, 27, 29, 32, 33, 35, 36, 37, 40, 46, 49, 51, 54, 60, 66, 71, 73, 76, 80, 81, 86, 94, 98, 101, 103, 106, 118], "form": [0, 1, 4, 8, 11, 12, 23, 25, 26, 27, 29, 32, 33, 35, 36, 37, 39, 40, 41, 44, 46, 49, 51, 52, 53, 54, 56, 60, 66, 71, 73, 76, 77, 79, 80, 81, 85, 86, 88, 94, 97, 98, 101, 102, 103, 106, 110, 118], "coerciv": [0, 1, 8, 11, 29, 34, 43, 44, 51, 98, 101], "w": [0, 3, 4, 5, 8, 9, 11, 17, 18, 20, 25, 26, 28, 29, 30, 31, 33, 39, 40, 45, 47, 49, 51, 61, 62, 65, 66, 67, 68, 71, 73, 77, 78, 79, 85, 95, 97, 98, 101, 102, 106, 110, 115, 116, 117, 118], "r": [0, 5, 7, 8, 9, 11, 12, 15, 17, 18, 20, 21, 23, 25, 26, 28, 29, 30, 32, 33, 34, 35, 36, 37, 40, 42, 44, 45, 46, 47, 48, 49, 50, 56, 61, 66, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 85, 86, 89, 92, 94, 95, 96, 97, 98, 99, 100, 101, 103, 106, 107, 109, 110, 112, 118], "t": [0, 1, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 21, 23, 25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 44, 45, 47, 48, 49, 50, 52, 54, 55, 59, 60, 61, 62, 63, 64, 65, 67, 68, 71, 72, 74, 77, 78, 79, 80, 81, 82, 84, 85, 86, 88, 93, 94, 97, 100, 102, 103, 105, 106, 108, 109, 110, 111, 112, 115, 116, 117, 118], "norm": [0, 11, 15, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 43, 44, 46, 48, 49, 50, 51, 60, 62, 63, 64, 72, 74, 77, 80, 81, 82, 84, 87, 93, 94, 96, 97, 101, 105, 106, 112, 113], "induc": [0, 26, 81, 103], "suffici": [0, 1, 8, 29], "larg": [0, 1, 12, 28, 29, 31, 49, 50, 62, 74, 75, 76, 80, 105, 109, 115], "we": [0, 1, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 67, 71, 74, 75, 77, 78, 79, 80, 81, 83, 84, 85, 86, 87, 88, 89, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 108, 109, 110, 111, 112, 115, 118], "check": [0, 30, 44, 74, 96, 105, 118], "posit": [0, 25, 28, 32, 35, 48, 49, 50, 61, 62, 65, 67, 75, 76, 81, 88, 89, 96, 98, 100, 101, 105, 109], "definit": [0, 8, 9, 11, 25, 27, 28, 29, 30, 34, 35, 48, 49, 50, 54, 61, 63, 65, 75, 77, 81, 87, 88, 95, 96, 100, 101, 102, 103, 106, 107, 109, 110], "comput": [0, 4, 12, 22, 23, 24, 26, 31, 32, 33, 34, 38, 39, 44, 45, 47, 49, 53, 61, 68, 70, 71, 74, 75, 79, 81, 85, 88, 94, 95, 99, 100, 105, 107, 108, 110, 118], "few": [0, 24, 38, 44, 45, 46, 77, 80, 81, 94, 100], "smallest": [0, 23, 25, 32, 45, 94, 100, 103, 105], "eigenvalu": [0, 39, 45, 46, 49, 62, 81, 89, 93, 94, 97, 100, 103, 105, 106, 107, 109], "lambda": [0, 25, 32, 36, 39, 45, 46, 47, 49, 53, 54, 62, 72, 76, 81, 83, 86, 89, 93, 94, 97, 98, 100, 102, 109, 118], "where": [0, 3, 6, 8, 9, 11, 19, 25, 32, 33, 34, 35, 37, 40, 49, 52, 54, 59, 60, 61, 62, 63, 64, 66, 67, 71, 74, 76, 77, 79, 80, 81, 97, 99, 100, 102, 103, 105, 106, 109, 110, 112, 115, 118], "matrix": [0, 3, 4, 8, 9, 10, 11, 12, 13, 20, 22, 25, 28, 35, 36, 37, 40, 46, 47, 48, 49, 50, 51, 59, 60, 61, 62, 64, 65, 71, 74, 75, 79, 80, 81, 88, 93, 102, 103, 105, 106, 108, 109, 110, 112, 115, 116, 117, 118], "defin": [0, 4, 8, 9, 10, 11, 12, 14, 19, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 39, 40, 45, 46, 48, 50, 52, 56, 57, 60, 61, 62, 63, 64, 73, 74, 77, 81, 85, 87, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 109, 112, 117, 118], "solver": [0, 1, 5, 13, 17, 22, 23, 38, 47, 80, 81, 88, 89, 93, 94, 100, 105, 106, 118], "pinvit": [0, 89, 93, 94, 118], "bfnorm": 0, "eval": [0, 89, 93, 94, 100], "evec": [0, 89, 93, 94, 100, 112], "pre": [0, 13, 17, 18, 20, 21, 36, 37, 40, 44, 45, 47, 49, 61, 72, 74, 75, 78, 80, 81, 82, 88, 89, 93, 94, 100, 105, 106, 107], "num": [0, 14, 89, 93, 94, 100, 105, 118], "printrat": [0, 13, 17, 18, 20, 21, 36, 37, 40, 61, 75, 79, 80, 81, 82, 88, 89, 93, 94, 100, 107], "fals": [0, 1, 4, 5, 10, 17, 18, 21, 36, 37, 45, 47, 64, 72, 74, 75, 79, 80, 82, 93, 94, 100, 106, 107, 113, 115, 116, 117, 118], "986399": [], "988057": [], "988341": [], "990988": [], "995908": [], "extend": [0, 10, 11, 25, 39, 51, 71, 87, 95, 97, 98, 99, 109], "non": [0, 1, 2, 5, 8, 9, 10, 26, 27, 29, 34, 35, 36, 51, 52, 54, 58, 60, 61, 62, 63, 68, 71, 74, 81, 87, 88, 96, 97, 98, 101, 102, 103, 105, 106, 108, 109, 118], "homogen": [0, 31, 34, 39, 53, 71, 74, 79, 112], "consid": [0, 3, 6, 8, 11, 26, 28, 29, 31, 32, 39, 41, 51, 55, 74, 79, 80, 81, 86, 97, 99, 103, 105, 109, 110, 111, 112], "an": [0, 3, 4, 5, 8, 9, 10, 11, 12, 13, 25, 26, 27, 28, 29, 30, 31, 32, 35, 38, 39, 40, 45, 46, 47, 49, 52, 53, 56, 58, 59, 60, 62, 63, 65, 70, 73, 74, 77, 78, 79, 80, 81, 84, 85, 88, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 109], "electr": [0, 74], "motor": 0, "rotat": [0, 57, 59, 60, 65, 67, 68], "rotor": 0, "fix": [0, 10, 26, 30, 37, 38, 46, 60, 72, 74, 77, 79, 94, 102, 103, 106], "part": [0, 1, 6, 14, 32, 34, 53, 55, 59, 63, 71, 77, 80, 81, 86, 87, 88, 95, 96, 98, 101, 102, 103, 109, 110, 118], "ar": [0, 1, 4, 5, 6, 8, 9, 10, 11, 12, 14, 19, 20, 22, 23, 25, 26, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 74, 75, 76, 77, 79, 80, 81, 84, 85, 86, 87, 88, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107, 108, 109, 112, 118], "independ": [0, 9, 11, 25, 38, 62, 77, 80, 97, 99, 103, 106, 118], "continu": [0, 1, 6, 8, 11, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 51, 52, 54, 56, 58, 59, 62, 63, 66, 74, 76, 77, 80, 81, 84, 85, 86, 87, 88, 89, 92, 94, 96, 97, 98, 99, 100, 101, 105, 106, 118], "achiev": [0, 45], "squar": [0, 8, 26, 39, 49, 74, 98, 100, 101, 103, 105], "moveto": [0, 76, 105, 115, 118], "rectangl": [0, 15, 17, 18, 35, 36, 37, 76, 79, 94, 100, 105, 109, 115, 118], "1": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 71, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 92, 93, 94, 95, 96, 99, 100, 101, 102, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 115, 116, 117, 118], "face": [0, 1, 6, 10, 15, 17, 18, 21, 52, 60, 72, 74, 75, 76, 82, 85, 88, 100, 105, 107, 115, 118], "circo": 0, "circl": [0, 15, 17, 18, 76, 79, 115, 118], "circ": [0, 8, 9, 11, 34, 97, 99, 103, 118], "bar": [0, 76, 86], "45": [0, 14, 36, 37, 46, 74, 75, 80, 81, 82, 105, 107], "edg": [0, 1, 2, 3, 6, 9, 10, 11, 15, 17, 18, 31, 32, 34, 52, 57, 60, 66, 72, 74, 76, 77, 80, 84, 85, 88, 100, 105, 107], "name": [0, 10, 12, 15, 17, 18, 21, 29, 32, 36, 60, 65, 67, 72, 73, 74, 75, 76, 82, 98, 100, 102, 103, 105, 115, 117], "outer": [0, 72, 75, 97, 118], "gammai": 0, "gammao": 0, "inner": [0, 3, 11, 20, 25, 26, 27, 34, 46, 47, 49, 50, 62, 63, 74, 77, 80, 81, 95, 96, 98, 100], "both": [0, 14, 23, 27, 28, 29, 30, 31, 39, 47, 51, 52, 59, 61, 62, 63, 66, 74, 76, 77, 80, 81, 84, 96, 97, 98, 100, 103, 109, 118], "compound": 0, "occgeometri": [0, 15, 17, 18, 21, 72, 75, 76, 82, 100, 105, 115, 118], "curv": [0, 7, 11, 15, 17, 18, 42, 58, 62, 65, 68, 72, 74, 75, 76, 78, 86, 118], "getmateri": [0, 36, 37, 42, 74, 76, 105], "getboundari": [0, 36, 37, 74, 76, 105], "default": [0, 14, 19, 35, 36, 37, 71, 74, 76, 86, 105], "def": [0, 2, 3, 7, 16, 17, 18, 40, 45, 47, 60, 61, 64, 65, 67, 68, 72, 78, 100, 106, 107, 109, 112], "meshrot": 0, "angl": [0, 8, 101], "unsetdeform": [0, 74], "deform": [0, 57, 72, 74, 79, 100, 110, 111, 115], "vectorh1": [0, 16, 18, 21, 56, 72, 78, 79, 82, 100], "rotmat": 0, "cf": [0, 10, 17, 18, 35, 36, 37, 72, 74], "co": [0, 30, 39, 45, 74, 97, 99, 101, 118], "sin": [0, 6, 39, 64, 71, 97, 98, 99, 101, 116], "reshap": 0, "center": [0, 8, 31, 73, 96, 99], "po": 0, "id": [0, 8, 10, 13, 14, 19, 20, 22, 23, 40, 68, 72, 74, 77, 97, 98, 102], "definedon": [0, 6, 7, 10, 17, 18, 21, 35, 36, 37, 53, 64, 71, 74, 78, 81, 82, 105], "materi": [0, 10, 24, 35, 36, 37, 43, 44, 70, 72, 73, 74, 76, 105, 115], "return": [0, 2, 3, 7, 10, 14, 16, 17, 18, 23, 40, 45, 47, 60, 61, 64, 65, 67, 68, 72, 74, 78, 100, 105, 106, 107, 109], "time": [0, 4, 8, 9, 11, 12, 14, 23, 24, 25, 26, 28, 29, 35, 38, 44, 47, 50, 51, 52, 53, 56, 59, 61, 62, 66, 73, 74, 77, 79, 81, 94, 95, 97, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 112, 116, 117, 118], "sleep": [0, 110, 111, 112, 115], "scene": [0, 4, 5, 15, 74, 85, 110, 111, 115, 116, 117, 118], "rang": [0, 10, 13, 14, 17, 18, 19, 20, 21, 22, 29, 35, 36, 37, 38, 39, 40, 42, 45, 46, 47, 49, 61, 62, 64, 68, 72, 74, 75, 77, 78, 79, 80, 81, 85, 97, 100, 101, 102, 105, 106, 110, 111, 112, 115, 118], "30": [0, 14, 20, 36, 37, 46, 64, 75, 76, 78, 80, 81, 82, 103, 107], "setdeform": [0, 74], "redraw": [0, 4, 5, 15, 68, 85, 110, 111, 115, 116, 117, 118], "03": [0, 72, 74, 86, 100], "without": [0, 20, 24, 28, 32, 37, 44, 48, 52, 81], "glu": [0, 37], "togeth": [0, 10, 23, 25, 32, 47, 61, 74, 80, 100, 103], "solut": [0, 1, 6, 8, 18, 20, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 38, 39, 44, 45, 46, 47, 48, 52, 56, 62, 63, 71, 73, 74, 77, 79, 80, 81, 88, 97, 101, 102, 105, 106, 107, 108, 109, 110, 112, 118], "region": [0, 10, 73, 74, 76, 105, 109], "8": [0, 6, 16, 17, 19, 20, 36, 37, 38, 41, 45, 46, 47, 48, 49, 61, 72, 74, 75, 78, 80, 81, 82, 88, 100, 105, 107, 108, 112, 115, 117, 118], "1e3": 0, "freedof": [0, 1, 2, 3, 5, 7, 10, 13, 17, 35, 36, 37, 41, 42, 53, 56, 60, 61, 65, 67, 71, 74, 76, 79, 81, 86, 88, 89, 100, 103, 105, 106, 107, 115], "contactboundari": 0, "class": [0, 9, 10, 13, 19, 20, 21, 22, 23, 40, 44, 53, 56, 61, 63, 64, 74, 76, 80, 98, 106, 108], "between": [0, 8, 12, 13, 19, 20, 23, 32, 36, 38, 39, 43, 44, 60, 71, 72, 74, 94, 97, 105], "two": [0, 8, 9, 20, 23, 28, 30, 32, 34, 36, 44, 45, 46, 48, 50, 61, 71, 73, 74, 79, 85, 94, 97, 98, 102, 103, 105, 106, 111], "differ": [0, 9, 10, 20, 43, 44, 45, 46, 52, 56, 61, 62, 63, 64, 71, 74, 75, 76, 77, 98, 106, 109, 110, 115], "It": [0, 5, 6, 9, 11, 14, 23, 24, 25, 26, 29, 30, 31, 32, 34, 35, 38, 45, 52, 58, 61, 62, 71, 74, 75, 77, 79, 80, 81, 85, 88, 94, 95, 97, 106, 109, 112], "over": [0, 6, 8, 11, 12, 20, 25, 31, 45, 47, 52, 53, 74, 80, 84, 85, 105, 106, 109, 110, 118], "primari": 0, "find": [0, 3, 4, 6, 7, 8, 11, 12, 26, 28, 29, 32, 33, 38, 39, 45, 46, 51, 52, 53, 55, 56, 58, 59, 60, 62, 65, 67, 71, 72, 73, 74, 76, 79, 80, 81, 83, 86, 88, 97, 98, 99, 100, 101, 102, 105, 107, 109, 112], "closest": [0, 30], "point": [0, 8, 9, 10, 11, 19, 26, 30, 33, 36, 46, 74, 78, 79, 80, 88, 95, 98, 100, 102, 105, 108, 115], "secondari": 0, "evalu": [0, 8, 9, 21, 26, 32, 36, 37, 64, 77, 78, 79, 81, 82, 95, 98, 101, 105, 112, 118], "other": [0, 2, 4, 5, 6, 10, 14, 20, 22, 23, 29, 35, 44, 49, 50, 52, 61, 63, 71, 73, 74, 80, 100, 102, 103, 105, 118], "function": [0, 1, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14, 19, 25, 27, 30, 31, 32, 33, 34, 35, 36, 37, 39, 43, 44, 47, 48, 51, 52, 53, 55, 56, 61, 62, 63, 64, 67, 71, 73, 76, 77, 80, 81, 82, 85, 86, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107, 108, 110, 111, 112, 115, 118], "contact": 0, "volum": [0, 6, 8, 73, 74, 76, 105], "addintegr": 0, "consisteni": 0, "term": [0, 1, 4, 5, 6, 8, 11, 12, 28, 31, 32, 34, 38, 44, 45, 46, 47, 53, 54, 56, 60, 62, 63, 67, 71, 74, 77, 80, 81, 83, 84, 86, 87, 88, 94, 97, 98, 101, 105, 118], "yet": [0, 47, 64], "implement": [0, 4, 11, 19, 37, 44, 61, 64, 85, 102, 106, 107, 109, 112], "updat": [0, 10, 20, 45, 47, 48, 49, 61, 74, 78, 80, 81, 111], "bf": [0, 1, 8, 31, 32], "intord": 0, "20": [0, 4, 6, 20, 36, 37, 41, 45, 46, 49, 61, 75, 78, 80, 81, 82, 88, 107, 112, 115, 116, 117, 118], "current": [0, 80], "veri": [0, 6, 20, 23, 44, 47, 49, 62, 63, 64, 72, 74, 79, 80, 86, 95, 100, 105, 109, 112], "simpl": [0, 3, 23, 29, 46, 49, 71, 80, 97, 102, 106], "highli": [0, 62, 76, 118], "accur": [0, 10, 74, 109], "us": [0, 3, 5, 6, 8, 9, 10, 11, 12, 13, 14, 19, 20, 23, 24, 26, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 43, 44, 45, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 61, 62, 63, 64, 65, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 83, 84, 85, 87, 88, 94, 95, 97, 98, 100, 102, 103, 105, 106, 108, 109, 110, 115, 118], "gauss": [0, 61, 62, 74, 102, 107], "rule": [0, 8, 11, 12, 85, 97, 103, 106, 108, 111], "which": [0, 5, 10, 11, 14, 19, 22, 25, 26, 27, 28, 30, 32, 33, 35, 36, 38, 44, 45, 47, 48, 52, 56, 58, 61, 62, 63, 64, 74, 77, 79, 80, 81, 85, 94, 95, 96, 97, 100, 102, 103, 105, 106, 107, 109, 110], "finit": [0, 3, 6, 23, 25, 26, 27, 29, 31, 32, 34, 35, 36, 46, 50, 53, 58, 61, 62, 63, 66, 67, 70, 71, 72, 73, 80, 81, 84, 96, 97, 98, 100, 102, 103, 105, 106, 110, 115], "element": [0, 1, 3, 4, 6, 23, 25, 27, 31, 32, 34, 35, 36, 37, 38, 46, 50, 53, 58, 59, 61, 62, 63, 65, 66, 67, 70, 71, 72, 73, 80, 81, 84, 88, 97, 98, 100, 102, 103, 105, 106, 109, 110, 115, 118], "One": [0, 8, 23, 31, 34, 35, 39, 48, 49, 77, 80, 81, 97, 105, 107, 108, 109], "can": [0, 1, 3, 6, 8, 10, 11, 12, 13, 14, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 38, 39, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 58, 60, 61, 62, 63, 64, 67, 70, 71, 74, 75, 77, 79, 80, 81, 83, 84, 86, 88, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 107, 109, 110, 112, 118], "observ": [0, 25, 29, 32, 34, 45, 46, 48, 49, 53, 60, 67, 73, 77, 80, 81, 86, 87, 89, 95, 100, 105, 106], "oscil": [0, 11, 62, 109], "gradient": [0, 20, 31, 34, 35, 36, 43, 44, 50, 60, 67, 71, 75, 76, 79, 80, 81, 85, 97, 100, 118], "In": [0, 5, 8, 9, 11, 12, 19, 22, 25, 26, 27, 30, 31, 32, 33, 34, 38, 44, 47, 48, 49, 50, 52, 54, 56, 59, 61, 67, 71, 74, 76, 77, 78, 80, 81, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 108, 109, 110, 111, 112, 117], "one": [0, 8, 9, 10, 11, 12, 14, 19, 23, 26, 28, 29, 30, 31, 32, 33, 34, 38, 40, 45, 46, 47, 48, 49, 50, 52, 56, 60, 61, 62, 63, 64, 74, 76, 77, 79, 80, 81, 85, 86, 96, 98, 101, 102, 103, 105, 106, 107, 108, 118], "introduc": [0, 37, 45, 49, 51, 53, 54, 55, 59, 62, 77, 80, 85, 86, 97, 101, 108, 109, 111], "anoth": [0, 47, 50, 60, 76, 80, 88, 109], "field": [0, 6, 26, 37, 38, 52, 55, 56, 60, 68, 71, 74, 79, 80, 81], "hat": [0, 7, 9, 28, 32, 34, 49, 61, 64, 74, 78, 79, 80, 97, 103, 109, 118], "onli": [0, 10, 11, 12, 14, 23, 25, 31, 34, 35, 36, 37, 38, 39, 46, 47, 50, 52, 53, 60, 62, 63, 68, 74, 77, 79, 80, 95, 97, 103, 106, 109, 110, 118], "thi": [0, 1, 5, 8, 10, 11, 19, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 58, 59, 60, 61, 62, 63, 64, 65, 67, 70, 73, 74, 76, 77, 78, 79, 80, 81, 83, 84, 85, 86, 88, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 108, 109, 110, 111, 112, 118], "common": [0, 8, 9, 31, 32, 97], "omega_i": [0, 23, 36, 38, 40, 87, 97, 101, 105, 106], "gamma": [0, 27, 39, 59, 77, 98, 103, 104, 108], "partial_n": [0, 3, 63, 71, 73], "now": [0, 5, 8, 10, 11, 22, 23, 25, 26, 27, 28, 29, 32, 34, 39, 45, 49, 51, 52, 53, 55, 60, 62, 63, 64, 67, 71, 74, 79, 80, 81, 83, 86, 87, 88, 97, 98, 100, 101, 103, 106, 107, 108, 109, 111], "ha": [0, 9, 11, 12, 24, 26, 27, 29, 31, 32, 38, 39, 49, 51, 61, 77, 79, 81, 83, 85, 88, 94, 95, 96, 97, 98, 101, 102, 103, 105, 108, 109, 111], "perform": [0, 11, 14, 23, 38, 45, 62, 75, 97, 100, 103, 105, 110, 112, 115], "valu": [0, 1, 3, 11, 14, 23, 25, 29, 31, 32, 33, 34, 39, 40, 45, 46, 48, 53, 56, 59, 60, 62, 64, 71, 74, 76, 77, 85, 86, 87, 94, 97, 98, 100, 102, 103, 106, 109, 110, 118], "often": [0, 11, 25, 26, 44, 45, 50, 61, 102, 105, 109, 110], "geometr": [0, 9, 30, 38, 62, 63, 68, 74, 76, 105, 107], "cylind": [0, 21, 68, 72, 75, 80, 82], "choos": [0, 8, 11, 26, 29, 30, 31, 34, 45, 46, 49, 53, 71, 74, 80, 84, 94, 97, 100, 101, 105, 115, 118], "global": [0, 8, 9, 10, 12, 14, 22, 23, 32, 35, 36, 40, 74, 77, 105, 106, 118], "On": [0, 8, 11, 12, 29, 32, 34, 36, 39, 51, 64, 80, 86, 97, 98, 100, 101, 103, 105, 109, 118], "trigonometr": [0, 45], "globalinterfacespac": 0, "allow": [0, 5, 9, 11, 30, 34, 35, 39, 45, 48, 49, 56, 65, 74, 77, 86, 97, 110], "provid": [0, 3, 8, 10, 12, 13, 14, 19, 27, 32, 33, 46, 49, 59, 61, 63, 70, 74, 77, 80, 81, 100, 105, 106, 118], "coordin": [0, 9, 74], "map": [0, 8, 13, 22, 25, 26, 36, 45, 58, 65, 74, 80, 85, 89, 93, 94, 97, 98, 99, 101, 102, 103, 118], "shift": [0, 24, 45, 109, 111], "atan2": 0, "materialcf": [0, 74, 76, 80, 86], "mask": [0, 37, 76, 106], "0000110000": 0, "comp": [0, 3, 5, 7, 10, 35, 36, 37, 53, 56, 74, 76, 80, 86], "vhat": [0, 1, 3, 5, 7, 17, 18, 88], "period": [0, 74], "uhat": [0, 1, 5, 7, 17, 18, 88], "trialfunct": [0, 1, 3, 4, 5, 6, 7, 10, 17, 18, 42, 53, 55, 56, 60, 65, 67, 68, 74, 83, 86, 88, 118], "testfunct": [0, 1, 3, 4, 5, 6, 7, 10, 17, 18, 42, 53, 55, 56, 60, 65, 67, 68, 74, 83, 86, 87, 88, 118], "gf": [0, 1, 16, 17, 18, 74], "gfuhat": [0, 16, 17, 18], "compon": [0, 1, 3, 5, 7, 10, 16, 17, 18, 35, 36, 37, 45, 49, 52, 53, 55, 56, 60, 62, 63, 65, 67, 68, 71, 72, 74, 80, 81, 83, 85, 86, 88, 105, 116, 117, 118], "declaremathoper": [1, 4, 5, 6, 51, 60, 65, 66, 67, 76, 83, 84, 85, 86, 87, 88], "opdiv": [1, 4, 5, 6, 32, 51, 60, 65, 66, 67, 76, 83, 84, 85, 86, 88], "div": [1, 4, 5, 6, 17, 18, 21, 25, 26, 43, 44, 51, 52, 54, 55, 56, 60, 65, 66, 67, 68, 72, 74, 76, 78, 79, 80, 81, 82, 83, 84, 86, 88, 97, 118], "discret": [1, 4, 6, 11, 29, 31, 32, 38, 44, 46, 50, 53, 56, 57, 58, 60, 61, 62, 65, 67, 74, 80, 81, 83, 84, 88, 94, 102, 103, 106, 109, 110, 111, 112], "oper": [1, 3, 4, 8, 9, 10, 11, 14, 19, 20, 25, 26, 28, 29, 30, 34, 38, 39, 40, 43, 46, 49, 50, 51, 54, 59, 61, 62, 63, 64, 74, 77, 80, 81, 83, 87, 93, 94, 95, 98, 100, 101, 102, 105, 106, 115], "more": [1, 5, 10, 29, 38, 47, 50, 61, 63, 64, 71, 74, 77, 95, 96, 97, 98, 102, 103, 106, 107, 109, 110, 115, 118], "tricki": [1, 61], "instead": [1, 26, 28, 31, 32, 44, 45, 52, 74, 79, 80, 97], "method": [1, 4, 10, 26, 31, 32, 33, 35, 37, 38, 47, 60, 62, 63, 64, 67, 68, 70, 72, 75, 77, 79, 81, 83, 86, 88, 98, 107, 112, 116, 117, 118], "go": [1, 6, 39, 51, 56, 59, 80], "directli": [1, 48, 74, 77, 81, 95], "hdg": [1, 5], "notebook": [1, 19, 24, 44, 70], "standard": [1, 10, 19, 20, 22, 32, 58, 75, 85, 88, 105], "here": [1, 4, 6, 10, 23, 32, 38, 47, 54, 70, 71, 74, 85, 88, 97, 110], "involv": [1, 26, 61, 80], "discontinu": [1, 3, 10, 17, 18, 53, 56, 70, 74, 76, 80, 86, 88, 116, 117], "polynomi": [1, 6, 8, 10, 32, 34, 47, 73, 74, 85, 88, 96, 97, 98, 100, 107], "addit": [1, 3, 35, 36, 37, 39, 44, 45, 61, 63, 105, 106, 107, 108, 110, 118], "3d": [1, 6, 10, 31, 32, 43, 44, 52, 59, 60, 73, 74, 75, 88, 105], "start": [1, 13, 14, 19, 20, 21, 22, 23, 26, 28, 31, 32, 38, 44, 46, 53, 62, 63, 74, 78, 83, 97, 106, 108, 115, 118], "poisson": [1, 31, 34, 43, 44, 51, 71], "delta": [1, 11, 26, 29, 31, 32, 34, 39, 41, 45, 51, 53, 55, 56, 62, 63, 67, 68, 74, 81, 95, 97, 101, 110, 111, 115], "multipli": [1, 6, 50, 53, 55, 61, 64, 74, 78, 79, 97, 102, 110], "test": [1, 6, 8, 10, 12, 40, 53, 55, 56, 62, 71, 74, 86, 97, 110, 112], "everi": [1, 14, 19, 23, 25, 26, 28, 38, 40, 45, 46, 47, 49, 59, 63, 64, 80, 81, 83, 88, 94, 97, 100, 102, 105, 109, 112], "sum_t": [1, 3, 11, 23, 32, 34, 52, 60, 65, 83, 84, 88, 103, 109], "int_t": [1, 6, 11, 12, 32, 34, 52, 60, 65, 77, 83, 84, 85, 88, 109, 118], "sinc": [1, 3, 4, 8, 10, 11, 14, 25, 26, 29, 30, 32, 34, 35, 37, 38, 46, 47, 48, 49, 58, 59, 62, 63, 74, 77, 80, 81, 83, 85, 94, 95, 97, 98, 101, 102, 103, 105, 106, 108, 109, 111, 112, 118], "deriv": [1, 3, 6, 8, 9, 11, 31, 34, 38, 44, 51, 55, 63, 68, 71, 74, 78, 81, 96, 97, 106, 109, 110, 111], "smuggl": 1, "singl": [1, 23, 43, 49, 63, 108], "widehat": [1, 3, 5, 8, 9, 11, 34, 85, 88, 96, 103], "symmetr": [1, 5, 8, 25, 26, 28, 29, 35, 43, 44, 46, 49, 50, 51, 58, 59, 60, 61, 62, 65, 67, 68, 72, 75, 81, 88, 98, 100, 109, 118], "self": [1, 10, 40, 46, 49, 61, 64, 74, 106], "adjoint": [1, 35, 46, 49, 102], "what": [1, 3, 22, 26, 28, 34, 48, 49, 73, 74, 75, 83, 84, 85, 86, 88, 102], "don": [1, 3, 36, 44, 55, 67, 71, 88, 102], "like": [1, 10, 14, 23, 36, 38, 44, 48, 49, 59, 62, 71, 72, 74, 88, 106], "For": [1, 5, 9, 11, 22, 25, 26, 27, 28, 30, 31, 34, 38, 39, 44, 49, 51, 53, 56, 62, 63, 64, 67, 74, 75, 77, 78, 80, 81, 87, 94, 95, 96, 97, 99, 100, 101, 102, 103, 105, 106, 108, 109, 110, 111, 112], "restrict": [1, 5, 12, 21, 28, 61, 64, 71, 74, 77, 82, 86, 95, 96, 97, 98, 101, 106], "same": [1, 8, 9, 10, 11, 19, 20, 23, 26, 30, 32, 34, 36, 38, 39, 49, 61, 64, 66, 74, 77, 85, 86, 88, 94, 96, 98, 106, 107, 108, 109, 118], "ad": [1, 23, 38, 47, 56, 59, 62, 80, 100, 103, 106, 115], "zero": [1, 2, 11, 51, 56, 64, 71, 81, 97, 103, 105, 109, 118], "mai": [1, 8, 9, 11, 19, 24, 31, 32, 38, 44, 56, 77, 80, 100], "have": [1, 3, 4, 6, 8, 10, 11, 12, 27, 29, 34, 35, 36, 37, 38, 39, 44, 45, 46, 47, 49, 51, 52, 53, 56, 57, 59, 60, 61, 62, 63, 64, 67, 71, 74, 75, 77, 79, 80, 81, 86, 87, 94, 96, 97, 98, 100, 101, 102, 103, 105, 106, 109, 115], "add": [1, 23, 28, 29, 35, 36, 37, 40, 44, 79, 80, 97, 103, 105, 106, 118], "stabil": [1, 47, 58, 59, 83, 106, 108, 112], "size": [1, 8, 11, 14, 19, 22, 45, 46, 61, 63, 73, 74, 75, 77, 80, 81, 94, 100, 102, 103, 105, 106, 109, 111], "typic": [1, 38, 50, 51, 74, 85, 102, 110, 111], "2d": [1, 6, 9, 10, 52, 59, 73, 74, 76, 105], "condit": [1, 4, 6, 10, 11, 12, 26, 29, 31, 32, 37, 39, 41, 43, 44, 45, 46, 49, 52, 56, 59, 61, 62, 63, 65, 68, 72, 74, 76, 81, 84, 86, 88, 97, 100, 101, 102, 103, 105, 106, 107, 108, 110, 111, 112], "drawback": [1, 81], "so": [1, 3, 25, 27, 31, 49, 50, 51, 53, 64, 71, 74, 75, 77, 79, 80, 88, 102, 103, 105, 106, 108], "call": [1, 5, 8, 9, 10, 11, 14, 19, 23, 25, 29, 30, 31, 37, 46, 49, 50, 53, 54, 63, 74, 77, 80, 81, 87, 88, 94, 95, 96, 98, 100, 101, 102, 103, 106, 107, 108, 109, 117, 118], "interior": [1, 64, 101, 115], "version": [1, 3, 44, 48, 70, 77, 78, 100, 102, 107, 118], "exist": [1, 8, 9, 11, 25, 26, 27, 28, 29, 30, 31, 32, 46, 48, 52, 64, 77, 80, 87, 96, 97, 98, 99, 100, 101, 102, 103], "sophist": 1, "robust": [1, 32, 44, 69, 107], "geom2d": [1, 2, 3, 4, 5, 6, 7, 35, 36, 37, 40, 41, 42, 45, 53, 55, 56, 60, 61, 62, 64, 65, 67, 78, 79, 81, 82, 83, 85, 86, 88], "fes1": [1, 5, 68], "l2": [1, 2, 4, 5, 6, 7, 10, 14, 17, 18, 55, 56, 74, 78, 83, 86, 88, 105, 106, 118], "fes2": [1, 5, 68], "facetfespac": [1, 5, 88, 118], "left": [1, 3, 5, 6, 8, 10, 11, 13, 23, 26, 28, 29, 32, 34, 36, 39, 41, 42, 45, 46, 47, 49, 50, 51, 53, 59, 60, 62, 63, 64, 66, 67, 68, 71, 74, 76, 77, 78, 79, 80, 81, 86, 87, 88, 89, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 107, 109, 110, 111, 118], "bottom": [1, 3, 10, 13, 35, 36, 37, 42, 60, 64, 71, 79, 88, 97, 105, 106], "highest_order_dc": 1, "element_vb": [1, 118], "bnd": [1, 4, 5, 10, 53, 55, 64, 68, 74, 118], "condens": [1, 74], "ndof": [1, 2, 10, 14, 17, 18, 21, 22, 36, 37, 40, 53, 60, 61, 65, 74, 75, 80, 82, 105, 106, 118], "nze": [1, 2, 115], "inv": [1, 2, 5, 13, 20, 36, 37, 40, 42, 61, 64, 71, 72, 75, 80, 107, 118], "3792": 1, "107040": 1, "76416": 1, "els": [1, 11, 14, 17, 18, 19, 21, 25, 35, 36, 37, 39, 40, 61, 82, 105, 106, 116, 118], "bvp": [1, 8], "lf": 1, "scipi": [1, 2, 44, 50, 74, 112], "spars": [1, 2, 22, 45, 50, 74, 75, 105], "sp": [1, 2, 118], "matplotlib": [1, 2, 44, 45, 46, 47, 48, 49, 62, 100, 109, 112], "pyplot": [1, 2, 45, 46, 47, 48, 49, 62, 100, 109, 112], "plt": [1, 2, 45, 46, 47, 48, 49, 62, 100, 109, 112], "scipymat": [1, 2], "csr_matrix": [1, 2, 50, 74], "csr": [1, 2, 22, 50, 74], "spy": [1, 2], "precis": [1, 2, 45, 53, 96, 97, 101], "1e": [1, 2, 5, 7, 13, 16, 17, 22, 45, 46, 47, 48, 49, 56, 60, 72, 78, 79, 80, 82, 103, 115], "markers": [1, 2], "dgjump": [2, 6, 10, 74, 118], "intern": [2, 36, 67, 71, 72, 74], "jump": [2, 32, 34, 84, 118], "mean": [2, 11, 27, 29, 34, 38, 40, 44, 46, 49, 52, 56, 58, 74, 77, 79, 81, 88, 97, 100, 102, 103, 109, 110, 118], "2320": 2, "88800": 2, "123040": 2, "kirchhoff": [3, 67], "plate": 3, "int": [3, 8, 10, 11, 25, 26, 32, 37, 39, 40, 51, 53, 54, 55, 56, 58, 59, 60, 65, 67, 71, 74, 77, 80, 81, 83, 84, 86, 88, 96, 104, 110, 111, 115], "conform": [3, 9, 43, 44, 52, 56, 60, 74, 77, 80, 88, 97, 103], "requir": [3, 11, 23, 33, 51, 59, 61, 63, 74, 79, 81, 83, 98, 101, 106, 118], "But": [3, 6, 23, 29, 31, 32, 33, 45, 52, 56, 74, 77, 83, 97, 98, 101, 102, 103], "good": [3, 8, 26, 28, 31, 33, 45, 48, 50, 58, 64, 83, 103, 106], "option": [3, 10, 50, 53, 56, 74, 80, 100], "avail": [3, 5, 10, 19, 44, 49, 50, 70, 74, 81, 112], "thu": [3, 4, 6, 11, 12, 25, 26, 27, 29, 30, 32, 38, 44, 45, 46, 48, 49, 51, 52, 53, 55, 56, 60, 62, 63, 64, 67, 71, 74, 77, 80, 81, 83, 84, 85, 87, 88, 89, 95, 96, 97, 98, 100, 101, 102, 103, 107, 109, 112, 115, 118], "wai": [3, 11, 12, 24, 29, 31, 33, 73, 79, 80, 103, 107], "out": [3, 6, 24, 35, 45, 62, 75, 80, 87, 95, 118], "treat": [3, 5, 53], "miss": [3, 38, 84], "galerkin": [3, 8, 11, 26, 29, 32, 33, 34, 52, 61, 63, 70, 74, 77, 102, 111, 112, 116, 117], "dg": [3, 4, 5, 6, 7, 10, 43, 44, 52, 65, 74, 118], "formul": [3, 8, 26, 29, 38, 43, 44, 54, 55, 59, 62, 65, 67, 81, 84, 88, 97, 98, 111], "e": [3, 6, 8, 9, 10, 11, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 36, 37, 38, 45, 46, 47, 48, 49, 50, 51, 53, 56, 58, 59, 60, 62, 63, 64, 71, 72, 73, 74, 75, 77, 80, 81, 84, 85, 87, 88, 94, 95, 96, 97, 98, 99, 100, 102, 106, 109, 110, 113, 115, 118], "_": [3, 8, 9, 11, 12, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 39, 46, 49, 51, 53, 59, 60, 62, 63, 64, 65, 67, 69, 73, 74, 77, 80, 81, 83, 84, 87, 89, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 110], "nn": [3, 65], "baker": 3, "77": [3, 32, 36, 37, 46, 75, 80, 107], "brenner": [3, 44], "gudi": 3, "sung": 3, "2010": [3, 112], "its": [3, 8, 9, 10, 14, 19, 22, 25, 26, 30, 31, 32, 34, 38, 39, 44, 46, 48, 49, 53, 62, 63, 74, 80, 85, 87, 96, 97, 100, 102, 106, 112], "new": [3, 4, 10, 24, 31, 34, 44, 45, 46, 47, 53, 54, 55, 59, 74, 88, 109, 110, 118], "facet": [3, 6, 60, 74, 105, 118], "base": [3, 10, 14, 35, 38, 43, 61, 62, 66, 74, 97, 118], "variabl": [3, 10, 14, 19, 35, 36, 37, 38, 44, 49, 51, 52, 53, 54, 55, 59, 62, 74, 86, 88, 109, 110, 118], "v_n": [3, 25, 30, 101, 118], "w_n": [3, 47], "n_e": 3, "cdot": [3, 6, 11, 12, 25, 26, 27, 28, 29, 30, 32, 35, 45, 46, 51, 52, 55, 60, 63, 64, 73, 74, 77, 84, 86, 94, 95, 96, 97, 98, 102, 110, 118], "orient": 3, "along": [3, 48, 57], "arbitrarili": [3, 103], "chosen": [3, 10, 26, 38, 48, 55, 80, 94, 103, 109], "vector": [3, 4, 6, 10, 12, 13, 20, 22, 25, 27, 32, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 58, 60, 61, 62, 64, 67, 68, 71, 73, 74, 76, 79, 80, 81, 93, 97, 98, 102, 103, 105, 106, 112, 118], "cannot": [3, 11, 16, 33, 34, 49, 51, 74, 81, 95, 106], "facetspac": 3, "trace": [3, 11, 43, 44, 51, 53, 60, 68, 72, 74, 77, 93, 118], "hdiv": [3, 7, 16, 17, 18, 55, 83, 85, 86, 88], "need": [3, 8, 10, 23, 32, 34, 36, 45, 46, 47, 48, 49, 51, 52, 55, 68, 74, 80, 85, 87, 88, 94, 95, 98, 100, 106, 108, 110, 111, 118], "basi": [3, 4, 8, 9, 10, 11, 12, 32, 34, 36, 45, 47, 61, 64, 77, 80, 85, 97, 100, 102, 103, 107, 110, 111, 112, 115, 118], "v1": [3, 21, 22, 68, 82], "v2": [3, 22, 68, 83], "orderinn": [3, 16, 17, 18, 56], "fespac": [3, 10, 56, 60, 65, 67, 68, 74, 118], "some": [3, 6, 8, 10, 11, 26, 27, 28, 29, 30, 32, 33, 37, 39, 44, 46, 47, 52, 61, 62, 71, 73, 74, 79, 83, 86, 96, 97, 98, 101, 102, 106, 107, 108, 109, 110, 118], "proxi": [3, 10, 74], "differenti": [3, 25, 26, 44, 50, 63, 68, 74, 77, 81, 87, 95, 96, 97, 100, 102, 108, 109, 110], "them": [3, 10, 20, 23, 44], "via": [3, 19, 22, 26, 28, 38, 44, 45, 49, 62, 63, 77, 96, 102, 103, 105, 106, 112, 118], "hess": 3, "hessian": [3, 48, 81], "note": [3, 19, 24, 29, 32, 44, 46, 70, 74, 77, 86, 100], "innerproduct": [3, 7, 17, 18, 20, 21, 22, 23, 40, 45, 47, 48, 49, 56, 60, 64, 65, 67, 68, 72, 73, 78, 79, 82, 100, 103, 105, 112], "jumpdn": 3, "hessenn": 3, "symbolicbfi": [3, 60, 65, 67, 68], "element_boundari": [3, 4, 5, 6, 7, 16, 17, 18, 60, 65, 67, 68, 88, 113, 118], "symboliclfi": [3, 60, 65, 67], "0x11383ba30": [], "disp_dg": 3, "bu": [4, 5, 6, 29, 81], "given": [4, 6, 10, 26, 28, 30, 32, 39, 44, 45, 47, 48, 49, 50, 51, 52, 56, 62, 63, 64, 71, 74, 80, 84, 97, 102, 103, 106, 109, 110], "initi": [4, 31, 45, 46, 109, 110, 111, 112], "u_0": [4, 30, 51, 63, 64, 71, 79, 97, 103, 110, 111, 112], "boundari": [4, 6, 7, 10, 11, 12, 17, 18, 21, 26, 28, 29, 31, 32, 34, 35, 36, 37, 38, 41, 43, 44, 49, 56, 63, 65, 68, 72, 73, 74, 76, 77, 78, 79, 81, 82, 85, 86, 87, 88, 89, 92, 94, 96, 97, 98, 100, 101, 103, 105, 107, 110, 118], "gamma_": [4, 6, 36, 38, 40, 87, 97], "explicit": [4, 5, 11, 28, 32, 43, 97, 106, 115, 118], "euler": [4, 108, 112], "approx": [4, 11, 39, 45, 46, 49, 51, 52, 62, 63, 80, 84, 87, 103, 108, 109, 118], "t_n": [4, 32, 45, 109], "t_": [4, 12, 32, 34, 45, 108, 109], "stationari": [4, 43, 44, 100, 102], "To": [4, 8, 11, 29, 31, 34, 38, 44, 45, 46, 49, 51, 53, 71, 74, 80, 81, 86, 97, 98, 100, 102, 103, 105, 106, 107, 108], "coeffici": [4, 23, 26, 32, 44, 49, 61, 62, 71, 73, 74, 77, 86, 97, 99, 100, 102, 103, 105, 106, 108, 109, 110, 118], "solv": [4, 5, 8, 10, 11, 13, 17, 22, 26, 28, 32, 33, 35, 36, 38, 43, 44, 50, 51, 56, 61, 62, 68, 71, 75, 79, 81, 82, 83, 97, 101, 102, 106, 108, 109, 111, 112], "mass": [4, 10, 64, 74, 109, 110, 113, 118], "m": [4, 5, 8, 9, 11, 14, 17, 18, 24, 25, 30, 44, 46, 49, 62, 68, 70, 77, 79, 80, 81, 93, 97, 100, 101, 102, 103, 105, 108, 109, 110, 111, 112, 115, 118], "tau": [4, 5, 17, 18, 26, 45, 51, 55, 58, 59, 60, 65, 67, 68, 77, 80, 83, 85, 86, 88, 102, 108, 109, 110, 111, 112, 115, 116, 117], "realiz": [4, 39], "second": [4, 5, 10, 29, 31, 38, 48, 49, 56, 62, 65, 68, 74, 80, 81, 83, 86, 94, 95, 100, 103, 106, 107, 109, 111, 112, 115], "advantag": [4, 6, 11, 38, 47, 50, 105], "block": [4, 19, 37, 38, 51, 62, 68, 80, 86, 88, 100, 118], "diagon": [4, 11, 20, 21, 47, 49, 50, 54, 78, 82, 88, 102, 115, 118], "cheap": [4, 11, 37, 49, 61, 64, 75, 79, 83], "invert": [4, 8, 9, 35, 37, 71, 80, 88, 97, 105, 106, 118], "b": [4, 5, 6, 8, 12, 19, 21, 25, 26, 28, 29, 33, 35, 36, 37, 40, 45, 46, 47, 48, 49, 50, 51, 52, 54, 60, 66, 68, 71, 74, 76, 78, 79, 80, 81, 82, 83, 85, 86, 98, 99, 100, 105, 108, 109, 113, 116, 117, 118], "coefficientfunct": [4, 5, 6, 7, 10, 15, 42, 68, 74, 85], "wind": [4, 6], "grid_siz": [4, 6, 76, 80], "nonassembl": [4, 5], "upwind": [4, 6], "uup": [4, 5, 6], "ifpo": [4, 5, 6, 105], "exp": [4, 5, 6, 41, 42, 73, 109, 110, 111, 112, 113, 115, 116, 118], "75": [4, 5, 36, 37, 46, 75, 80, 107], "min": [4, 5, 6, 8, 14, 15, 17, 18, 21, 26, 40, 45, 72, 76, 81, 82, 100, 103, 116, 117], "max": [4, 5, 6, 14, 15, 17, 18, 21, 26, 40, 45, 46, 72, 76, 81, 82, 103, 105, 106, 116, 117], "autoscal": [4, 5, 116, 117], "001": [4, 15, 17, 18, 40, 105, 115, 118], "tend": [4, 5, 15, 110, 111, 112, 115, 116, 117, 118], "50": [4, 14, 36, 37, 41, 45, 46, 74, 75, 76, 80, 81, 82, 105, 107, 118], "cnt": [4, 5, 15, 105, 118], "createvector": [4, 5, 20, 36, 37, 40, 45, 46, 47, 48, 49, 61, 78, 105, 106, 112, 113, 115], "free": [4, 10, 14, 59, 60, 65, 67, 71, 74, 79, 80, 116, 117, 118], "invm": [4, 10, 74], "rho": [4, 10, 45, 46, 49, 74, 102], "setnumthread": [4, 5], "taskmanag": [4, 15, 42, 68, 72, 75, 80, 82, 115, 116, 117, 118], "while": [4, 5, 15, 46, 48, 49, 56, 61, 62, 116, 117, 118], "appli": [4, 5, 8, 10, 11, 12, 32, 33, 34, 35, 44, 48, 49, 50, 52, 61, 62, 63, 67, 70, 72, 74, 77, 79, 80, 81, 87, 95, 96, 97, 98, 99, 103, 105, 106, 109, 110, 111], "want": [5, 19, 24, 32, 33, 38, 47, 52, 53, 64, 74, 79, 80, 81, 98, 100, 110, 118], "varepsilon": [5, 25, 30, 45, 46, 47, 54, 58, 60, 67, 69, 72, 80, 87, 96, 100, 103, 104], "transport": [5, 43, 44, 108], "linear": [5, 8, 9, 11, 12, 25, 26, 27, 28, 29, 30, 31, 32, 33, 43, 45, 47, 48, 49, 50, 51, 54, 61, 67, 68, 71, 75, 79, 81, 85, 86, 95, 97, 98, 99, 101, 102, 106, 108, 110, 111, 112, 118], "navier": [5, 11, 56], "stoke": [5, 11, 43, 44, 81, 98], "easili": [5, 23, 32, 39, 45, 46, 47, 62, 63, 77, 109], "also": [5, 8, 9, 11, 14, 19, 25, 26, 27, 28, 29, 31, 32, 33, 34, 38, 39, 45, 46, 47, 48, 49, 51, 53, 56, 61, 63, 70, 74, 77, 80, 81, 86, 95, 96, 97, 100, 101, 102, 103, 108, 109], "system": [5, 25, 29, 32, 35, 36, 39, 40, 44, 45, 47, 48, 49, 50, 52, 54, 55, 56, 59, 65, 74, 75, 78, 79, 81, 86, 88, 108, 109, 110, 111], "difficult": [5, 103], "implicit": [5, 112], "explizit": 5, "treatment": [5, 72], "would": [5, 33, 52], "lead": [5, 9, 11, 26, 27, 37, 46, 50, 51, 61, 65, 77, 80, 81, 85, 86, 88, 94, 96, 102, 103, 105, 108, 109], "sever": [5, 11, 38, 56, 62, 105], "step": [5, 8, 11, 12, 20, 32, 33, 34, 38, 43, 45, 46, 48, 49, 61, 62, 68, 77, 79, 81, 102, 103, 105, 106, 108, 112], "fast": [5, 44, 48, 97, 100, 109], "becom": [5, 11, 38, 49, 86, 100, 115], "begin": [5, 6, 8, 9, 11, 12, 23, 26, 27, 29, 31, 32, 33, 34, 35, 36, 38, 39, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 71, 76, 77, 78, 79, 80, 81, 83, 84, 86, 87, 88, 89, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106, 108, 109, 110, 111, 112, 118], "arrai": [5, 6, 11, 22, 23, 36, 38, 50, 51, 53, 54, 55, 56, 58, 59, 60, 65, 66, 67, 71, 74, 78, 79, 81, 83, 86, 88, 95, 97, 99, 102, 108, 109, 118], "cc": [5, 23, 36, 59, 71, 79, 81, 88, 108, 118], "end": [5, 6, 8, 9, 11, 12, 15, 23, 26, 27, 29, 31, 32, 33, 34, 35, 36, 38, 39, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 71, 76, 77, 78, 79, 80, 81, 83, 84, 86, 87, 88, 89, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106, 108, 109, 110, 111, 112, 115, 118], "c": [5, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 32, 35, 36, 40, 44, 45, 46, 47, 49, 51, 52, 54, 61, 62, 63, 65, 71, 75, 77, 78, 79, 80, 81, 82, 87, 88, 89, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 108, 109, 110], "diff": 5, "conv": [5, 16], "ep": [5, 80, 103], "adiff": 5, "aconv": 5, "mstar": [5, 110, 111, 112], "asvector": [5, 40], "0x10ed11eb0": [], "convu": [5, 16], "keyboardinterrupt": 5, "traceback": [5, 117], "most": [5, 45, 96, 105, 108, 117], "recent": [5, 44, 60, 115, 117], "last": [5, 8, 10, 32, 33, 38, 47, 49, 74, 77, 81, 94, 106, 117], "cell": [5, 10, 19, 44, 74, 107, 117], "line": [5, 8, 9, 29, 30, 33, 45, 48, 84, 117], "15": [5, 14, 20, 36, 37, 46, 61, 75, 78, 80, 81, 82, 88, 107, 115], "13": [5, 14, 20, 36, 37, 46, 61, 75, 78, 80, 81, 82, 88, 107], "14": [5, 14, 20, 36, 37, 46, 61, 75, 78, 80, 81, 82, 88, 107], "16": [5, 20, 36, 37, 46, 61, 65, 74, 75, 78, 80, 81, 82, 85, 88, 100, 105, 107], "17": [5, 20, 36, 37, 46, 60, 61, 65, 74, 75, 78, 80, 81, 82, 88, 107], "higher": [5, 6, 8, 11, 71, 74, 88, 97, 115, 118], "imex": 5, "see": [5, 10, 11, 29, 35, 44, 51, 52, 56, 57, 58, 71, 74, 77, 78, 86, 97, 100, 112], "rung": [5, 43], "kutta": [5, 43], "pde": [5, 23, 26, 29, 38, 97, 102], "uri": 5, "ascher": 5, "steven": 5, "j": [5, 9, 12, 19, 28, 29, 32, 35, 36, 37, 40, 44, 46, 47, 49, 62, 65, 74, 77, 80, 85, 96, 97, 102, 105, 106, 108, 109, 110, 111, 112, 115, 116, 117, 118], "ruuth": 5, "raymond": 5, "spiteri": 5, "numer": [5, 11, 12, 34, 44, 47, 50, 74, 80, 81, 83, 100, 103, 108, 109, 112, 118], "mathemat": [5, 32, 44, 74, 100], "25": [5, 14, 20, 36, 37, 46, 72, 75, 78, 80, 81, 82, 85, 88, 105, 107], "1997": 5, "text": [6, 28, 32, 41, 45, 46, 47, 48, 49, 51, 53, 55, 56, 58, 59, 60, 61, 63, 65, 66, 68, 71, 72, 74, 77, 79, 80, 81, 85, 86, 87, 97, 99, 102, 103, 104, 105, 106, 108, 109, 110, 111, 112], "model": [6, 56, 67, 68, 71, 74, 75, 76, 115], "inject": [6, 28, 29, 97], "concentr": 6, "flow": [6, 26, 81, 109], "exampl": [6, 9, 11, 19, 25, 26, 29, 32, 39, 43, 44, 50, 51, 61, 71, 74, 79, 80, 82, 95, 100, 105, 107, 110, 111], "milk": 6, "coffe": 6, "u_": [6, 23, 29, 32, 34, 40, 51, 62, 63, 74, 89, 92, 94, 101, 103, 112], "inflow": [6, 15, 17, 18], "popular": 6, "Their": 6, "strength": 6, "techniqu": [6, 33, 38, 43, 44, 62, 77, 97, 98, 102, 109], "stabl": [6, 28, 43, 44, 52, 58, 64, 77, 80, 106, 108, 109], "combin": [6, 8, 10, 11, 14, 28, 34, 47, 49, 56, 61, 62, 63, 74, 97, 102, 107, 112, 118], "seen": [6, 47, 51, 61, 62, 80, 88, 96], "extens": [6, 11, 22, 25, 35, 43, 44, 61, 77, 88], "trial": [6, 10, 74, 76], "piecewis": [6, 31, 34, 97, 105, 106], "follow": [6, 8, 10, 11, 29, 31, 32, 33, 34, 35, 38, 39, 44, 45, 49, 51, 52, 61, 62, 63, 64, 71, 77, 80, 84, 85, 88, 94, 95, 96, 97, 98, 100, 102, 103, 104, 105, 106, 108, 118], "wise": [6, 14, 23, 32, 35, 56, 58, 68, 74, 83, 85, 103, 118], "smooth": [6, 8, 9, 12, 31, 39, 58, 61, 62, 87, 95, 96, 97, 101, 103], "evei": 6, "sum_": [6, 8, 9, 11, 12, 23, 31, 32, 33, 34, 36, 38, 39, 40, 45, 47, 49, 60, 63, 64, 74, 77, 84, 87, 88, 96, 97, 98, 99, 101, 102, 103, 108, 110, 118], "subset": [6, 8, 9, 11, 12, 14, 25, 27, 29, 32, 34, 35, 38, 39, 45, 47, 52, 61, 62, 64, 65, 66, 74, 77, 80, 81, 85, 89, 92, 94, 95, 97, 98, 99, 101, 102, 103, 106, 108, 109, 110], "b_n": 6, "outward": 6, "decis": 6, "blow": 6, "up": [6, 8, 11, 13, 14, 23, 26, 28, 29, 47, 49, 56, 61, 64, 77, 80, 94, 95, 96, 98, 106, 108, 109, 110, 118], "cl": [6, 11, 34, 95, 99], "u_t": [6, 60], "outflow": [6, 15, 17, 18, 55], "v_h": [6, 8, 11, 12, 23, 26, 27, 29, 32, 33, 34, 52, 60, 63, 66, 74, 80, 81, 83, 84, 88, 100, 102, 103, 106, 109, 110], "u_h": [6, 8, 11, 12, 26, 27, 29, 31, 32, 33, 34, 52, 60, 63, 74, 80, 83, 84, 88, 100, 102, 106, 109, 110], "all": [6, 8, 9, 10, 14, 19, 23, 25, 27, 28, 29, 30, 31, 32, 34, 35, 37, 44, 47, 49, 50, 51, 52, 61, 63, 64, 67, 70, 71, 72, 74, 80, 87, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108, 109, 110, 112, 118], "6": [6, 13, 20, 22, 36, 37, 38, 42, 45, 46, 53, 61, 68, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 85, 88, 100, 105, 107, 108, 109, 112, 115], "28": [6, 20, 36, 37, 46, 74, 75, 78, 80, 81, 82, 107], "hybrid": [7, 43, 44, 52, 65, 70], "lehrenfeld": [7, 70], "sch\u00f6berl": [7, 43, 44, 60, 69, 70, 80, 116, 117], "2016": 7, "bdm": [7, 32, 85], "k": [7, 8, 25, 26, 32, 39, 45, 46, 47, 48, 49, 56, 63, 64, 65, 77, 81, 83, 84, 85, 88, 95, 96, 97, 98, 99, 101, 109], "k_": 7, "splinegeometri": [7, 42, 60, 78, 82, 86], "geo": [7, 35, 36, 37, 42, 60, 68, 72, 76, 78, 79, 80, 82, 86, 105, 115, 118], "addrectangl": [7, 42, 60, 78, 82, 86], "41": [7, 14, 15, 17, 18, 20, 21, 36, 37, 46, 74, 75, 78, 80, 81, 82, 107], "wall": [7, 15, 17, 18, 21, 78, 82], "outlet": [7, 15, 17, 18, 21, 78, 82], "inlet": [7, 15, 17, 18, 21, 78, 82], "addcircl": [7, 42, 78, 82, 86], "leftdomain": [7, 42, 78, 82, 86], "rightdomain": [7, 42, 78, 82, 86], "cyl": [7, 15, 21, 68, 72, 75, 78, 82], "08": [7, 20, 36, 37, 46, 61, 75, 78, 80, 81, 82, 88, 107, 112], "0x105d6ea50": [], "vt": 7, "vf": 7, "tangentialfacetfespac": [7, 16, 17, 18, 113], "q": [7, 9, 21, 25, 28, 32, 51, 52, 53, 54, 56, 60, 76, 77, 78, 81, 82, 97, 98, 118], "nu": [7, 15, 17, 18, 72, 80], "tang": [7, 16, 17, 18, 60, 65, 67, 68], "thesi": [7, 57, 60, 70], "christoph": [7, 70], "page": [7, 45, 47], "71": [7, 36, 37, 46, 75, 80, 82, 107], "invstok": 7, "uin": [7, 15, 17, 18, 21, 78, 82], "re": [7, 32, 34, 46, 48, 49, 61, 79, 110], "vel": 7, "veloc": [7, 15, 56, 57, 81, 111], "pressur": [7, 56, 80, 81], "let": [8, 11, 12, 19, 24, 25, 26, 27, 28, 29, 30, 31, 34, 35, 38, 39, 45, 46, 47, 48, 60, 61, 62, 63, 64, 74, 77, 79, 80, 81, 83, 89, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 110], "variat": [8, 28, 43, 44, 51, 58, 65, 71, 73, 74, 76, 79, 80, 81, 83, 84, 88, 98, 101, 102, 111], "problem": [8, 10, 11, 12, 20, 32, 33, 35, 36, 37, 38, 39, 45, 48, 49, 58, 61, 62, 63, 65, 67, 68, 73, 74, 75, 77, 79, 83, 86, 88, 94, 97, 98, 100, 101, 102, 103, 104, 105, 106, 109], "sub": [8, 11, 22, 23, 25, 28, 30, 32, 35, 36, 37, 38, 40, 47, 51, 52, 61, 63, 71, 74, 75, 77, 79, 80, 81, 85, 95, 100, 101, 103, 105, 106, 108, 109, 110], "cea": [8, 11, 62], "": [8, 9, 11, 17, 18, 24, 25, 26, 27, 28, 30, 32, 37, 43, 44, 51, 52, 54, 62, 68, 69, 70, 72, 73, 74, 75, 79, 81, 89, 97, 98, 101, 102, 108, 109, 112, 115, 118], "lemma": [8, 9, 25, 26, 29, 30, 34, 35, 43, 61, 62, 63, 77, 80, 97, 98, 103, 105, 106, 109], "bound": [8, 9, 11, 25, 26, 28, 29, 31, 32, 33, 34, 45, 46, 47, 49, 63, 80, 81, 94, 95, 96, 97, 98, 99, 100, 101, 103, 105, 106], "best": [8, 26, 52, 65, 77, 107], "_v": [8, 11, 25, 26, 27, 28, 29, 31, 33, 34, 51, 52, 73, 97, 98, 101], "leq": [8, 9, 11, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 45, 46, 47, 48, 49, 51, 52, 59, 62, 63, 64, 65, 69, 77, 80, 81, 83, 87, 89, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 109, 112], "inf_": [8, 11, 26, 28, 29, 30, 35, 39, 46, 52, 60, 63, 65, 77, 80, 97, 98, 102, 103, 105, 106], "constant": [8, 9, 10, 11, 14, 26, 27, 28, 31, 32, 34, 38, 40, 49, 52, 56, 57, 61, 62, 64, 65, 74, 76, 77, 85, 89, 95, 97, 98, 99, 100, 103, 105, 106, 108, 109, 118], "factor": [8, 26, 29, 46, 61, 62, 64, 68, 74, 77, 80, 81, 94, 95, 97, 98, 105, 106, 118], "ratio": 8, "take": [8, 13, 24, 27, 29, 30, 31, 34, 38, 39, 44, 52, 60, 63, 74, 76, 81, 84, 86, 96, 97, 101, 103, 105, 109], "interpol": [8, 9, 11, 16, 34, 44, 52, 63, 64, 71, 72, 73, 74, 80, 83, 106, 115, 118], "i_": [8, 9, 102], "cal": [8, 9, 11, 12, 31, 33, 34, 95, 96], "dimension": [8, 10, 25, 26, 27, 28, 29, 47, 50, 74, 77, 81, 84, 97, 98, 100, 103, 112], "domain": [8, 9, 10, 11, 23, 31, 35, 36, 37, 40, 41, 51, 61, 63, 64, 71, 74, 79, 80, 94, 95, 96, 98, 100, 101, 110, 116, 117], "relat": [8, 12, 27, 45, 48, 62, 76, 98], "affin": [8, 9, 58], "transform": [8, 9, 10, 11, 43, 44, 49, 74, 79, 82, 94, 97, 103], "f_t": [8, 9, 11, 12, 23, 32, 60], "rightarrow": [8, 9, 11, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 39, 48, 51, 52, 54, 56, 64, 66, 67, 72, 73, 74, 76, 77, 80, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 106, 109, 110, 112], "mathbb": [8, 9, 11, 12, 25, 26, 28, 29, 30, 33, 34, 35, 46, 47, 48, 49, 50, 61, 64, 72, 73, 74, 76, 79, 81, 89, 92, 94, 95, 96, 97, 98, 99, 100, 101, 103, 108, 109, 112, 118], "regular": [8, 9, 10, 31, 32, 37, 51, 60, 62, 63, 74, 80, 81, 88, 95, 101, 102, 106], "Then": [8, 11, 12, 14, 19, 23, 25, 26, 27, 28, 29, 30, 32, 34, 36, 37, 39, 44, 45, 46, 48, 51, 52, 61, 62, 63, 64, 77, 80, 81, 89, 94, 95, 96, 97, 98, 101, 102, 103, 105, 109, 115], "hold": [8, 9, 11, 25, 26, 27, 29, 30, 31, 32, 39, 47, 48, 49, 51, 61, 62, 63, 64, 72, 74, 77, 80, 87, 94, 95, 96, 97, 98, 100, 101, 102, 103, 106, 109], "det": [8, 85, 97, 103, 109, 118], "align": [8, 9, 12, 26, 27, 29, 45, 46, 48, 49, 50, 77, 95, 97, 98, 101], "x_": [8, 11, 47], "i_m": 8, "ldot": [8, 9, 12, 28, 32, 45, 46, 47, 48, 49, 61, 64, 74, 77, 87, 95, 97, 101, 102, 108, 109, 110, 112], "i_1": [8, 39], "j_m": 8, "j_1": 8, "b_": [8, 51, 108], "equat": [8, 11, 12, 26, 29, 31, 32, 33, 34, 36, 38, 39, 46, 50, 52, 53, 59, 63, 71, 72, 75, 76, 77, 79, 81, 86, 88, 97, 98, 102, 108, 115, 116, 117], "preceq": [8, 11, 33, 34, 62, 63, 64, 77, 80, 97, 98, 101, 103, 105], "proof": [8, 11, 25, 26, 27, 29, 30, 32, 34, 35, 52, 62, 63, 64, 73, 77, 80, 81, 84, 85, 87, 89, 95, 96, 97, 98, 101, 102, 103, 105, 106, 109], "chain": [8, 85, 97, 103], "box": [8, 11, 21, 25, 26, 27, 29, 30, 63, 72, 75, 76, 77, 80, 82, 94, 96, 97, 98, 101, 102, 105, 118], "diamet": 8, "h_t": [8, 11, 32, 34], "operatornam": [8, 23, 25, 26, 27, 29, 36, 39, 44, 47, 51, 52, 54, 55, 56, 57, 59, 60, 61, 64, 72, 74, 79, 80, 81, 83, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 109, 118], "diam": [8, 106], "triangul": [8, 9, 74, 107], "shape": [8, 9, 10, 15, 17, 18, 21, 23, 31, 32, 40, 44, 61, 74, 75, 76, 82, 100, 105, 106, 115, 118], "fulfil": [8, 26, 27, 29, 31, 34, 97, 101], "succeq": 8, "sim": [8, 71], "If": [8, 9, 10, 11, 19, 23, 24, 25, 26, 27, 30, 31, 34, 39, 44, 45, 46, 47, 49, 51, 52, 61, 62, 64, 67, 74, 77, 80, 81, 88, 94, 95, 97, 98, 100, 101, 102, 106, 108, 109, 110, 118], "studi": [8, 38, 56, 73, 97], "converg": [8, 25, 26, 29, 30, 31, 36, 37, 39, 46, 48, 49, 54, 63, 73, 75, 77, 80, 96, 97, 98, 100, 107, 112], "famili": [8, 85, 97], "decreas": [8, 38, 46, 49], "case": [8, 9, 12, 22, 26, 27, 28, 29, 33, 34, 49, 52, 56, 58, 63, 65, 67, 71, 74, 76, 80, 81, 96, 97, 98, 101, 102, 103, 112], "geq": [8, 11, 25, 26, 28, 29, 30, 31, 32, 45, 49, 51, 52, 62, 64, 65, 77, 81, 84, 99, 101], "refer": [8, 9, 10, 11, 34, 50, 60, 62, 63, 85, 103, 109, 118], "triangl": [8, 9, 31, 32, 34, 52, 64, 80, 83, 103, 115], "b_t": 8, "simeq": [8, 11, 34, 97, 98, 100, 101], "main": [8, 32], "applic": [8, 11, 31, 33, 43, 44, 47, 61, 70, 78, 79, 118], "brambl": [8, 11, 34, 43, 44, 62, 77, 82, 98], "hilbert": [8, 11, 25, 26, 27, 28, 29, 30, 34, 51, 52, 54, 74, 77, 80, 96, 97, 98, 101, 110], "sometim": 8, "itself": [8, 14, 19, 102, 111], "v_t": [8, 9, 23, 32, 60, 85], "psi_t": [8, 9], "contain": [8, 9, 22, 25, 31, 32, 34, 39, 47, 74, 80, 95, 96, 101, 106, 109], "i_t": [8, 9], "first": [8, 10, 12, 24, 25, 27, 30, 31, 34, 36, 44, 45, 46, 49, 51, 52, 53, 54, 55, 56, 59, 60, 62, 63, 68, 74, 77, 79, 80, 81, 86, 88, 94, 95, 97, 98, 100, 101, 103, 106, 109, 111, 112, 115, 118], "prove": [8, 11, 27, 28, 30, 32, 46, 49, 51, 62, 63, 77, 80, 81, 94, 96, 97, 98, 99, 100, 101, 102, 103, 106], "psi_": [8, 9, 62], "varphi_": [8, 62, 64, 77, 87, 103], "project": [8, 9, 26, 27, 35, 43, 44, 62, 63, 80, 83, 105, 106, 110, 115], "l": [8, 11, 13, 14, 17, 18, 22, 25, 26, 27, 29, 44, 45, 49, 51, 61, 62, 63, 64, 66, 75, 77, 80, 81, 83, 86, 96, 97, 98, 100, 101, 102, 106, 108, 109, 115], "result": [8, 11, 12, 14, 19, 23, 35, 49, 60, 63, 64, 67, 69, 74, 77, 80, 94, 96, 97, 98, 103, 106, 107], "theorem": [8, 11, 26, 28, 29, 30, 34, 35, 43, 44, 51, 52, 62, 63, 64, 74, 77, 80, 81, 87, 96, 98, 99, 100, 102, 106], "v_": [8, 9, 11, 12, 29, 32, 40, 51, 61, 62, 65, 77, 80, 97, 100], "local": [8, 9, 10, 12, 14, 20, 22, 23, 31, 32, 33, 34, 35, 38, 40, 43, 44, 57, 61, 62, 64, 74, 75, 77, 78, 80, 95, 96, 97, 106], "each": [8, 10, 11, 12, 14, 23, 31, 34, 49, 56, 61, 74, 79, 80, 88, 95, 96, 97, 105], "back": [8, 14, 19, 35, 45, 49, 56, 59, 81, 97, 99, 106, 109, 118], "individu": [8, 10, 38, 72, 74, 97, 102, 105, 108], "quasi": [8, 26, 29, 34, 52, 64, 80, 106], "uniform": [8, 11, 14, 31, 46, 63, 75], "essenti": [8, 32, 53, 63, 86, 95, 97, 100, 105], "eqnarrai": [8, 11, 23, 31, 32, 34, 35, 39, 45, 48, 49, 51, 52, 56, 58, 60, 61, 62, 63, 64, 65, 76, 77, 80, 81, 83, 84, 86, 87, 89, 94, 96, 97, 102, 103, 106, 108, 109, 110, 111, 112, 118], "interest": [8, 49, 54, 67, 97], "rate": [8, 26, 46, 75, 77], "assum": [8, 10, 11, 12, 23, 26, 27, 28, 29, 32, 47, 48, 50, 51, 53, 62, 63, 71, 74, 80, 87, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 108, 109], "weak": [8, 27, 29, 41, 44, 54, 55, 56, 71, 76, 80, 85, 87, 95, 96, 97, 103, 110], "abov": [8, 9, 11, 26, 28, 29, 33, 34, 49, 63, 73, 74, 83, 100, 102, 105, 106, 109], "obtain": [8, 11, 12, 14, 25, 26, 29, 30, 31, 33, 36, 39, 45, 46, 47, 48, 49, 56, 59, 61, 63, 64, 65, 74, 77, 78, 80, 81, 85, 86, 88, 94, 97, 98, 100, 103, 105, 106, 109, 110, 111, 112, 118], "natur": [8, 23, 34, 44, 53, 56, 60, 86, 107], "suggest": [8, 44, 97], "faster": [8, 109, 118], "weaker": [8, 29, 53], "under": [8, 11, 45, 77, 81, 96], "certain": [8, 33, 105, 108, 109], "circumst": 8, "measur": [8, 11, 31, 48, 49, 89, 98, 101], "decai": [8, 64, 105, 106], "mbox": [8, 9, 11, 12, 25, 26, 29, 31, 33, 95, 97, 101], "em": [8, 9, 11, 31, 32, 34, 77], "dual": [8, 9, 12, 25, 29, 32, 33, 37, 39, 53, 59, 60, 97, 101, 102], "primal": [8, 33, 35, 36, 37, 59, 60, 68, 88], "coincid": [8, 35, 95, 97, 108, 109], "aubin": [8, 77], "nitsch": [8, 43, 44, 62, 63, 77], "trick": 8, "orthogon": [8, 25, 26, 27, 29, 30, 32, 34, 39, 47, 51, 52, 62, 63, 80, 83, 97, 98, 100, 102, 112, 118], "insert": [8, 11, 12, 34, 45, 77, 81, 102, 105, 110, 111], "next": [8, 10, 13, 22, 26, 27, 36, 46, 48, 64, 77, 79, 84, 85, 95, 97, 102, 110], "after": [8, 10, 46, 74, 81, 98, 102], "divid": [8, 11, 23, 26, 62, 105], "till": 8, "neglect": 8, "v_d": [8, 98, 101], "v_0": [8, 51, 61, 63, 64, 65, 79, 80, 97, 98, 101, 111], "optr_": 8, "hd": 8, "h0": 8, "x_i": [8, 11, 12, 31, 34, 49], "vertic": [8, 10, 11, 12, 31, 34, 35, 37, 52, 57, 65, 67, 74, 77, 101, 106, 107], "There": [8, 9, 11, 25, 26, 27, 30, 31, 32, 37, 46, 48, 49, 51, 62, 63, 64, 76, 77, 79, 80, 86, 94, 96, 97, 98, 101, 102, 103, 109], "gener": [8, 10, 11, 14, 22, 25, 26, 28, 29, 31, 32, 44, 46, 49, 50, 51, 59, 62, 63, 71, 73, 74, 75, 77, 80, 81, 83, 94, 96, 98, 100, 108, 109, 112], "item": [8, 9, 11, 31, 32], "alpha_1": [8, 11, 26, 28, 95], "alpha_2": [8, 11, 26, 28], "make": [8, 60, 74, 76, 97, 109], "i_h": [8, 11, 34, 52, 65, 66, 73, 80, 83, 106], "move": [8, 13, 48, 71, 86], "hfill": [8, 11], "analog": 8, "sobolev": [8, 62, 77, 87, 98, 100, 101], "index": [8, 45, 73, 95, 118], "nodal": [8, 9, 10, 11, 12, 34, 64, 66, 74, 97, 106, 115, 118], "instabl": 8, "grow": [8, 46, 100, 106, 109], "increas": [8, 47, 62, 68, 77, 100, 111], "better": [8, 31, 47, 64, 83, 100], "choic": [8, 62, 64, 73, 97, 101, 109], "convex": [8, 30, 48, 63, 81, 101, 102], "weight": [8, 32, 33, 77, 101, 108], "inform": [8, 38], "construct": [8, 9, 27, 28, 31, 32, 47, 51, 52, 75, 77, 79, 80, 84, 94, 97, 101, 102], "proper": [8, 39, 74, 77, 85], "refin": [8, 10, 13, 14, 17, 18, 21, 22, 31, 38, 61, 62, 63, 64, 73, 74, 75, 80, 81, 100, 106, 115], "sector": [8, 101], "corner": [8, 101], "pi": [8, 39, 41, 42, 71, 97, 98, 99, 101, 116], "beta": [8, 12, 47, 51, 52, 67, 68, 77, 78, 81, 101], "underlin": [8, 12, 61, 63, 81, 102, 106], "r_t": [8, 32], "distanc": [8, 48], "number": [8, 10, 14, 19, 22, 23, 34, 36, 38, 43, 44, 45, 46, 47, 61, 62, 63, 74, 75, 77, 80, 81, 88, 96, 100, 102, 103, 105, 106, 107], "roughli": 8, "densiti": [8, 56, 80, 87, 97, 110], "per": [8, 27, 37, 38, 40, 44, 47, 62, 76, 80, 85, 107, 118], "unit": [8, 73, 74, 77, 99, 101, 102, 105], "area": 8, "n_": [8, 61, 105], "el": [8, 14, 35, 37, 105, 106], "dimens": [8, 9, 32, 34, 61, 74, 85, 97, 106, 112], "ciarlet": 9, "tripl": 9, "n_t": [9, 12, 103], "psi": [9, 62, 80], "1_t": 9, "_t": [9, 12, 109], "linearli": 9, "varphi": [9, 12, 30, 32, 60, 62, 87, 95, 96, 97], "j_t": [9, 103], "delta_": [9, 25, 77], "ij": [9, 36, 38, 40, 49, 77, 87, 97, 108], "barycentr": 9, "express": [9, 10, 28, 60, 63, 74, 99, 102, 110, 111], "lagrang": [9, 36, 59, 79, 80, 81, 88, 102], "hermit": 9, "usual": [9, 31, 33, 38, 53, 66, 78, 81, 83, 105, 108], "span": [9, 29, 47, 74, 79, 97, 101, 103, 105, 112], "segment": 9, "quadrat": [9, 48, 74, 81, 102], "morlei": [9, 11, 65], "raviart": [9, 11, 59, 83, 85, 98], "thoma": [9, 59, 83, 85], "overlin": [9, 11, 25, 27, 34, 38, 81, 87, 89, 94, 95, 96, 97, 99, 104, 105, 106], "alpha_t": 9, "equival": [9, 25, 26, 29, 31, 32, 43, 44, 48, 49, 58, 63, 81, 84, 97, 100, 101, 103, 109], "t_i": [9, 32], "_i": [9, 64, 101, 102, 105], "lagrangian": [9, 43, 51, 66], "t_1": [9, 32, 34, 45, 109], "t_m": 9, "subdivis": 9, "close": [9, 25, 26, 27, 29, 30, 46, 62, 74, 86, 97, 98, 101], "cup": [9, 39, 71, 87, 88, 97, 101, 103, 104], "cap": [9, 12, 27, 32, 34, 38, 80, 87, 96, 97, 98, 104, 106], "t_j": [9, 108, 109, 110], "either": [9, 23, 33, 44, 63, 74, 84, 86, 118], "empti": [9, 102], "vertex": [9, 11, 31, 32, 34, 35, 37, 60, 74, 80, 101, 106, 107], "wider": 9, "sens": [9, 32, 53, 60, 62, 74, 76, 80, 97, 118], "consist": [9, 11, 14, 20, 22, 24, 34, 35, 38, 39, 40, 43, 44, 58, 60, 62, 74, 79, 80, 81, 96, 97, 102, 108, 109, 118], "quadrilater": [9, 10, 60], "tetrahedra": 9, "hexhedra": 9, "prism": 9, "pyramid": 9, "complex": [9, 10, 29, 38, 41, 42, 50, 61, 74, 75], "conveni": [9, 44, 53, 63, 71, 78], "sai": [9, 26, 30, 36, 71, 95, 98], "neq": [9, 25, 26, 27, 29, 30, 34, 47, 49, 50, 77, 81, 95, 97, 98, 100, 106], "node": [9, 10, 14, 31, 38, 71, 74, 107, 115], "midpoint": 9, "widetild": [9, 31, 35, 40, 45, 71, 83, 96, 97, 101, 106], "tild": [9, 28, 31, 35, 39, 40, 48, 49, 64, 71, 77, 81, 94, 97, 101, 105], "sit": [9, 107], "locat": 9, "psi_1": 9, "psi_n": 9, "connect": [9, 10, 14, 22, 23, 34, 37, 65, 80, 95, 99, 105, 106], "c_t": [9, 12, 23], "ones": [9, 29, 62, 64, 71, 86, 105, 109], "1d": [9, 10, 89, 94, 97], "psi_j": 9, "varphi_i": [9, 11, 12, 34, 96, 102, 103, 105], "varphi_t": [9, 12, 60], "e_i": [9, 32, 102], "c_": [9, 12, 23, 49, 61, 62, 63, 68, 77, 80, 102, 103, 105, 106, 108], "lectur": [10, 24, 44, 70, 78, 102], "show": [10, 27, 28, 29, 31, 32, 34, 39, 44, 45, 51, 62, 63, 72, 77, 81, 94, 99, 103, 106, 109], "our": [10, 22, 51, 52, 97], "own": [10, 19], "within": [10, 14, 19, 24, 27, 44, 63, 98, 105, 108, 118], "languag": [10, 19], "triangular": [10, 49, 50, 51, 65, 85, 107, 108, 115], "packag": [10, 24, 44, 105], "github": [10, 24, 44], "tuwien": 10, "asc": 10, "ng": [10, 70], "myfe": 10, "myelement": 10, "cpp": 10, "hpp": 10, "physic": [10, 38, 74, 79, 81, 85, 88], "mydiffop": 10, "myfespac": 10, "python": [10, 13, 14, 19, 22, 24, 44, 70, 74, 105], "bind": [10, 105], "mymodul": 10, "libmyf": 10, "quad_domin": 10, "load": [10, 38, 68, 72, 74, 79], "librari": [10, 14, 22, 24, 70], "creat": [10, 13, 20, 22, 44, 73, 74, 76], "instanc": [10, 19], "secondord": 10, "top": [10, 42, 60, 71, 74, 79], "constructor": 10, "flag": [10, 44, 53, 56, 74, 80], "you": [10, 24, 44, 49, 71, 73, 75, 100, 105], "vert": 10, "39": [10, 14, 20, 36, 37, 46, 64, 74, 75, 78, 80, 81, 82, 93, 107], "94": [10, 36, 37, 46, 75, 80, 107], "builtin": [10, 74], "133": [10, 36, 46, 75, 80], "tran": [10, 68], "type": [10, 13, 20, 22, 23, 32, 63, 65, 74, 76, 81, 106], "n5ngfem22t_differentialoperatorins_10mydiffopidee": 10, "nv": [10, 74, 106], "document": [10, 70, 73, 107], "docinfo": 10, "structur": [10, 32, 43, 44, 54], "help": [10, 18, 20, 74, 82, 100, 118], "look": [10, 23, 48, 71, 72, 74, 80, 97, 100], "modul": [10, 13, 19, 74, 82], "my": [10, 35, 36, 37, 105], "keyword": [10, 74], "argument": [10, 30, 32, 45, 74, 84, 101], "bool": [10, 74], "should": [10, 31, 44, 74, 97, 105, 118], "regexpr": [10, 74], "string": [10, 74], "than": [10, 14, 31, 32, 35, 53, 63, 64, 74, 85, 95, 96, 97, 105], "dirichlet_bbnd": [10, 74], "bboundari": [10, 35, 37, 74], "dirichlet_bbbnd": [10, 74], "bbboundari": [10, 74], "specif": [10, 63, 74], "multi": [10, 38, 44, 61, 74, 95], "enabl": [10, 44, 74], "dof": [10, 14, 20, 22, 23, 32, 35, 36, 37, 40, 60, 64, 74, 80, 85, 105, 106, 107, 115], "coupl": [10, 40, 51, 74, 108], "chang": [10, 46, 71, 74, 97], "sparsiti": [10, 74], "pattern": [10, 74], "matric": [10, 11, 13, 36, 49, 50, 51, 58, 62, 64, 74, 75, 78, 100, 102, 109, 110, 112, 118], "autoupd": [10, 61, 64, 74, 80, 106], "automat": [10, 68, 74], "low_order_spac": [10, 74], "lowest": [10, 65, 74, 84, 85, 88, 100], "high": [10, 23, 40, 51, 62, 74, 76, 112], "precondition": [10, 17, 18, 20, 21, 38, 43, 44, 45, 47, 50, 62, 72, 74, 75, 78, 80, 81, 82, 88, 105], "order_polici": [10, 74], "oldstyl": [10, 74], "decad": [10, 38, 74], "resolut": [10, 74], "ngs_object": [10, 74], "pybind11_builtin": [10, 74], "pybind11_object": [10, 74], "object": [10, 13, 14, 19, 22, 74], "getnvert": 10, "__getstate__": [10, 74], "tupl": [10, 19, 74], "__init__": [10, 40, 61, 64, 74, 106], "kwarg": [10, 53, 56, 74, 80], "none": [10, 14, 17, 19, 35, 36, 37, 45, 47, 61, 68, 74, 81, 105, 106], "__setstate__": [10, 74], "arg0": [10, 74], "static": [10, 74], "__flags_doc__": [10, 74], "pycapsul": [10, 74], "dict": [10, 74], "descriptor": [10, 74], "__dict__": [10, 74], "attribut": [10, 74], "__pybind11_module_local_v4_clang_libcpp_cxxabi1002__": 10, "capsul": 10, "inherit": [10, 26, 52, 74, 109], "applym": [10, 74], "la": [10, 40, 45, 61, 74, 78, 80, 103, 105, 106, 107], "basevector": [10, 74, 105], "fem": [10, 32, 44, 74, 77, 107], "convertl2oper": [10, 74], "l2space": [10, 74], "basematrix": [10, 40, 61, 74, 79, 93, 103, 105, 106], "couplingtyp": [10, 17, 18, 74], "dofnr": [10, 74], "coupling_typ": [10, 17, 18, 74], "degre": [10, 32, 37, 45, 52, 60, 69, 71, 74, 75, 77, 85, 88], "freedom": [10, 32, 37, 52, 59, 60, 69, 71, 74, 75, 85, 88], "input": [10, 20, 31, 40, 62, 74], "createdirectsolverclust": [10, 74], "list": [10, 14, 19, 22, 35, 36, 37, 40, 45, 74, 89, 93, 94, 100, 103, 105, 106, 107], "createsmoothingblock": [10, 74], "pyngcor": [10, 74], "table_i": [10, 74], "arg": [10, 74, 83], "overload": [10, 74], "vol_or_bnd": [10, 74], "vorb": [10, 74, 76], "vol": [10, 14, 21, 32, 36, 37, 74, 76, 93, 105, 106], "fespaceelementrang": [10, 74], "iter": [10, 26, 35, 36, 37, 47, 48, 61, 63, 68, 74, 78, 79, 80, 82, 88, 102, 105, 107], "bbnd": [10, 35, 37, 74], "finalizeupd": [10, 74], "final": [10, 26, 27, 45, 47, 51, 52, 64, 74, 77, 94, 95, 96, 102, 105, 106], "bitarrai": [10, 64, 71, 74, 105, 106], "includ": [10, 19, 20, 59, 71, 74, 76, 97, 107, 110], "getdofnr": [10, 74, 85, 107], "ei": [10, 21, 74, 82], "elementid": [10, 74], "ni": [10, 12, 74], "nodeid": [10, 74, 85], "getdof": [10, 36, 37, 64, 74, 105, 115], "getf": [10, 74], "correspond": [10, 11, 12, 22, 31, 34, 39, 45, 49, 62, 63, 65, 69, 74, 80, 88, 100, 102, 103, 105, 115], "getord": [10, 74], "isotrop": [10, 74], "support": [10, 74, 87, 95, 96, 97, 105, 106], "gettrac": [10, 74], "arg1": [10, 74], "arg2": [10, 74], "arg3": [10, 74], "gettracetran": [10, 74], "hidealldof": [10, 74], "ngstd": [10, 74], "dummyargu": [10, 74], "visibl": [10, 74], "hidden_dof": [10, 17, 18, 74], "overwritten": [10, 74], "ani": [10, 25, 27, 32, 50, 52, 74, 77, 80, 102, 103, 109], "paralleldof": [10, 22, 23, 40, 74], "identif": [10, 74], "mpi": [10, 13, 14, 15, 17, 18, 20, 21, 22, 23, 40, 44, 74], "distribut": [10, 20, 32, 40, 43, 44, 60, 74, 76, 95], "prolong": [10, 61, 63, 64, 74, 80, 106], "ngmg": [10, 74], "grid": [10, 14, 38, 40, 45, 61, 62, 74, 109], "dofrang": [10, 74], "deprec": [10, 74], "productspac": [10, 74], "setcouplingtyp": [10, 17, 18, 74], "intrang": [10, 17, 18, 74, 106], "interv": [10, 39, 45, 74, 95, 97, 99, 108, 109, 110], "setdefinedon": [10, 74], "setord": [10, 74, 78], "element_typ": [10, 74], "et": [10, 62, 74], "solvem": [10, 74], "symbol": [10, 74], "traceoper": [10, 74, 118], "tracespac": [10, 74], "averag": [10, 31, 32, 33, 40, 64, 74, 79, 106, 118], "updatedoft": [10, 74], "tabl": [10, 74], "__eq__": [10, 74], "__mul__": [10, 74], "ngcomp": [10, 74], "compoundfespac": [10, 74], "__pow__": [10, 74], "compoundfespaceallsam": [10, 74], "__str__": [10, 74], "str": [10, 19, 35, 36, 37, 45, 74, 105], "__timing__": [10, 74], "__special_treated_flags__": [10, 74], "readonli": [10, 74], "properti": [10, 26, 31, 43, 44, 48, 61, 63, 65, 74, 77, 80, 83, 86, 87, 106], "globalord": [10, 74], "queri": [10, 19, 74], "is_complex": [10, 74], "loembed": [10, 74], "lospac": [10, 74], "ndofglob": [10, 14, 21, 22, 74], "__hash__": [10, 74], "__memory__": [10, 74], "__new__": [10, 74], "pybind11_typ": [10, 74], "signatur": [10, 74], "1st": 10, "2nd": 10, "et_segm": 10, "et_quad": 10, "geom": 10, "tetrahedr": [10, 107, 115], "et_tet": 10, "3rd": 10, "reason": [11, 118], "simpler": 11, "even": [11, 38, 62, 76, 77, 118], "accuraci": [11, 31], "framework": [11, 23, 32], "violat": [11, 34], "straight": [11, 88], "inexact": [11, 79], "replac": [11, 31, 34, 52, 61, 63, 71, 73, 79, 98, 100, 103, 109, 110], "a_h": [11, 80, 106], "f_h": 11, "do": [11, 24, 46, 49, 50, 53, 64, 71, 77, 79, 83, 94, 103, 106, 109, 110], "uniformli": [11, 97, 100], "sup_": [11, 25, 26, 27, 28, 29, 32, 34, 35, 39, 45, 46, 51, 52, 73, 80, 81, 83, 84, 87, 94, 100, 102, 109], "w_h": [11, 26, 29, 33, 65, 66, 67, 80], "arbitrari": [11, 26, 28, 29, 46, 63, 65, 74, 80, 87, 97, 99, 102, 103], "label": [11, 31, 32, 33, 34, 45, 77, 105], "equ_strang1a": 11, "inequ": [11, 25, 28, 31, 51, 52, 62, 64, 69, 77, 80, 83, 97, 98, 102, 103, 106], "ref": [11, 31, 33, 34, 77, 97], "lump": [11, 43], "l_2": [11, 25, 26, 28, 29, 31, 32, 34, 38, 39, 43, 44, 51, 53, 55, 56, 58, 59, 60, 62, 63, 64, 65, 67, 69, 73, 74, 80, 83, 86, 87, 89, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 105, 106, 110], "newlin": [11, 31], "exact": [11, 32, 62, 108, 118], "varphi_j": [11, 12, 102], "x_j": [11, 49], "verifi": [11, 26, 28, 39, 46, 48, 52, 62, 80, 86, 96, 97, 100, 103, 108, 109], "equ_uniformel": 11, "done": [11, 14, 20, 47, 63, 105, 118], "estim": [11, 26, 29, 35, 45, 47, 48, 59, 62, 63, 64, 65, 80, 83, 94, 97, 99, 102, 103, 105, 106], "equ_consist": 11, "summat": [11, 14], "give": [11, 19, 23, 28, 32, 44, 60, 71, 73, 77, 79, 81, 84, 85, 87, 88, 97, 100, 101, 107], "modif": [11, 77], "preserv": [11, 52, 77, 85, 97, 109], "avoid": [11, 31, 38, 48, 69, 118], "layer": [11, 105], "parabol": [11, 108, 110], "hyperbol": [11, 111], "skip": [11, 28, 29, 56, 63, 80, 95], "_h": [11, 34], "These": [11, 23, 33, 49, 80, 85, 97, 106, 108], "must": [11, 31, 32, 38, 39, 51, 52, 56, 58, 75, 80, 81, 100, 108, 112], "As": [11, 12, 36, 62, 86, 87, 102, 110], "well": [11, 25, 34, 38, 39, 49, 59, 60, 62, 63, 65, 74, 77, 80, 81, 87, 94, 97, 101, 105, 106, 109, 112, 115, 118], "assumpt": [11, 29, 31, 62, 63, 98], "equ_strang2": 11, "remark": [11, 32, 79], "again": [11, 28, 29, 44, 55, 56, 80, 97, 98, 103, 106, 109], "rest": [11, 34, 61, 64, 71, 80, 84, 101, 106], "crouzeix": [11, 108], "nc": [11, 106], "mid": 11, "across": [11, 32, 34, 40, 77, 85, 97], "inclus": [11, 65], "neighbor": [11, 31, 34, 38], "sign": 11, "subtract": 11, "cauchi": [11, 25, 29, 30, 34, 62, 64, 94, 96, 97, 98, 102], "schwarz": [11, 25, 34, 35, 43, 44, 61, 62, 63, 64, 80, 97, 106], "scale": [11, 25, 32, 34, 36, 40, 45, 62, 63, 75, 77, 78, 84, 94, 97, 105, 118], "h_e": [11, 32, 34], "onc": [11, 71, 73], "p_0": [11, 32, 47, 77, 85], "similar": [11, 20, 25, 31, 34, 38, 48, 50, 59, 61, 62, 63, 72, 76, 77, 80, 85, 88, 97, 110, 111, 112], "vanish": [11, 32, 34, 47, 77, 83, 95, 97], "rescal": [11, 45, 106], "fluid": [11, 56], "dynam": [11, 43], "describ": [11, 44, 72, 79], "later": [11, 27, 46, 52, 74, 81, 97, 109], "exactli": [11, 38, 39, 46, 53, 77, 102, 103, 112], "entri": [11, 23, 49, 50, 59, 64, 74, 102], "row": [11, 50, 54, 58, 59, 79, 81, 108], "associ": [11, 32, 74, 107], "That": 11, "simplif": 11, "code": [11, 44, 48], "leftrightarrow": [12, 25], "u_i": [12, 23, 29, 36, 38, 40, 62, 74, 79, 80, 97, 102, 103, 105, 106, 110, 112], "psi_i": [12, 32, 80, 106], "expans": [12, 39, 61, 109, 110], "With": [12, 19, 29, 30, 45, 49, 61, 65, 79, 85, 97, 103, 105], "a_": [12, 23, 49, 51, 61, 62, 71, 74, 102, 108], "ji": [12, 102, 108], "f_j": [12, 74], "prefer": 12, "sum": [12, 14, 21, 23, 31, 32, 34, 39, 47, 50, 53, 62, 63, 64, 72, 80, 82, 95, 97, 99, 102, 103, 105, 106, 108, 109, 118], "contribut": [12, 23, 31, 34, 95, 101, 105], "a_t": [12, 23], "g": [12, 21, 23, 26, 29, 31, 36, 37, 39, 47, 49, 51, 52, 60, 64, 71, 72, 77, 78, 79, 81, 82, 86, 88, 95, 97, 98, 101, 102, 107, 108, 109, 110, 115, 118], "f_i": [12, 23], "f_": [12, 23, 34, 51, 60], "integrand": [12, 77], "gamma_f": 12, "setminu": [12, 97, 104, 105, 106], "x_d": 12, "gamma_i": [12, 97], "altern": [12, 14, 44, 56, 96], "approach": [12, 32, 38, 44], "robin": [12, 41, 49, 71, 101], "ngs2petsc": [13, 21], "ipyparallel": [13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 40], "cluster": [13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 38], "await": [13, 14, 15, 17, 18, 19, 20, 21, 22, 23], "engin": [13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 32, 44], "start_and_connect": [13, 14, 15, 17, 18, 19, 20, 21, 22, 23], "activ": [13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 37, 44], "launcher": [13, 14, 19, 20, 21, 22, 23], "mpienginesetlaunch": [13, 14, 19, 20, 21, 22, 23], "px": [13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 40], "comm": [13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 40, 74], "comm_world": [13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 40], "ngmesh": [13, 14, 21, 22, 74, 75, 80], "transfer": [13, 80, 97, 118], "n2p": [13, 21], "petsc4pi": [13, 21, 22], "psc": [13, 21, 22], "createpetscmatrix": 13, "vectormap": 13, "psc_mat": 13, "vecmap": 13, "row_pardof": [13, 40], "view": 13, "fit": [13, 60], "psc_f": 13, "psc_u": 13, "createvec": [13, 22], "parallel": [13, 14, 22, 23, 38, 74, 75, 118], "krylov": [13, 81], "ksp": [13, 22], "setoper": [13, 22], "settyp": [13, 22], "cg": [13, 17, 22, 47, 75, 78, 88], "setnormtyp": [13, 22], "normtyp": [13, 22], "norm_natur": [13, 22], "getpc": [13, 22], "gamg": [13, 17, 18, 22], "settoler": [13, 22], "rtol": [13, 22], "atol": [13, 22], "divtol": [13, 22], "1e16": [13, 22], "max_it": [13, 22], "400": [13, 14, 22, 46, 75, 81, 107, 118], "p2n": 13, "wrap": 13, "cgsolver": [13, 17, 18, 20, 21, 36, 37, 40, 61, 72, 75, 79, 80, 81, 105, 107], "krylovspac": [13, 17, 18, 20, 21, 36, 37, 40, 61, 72, 75, 79, 80, 81, 82, 107], "rank": [13, 14, 15, 17, 18, 19, 20, 21, 23, 40, 81, 102, 103], "client": [14, 40], "world": [14, 19], "communiactor": 14, "mpi4pi": [14, 15, 17, 18, 20, 21, 23, 40, 44], "master": [14, 70], "team": [14, 19, 40], "processor": [14, 19, 23, 38, 118], "process": [14, 19, 23], "graph": [14, 38, 50, 96], "partit": [14, 38, 97, 106], "meti": [14, 105], "assign": [14, 105, 107], "sent": 14, "accord": [14, 25, 29, 33, 101], "keep": [14, 37, 53, 109], "kept": 14, "special": [14, 80, 96], "administr": 14, "work": [14, 23, 24, 38, 44, 45, 60, 68, 97, 105, 115], "possibl": [14, 24, 26, 31, 32, 44, 97, 98, 105, 107], "len": [14, 36, 37, 40, 48, 64, 105, 115], "elements2d": 14, "receiv": [14, 40], "got": [14, 19, 24], "getn": [14, 21, 74], "stdout": [14, 19, 20, 21, 23], "1280": [14, 46], "1184": [14, 46], "1248": [14, 46], "232": [14, 46], "collect": [14, 19, 51, 96], "commun": [14, 19, 20, 23, 38, 74], "reduct": [14, 45, 46, 48, 77, 79], "root": [14, 19, 26, 49], "allreduc": [14, 23], "broadcast": [14, 19], "member": 14, "sumup": 14, "3712": 14, "retriev": 14, "worker": 14, "enumer": [14, 22, 32, 35, 36, 37, 40, 49, 105], "7585": 14, "2657": 14, "2481": 14, "2593": 14, "sumlocdof": 14, "7731": 14, "larger": [14, 35, 38, 53, 89, 97], "interfac": [14, 19, 22, 24, 36, 38, 40, 42, 43, 44, 59, 74, 76, 87, 97, 104, 105], "count": [14, 32], "multiplel": 14, "24999999999999895": 14, "scope": 14, "24999999999999872": 14, "piec": [14, 56, 97], "visual": [14, 16, 24, 106], "gfl2": 14, "bone": [14, 19], "pardof": [14, 22, 40], "know": [14, 19, 22, 31, 38, 39, 64, 74, 98, 102, 115], "share": [14, 23, 107], "ask": 14, "particular": [14, 38, 49, 56, 63, 85, 100], "nr": [14, 23, 35, 36, 37, 40, 105, 106], "partner": 14, "otherp": 14, "proc2dof": [14, 40], "12": [14, 20, 36, 37, 45, 46, 61, 69, 75, 78, 80, 81, 82, 88, 107, 108, 115], "23": [14, 20, 36, 37, 46, 74, 75, 78, 80, 81, 82, 88, 105, 107], "33": [14, 20, 36, 37, 46, 75, 78, 80, 81, 82, 107], "43": [14, 36, 37, 46, 74, 75, 78, 80, 81, 82, 107], "47": [14, 36, 37, 46, 74, 75, 80, 81, 82, 107], "49": [14, 36, 37, 46, 75, 80, 81, 82, 107], "53": [14, 36, 37, 46, 75, 80, 81, 82, 107], "54": [14, 36, 37, 46, 75, 80, 81, 82, 107], "55": [14, 36, 37, 46, 75, 80, 81, 82, 107], "56": [14, 36, 37, 46, 74, 75, 80, 81, 82, 105, 107], "57": [14, 36, 37, 46, 75, 80, 81, 82, 107], "58": [14, 36, 37, 46, 75, 80, 81, 82, 107], "59": [14, 36, 37, 46, 75, 80, 81, 82, 107], "185": [14, 46, 75], "186": [14, 46, 75], "187": [14, 46, 74, 75], "188": [14, 46, 74, 75], "189": [14, 46, 75], "190": [14, 46, 75], "191": [14, 46, 74, 75], "192": [14, 46, 74, 75], "193": [14, 46, 75], "194": [14, 46, 75], "195": [14, 46, 75], "196": [14, 46, 75], "197": [14, 46, 75], "198": [14, 32, 46, 75], "692": [14, 46], "733": [14, 46], "734": [14, 46], "795": [14, 46], "796": [14, 46], "851": [14, 46], "852": [14, 46], "904": [14, 46], "905": [14, 46], "925": [14, 46], "934": [14, 46], "935": [14, 46], "937": [14, 46], "938": [14, 46], "953": [14, 46], "954": [14, 46], "957": [14, 46], "958": [14, 46], "961": [14, 46], "962": [14, 46], "965": [14, 46], "966": [14, 46], "969": [14, 46], "970": [14, 46], "973": [14, 46], "974": [14, 46], "977": [14, 46], "978": [14, 46], "11": [14, 20, 36, 37, 46, 61, 75, 78, 80, 81, 82, 88, 102, 107, 108, 117], "22": [14, 20, 36, 37, 46, 61, 75, 78, 80, 81, 82, 85, 88, 102, 105, 107], "32": [14, 20, 36, 37, 46, 68, 75, 78, 80, 81, 82, 100, 105, 107], "34": [14, 20, 36, 37, 46, 63, 74, 75, 78, 80, 81, 82, 102, 105, 107], "48": [14, 36, 37, 46, 74, 75, 80, 81, 82, 107], "91": [14, 36, 37, 46, 75, 80, 107], "120": [14, 36, 46, 74, 75, 80, 107], "144": [14, 46, 75, 80], "149": [14, 46, 75, 80], "166": [14, 46, 75], "179": [14, 46, 75], "241": [14, 46], "299": [14, 46], "301": [14, 46], "352": [14, 46], "354": [14, 46], "358": [14, 46], "360": [14, 46], "398": [14, 46], "427": [14, 46], "431": [14, 46], "433": [14, 46], "732": [14, 46], "792": [14, 46], "794": [14, 46], "847": [14, 46], "849": [14, 46], "855": [14, 46], "857": [14, 46], "895": [14, 46], "897": [14, 46], "927": [14, 46], "931": [14, 46], "933": [14, 46], "1145": [14, 46], "1146": [14, 46], "1317": 14, "1318": 14, "1459": 14, "1460": 14, "1487": 14, "1488": 14, "1587": 14, "1588": 14, "1663": 14, "1664": 14, "29": [14, 20, 36, 37, 46, 75, 78, 80, 81, 82, 107], "38": [14, 20, 36, 37, 46, 74, 75, 78, 80, 81, 82, 107, 115], "52": [14, 36, 37, 46, 75, 80, 81, 82, 107], "177": [14, 46, 75], "178": [14, 46, 75], "180": [14, 46, 75], "181": [14, 46, 75], "182": [14, 46, 75], "183": [14, 46, 75], "184": [14, 46, 75], "702": [14, 46], "781": [14, 46], "782": [14, 46], "831": [14, 46], "832": [14, 46], "869": [14, 46], "870": [14, 46], "888": [14, 46], "889": [14, 46], "892": [14, 46], "899": [14, 46], "900": [14, 46], "903": [14, 46], "907": [14, 46], "908": [14, 46], "911": [14, 46], "912": [14, 46], "915": [14, 46], "916": [14, 46], "40": [14, 20, 36, 37, 42, 46, 53, 74, 75, 78, 80, 81, 82, 107], "46": [14, 36, 37, 46, 74, 75, 80, 81, 82, 107], "51": [14, 36, 37, 46, 75, 80, 81, 82, 107], "60": [14, 36, 37, 46, 75, 80, 81, 82, 107], "61": [14, 36, 37, 46, 61, 74, 75, 80, 82, 107], "62": [14, 36, 37, 46, 74, 75, 80, 82, 107], "704": [14, 46], "785": [14, 46], "786": [14, 46], "842": [14, 46], "843": [14, 46], "873": [14, 46], "874": [14, 46], "883": [14, 46], "884": [14, 46], "893": [14, 46], "896": [14, 46], "919": [14, 46], "920": [14, 46], "923": [14, 46], "924": [14, 46], "928": [14, 46], "932": [14, 46], "936": [14, 46], "939": [14, 46], "940": [14, 46], "24": [14, 20, 36, 37, 44, 46, 75, 78, 80, 81, 82, 88, 105, 107, 108], "87": [14, 36, 37, 46, 75, 80, 85, 107], "119": [14, 36, 46, 74, 75, 80, 107], "157": [14, 46, 75, 80], "172": [14, 46, 75], "229": [14, 46], "293": [14, 46, 71], "295": [14, 46], "349": [14, 46], "351": [14, 46], "376": [14, 46], "378": [14, 46], "408": [14, 46], "411": [14, 46], "423": [14, 46], "432": [14, 46], "434": [14, 46], "435": [14, 46], "438": [14, 46], "721": [14, 46], "787": [14, 46], "841": [14, 46], "868": [14, 46], "926": [14, 46], "930": [14, 46], "1115": [14, 46], "1116": [14, 46], "1303": [14, 46], "1304": [14, 46], "1449": 14, "1450": 14, "1523": 14, "1524": 14, "1611": 14, "1612": 14, "1637": 14, "1638": 14, "1653": 14, "1654": 14, "37": [14, 20, 36, 37, 46, 75, 78, 80, 81, 82, 107], "89": [14, 36, 37, 46, 65, 75, 80, 107], "121": [14, 36, 46, 75, 80, 107], "153": [14, 46, 75, 80], "175": [14, 46, 75], "230": [14, 46], "296": [14, 46], "298": [14, 46], "364": [14, 46], "368": [14, 46], "418": [14, 46], "420": [14, 46], "422": [14, 46], "676": [14, 46], "722": [14, 46], "724": [14, 46], "788": [14, 46], "790": [14, 46], "856": [14, 46], "860": [14, 46], "910": [14, 46], "914": [14, 46], "943": [14, 46], "944": [14, 46], "1125": [14, 46], "1126": [14, 46], "1313": 14, "1314": 14, "1501": 14, "1502": 14, "1627": 14, "1628": 14, "navierstokessimpl": [15, 17, 18], "navierstok": [15, 17, 18], "ngsglobal": [15, 17, 18], "msg_level": [15, 17, 18], "revers": [15, 17, 18, 102], "07": [15, 17, 18, 20, 36, 37, 46, 60, 61, 74, 75, 78, 80, 81, 82, 88, 107, 112], "timestep": 15, "navstok": 15, "solveiniti": 15, "dotimestep": 15, "printmast": 15, "xaux": [16, 18], "gfaux": 16, "convertoper": [16, 18, 113], "convuhat": 16, "embu": 16, "embuhat": 16, "embed": [16, 21, 24, 80, 82, 97, 98, 102], "facetvari": 16, "curl": [16, 57, 60, 66, 67, 68, 80, 85, 113], "fescurl": 16, "hcurl": [16, 60, 67, 68, 80], "mtcurl": 16, "rhscurl": 16, "gfvi": 16, "rt": [17, 18, 85, 88], "sigma": [17, 18, 32, 35, 45, 46, 51, 55, 58, 59, 60, 62, 65, 66, 67, 68, 69, 72, 74, 80, 81, 83, 84, 85, 86, 87, 88, 106, 109, 116, 117], "hcurldiv": [17, 18], "vectorl2": [17, 18, 113, 118], "compress": [17, 18, 35, 36, 37, 50], "wirebasket_dof": [17, 18], "interface_dof": [17, 18], "skew2vec": [17, 18], "stokesa": [17, 18], "eliminate_hidden": [17, 18], "gfsigma": [17, 18], "inva": [17, 18], "masterinvers": 17, "ngspetsc": [17, 18, 21], "pc": [17, 18], "krylovsolv": 17, "solverparamet": 17, "ksp_type": 17, "pc_type": [17, 18], "ksp_monitor": 17, "ksp_rtol": 17, "gfucorr": 17, "petscpc": [17, 18, 21], "maxit": [17, 18, 21, 36, 37, 45, 47, 75, 78, 79, 80, 81, 82, 89, 93, 94, 100, 107, 118], "1000": [17, 18, 46, 78, 79, 82, 109], "abbrevi": 19, "messag": 19, "pass": [19, 110], "mani": [19, 22, 44, 54, 62, 74, 79, 81, 102], "tutori": [19, 23, 24, 73], "jupyt": [19, 24, 44, 70], "repres": [19, 23, 27, 32, 35, 47, 61, 63, 80, 95, 96, 102, 105, 106, 112], "pip": [19, 44, 100], "instal": [19, 24, 70, 100], "th": [19, 32, 49, 65, 77, 102, 106], "tag": 19, "magic": [19, 65], "execut": [19, 44, 73], "9": [19, 20, 36, 37, 46, 47, 61, 68, 74, 75, 78, 80, 81, 82, 86, 88, 93, 105, 107, 112, 117], "about": [19, 22, 38, 71, 97], "particip": 19, "group": [19, 74], "am": 19, "proc": 19, "send": [19, 38, 44], "recv": 19, "destin": 19, "sourc": [19, 31, 32, 34, 41, 42, 44, 53, 55, 74, 86, 110], "expect": [19, 103], "smaller": [19, 35, 62, 85, 105, 106, 115], "kind": [19, 39, 45, 71, 73, 77, 80, 86, 110], "fruit": 19, "appl": 19, "banana": 19, "clementin": 19, "durian": 19, "elderberri": 19, "fig": [19, 45], "grape": 19, "honeydew": 19, "melon": 19, "dst": 19, "dest": 19, "src": [19, 116], "everyon": 19, "scatter": [19, 42], "split": [19, 29, 31, 35, 36, 37, 38, 43, 44, 49, 51, 61, 62, 71, 80, 95, 97, 102, 103, 105, 106], "bcast": 19, "hello": 19, "boss": 19, "person": 19, "technologi": 19, "behind": [19, 44, 47], "pickl": 19, "convert": [19, 22, 74], "byte": 19, "stream": 19, "serial": 19, "exchang": [19, 38], "setup": [20, 75, 76, 94, 105, 106], "jacobi": [20, 45, 61, 62, 63, 77, 79, 80, 103, 107], "extract": [20, 98, 102], "cumul": [20, 22, 23, 40, 64], "identifi": [20, 23, 32, 36, 95, 102], "residu": [20, 31, 36, 37, 44, 45, 46, 48, 49, 61, 75, 80, 81, 88, 102, 107], "calcul": [20, 32, 46, 48, 49, 61, 74, 85, 118], "pure": [20, 23], "precondit": [20, 38, 43, 44, 45, 47, 75, 78, 79, 102, 106, 107], "convers": [20, 23, 97, 118], "output": [20, 40, 62], "product": [20, 25, 26, 27, 36, 46, 47, 48, 49, 50, 62, 63, 74, 77, 80, 95, 96, 97, 98, 100, 102, 106], "act": 20, "opposit": [20, 27, 31, 49], "err": [20, 45, 46, 47, 49, 78, 82, 85, 112], "002131411608940556": 20, "0016785598117133912": 20, "0014383176229297977": 20, "0012601136081994502": 20, "0011163969057570045": 20, "0009957540133089201": 20, "000892013039583751": 20, "0008013860460216729": 20, "0007213664248458749": 20, "0006501978632935307": 20, "0005865868529358019": 20, "0005295374859014327": 20, "00047825313447910644": 20, "0004320763401729044": 20, "0003904510870202349": 20, "00035289842915932834": 20, "00031900021889388745": 20, "0002883878366131279": 20, "0002607340736402399": 20, "00023574705190481803": 20, "00021316549799011987": 20, "00019275494792186845": 20, "00017430461490466548": 20, "00015762474697784634": 20, "00014254435985880777": 20, "00012890926660311873": 20, "00011658034877248673": 20, "00010543202872418053": 20, "53509125215299e": 20, "623457969303072e": 20, "7": [20, 36, 37, 44, 46, 61, 68, 74, 75, 76, 78, 80, 81, 82, 86, 88, 100, 107, 112, 115, 117], "79905007837357e": 20, "053506705294771e": 20, "3792719216495e": 20, "769516408736931e": [], "218066951299397e": 20, "71934292567164e": [], "268299050241807e": [], "860373752689044e": [], "4914425821440545e": 20, "1577761578216526e": 20, "856002200721243e": 20, "5830712431211527e": [], "336225652920634e": [], "112971647279069e": 20, "9110540031668575e": [], "7284332019465414e": [], "563264771416978e": [], "4138806122733465e": [], "2787721169956143e": [], "1565749080625242e": [], "0460550393450774e": [], "460965197737418e": [], "556900320854897e": [], "739227318013283e": [], "999690227069895e": [], "330822151353702e": [], "7258698239108366e": [], "178725388153858e": [], "6838647035290175e": [], "236291551289987e": [], "831487175498001e": [], "4653646485897776e": [], "1342275998439424e": [], "8347328893352102e": [], "5638568499710354e": [], "318864756351698e": [], "097283211876788e": [], "896875175059282e": [], "715617372711863e": [], "551679871817e": [], "4034076037199845e": [], "2693036540219163e": [], "148014149399825e": [], "0383145887165753e": [], "390974803808237e": [], "493611611120727e": [], "681996832028874e": [], "947936681618619e": [], "284020343837914e": [], "683545153190265e": [], "140448925990265e": [], "649248757945639e": [], "204985670127124e": [], "8031745444511146e": [], "439758843202849e": [], "111069655442327e": [], "8137886568143383e": [], "54491460880751e": [], "3017330592352966e": [], "0817889380370092e": [], "8828617717300159e": [], "7029432662799943e": [], "540217032071367e": [], "3930402462835032e": [], "259927067541289e": [], "1395336353993158e": [], "0306445032160044e": [], "321603674500005e": [], "430869694970844e": [], "625250580230147e": [], "iteraton": 20, "conjug": [20, 35, 36, 43, 44, 50, 75, 79, 81], "goe": 20, "2kcg": [20, 36, 37, 61, 75, 80, 81, 88, 107], "046167213571327394": 20, "07053899603094559": 20, "05070470124514234": 20, "0360268233935707": 20, "023620592653494303": 20, "012187751064729127": 20, "0048687652674056035": 20, "0036905492669662104": 20, "002385951928666893": 20, "0014958478667025682": [], "0007978295322313946": [], "0003894308112507473": [], "0002028582087546903": [], "00010870660188901049": [], "7709248556370906e": [], "440663639564687e": [], "3387850598294928e": [], "18": [20, 36, 37, 46, 61, 75, 78, 80, 81, 82, 88, 107], "261614742574918e": [], "19": [20, 36, 37, 46, 74, 75, 78, 80, 81, 82, 88, 93, 107], "7789183584086133e": [], "71212219563724e": [], "21": [20, 36, 37, 46, 61, 75, 78, 80, 81, 82, 88, 107], "9449190153480686e": [], "720041089537808e": [], "158325024486417e": [], "966100092888579e": [], "6907112120357873e": [], "26": [20, 36, 37, 46, 75, 78, 80, 81, 82, 107], "226654284814047e": [], "27": [20, 36, 37, 46, 75, 78, 80, 81, 82, 107], "3834878735043118e": [], "759857607322895e": [], "09": [20, 36, 37, 46, 61, 75, 80, 81, 88, 107, 112], "4857074072199563e": [], "1436471199765605e": [], "31": [20, 36, 37, 44, 46, 75, 78, 80, 81, 82, 107, 115], "800144212325028e": [], "2081699355731026e": [], "0825055598730917e": [], "4996245070654885e": [], "35": [20, 36, 37, 46, 74, 75, 78, 80, 81, 82, 107], "5035529096415395e": [], "36": [20, 36, 37, 46, 74, 75, 78, 80, 81, 82, 107], "315483330039497e": [], "5661479470419015e": [], "460411710771445e": [], "2563691054597154e": [], "046560309172732e": [], "4718578422851718e": [], "bramblepasciakcg": [21, 78, 82], "z": [21, 27, 28, 39, 45, 46, 47, 62, 72, 74, 80, 82, 97, 98, 101, 102, 108, 109, 112, 113, 115, 118], "41888": 21, "39464": 21, "41712": 21, "petsc": [21, 43, 44], "u1": [21, 68, 82], "bfa1": [21, 82], "bfb": [21, 78, 82], "bfc": [21, 82], "prea1": [21, 82], "mata": [21, 82], "ri": [21, 82], "prea": [21, 78, 79, 82], "bfschur": [21, 78, 82], "preschur": [21, 78, 82], "gfp": [21, 78, 82, 118], "resf": [21, 78, 82], "resg": [21, 78, 82], "sol": [21, 64, 78, 82, 88], "500": [21, 36, 37, 45, 46, 65, 67], "clip": [21, 80, 82], "http": [22, 24, 44, 50, 63, 73, 102, 108, 115, 116, 117], "www": 22, "mc": 22, "anl": 22, "gov": 22, "portabl": 22, "toolkit": 22, "scientif": [22, 44, 108], "offer": 22, "learn": [22, 24, 50], "numpi": [22, 44, 45, 62, 73, 74, 109], "np": [22, 45, 74, 109], "ndglob": 22, "aij": 22, "locmat": 22, "local_mat": [22, 40], "val": [22, 40, 74], "col": [22, 40, 61], "ind": 22, "dtype": 22, "int32": 22, "apsc_loc": 22, "createaij": 22, "height": [22, 31, 45, 106], "width": [22, 38, 64, 106], "comm_self": 22, "indexset": 22, "purpos": 22, "globnum": 22, "nglob": 22, "enumerateglob": 22, "iset": 22, "creategener": 22, "indic": [22, 74, 81, 103], "lgmap": 22, "createi": 22, "local2glob": 22, "createpython": 22, "setlgmap": 22, "setislocalmat": 22, "mpiaij": 22, "copi": [22, 61, 112], "v2loc": 22, "getsubvector": 22, "getarrai": 22, "restoresubvector": 22, "v1loc": 22, "dougla": [23, 32, 85], "haas": 23, "langer": 23, "ellipt": [23, 26, 35, 39, 43, 44, 51, 52, 62, 63, 74, 88, 110], "siam": [23, 63, 102], "2003": [23, 35], "store": [23, 50, 79, 106, 118], "represent": [23, 29, 43, 44, 45, 74, 100, 102, 103, 106, 112], "recal": 23, "rectangular": [23, 40, 51, 79, 102, 112], "ccc": [23, 51, 66, 78, 81, 83, 88, 108], "thei": [23, 28, 61, 62, 71, 77, 80, 105, 106, 108, 118], "never": [23, 44], "dens": [23, 25, 40, 50, 77, 87, 94, 97, 98, 101, 106], "similarli": [23, 74], "understood": [23, 67, 74, 76, 84], "storag": 23, "00666667": 23, "00436698": 23, "0243206": 23, "0233311": 23, "00641114": 23, "0134663": 23, "0174519": 23, "0231253": 23, "0241589": 23, "0596323": 23, "0233791": 23, "00976904": 23, "0123374": 23, "030805": 23, "0421362": 23, "0232821": 23, "0185708": 23, "00929141": 23, "0115905": 23, "0143129": 23, "0157114": 23, "012363": 23, "0183463": 23, "0327422": 23, "0232373": 23, "0382184": 23, "0151684": 23, "0134339": 23, "0339567": 23, "0187142": 23, "0148526": 23, "0133493": 23, "0228366": 23, "0344815": 23, "00444576": 23, "00532115": 23, "0159095": 23, "019749": 23, "0263138": 23, "0185867": 23, "019659": 23, "0139698": 23, "0156347": 23, "0344221": 23, "0278865": 23, "0320692": 23, "0231229": 23, "00838466": 23, "0152942": 23, "00674705": 23, "euclidean": 23, "built": [23, 38, 53, 74, 85], "sequenti": [23, 61], "ip": 23, "doubl": [23, 81], "localip": 23, "local_vec": [23, 40], "36321061217922673": 23, "2941827144102711": 23, "3426066734105022": 23, "a_i": [23, 102], "r_i": [23, 49, 80, 102], "interpret": [23, 33, 49, 60, 81], "uniqu": [23, 25, 26, 27, 28, 29, 30, 48, 51, 74, 77, 80, 85, 87, 101, 102], "just": [23, 24, 37, 58, 64, 71, 74, 81, 84, 118], "prepar": 24, "joachim": [24, 43, 44, 70], "schoeberl": 24, "colleagu": 24, "tu": [24, 43, 44, 54], "wien": [24, 43, 44], "cours": [24, 44, 70, 81], "teach": [24, 44], "theori": [24, 29, 49, 61, 62, 63, 70, 77, 98, 105, 106], "reader": [24, 78], "experi": [24, 44, 45, 49, 70, 75, 76, 81, 94, 103, 105], "read": [24, 32, 70, 74, 81, 102, 110], "onlin": [24, 44], "book": [24, 44], "jschoeberl": [24, 44], "io": [24, 44], "ifem": [24, 44, 70], "intro": 24, "html": [24, 50, 73], "try": [24, 28, 44, 56, 73, 80], "your": [24, 44, 73, 75, 99], "launch": 24, "binder": 24, "click": 24, "logo": 24, "minut": [24, 44], "readi": [24, 80], "through": [24, 30, 33, 85], "press": [24, 61], "enter": [24, 74, 76], "experiment": [24, 46], "run": [24, 44, 46, 49], "lite": [24, 44], "jupyterlite_ngsolv": 24, "lab": [24, 44], "path": [24, 44], "ipynb": [24, 44], "develop": [24, 62, 77, 80, 104], "hochsteg": 24, "home": 24, "offic": 24, "noth": [24, 71], "excel": 24, "matlab": 24, "long": [24, 38, 105], "chen": [24, 65], "mu": [25, 36, 37, 51, 53, 54, 72, 80, 81, 118], "quad": [25, 28, 29, 30, 32, 38, 47, 51, 52, 53, 54, 62, 67, 71, 74, 79, 85, 86, 87, 95, 97, 100, 102, 104, 106, 109], "lebesgu": 25, "being": [25, 74, 100, 105], "sup": [25, 43, 44, 52, 83], "complet": [25, 27, 29, 62, 63, 71, 74, 80, 96, 108, 118], "sequenc": [25, 29, 30, 31, 61, 64, 73, 94, 96, 97, 98, 100], "u_n": [25, 29, 74, 94, 97, 110], "banach": [25, 26, 96, 97], "closur": [25, 31, 39, 96, 97, 101], "denot": [25, 77, 95, 96, 109], "canon": [25, 39, 60, 73, 80], "ast": [25, 26, 27, 28, 29, 32, 39, 45, 46, 48, 49, 51, 73, 83, 101, 102], "satisfi": [25, 26, 28, 32, 34, 45, 49, 56, 59, 62, 63, 65, 67, 73, 74, 77, 80, 81, 95, 106, 108, 109, 110], "_a": [25, 26, 27, 32, 35, 47, 48, 49, 50, 52, 62, 63, 64, 80, 81, 98, 100, 102, 103, 105, 106], "simpli": [25, 48, 77, 80], "tv": 25, "2ta": 25, "forc": [25, 56, 72, 79], "trivial": [25, 51, 64, 80, 84, 96, 97, 98, 103], "statement": [25, 101], "respect": [25, 26, 29, 32, 33, 36, 39, 45, 46, 47, 51, 77, 81, 96, 97, 102], "subspac": [25, 26, 27, 29, 43, 44, 63, 102], "alwai": [25, 31, 108], "kernel": [25, 34, 38, 51, 52, 65, 79, 97, 98, 100, 103], "ker": [25, 27, 79, 80, 98], "necessarili": [25, 26, 28, 59, 95, 102], "bot": [25, 27, 29, 30, 35, 36, 37, 47, 51, 80, 97, 98], "_w": [25, 28, 29, 39, 97, 98], "principl": 25, "onto": [25, 27, 29, 31, 36, 43, 44, 51, 64, 77, 80, 97, 98, 99, 102, 106], "limit": [25, 39, 67, 94, 97, 103], "compact": [25, 87, 95, 96, 97, 98], "lambda_n": [25, 46], "u_m": [25, 97, 112], "eigensystem": [25, 62, 112], "mapsto": [25, 28, 51, 61, 73, 79, 85, 94, 99, 102, 106], "sketch": [25, 98], "maxim": [25, 62, 72, 100, 106], "u_1": [25, 27, 28, 29, 30, 59, 74, 79, 88, 104, 110, 112], "lambda_1": [25, 26, 46, 100], "tu_1": 25, "repeat": [25, 49], "procedur": [25, 77], "complement": [25, 35, 36, 79, 80, 100], "u_2": [25, 27, 28, 29, 59, 88, 104], "chapter": [26, 50, 96, 108], "discuss": [26, 62, 71, 80], "pose": [26, 29, 32, 38, 39, 53, 97, 101], "known": [26, 31, 44, 47, 59, 65, 67, 74, 88, 109, 110], "diffus": [26, 43, 44], "reaction": 26, "neumann": [26, 38, 39, 53, 71, 76, 86, 88, 101, 105], "lambda_": [26, 32, 38, 105], "lambda_2": [26, 46, 100], "gamma_1": [26, 28, 45, 49, 102], "gamma_2": [26, 28, 45, 49, 102], "almost": 26, "everywher": 26, "convect": [26, 43, 44], "aris": [26, 50], "incompress": [26, 56, 81], "write": [26, 45, 49, 52, 54, 62, 74, 77, 79, 102, 103, 106, 109], "written": [26, 83, 108, 112], "dualiti": [26, 53], "notat": [26, 53, 61, 63, 71, 102, 106], "contract": 26, "lipschitz": [26, 89, 92, 94, 96, 97, 98], "v_1": [26, 28, 29, 61, 64, 81, 97, 98, 104], "v_2": [26, 28, 29, 81, 104], "lax": [26, 28, 98, 101], "milgram": [26, 28, 98, 101], "j_v": 26, "riesz": [26, 29, 43, 44], "isomorph": [26, 102], "below": [26, 49], "state": [26, 29, 58, 95, 96, 97, 98, 100, 109], "claim": [26, 28, 52, 62, 98, 103], "solvabl": [26, 28, 29, 51], "origin": [26, 28, 29, 30, 32, 35, 47], "c\u00e9a": 26, "optim": [26, 29, 32, 38, 45, 48, 49, 61, 64, 75, 77, 80, 83], "fundament": [26, 97], "pick": [26, 27, 29], "underbrac": [26, 27, 30, 45, 46, 49, 77, 83, 98], "wa": [26, 34, 35, 63, 97, 100, 102], "infimum": [26, 80, 103], "addition": [26, 33, 44], "improv": [26, 29, 31, 44, 47, 49, 62, 63, 80, 89, 97, 105, 107, 108, 112], "l_u": 27, "u_l": [27, 62, 63, 64, 76, 97, 98], "furthermor": [27, 29, 63, 77, 85, 97], "contradict": [27, 29, 30, 98], "otherwis": [27, 32, 56, 95, 103], "sup_v": [27, 32], "neg": [27, 47, 48, 54, 81, 98, 101, 105, 109], "impli": [27, 28, 29, 30, 77, 80, 81, 96, 97, 98, 102, 103], "tell": [27, 74], "minim": [27, 30, 32, 35, 38, 39, 43, 44, 45, 46, 48, 58, 63, 77, 80, 97, 102, 109], "min_": [28, 32, 45, 47, 48, 51, 63, 81, 83], "tfrac": [28, 30, 38, 45, 47, 48, 51, 59, 72, 77, 81, 89, 93, 94, 97, 100, 102, 105, 106, 109, 111, 118], "hint": [28, 99], "prime": [28, 34, 77, 85, 89, 94, 95, 97, 99, 103, 109], "int_0": [28, 39, 77, 89, 94, 95, 97, 108], "beta_1": [28, 29], "fraction": [28, 81, 97], "swap": [28, 86, 100], "surject": [28, 29, 51, 97], "h_0": [28, 32, 39, 51, 56, 74, 97, 98, 101, 103, 110], "beta_2": [28, 29], "big": [28, 38, 45, 49, 52, 62, 63, 64, 75, 77, 80, 94, 99, 100, 102, 103, 105, 106, 109, 110, 112, 118], "young": 28, "further": [28, 31, 70, 80, 97], "why": [28, 53, 97], "simplifi": [28, 45, 49, 106], "come": [28, 38, 74, 81, 83, 106, 110, 118], "candid": [28, 51, 52, 84], "supremum": [28, 73], "search": [28, 32, 48, 58, 59, 67, 74, 80, 100, 110], "necessari": [29, 35, 98, 109], "f_1": 29, "f_2": 29, "convent": 29, "atop": [29, 32, 34, 35, 39, 45, 63, 81, 83, 97, 101, 102, 106, 109], "reformul": [29, 47, 62, 102], "immedi": [29, 35, 47, 81, 98, 102, 103, 105, 106, 108], "aka": [29, 95, 107], "conclud": [29, 97], "By": [29, 30, 35, 45, 48, 49, 51, 52, 61, 63, 74, 77, 80, 81, 97, 98, 100, 102, 105, 106, 109, 110], "insur": 29, "around": [29, 103], "babu\u0161ka": 29, "aziz": 29, "oplu": 29, "v_g": 29, "real": [29, 109], "v_r": [29, 118], "v_i": [29, 36, 38, 40, 80, 101, 102, 105, 106], "u_r": [29, 76], "contrast": [29, 34, 49, 59, 74, 109, 111], "extra": [29, 53, 59, 77, 88, 107], "beta_": 29, "1h": 29, "actual": [29, 34, 79, 97], "brezzi": [29, 32, 44, 51, 52, 59, 65, 70, 85], "xu": [29, 63, 102], "zikatanov": 29, "euklidean": [30, 46, 73], "character": [30, 48, 97], "v_m": [30, 112], "therefor": 30, "minimum": [30, 48, 100, 102], "dt": [30, 110, 112, 118], "were": [30, 60, 88, 96], "decompos": [30, 36, 38, 51, 63, 64, 80, 98, 101, 102, 103, 106], "p_": [30, 31, 47, 61, 63, 64, 77, 97, 98, 118], "projector": [30, 43, 62, 80, 81, 100, 102, 105, 106, 115], "pu": [30, 106], "pv": 30, "p_su": 30, "p_sv": 30, "Such": [31, 38, 44, 106], "eta": [31, 32, 33, 34, 97], "reliabl": [31, 32, 33, 34], "upper": [31, 32, 33, 49, 86, 100, 106], "c_1": [31, 98, 100, 103, 106, 108], "equ_reli": 31, "effici": [31, 32, 34, 38, 47, 61, 77], "lower": [31, 32, 38, 49, 83, 86, 100, 105, 106, 108], "c_2": [31, 98, 100, 103, 106], "equ_effici": 31, "unknown": [31, 38, 56, 57, 75, 77, 109, 110, 111], "bigskip": [31, 32, 34], "guid": [31, 118], "eta_t": [31, 33, 34], "omega_t": [31, 34], "patch": [31, 32, 34, 80, 106], "simplest": [31, 56], "zz": 31, "semi": [31, 34, 80, 96, 97, 98, 100, 103, 106, 109, 110], "p_h": [31, 52, 83], "hope": [31, 100], "much": [31, 35, 38, 48, 65], "equ_superconverg": 31, "small": [31, 33, 38, 43, 44, 47, 54, 62, 67, 76, 77, 80, 81, 83, 100, 105, 106, 112, 115, 118], "ll": [31, 109], "super": [31, 40, 61, 74, 106], "inde": [31, 39, 77, 97, 98, 101, 102], "short": [31, 61, 74, 85, 97, 105, 109, 112], "rigor": [31, 33], "analysi": [31, 44, 49, 61, 69, 77, 88, 100, 102, 103, 107], "subsubsect": 31, "algorithm": [31, 38, 43, 45, 47, 50, 61, 74, 81, 94], "control": [31, 72, 74, 103], "recurs": [31, 47, 61, 62, 63], "quot": 31, "loop": [31, 49], "hspace": 31, "1cm": 31, "toler": 31, "stop": [31, 47], "care": 31, "red": 31, "green": [31, 33], "mark": [31, 71, 74, 105], "four": [31, 47], "includegraph": 31, "2cm": 31, "pictur": 31, "refine_irreg": 31, "irregular": 31, "refine_reg": 31, "wors": 31, "refinebad": 31, "remov": [31, 45], "refinegood": 31, "bisect": [31, 74, 105], "cut": [31, 97], "middl": 31, "old": [31, 46, 110], "occur": 31, "ensur": 31, "termin": 31, "cycl": 31, "sort": 31, "length": [31, 97], "largest": [31, 45, 46, 49, 94, 100, 103], "equilibr": [31, 44], "tex": 31, "subsect": 32, "energi": [32, 33, 35, 43, 48, 49, 50, 64, 67, 68, 80, 115, 118], "aim": [32, 38, 44], "direct": [32, 38, 48, 50, 51, 52, 61, 72, 75, 78, 82, 94, 97, 105, 106], "feasibl": [32, 45, 61, 102, 105], "mathcal": [32, 47, 63, 66, 102], "r_e": 32, "lambda_t": 32, "_e": [32, 77, 84, 97], "eqc": 32, "rel": [32, 109], "er": 32, "idea": [32, 34, 35, 38, 47, 63, 88, 97, 98, 112, 115], "lift": [32, 35], "envolv": 32, "flux": [32, 33, 53, 55, 71, 76, 83, 85, 86], "postprocess": [32, 83], "equilibrium": [32, 72], "sigma_": [32, 60, 65, 87, 88], "could": [32, 49, 52, 79, 88, 109], "alreadi": [32, 39, 62, 63, 106], "compar": [32, 38, 45, 52, 77, 107, 109], "cost": [32, 38, 79, 105], "omega_v": 32, "cup_": [32, 97], "proce": [32, 44, 49, 103, 106, 111], "sum_v": [32, 60], "multipl": [32, 47, 49, 61, 77, 102], "phi_v": 32, "equal": [32, 38, 76, 77, 98, 102], "marini": [32, 85], "q_i": [32, 85], "ii": [32, 49, 102], "iii": [32, 44], "opcurl": [32, 60, 67], "unisolv": 32, "t_2": [32, 34], "counter": [32, 100], "clock": 32, "t_0": [32, 45, 109], "specifi": [32, 71, 74, 101, 108], "sigma_n": [32, 60, 86, 87], "e_1": 32, "e_2": 32, "const": 32, "e_3": 32, "constrain": [32, 35, 80, 88], "furthoer": 32, "mix": [32, 54, 59, 65, 68, 70, 80, 83, 84, 88], "shown": [32, 38, 51, 58, 62, 63, 77, 80, 87, 102], "proven": [32, 45, 46, 49, 62, 63, 64, 77, 80, 84, 87, 94, 97, 100, 103], "overestim": 32, "less": [32, 71, 95], "noindent": 32, "literatur": [32, 62, 63, 102, 118], "braess": [32, 44, 62, 65, 77], "sch": 32, "oberl": 32, "newblock": 32, "maxwel": [32, 116, 117], "262": [32, 46], "651": [32, 46], "672": [32, 46], "2008": 32, "pillwein": 32, "mechan": [32, 44, 54, 100], "1189": [32, 46], "1197": [32, 46], "2009": [32, 115], "surfac": [33, 68, 74], "descib": 33, "design": [33, 38, 58, 81, 118], "heurist": 33, "unfortun": [33, 37], "correct": [33, 36, 49, 61, 62, 63, 71, 79, 102, 103, 105, 106], "equ_incorrect": 33, "2_t": 33, "desir": 33, "classic": [34, 43, 95, 108], "n_1": 34, "n_2": 34, "ment": 34, "pi_h": [34, 106], "omega_x": 34, "bigcup_": 34, "omega_": 34, "emptyset": [34, 97], "ement": 34, "equ_clement_bh": 34, "due": [34, 62, 72, 80, 101, 106, 118], "equ_clement_bh2": 34, "adjac": [34, 105], "lefteqn": 34, "overlap": [34, 35, 61, 71, 80, 87, 97], "geqc": 34, "grew": 35, "feti": [35, 43, 44], "dp": [35, 43, 44], "invent": 35, "clark": 35, "dormann": 35, "substructur": 35, "stand": [35, 37], "alanc": 35, "omain": 35, "ecomposit": 35, "onstraint": 35, "decomposit": [35, 61, 63, 80, 87, 102, 103, 112], "unlik": 35, "cheaper": [35, 79, 105], "down": [35, 54], "artifici": [35, 62], "befor": [35, 106], "supset": 35, "fictiti": [35, 80, 102], "Its": [35, 80, 85, 97, 101, 102], "spectrum": [35, 45, 81, 106], "_c": [35, 45, 47, 49], "sup_u": [35, 81], "scroll": 35, "elimin": [35, 50, 74], "except": [35, 118], "schur": [35, 36, 40, 79], "witch": 35, "bring": 35, "interact": [35, 45], "csg2d": [35, 36, 37, 79], "mx": [35, 36, 37, 64, 105], "rect": [35, 36, 37, 79, 105, 115, 118], "pmin": [35, 36, 37, 79], "pmax": [35, 36, 37, 79], "02": [35, 42, 62, 74, 82, 112, 115, 118], "dom": [35, 36, 37, 74, 105], "fesi": [35, 36, 37], "fesvertex": [35, 37], "domtrial": [35, 36, 37], "domtest": [35, 36, 37], "uvert": [35, 37], "vvert": [35, 37], "dvert": [35, 37], "differentialsymbol": [35, 37], "ui": [35, 36, 37], "vi": [35, 36, 37], "1e6": [35, 37, 74], "gftot": [35, 36, 37], "tear": 36, "interconnect": 36, "break": [36, 37, 44, 45, 46, 47, 48, 49, 78, 88], "apart": 36, "enforc": [36, 38, 53, 59], "04": [36, 61, 74], "mat00": [36, 37, 105], "mat01": [36, 37, 105], "mat02": [36, 37, 105], "mat10": [36, 37, 105], "mat11": [36, 37, 105], "mat12": [36, 37, 105], "mat20": [36, 37, 105], "mat21": [36, 37, 105], "mat22": [36, 37, 105], "pi_i": 36, "817": [36, 46, 61], "although": [36, 50, 75, 111], "constraint": [36, 44, 52, 56, 67, 77, 80, 81, 102], "feslam": [36, 37, 81], "inter": [36, 37], "neighbour": [36, 37, 77], "feslami": [36, 37], "lam": [36, 37, 40, 45, 53, 61, 72, 76, 78, 80, 81, 86, 100, 103, 106, 107, 112, 118], "intertri": [36, 37], "intertest": [36, 37], "108": [36, 37, 46, 75, 80, 107], "u_j": [36, 38, 97, 102], "mu_": [36, 38], "trialspac": [36, 37, 113, 118], "testspac": [36, 37, 113, 118], "zip": [36, 37, 40, 100, 112], "dom1": [36, 37], "dom2": [36, 37], "0x1107d1bb0": [], "obvious": 36, "saddl": [36, 78, 79, 80, 88], "explicitli": [36, 47, 81, 102, 106], "build": [36, 40, 72, 105, 107], "recov": [36, 51, 102], "ainv": [36, 37, 40, 81], "identitymatrix": [36, 37, 45, 79], "08403599336703113": [], "03971919917200744": [], "012295554254865788": [], "0020901554347403867": [], "0015921163492494676": [], "0003216314452335512": [], "0014866501738760762": [], "00021211111709024764": [], "000899271327545316": [], "978704242742513e": [], "00010989556910276669": [], "807312175413424e": [], "489313462052698e": [], "2211684881705134e": [], "7663058771209864e": [], "0003633998734140186": [], "0001352619325951499": [], "8964649988663094e": [], "00014306804838131818": [], "9254573086860635e": [], "042581454137236e": [], "4281221761962518e": [], "8235209177426652e": [], "387142841664182e": [], "4454491314789472e": [], "2624858625647429e": [], "3836188899738758e": [], "121103256791653e": [], "39235568858624e": [], "1657481110350776e": [], "8293593651314615e": [], "184364070224477e": [], "79990240813575e": [], "2398158865007236e": [], "1125928073258183e": [], "141746880294224e": [], "1884181554368676e": [], "286194750732054e": [], "9088222270713893e": [], "446017065156852e": [], "652017571974451e": [], "42": [36, 37, 42, 46, 74, 75, 78, 80, 81, 82, 107], "776444039291786e": [], "0338834017156139e": [], "44": [36, 37, 46, 74, 75, 80, 81, 82, 106, 107], "941258142377164e": [], "8288921201760967e": [], "634922998282079e": [], "841438389885371e": [], "7684030183248516e": [], "2321571144415932e": [], "1034518226186206e": [], "498290775472622e": [], "9531123494393727e": [], "12208866558199e": [], "0951448281697898e": [], "2794258185310817e": [], "249148010989853e": [], "322033976123568e": [], "747594642794803e": [], "575282285473072e": [], "5348972354633607e": [], "73687786636755e": [], "3798080438293656e": [], "63": [36, 37, 46, 75, 80, 82, 107], "910468666833205e": [], "64": [36, 37, 46, 75, 80, 82, 100, 105, 107], "3471932802189886e": [], "65": [36, 37, 46, 75, 80, 82, 105, 107], "5565122033962706e": [], "66": [36, 37, 46, 75, 80, 82, 107], "354758555754366e": [], "67": [36, 37, 46, 65, 75, 80, 82, 107], "7998658666188764e": [], "68": [36, 37, 46, 75, 80, 82, 103, 107], "2061379442750012e": [], "69": [36, 37, 46, 75, 80, 82, 107], "5570103924688024e": [], "70": [36, 37, 46, 75, 80, 82, 107], "72598022235102e": [], "294819561431963e": [], "72": [36, 37, 46, 75, 80, 82, 107], "418149620187612e": [], "73": [36, 37, 46, 65, 75, 80, 82, 107], "436971866280808e": [], "74": [36, 37, 46, 75, 80, 82, 107], "752415244835483e": [], "409430826899846e": [], "76": [36, 37, 46, 75, 80, 107], "6093537661467296e": [], "684044879498471e": [], "78": [36, 37, 46, 75, 80, 107], "0953726141653895e": [], "79": [36, 37, 46, 74, 75, 80, 107], "6429039542122068e": [], "80": [36, 37, 46, 59, 74, 75, 80, 107], "2325700389369532e": [], "81": [36, 37, 46, 75, 80, 107, 115], "7421283661741647e": [], "82": [36, 37, 46, 75, 80, 107], "226588470826822e": [], "83": [36, 37, 46, 62, 74, 75, 80, 107], "202529124800455e": [], "84": [36, 37, 46, 74, 75, 80, 107], "1965287632251513e": [], "85": [36, 37, 46, 62, 65, 75, 80, 107], "991538436040081e": [], "86": [36, 37, 46, 75, 80, 85, 107], "1522344802302885e": [], "753696940783753e": [], "88": [36, 37, 46, 75, 80, 107], "8501344424674616e": [], "253114257383795e": [], "90": [36, 37, 46, 75, 80, 107], "6592798493252714e": [], "337514523964305e": [], "92": [36, 37, 46, 75, 80, 107], "5830333107310454e": [], "93": [36, 37, 46, 62, 75, 79, 80, 107], "3042922401246623e": [], "538759307284333e": [], "95": [36, 37, 46, 75, 80, 107], "9952323110386574e": [], "96": [36, 37, 46, 75, 80, 107], "634371597786884e": [], "97": [36, 37, 46, 75, 80, 107], "4119444055232988e": [], "98": [36, 37, 46, 75, 80, 107], "95712879462653e": [], "99": [36, 37, 46, 75, 80, 107], "826718189247856e": [], "693092500765816e": [], "101": [36, 37, 46, 75, 80, 107], "1493153212620434e": [], "102": [36, 37, 46, 75, 80, 107], "4027067950677983e": [], "103": [36, 37, 46, 75, 77, 80, 107], "189708423554782e": [], "104": [36, 37, 46, 75, 80, 107], "059437133008698e": [], "105": [36, 37, 46, 75, 80, 107], "2067646653165054e": [], "106": [36, 37, 46, 75, 80, 107], "166046337767076e": [], "107": [36, 37, 46, 75, 80, 107], "4529776235602213e": [], "061018471079863e": [], "109": [36, 37, 46, 75, 80, 107], "146868539980557e": [], "110": [36, 37, 46, 75, 80, 107], "850475731877533e": [], "111": [36, 37, 46, 75, 80, 107], "458857887878654e": [], "112": [36, 46, 75, 80, 107], "239930354401104e": [], "113": [36, 46, 75, 80, 107], "040223762942861e": [], "114": [36, 46, 75, 80, 107], "106060276351354e": [], "115": [36, 46, 75, 80, 107], "6342433285110853e": [], "116": [36, 46, 75, 80, 107], "2336346456624966e": [], "117": [36, 46, 75, 80, 107], "960736975554042e": [], "118": [36, 46, 75, 80, 107], "7057992648229475e": [], "898767531167215e": [], "1426136878531401e": [], "283256767782974e": [], "122": [36, 46, 75, 80, 107], "3542192081055123e": [], "123": [36, 46, 75, 80, 107], "190324598082598e": [], "124": [36, 46, 75, 80, 107], "567521890031852e": [], "125": [36, 46, 74, 75, 80, 105, 107], "240919261535391e": [], "126": [36, 46, 75, 80, 85, 107], "6683315588418853e": [], "127": [36, 46, 75, 80, 85, 107], "658406953454254e": [], "128": [36, 46, 75, 80, 85, 107], "8991669435132413e": [], "129": [36, 46, 75, 80, 107], "819350672722197e": [], "130": [36, 46, 75, 80, 107], "2604985397225282e": [], "131": [36, 46, 75, 80, 107], "293519084453663e": [], "132": [36, 46, 75, 80, 107], "629544221375508e": [], "041531348724701e": [], "134": [36, 46, 75, 80], "49971132536481e": [], "135": [36, 46, 75, 80], "1808955225706007e": [], "136": [36, 46, 75, 80], "0017171087148768e": [], "137": [36, 46, 75, 80, 105], "8543138051673505e": [], "138": [36, 46, 75, 80], "614180859308858e": [], "139": [36, 46, 75, 80], "263672898942178e": [], "140": [46, 75, 80], "508107566529912e": [], "pi_": [36, 45, 62, 63, 64, 77, 80], "cheat": [36, 60], "bit": [36, 106], "tr": [36, 39, 72, 93, 94, 97, 98, 100, 101], "bnddof": [36, 37], "innerdof": [36, 37], "massbnd": [36, 37], "invmassbnd": [36, 37], "massint": [36, 37], "emb": [36, 37, 98, 102], "inconsist": [36, 37, 64], "silenc": [36, 37, 64], "warn": [36, 37, 53, 56, 64, 80], "check_unus": [36, 37, 64, 100], "schurdir": [36, 37], "0054451002189304": [], "8601107411343848": [], "2607019225332404": [], "07092390115693345": [], "18854148259682355": [], "04148923094503056": [], "020054926681759795": [], "004938527407571722": [], "005065786308082779": [], "002749765263754158": [], "0007957605690849746": [], "0001984910326123447": [], "365734582928892e": [], "4701098109064105e": [], "0399328746235653e": [], "91735329499063e": [], "4662094308941554e": [], "911368584729481e": [], "2562257911243696e": [], "607052720869526e": [], "4898814355970646e": [], "844567562043741e": [], "0742247817595927e": [], "7388766438578904e": [], "6766702323965994e": [], "5346248999878193e": [], "0667266478239325e": [], "0658429743096915e": [], "794327426693509e": [], "6660173659549895e": [], "239423571009264e": [], "318254606802137e": [], "628468213793402e": [], "130895179418738e": [], "240932100290787e": [], "3160034244536579e": [], "671721073849679e": [], "07397937791977e": [], "singular": [37, 38, 108], "float": [37, 74], "still": [37, 44, 58, 61, 79, 97], "getbboundari": [37, 74], "plu": [37, 47, 60, 62, 79], "manual": 37, "1110": [37, 46], "1111000000000000": 37, "0011010100000000": 37, "0000010110100000": 37, "0101101000000000": 37, "0001011001000000": 37, "0000010011010000": 37, "0000101000001100": 37, "0000001001000110": 37, "0000000001010011": 37, "0x122886ff0": [], "024354670773929814": [], "0010069624298413963": [], "0007257527526679271": [], "0007372917166344344": [], "0004857590089870653": [], "0001342673243212529": [], "0001311934975240688": [], "751979957283966e": [], "00015055318196890573": [], "977415661918507e": [], "5404009953906476e": [], "1325741386287239e": [], "0260991543034553e": [], "181919482486156e": [], "130293954396114e": [], "7112644172547505e": [], "984965667877817e": [], "938071598071031e": [], "285198733080419e": [], "6879906763574446e": [], "6687819085422767e": [], "0305071648258239e": [], "084729652495866e": [], "818596185832861e": [], "3678245666709534e": [], "121908072142562e": [], "2919346610617832e": [], "969236833947717e": [], "610245101588181e": [], "680748392755818e": [], "0328407016824796e": [], "8782325109198685e": [], "3449176054002532e": [], "605992255716323e": [], "434667600420021e": [], "496065924727306e": [], "3850678148964707e": [], "1201619929329266e": [], "183918982655803e": [], "158738762663768e": [], "415101715392477e": [], "412283723911601e": [], "900437915550626e": [], "8262356006669e": [], "814490717970144e": [], "0020489389219248e": [], "0315094070085892e": [], "859175344155667e": [], "3429153469812714e": [], "39108056975843e": [], "582695978454712e": [], "460971025992667e": [], "369704074980719e": [], "346437641843319e": [], "268101999339796e": [], "18799767245361e": [], "539881791126982e": [], "180971576449435e": [], "973058107135382e": [], "5539247215031593e": [], "254428310403994e": [], "388104088450164e": [], "241808163158216e": [], "103497437837806e": [], "5484612734050725e": [], "5733025090213116e": [], "349986313897202e": [], "519560533108015e": [], "15353310052962e": [], "075455716756426e": [], "3629440354974526e": [], "1356603894188464e": [], "2213505502598344e": [], "021181077480107e": [], "404566400298224e": [], "3900834128532658e": [], "12206667487681e": [], "617515749390516e": [], "0459605500103746e": [], "3628238804522186e": [], "743107122010834e": [], "79805244656853e": [], "0459305100184687e": [], "420344800492138e": [], "326866828294926e": [], "459660447967909e": [], "661920779281694e": [], "7756173861270337e": [], "3116533821768697e": [], "2688407376535317e": [], "052956821772828e": [], "328228874088445e": [], "5358027741008827e": [], "2169447149188275e": [], "0674203207925698e": [], "222817027963728e": [], "1498610524430083e": [], "821069303010594e": [], "2625155724587296e": [], "268680660438417e": [], "0649786528841276e": [], "4065259386543846e": [], "0205639433467574e": [], "6208499608407905e": [], "3095225638677511e": [], "0803709062159593e": [], "4036960813875217e": [], "4800744181604987e": [], "046912429408346e": [], "2997059938742978e": [], "5225189901743328": [], "0191901219098294": [], "0071750952671920274": [], "0007041293195431499": [], "00014885168671707776": [], "7978921519512417e": [], "323436581992132e": [], "782735888864785e": [], "2533817206019935e": [], "042700555831697e": [], "8920270277123354e": [], "1315250559845716e": [], "756363094144343e": [], "434177876387799e": [], "834859832130559e": [], "752780385214213e": [], "7683364462529449e": [], "complic": 38, "geometri": [38, 73, 74, 75, 118], "balanc": [38, 53, 55, 56, 77], "hard": [38, 41, 102], "reach": 38, "practic": [38, 49, 105], "access": [38, 74], "memori": [38, 75, 118], "network": [38, 50], "modern": 38, "core": 38, "talk": [38, 97], "amount": 38, "transistor": 38, "gb": 38, "think": [38, 50, 51, 61], "At": 38, "least": [38, 48, 52, 107], "competit": 38, "bottl": 38, "neck": 38, "magnitud": [38, 106], "goal": [38, 44, 45, 49, 64, 80, 102], "effort": 38, "latenc": 38, "band": 38, "establish": [38, 77], "multigrid": [38, 74, 80, 81], "level": [38, 44, 52, 62, 74, 100], "coarser": [38, 61, 62, 63, 118], "relev": 38, "omega_j": [38, 87, 97, 106], "ccccll": [38, 51, 53, 54, 55, 56, 60, 65, 67, 81, 83, 86], "v_j": [38, 96, 102, 105], "taken": [38, 45, 100], "account": 38, "analyz": [38, 61, 62, 74, 80, 101, 102], "abstract": [39, 74, 98], "eigen": [39, 45, 62, 97, 98, 100, 109], "orthonorm": [39, 45, 97, 98], "z_k": [39, 97], "mathbf": [39, 81, 103], "z_0": [39, 97], "lambda_k": [39, 97], "expand": [39, 45, 46, 62, 74, 97, 99], "u_k": [39, 63, 95, 97, 98], "seri": [39, 63, 97, 99, 101], "laplac": [39, 62, 105], "fourier": [39, 63, 77, 97, 99, 101], "infti": [39, 77, 87, 95, 96, 97, 98, 99, 101, 106, 109], "separ": [39, 81], "ansatz": 39, "kx": [39, 101], "cosh": 39, "omega_1": [39, 87, 104], "omega_2": [39, 87, 104], "disjoint": 39, "howev": [39, 46, 49, 61, 62, 63, 79, 80, 81, 97, 100, 106, 115], "prescrib": [39, 79, 86], "eigenfunct": [39, 89, 93, 94, 100, 105], "int_i": [39, 77, 99], "dist": [39, 106], "i_2": 39, "coars": [40, 61, 62, 64], "createvvector": 40, "ndofloc": 40, "dof2proc": 40, "scalingmat": 40, "diagonalmatrix": [40, 64, 105], "setparallelstatu": 40, "parallel_statu": 40, "averagingt": 40, "hv": [40, 46, 49, 78, 113, 118], "parallelprecondition": 40, "atild": 40, "mult": [40, 61, 106], "hv1": 40, "hv2": [40, 46, 49], "eigenvalues_precondition": [40, 45, 61, 78, 80, 103, 105, 106, 107], "sparsematrixd": 40, "exproc": 40, "exchangeproc": 40, "skel_dof2proc": 40, "skel_pardof": 40, "hmat": 40, "creatematrix": [40, 61, 64], "multivector": [40, 79, 105, 112], "couplingmat": 40, "hinv": 40, "coo": [40, 74], "sparseschur": 40, "createfromcoo": 40, "indi": 40, "indj": 40, "globschur": 40, "parallelmatrix": 40, "globinv": 40, "dummypardof": 40, "globcoupl": 40, "col_pardof": 40, "globcouplingmat": 40, "parallelpreconditioner2": 40, "invloc": 40, "invglob": 40, "hv1glob": 40, "createrowvector": [40, 64, 81], "hv2glob": 40, "createcolvector": 40, "dir": 40, "holmholtz": 41, "frequenc": [41, 62, 63, 71], "wave": [41, 109, 115], "absorb": [41, 43], "gamma_r": [41, 49, 71, 79, 101], "math": [41, 42, 80, 116], "1j": [41, 42, 109], "anim": [41, 74, 105], "simul": [42, 44], "gui": [42, 60, 65, 67, 68, 72, 106], "005": [42, 110], "setmateri": [42, 86], "medium": 42, "dot": [42, 109, 110, 111, 118], "cfn": 42, "preambl": 43, "solid": [43, 44, 75, 100], "mechanid": 43, "basic": [43, 44, 56, 62, 105, 115], "inf": [43, 44, 52, 83], "instationari": [43, 44], "fourth": [43, 44], "eror": 43, "helling": [43, 60], "reissner": [43, 60], "symmetri": 43, "tdnn": [43, 67, 68], "hellan": 43, "herrmann": 43, "johnson": [43, 44], "relationship": 43, "hhj": [43, 65], "mindlin": 43, "nonlinear": 43, "grate": 43, "richardson": [43, 44, 45, 47, 48, 50, 81], "chebyshev": [43, 44, 47, 50], "asm": [43, 44, 61, 63, 80, 102, 105, 106], "ml": [43, 61], "mg": [43, 61], "augment": [43, 80], "pasciak": [43, 44, 80, 82], "constrainst": 43, "bddc": [43, 44, 72, 74, 75, 88], "heat": [43, 71, 74, 76, 109, 111], "multistep": 43, "exponenti": [43, 77, 109], "conserv": [43, 115, 118], "hht": 43, "friedrich": [43, 51, 98, 103, 106, 109], "poincar\u00e9": [43, 98, 103], "tartar": [43, 98, 100, 101], "threorem": 43, "institut": 44, "power": [44, 46], "tool": [44, 61, 63, 80, 99, 102, 105, 106], "scienc": 44, "intersect": [44, 96, 98], "theoret": 44, "touch": 44, "commerci": 44, "programm": 44, "explain": [44, 70, 73, 97], "student": 44, "open": [44, 74, 95, 96, 99, 106], "frontend": [44, 70], "summer": 44, "found": [44, 48, 62, 70, 81, 98, 102, 107], "pleas": 44, "mail": 44, "author": [44, 70, 102], "section": [44, 48, 50, 73, 106], "draft": 44, "clean": 44, "star": 44, "faustmann": 44, "tuwel": 44, "boffi": [44, 70], "fortin": [44, 59, 70], "scott": 44, "ern": 44, "guermond": 44, "easi": [44, 58], "webgui_jupyter_widget": 44, "consol": 44, "python3": 44, "__version__": 44, "unit_cub": [44, 53, 55, 113], "issu": [44, 58, 76, 86, 112], "pip3": 44, "extern": 44, "manag": 44, "environ": [44, 71], "virtual": 44, "command": 44, "explan": 44, "conflict": 44, "did": [44, 111], "venv": 44, "user": 44, "numpd": 44, "bin": 44, "compuat": 44, "render": 44, "nbextens": 44, "py": [44, 70, 95], "login": 44, "server": 44, "browser": 44, "jupyterhub": 44, "cerbsim": 44, "com": 44, "ngshub_xx": 44, "pwd": 44, "xx": 44, "01": [44, 45, 62, 67, 74, 103, 111, 115], "might": 44, "driven": 44, "hp": [44, 74, 100], "multilevel": [44, 80], "spd": [45, 46, 48, 49, 50, 62, 81], "damp": [45, 46, 49, 62], "tau_k": 45, "tau_n": [45, 55, 85, 86], "tau_2": 45, "tau_1": 45, "tau_i": 45, "lambda_i": [45, 46, 49, 62, 109], "n_i": [45, 87, 97, 102], "0_i": 45, "max_": [45, 46, 62, 96], "rare": 45, "pol": 45, "three": [45, 60, 71, 77, 79, 85], "recurr": [45, 77], "induct": [45, 62], "formula": [45, 77, 87, 95, 109], "arcco": 45, "chebi": 45, "told": 45, "widget": 45, "ipywidget": 45, "ax": 45, "subplot": 45, "figsiz": 45, "canva": 45, "toolbar_vis": 45, "header_vis": 45, "set_ylim": 45, "linspac": [45, 62, 109], "plot": [45, 46, 47, 48, 49, 62, 73, 100, 107, 112], "legend": 45, "scaledchebi": 45, "gamma1": 45, "gamma2": 45, "fac": 45, "tau_": [45, 60, 65, 88], "opt": [45, 46, 48], "set_titl": 45, "s1": [45, 108], "s2": 45, "color": [45, 109], "linestyl": 45, "dash": 45, "tauopt": 45, "maximum": [45, 46], "rho_n": 45, "2n": [45, 77], "kappa": [45, 46, 47, 61, 63, 80, 81, 103, 105, 106], "log": [45, 46, 47, 48, 49, 63, 112], "substitut": [45, 49, 50, 56, 77], "cancel": [45, 77, 87, 95, 118], "_b": [45, 98, 100], "previou": [45, 47, 80, 96, 103, 106], "increment": [45, 110], "rho_": [45, 46, 48], "yousef": 45, "saad": [45, 47], "399": [45, 46], "chebyiter": 45, "tol": [45, 47, 72, 78, 82], "200": [45, 46, 47, 75, 78, 80, 81, 88, 100, 115], "callback": [45, 47], "theta": 45, "sigma1": 45, "err0": [45, 46, 47, 48, 49, 78], "createsmooth": [45, 47, 49, 61, 62, 79, 103, 115], "funceion": 45, "lanczo": 45, "023921286926102014": 45, "6757907507089311": 45, "errhist": [45, 46, 48, 49], "append": [45, 46, 47, 48, 49, 100, 105, 107, 112], "set_yscal": 45, "sensit": 45, "properli": 46, "cosen": 46, "misfit": 46, "propag": [46, 49, 102, 115], "strategi": 46, "spectral": [46, 47, 49, 62, 102, 103, 105], "radiu": [46, 49, 96, 99, 102], "asymptot": [46, 103], "diagoniz": [46, 109], "featur": 46, "full": [46, 62, 63, 81, 97, 102], "eigenvector": [46, 49, 100, 109], "lambda_j": 46, "sum_j": [46, 102], "0_j": 46, "monoton": [46, 49], "fact": 46, "parallelogram": [46, 58], "ident": [46, 77, 112], "whenev": 46, "max_i": 46, "alpha_": [46, 48], "determin": [46, 108], "setrandom": [46, 49, 62], "7956752990680338": 46, "448900761214395": 46, "691753672693137": 46, "814352226978437": 46, "898245924316241": 46, "961884348845643": 46, "011768153572898": 46, "051348606027109": 46, "082967519865576": 46, "1083784321502765": 46, "128937157167869": 46, "145700503692558": 46, "159492305023506": 46, "170953469301783": 46, "180581597168563": 46, "188762568457179": 46, "195795581626075": 46, "201912825655762": 46, "20729480460904": 46, "212082195607958": 46, "10000": [46, 48, 49], "02974211765794692": 46, "028315523074329833": 46, "027410842175647522": 46, "026686352908694286": 46, "02605354778036957": 46, "025474574374679673": 46, "024931283632543395": 46, "024414250705698613": 46, "023918188335835474": 46, "023439891145440477": 46, "022977263391911276": 46, "02252883553082078": 46, "02209351174170106": 46, "02167043155414069": 46, "021258890368765174": 46, "020858291715411852": 46, "02046811734348254": 46, "020087907739980797": 46, "01971724897913322": 46, "019355763553309795": 46, "019003103789169966": 46, "01865894699243924": 46, "018322991779705176": 46, "017994955245204867": 46, "01767457072797152": 46, "01736158601934315": 46, "017055761899451082": 46, "016756870923679827": 46, "016464696402088225": 46, "01617903153000453": 46, "015899678638718388": 46, "015626448542843247": 46, "015359159966462567": 46, "015097639034237173": 46, "014841718816667147": 46, "014591238920965869": 46, "01434604512072099": 46, "014105989018833337": 46, "013870927739243541": 46, "013640723643751601": 46, "013415244070862429": 46, "013194361094089788": 46, "012977951297551641": 46, "012765895567014494": 46, "012558078894809354": 46, "012354390197259415": 46, "0121547221434405": 46, "011958970994245996": 46, "011767036450854718": 46, "01157882151180759": 46, "011394232337990156": 46, "011213178124896332": 46, "01103557098161611": 46, "01086132581604804": 46, "010690360225888162": 46, "0105225943949912": 46, "010357950994738508": 46, "010196355090081538": 46, "010037734049959545": 46, "009882017461817013": 46, "009729137049970023": 46, "00957902659759177": 46, "00943162187210645": 46, "009286860553797623": 46, "00914468216745215": 46, "009005028016874708": 46, "008867841122120142": 46, "008733066159301757": 46, "008600649402844286": 46, "008470538670058644": 46, "008342683267924778": 46, "008217033941975723": 46, "008093542827183131": 46, "007972163400751166": 46, "00785285043673079": 46, "007735559962372405": 46, "007620249216139159": 46, "007506876607308029": 46, "007395401677089779": 46, "007285785061202624": 46, "007177988453838204": 46, "007071974572961421": 46, "006967707126888932": 46, "0068651507820937825": 46, "0067642711321864776": 46, "006665034668024815": 46, "006567408748907632": 46, "006471361574809355": 46, "0063768621596142555": 46, "0062838803053114995": 46, "006192386577113453": 46, "006102352279461678": 46, "006013749432886288": 46, "005926550751686317": 46, "005840729622399467": 46, "005756260083031563": 46, "005673116803016881": 46, "005591275063881841": 46, "005510710740585726": 46, "0054314002835130675": 46, "0053533207010933665": 46, "0052764495430249175": 46, "005200764884080136": 46, "005126245308471082": 46, "00505286989475429": 46, "004980618201255226": 46, "0049094702519929204": 46, "004839406523086855": 46, "0047704079296280195": 46, "004702455812997286": 46, "004635531928614874": 46, "004569618434104862": 46, "004504697877859927": 46, "004440753187991515": 46, "004377767661651467": 46, "0043157249547117315": 46, "004254609071788941": 46, "004194404356601538": 46, "004135095482647261": 46, "004076667444189602": 46, "004019105547541827": 46, "003962395402637919": 46, "003906522914880215": 46, "0038514742772535683": 46, "003797235962696573": 46, "0037437947167205878": 46, "003691137550267643": 46, "0036392517327986876": 46, "003588124785603924": 46, "0035377444753272353": 46, "003488098807697223": 46, "0034391760214572452": 46, "003390964582487553": 46, "003343453178112618": 46, "0032966307115871057": 46, "0032504862967541446": 46, "0032050092528697147": 46, "003160189099587527": 46, "003116015552098299": 46, "003072478516418594": 46, "003029568084823295": 46, "141": [46, 75, 80], "002987274531417232": 46, "142": [46, 75, 80], "002945588307840723": 46, "143": [46, 75, 80], "002904500039104571": 46, "002864000519549906": 46, "145": [46, 75, 80], "0028240807089284594": 46, "146": [46, 75, 80, 105], "0027847317285992117": 46, "147": [46, 75, 80], "0027459448578374505": 46, "148": [46, 75, 80], "002707711530251991": 46, "0026700233303073207": 46, "150": [46, 75, 80], "002632871989946613": 46, "151": [46, 75, 80], "0025962493853125836": 46, "152": [46, 75, 80], "002560147533562283": 46, "002524558589773273": 46, "154": [46, 75, 80], "0024894748439375424": 46, "155": [46, 75, 80], "0024548887180404605": 46, "156": [46, 75, 80], "0024207927632217833": 46, "0023871796570160172": 46, "158": [46, 75, 80], "002354042200669435": 46, "159": [46, 75, 80], "0023213733165311098": 46, "160": [46, 75], "002289166045515667": 46, "161": [46, 75], "0022574135446350964": 46, "162": [46, 75], "002226109084597644": 46, "163": [46, 75], "0021952460474713676": 46, "164": [46, 75], "0021648179244101325": 46, "165": [46, 75], "002134818313440375": 46, "0021052409173061668": 46, "167": [46, 75], "0020760795413710255": 46, "168": [46, 75], "0020473280915745116": 46, "169": [46, 75], "002018980572441813": 46, "170": [46, 75], "0019910310851446664": 46, "171": [46, 75], "0019634738256118496": 46, "0019363030826879543": 46, "173": [46, 75], "001909513236338424": 46, "174": [46, 75], "0018830987558998633": 46, "0018570541983739639": 46, "176": [46, 75], "0018313742067635904": 46, "0018060535084499963": 46, "001781086913609521": 46, "0017564693136689225": 46, "0017321956797978454": 46, "0017082610614374385": 46, "0016846605848640193": 46, "0016613894517866516": 46, "0016384429379776749": 46, "0016158163919351772": 46, "001593505233576355": 46, "0015715049529611042": 46, "0015498111090446118": 46, "0015284193284582851": 46, "0015073253043182886": 46, "0014865247950606303": 46, "0014660136233021089": 46, "0014457876747266": 46, "0014258428969956122": 46, "001406175298682715": 46, "0013867809482308554": 46, "0013676559729323798": 46, "0013487965579305366": 46, "199": [46, 75], "0013301989452423582": 46, "0013118594328021408": 46, "201": [46, 75], "0012937743735248989": 46, "202": [46, 75], "0012759401743892452": 46, "203": [46, 75], "0012583532955394456": 46, "204": [46, 75], "0012410102494057379": 46, "205": [46, 75], "0012239075998425912": 46, "206": [46, 75], "0012070419612846086": 46, "207": [46, 75], "001190409997919305": 46, "208": [46, 75], "0011740084228764713": 46, "209": [46, 75], "0011578339974337177": 46, "210": [46, 72, 75], "00114188353023771": 46, "211": [46, 75], "0011261538765406645": 46, "212": [46, 75], "0011106419374519126": 46, "213": [46, 75], "0010953446592037578": 46, "214": [46, 75], "0010802590324318184": 46, "215": [46, 74, 75], "001065382091468879": 46, "216": [46, 74], "0010507109136523886": 46, "217": [46, 61, 74], "0010362426186451216": 46, "218": [46, 74], "0010219743677684654": 46, "219": 46, "0010079033633484853": 46, "220": 46, "000994026848073895": 46, "221": [46, 74], "0009803421043661597": 46, "222": [46, 74], "0009668464537611202": 46, "223": [46, 74], "000953537256301915": 46, "224": [46, 74], "0009404119099430902": 46, "225": [46, 74], "000927467849965456": 46, "226": [46, 74], "0009147025484014691": 46, "227": [46, 74], "0009021135134710553": 46, "228": [46, 103], "0008896982890273583": 46, "0008774544540124627": 46, "0008653796219227064": 46, "231": 46, "0008534714402833544": 46, "0008417275901325724": 46, "233": [46, 74, 105], "0008301457855142871": 46, "234": 46, "0008187237729799078": 46, "235": 46, "0008074593310986968": 46, "236": 46, "0007963502699764032": 46, "237": 46, "000785394430782293": 46, "238": 46, "0007745896852841808": 46, "239": 46, "0007639339353912823": 46, "240": 46, "0007534251127049187": 46, "0007430611780766196": 46, "242": 46, "0007328401211737334": 46, "243": 46, "0007227599600523393": 46, "244": 46, "0007128187407370412": 46, "245": 46, "000703014536807873": 46, "246": 46, "0006933454489940485": 46, "247": 46, "0006838096047742041": 46, "248": 46, "0006744051579833437": 46, "249": 46, "0006651302884261447": 46, "250": 46, "0006559832014964314": 46, "251": 46, "0006469621278029652": 46, "252": 46, "0006380653228011725": 46, "253": 46, "0006292910664307944": 46, "254": 46, "000620637662759349": 46, "255": 46, "00061210343963129": 46, "256": 46, "000603686748322705": 46, "257": 46, "0005953859632015506": 46, "258": 46, "0005871994813932063": 46, "259": 46, "0005791257224512458": 46, "260": 46, "0005711631280335377": 46, "261": 46, "000563310161583251": 46, "0005555653080149196": 46, "263": 46, "0005479270734053628": 46, "264": 46, "0005403939846894724": 46, "265": 46, "0005329645893605536": 46, "266": 46, "0005256374551755312": 46, "267": 46, "0005184111698643815": 46, "268": 46, "0005112843408443743": 46, "269": 46, "0005042555949383612": 46, "270": 46, "0004973235780976221": 46, "271": 46, "0004904869551287794": 46, "272": 46, "00048374440942494824": 46, "273": 46, "0004770946427009313": 46, "274": 46, "000470536374732366": 46, "275": 46, "0004640683430989626": 46, "276": 46, "0004576893029314665": 46, "277": [46, 47], "00045139802666244205": 46, "278": 46, "0004451933037808829": 46, "279": 46, "00043907394059037843": 46, "280": [46, 74], "0004330387599710549": 46, "281": [46, 74], "00042708660114481857": 46, "282": [46, 74], "0004212163194443691": 46, "283": [46, 53, 74], "0004154267860854548": 46, "284": 46, "0004097168879425399": 46, "285": 46, "00040408552732787813": 46, "286": [46, 112], "0003985316217737422": 46, "287": 46, "0003930541038178998": 46, "288": 46, "00038765192079231786": 46, "289": 46, "0003823240346148249": 46, "290": 46, "00037706942158399916": 46, "291": 46, "000371887072176918": 46, "292": 46, "00036677599084996784": 46, "00036173519584250553": 46, "294": 46, "0003567637189834118": 46, "0003518606055004487": 46, "0003470249138323727": 46, "297": 46, "00034225571544383636": 46, "0003375520946429079": 46, "00033291314840126285": 46, "300": 46, "00032833798617694766": 46, "00032382572973983466": 46, "302": 46, "00031937551299935366": 46, "303": 46, "000314986481834931": 46, "304": 46, "00031065779392879563": 46, "305": 46, "0003063886186010778": 46, "306": 46, "00030217813664752045": 46, "307": 46, "0002980255401792292": 46, "308": 46, "00029393003246500445": 46, "309": 46, "0002898908277756472": 46, "310": 46, "0002859071512307771": 46, "311": 46, "000281978238647573": 46, "312": 46, "0002781033363919083": 46, "313": 46, "00027428170123139963": 46, "314": 46, "00027051260019073385": 46, "315": 46, "00026679531040890817": 46, "316": 46, "0002631291189986039": 46, "317": 46, "0002595133229074687": 46, "318": 46, "00025594722878148363": 46, "319": 46, "0002524301528301413": 46, "320": 46, "0002489614206936301": 46, "321": 46, "0002455403673118469": 46, "322": 46, "00024216633679531238": 46, "323": 46, "00023883868229783445": 46, "324": 46, "00023555676589107158": 46, "325": 46, "00023231995844078663": 46, "326": 46, "00022912763948485545": 46, "327": 46, "00022597919711308994": 46, "328": 46, "00022287402784859796": 46, "329": [46, 77], "00021981153653095173": 46, "330": 46, "00021679113620092907": 46, "331": 46, "00021381224798692054": 46, "332": 46, "00021087430099283637": 46, "333": 46, "00020797673218777952": 46, "334": 46, "00020511898629702412": 46, "335": 46, "00020230051569474947": 46, "336": 46, "00019952078029812246": 46, "337": [46, 77], "00019677924746292868": 46, "338": 46, "0001940753918806743": 46, "339": 46, "0001914086954771383": 46, "340": 46, "00018877864731223603": 46, "341": 46, "00018618474348148243": 46, "342": 46, "00018362648701864706": 46, "343": 46, "0001811033877998466": 46, "344": 46, "0001786149624489968": 46, "345": 46, "00017616073424457884": 46, "346": 46, "00017374023302765528": 46, "347": 46, "00017135299511121462": 46, "348": 46, "000168998563190804": 46, "00016667648625635052": 46, "350": 46, "00016438631950522982": 46, "00016212762425659415": 46, "00015989996786680568": 46, "353": 46, "00015770292364614483": 46, "0001555360707766003": 46, "355": 46, "000153398994230856": 46, "356": 46, "0001512912846923413": 46, "357": 46, "0001492125384764743": 46, "00014716235745298453": 46, "359": 46, "00014514034896921082": 46, "00014314612577460858": 46, "361": 46, "00014117930594623312": 46, "362": 46, "00013923951281523983": 46, "363": 46, "00013732637489447186": 46, "0001354395258069982": 46, "365": 46, "00013357860421564497": 46, "366": 46, "00013174325375354127": 46, "367": 46, "00012993312295558898": 46, "00012814786519089072": 46, "369": 46, "0001263871385961654": 46, "370": 46, "00012465060600999609": 46, "371": 46, "00012293793490808928": 46, "372": 46, "00012124879733930423": 46, "373": 46, "00011958286986273097": 46, "374": 46, "00011793983348546948": 46, "375": 46, "00011631937360145951": 46, "00011472117993089234": 46, "377": 46, "00011314494646081535": 46, "00011159037138615583": 46, "379": 46, "00011005715705197291": 46, "380": 46, "00010854500989614187": 46, "381": 46, "000107053640393076": 46, "382": 46, "00010558276299811141": 46, "383": 46, "00010413209609269955": 46, "384": 46, "00010270136193037442": 46, "385": 46, "00010129028658340466": 46, "386": 46, "98985998902484e": 46, "387": 46, "852603540368492e": 46, "388": 46, "717233033971179e": 46, "389": 46, "583722552709536e": 46, "390": 46, "45204653576357e": 46, "391": 46, "322179773720817e": 46, "392": 46, "19409740372493e": 46, "393": 46, "067774904721001e": 46, "394": 46, "943188092742385e": 46, "395": 46, "820313116279269e": 46, "396": 46, "699126451692341e": 46, "397": 46, "579604898714938e": 46, "461725575996149e": 46, "345465916709958e": 46, "230803664237456e": 46, "401": 46, "11771686788897e": 46, "402": 46, "006183878700617e": 46, "403": 46, "896183345282972e": 46, "404": 46, "787694209726307e": 46, "405": 46, "680695703563715e": 46, "406": 46, "575167343788693e": 46, "407": 46, "471088928931207e": 46, "368440535182689e": 46, "409": 46, "267202512577547e": 46, "410": 46, "167355481226384e": 46, "068880327604704e": 46, "412": 46, "971758200881336e": 46, "413": 46, "875970509314675e": 46, "414": 46, "78149891668565e": 46, "415": 46, "688325338782177e": 46, "416": 46, "596431939936081e": 46, "417": 46, "505801129603892e": 46, "416415558992872e": 46, "419": 46, "328258117750278e": 46, "241311930663991e": 46, "421": 46, "155560354442374e": 46, "070986974525415e": 46, "98757560193412e": 46, "424": 46, "905310270171566e": 46, "425": 46, "8241752321672265e": 46, "426": 46, "744154957255584e": 46, "665234128197446e": 46, "428": 46, "587397638255004e": 46, "429": 46, "510630588292769e": 46, "430": 46, "434918283921399e": 46, "360246232685851e": 46, "28660014129065e": 46, "213965912854191e": 46, "142329644220869e": 46, "071677623287515e": 46, "436": 46, "001996326380935e": 46, "437": 46, "9332724156658535e": 46, "865492736595519e": 46, "439": 46, "7986443153856565e": 46, "440": 46, "7327143565346456e": 46, "441": 46, "6676902403680316e": 46, "442": 46, "603559520622855e": 46, "443": 46, "5403099220737555e": 46, "444": 46, "477929338164458e": 46, "445": 46, "416405828703569e": 46, "446": 46, "3557276175693415e": 46, "447": 46, "29588309046074e": 46, "448": 46, "2368607926721074e": 46, "449": 46, "17864942689424e": 46, "450": 46, "121237851055954e": 46, "451": 46, "064615076190458e": 46, "452": 46, "008770264329065e": 46, "453": 46, "953692726428111e": 46, "454": 46, "8993719203166894e": 46, "455": 46, "8457974486872674e": 46, "456": 46, "79295905709389e": 46, "457": 46, "7408466320005056e": 46, "458": 46, "689450198832634e": 46, "459": 46, "638759920077451e": 46, "460": 46, "5887660933918107e": 46, "461": 46, "5394591497527506e": 46, "462": 46, "490829651617686e": 46, "463": 46, "4428682911205534e": 46, "464": 46, "395565888293071e": 46, "465": 46, "348913389301089e": 46, "466": 46, "302901864714575e": 46, "467": 46, "2575225077989435e": 46, "468": 46, "2127666328263005e": 46, "469": 46, "168625673411682e": 46, "470": 46, "125091180878627e": 46, "471": 46, "082154822634119e": 46, "472": 46, "0398083805786505e": 46, "473": 46, "998043749532844e": 46, "474": 46, "9568529356807312e": 46, "475": 46, "916228055046904e": 46, "476": 46, "8761613319769555e": 46, "477": 46, "8366450976608554e": 46, "478": 46, "7976717886559725e": 46, "479": 46, "7592339454418208e": 46, "480": 46, "7213242109925206e": 46, "481": 46, "6839353293700188e": 46, "482": 46, "6470601443285914e": 46, "483": 46, "6106915979525028e": 46, "484": 46, "5748227292996332e": 46, "485": 46, "539446673074001e": 46, "486": 46, "504556658304414e": 46, "487": 46, "4701460070543832e": 46, "488": [46, 105], "4362081331413285e": 46, "489": 46, "402736540876462e": 46, "490": 46, "3697248238186124e": 46, "491": 46, "337166663552109e": 46, "492": 46, "30505582847543e": 46, "493": 46, "2733861726088263e": 46, "494": 46, "2421516344125203e": 46, "495": 46, "2113462356347832e": 46, "496": 46, "1809640801639115e": 46, "497": 46, "1509993528977585e": 46, "498": 46, "1214463186327964e": 46, "499": 46, "0922993209640892e": 46, "0635527812072218e": 46, "501": [46, 100], "0352011973243236e": 46, "502": 46, "0072391428746526e": 46, "503": 46, "9796612659768636e": 46, "504": 46, "952462288277464e": 46, "505": 46, "9256370039507276e": 46, "506": 46, "8991802786965872e": 46, "507": 46, "8730870487562395e": 46, "508": 46, "8473523199457097e": 46, "509": 46, "8219711666983736e": 46, "510": 46, "7969387311232552e": 46, "511": 46, "7722502220772948e": 46, "512": 46, "747900914242783e": 46, "513": 46, "723886147227309e": 46, "514": 46, "7002013246680412e": 46, "515": 46, "676841913354895e": 46, "516": 46, "6538034423658578e": 46, "517": 46, "6310815021997474e": 46, "518": 46, "608671743947409e": 46, "519": 46, "5865698784456028e": 46, "520": 46, "564771675466398e": 46, "521": 46, "5432729629011974e": 46, "522": 46, "5220696259625265e": 46, "523": 46, "5011576064000944e": 46, "524": 46, "4805329017218728e": 46, "525": 46, "4601915644276485e": 46, "526": 46, "4401297012520998e": 46, "527": 46, "4203434724225752e": 46, "528": 46, "4008290909238202e": 46, "529": 46, "3815828217680814e": 46, "530": 46, "3626009812903334e": 46, "531": 46, "3438799364311088e": 46, "532": 46, "3254161040503283e": 46, "533": 46, "3072059502377703e": 46, "534": 46, "2892459896362076e": 46, "535": 46, "2715327847755757e": 46, "536": 46, "2540629454140222e": 46, "537": 46, "236833127892583e": 46, "538": 46, "2198400344857686e": 46, "539": 46, "2030804127834024e": 46, "540": 46, "1865510550568645e": 46, "541": 46, "1702487976526392e": 46, "542": 46, "1541705203835396e": 46, "543": 46, "1383131459279391e": 46, "544": 46, "1226736392497831e": 46, "545": 46, "1072490070102246e": 46, "546": 46, "0920362969957407e": 46, "547": 46, "0770325975566385e": 46, "548": 46, "0622350370452333e": 46, "549": 46, "0476407832691725e": 46, "550": 46, "0332470429487766e": 46, "551": 46, "0190510611836723e": 46, "552": 46, "005050120921221e": 46, "553": 46, "91241542438913e": 46, "554": 46, "776226828362013e": 46, "555": 46, "641909355189532e": 46, "556": 46, "509437297093308e": 46, "557": 46, "378785299480245e": 46, "558": 46, "249928356147489e": 46, "559": 46, "122841804400887e": 46, "560": 46, "997501320449961e": 46, "561": 46, "8738829146687e": 46, "562": 46, "751962927012061e": 46, "563": 46, "631718022580567e": 46, "564": 46, "513125186992284e": 46, "565": 46, "396161722131952e": 46, "566": 46, "280805241684333e": 46, "567": 46, "16703366696607e": 46, "568": 46, "054825222580238e": 46, "569": 46, "94415843236444e": 46, "570": 46, "8350121151719e": 46, "571": 46, "727365380912911e": 46, "572": 46, "621197626469506e": 46, "573": 46, "516488531819619e": 46, "574": 46, "413218056147077e": 46, "575": 46, "311366433940005e": 46, "576": 46, "210914171261402e": 46, "577": 46, "111842042028687e": 46, "578": 46, "01413108426448e": 46, "579": 46, "917762596575794e": 46, "580": 46, "822718134465209e": 46, "581": [46, 63, 102], "728979506876731e": 46, "582": 46, "6365287726637194e": 46, "583": 46, "545348237201027e": 46, "584": 46, "455420448937443e": 46, "585": 46, "366728196158377e": 46, "586": 46, "279254503545001e": 46, "587": 46, "192982629062653e": 46, "588": 46, "107896060669359e": 46, "589": 46, "023978513225437e": 46, "590": 46, "941213925298137e": 46, "591": 46, "8595864561205e": 46, "592": 46, "779080482626883e": 46, "593": 46, "699680596318089e": 46, "594": 46, "621371600445931e": 46, "595": 46, "544138507039576e": 46, "596": 46, "467966534081841e": 46, "597": 46, "392841102594967e": 46, "598": 46, "318747833945106e": 46, "599": 46, "245672547037219e": 46, "600": 46, "1736012556074996e": 46, "601": 46, "102520165565222e": 46, "602": [46, 49], "032415672332935e": 46, "603": 46, "9632743582485296e": 46, "604": 46, "895082990001085e": 46, "605": 46, "827828516101396e": 46, "606": 46, "761498064357539e": 46, "607": 46, "696078939451168e": 46, "608": 46, "631558620476784e": 46, "609": 46, "567924758563753e": 46, "610": 46, "505165174500594e": 46, "611": 46, "443267856418581e": 46, "612": 46, "382220957458106e": 46, "613": [46, 63, 102], "32201279355107e": 46, "614": 46, "262631841144873e": 46, "615": 46, "20406673503597e": 46, "616": 46, "14630626612767e": 46, "617": 46, "089339379343828e": 46, "618": [46, 81], "033155171543706e": 46, "619": 46, "977742889310151e": 46, "620": 46, "923091927017895e": 46, "621": 46, "86919182473513e": 46, "622": 46, "816032266267512e": 46, "623": 46, "7636030771172796e": 46, "624": 46, "71189422260038e": 46, "625": 46, "660895805916253e": 46, "626": 46, "6105980661982686e": 46, "627": 46, "560991376723551e": 46, "628": 46, "5120662430136316e": 46, "629": 46, "463813301050634e": 46, "630": 46, "4162233154336305e": 46, "631": 46, "3692871776920687e": 46, "632": 46, "3229959045015813e": 46, "633": 46, "2773406359217477e": 46, "634": 46, "2323126337494496e": 46, "635": 46, "1879032798831167e": 46, "636": 46, "1441040745721575e": 46, "637": 46, "1009066348664202e": 46, "638": 46, "0583026929967562e": 46, "639": 46, "0162840947818825e": 46, "640": 46, "9748427980784953e": 46, "641": 46, "9339708712085968e": 46, "642": 46, "89366049152692e": 46, "643": 46, "853903943783089e": 46, "644": 46, "814693618811081e": 46, "645": 46, "7760220119243286e": 46, "646": 46, "7378817215805044e": 46, "647": 46, "7002654479423812e": 46, "648": 46, "6631659914077622e": 46, "649": 46, "626576251343839e": 46, "650": 46, "5904892246529526e": 46, "554898004471734e": 46, "652": 46, "519795778795417e": 46, "653": [46, 100], "485175829259252e": 46, "654": 46, "4510315297654936e": 46, "655": 46, "417356345279921e": 46, "656": 46, "3841438305254625e": 46, "657": 46, "3513876287934866e": 46, "658": 46, "3190814707331234e": 46, "659": 46, "287219173082758e": 46, "660": 46, "255794637574766e": 46, "661": 46, "2248018497117877e": 46, "662": 46, "194234877618424e": 46, "663": 46, "164087870949272e": 46, "664": 46, "134355059697924e": 46, "665": 46, "105030753170029e": 46, "666": 46, "0761093388261588e": 46, "667": 46, "047585281273978e": 46, "668": 46, "0194531211449646e": 46, "669": 46, "991707474082117e": 46, "670": 46, "964343029696402e": 46, "671": 46, "937354550595616e": 46, "910736871305874e": 46, "673": 46, "8844848973340027e": 46, "674": 46, "8585936041936275e": 46, "675": 46, "833058036442482e": 46, "807873306659926e": 46, "677": [46, 48], "7830345946531105e": 46, "678": 46, "7585371463963765e": 46, "679": 46, "7343762731976364e": 46, "680": 46, "710547350811855e": 46, "681": 46, "6870458184868213e": 46, "682": 46, "6638671781442963e": 46, "683": 46, "6410069935234305e": 46, "684": 46, "6184608892926782e": 46, "685": 46, "596224550241645e": 46, "686": 46, "5742937204616135e": 46, "687": 46, "5526642024859626e": 46, "688": 46, "531331856542912e": 46, "689": 46, "5102925997151507e": 46, "690": 46, "4895424052178241e": 46, "691": 46, "4690773015519533e": 46, "4488933718100165e": 46, "693": 46, "4289867528748286e": 46, "694": 46, "4093536347508964e": 46, "695": 46, "3899902597436885e": 46, "696": 46, "3708929217814924e": 46, "697": 46, "352057965747212e": 46, "698": 46, "3334817867318555e": 46, "699": 46, "3151608293416554e": 46, "700": 46, "2970915870460925e": 46, "701": 46, "2792706014737654e": 46, "2616944617779757e": 46, "703": 46, "2443598039825515e": 46, "2272633103295307e": 46, "705": 46, "2104017086174213e": 46, "706": 46, "1937717716297164e": 46, "707": 46, "1773703164820084e": 46, "708": 46, "161194204007716e": 46, "709": 46, "145240338203072e": 46, "710": 46, "1295056655675621e": 46, "711": 46, "1139871745692467e": 46, "712": 46, "0986818950368167e": 46, "713": 46, "0835868976279029e": 46, "714": 46, "0686992932246637e": 46, "715": 46, "0540162324290298e": 46, "716": 46, "0395349049971244e": 46, "717": 46, "0252525392177282e": 46, "718": 46, "011166401565346e": 46, "719": 46, "972737960055163e": 46, "720": 46, "835720635727922e": 46, "700585818353643e": 46, "567307643680844e": 46, "723": 46, "435860602860818e": 46, "30621953771071e": 46, "725": 46, "178359635677189e": 46, "726": 46, "05225642481371e": 46, "727": 46, "927885769755884e": 46, "728": 46, "805223866626383e": 46, "729": 46, "684247238336984e": 46, "730": 46, "56493273089252e": 46, "731": [46, 105], "447257507807357e": 46, "331199046890856e": 46, "216735134902866e": 46, "103843864311542e": 46, "735": 46, "992503628103648e": 46, "736": 46, "882693116313131e": 46, "737": 46, "774391311803948e": 46, "738": 46, "667577486274225e": 46, "739": 46, "562231195951519e": 46, "740": 46, "458332278094533e": 46, "741": 46, "355860847201666e": 46, "742": 46, "254797290530035e": 46, "743": 46, "155122265013862e": 46, "744": 46, "056816693425752e": 46, "745": 46, "959861760711115e": 46, "746": 46, "864238910083353e": 46, "747": 46, "769929839694957e": 46, "748": 46, "676916499495534e": 46, "749": 46, "585181086951244e": 46, "750": 46, "494706044701668e": 46, "751": 46, "405474055921332e": 46, "752": 46, "31746804233173e": 46, "753": 46, "230671159880186e": 46, "754": 46, "145066796269033e": 46, "755": 46, "060638566853438e": 46, "756": 46, "977370313033323e": 46, "757": 46, "895246097319718e": 46, "758": 46, "814250201672253e": 46, "759": 46, "734367123883148e": 46, "760": 46, "655581574754693e": 46, "761": 46, "57787847517935e": 46, "762": 46, "501242952996463e": 46, "763": 46, "425660340878632e": 46, "764": 46, "351116172274719e": 46, "765": 46, "277596180054449e": 46, "766": 46, "205086292997377e": 46, "767": 46, "133572632812229e": 46, "768": 46, "063041512342942e": 46, "769": 46, "993479432078307e": 46, "770": 46, "924873078433326e": 46, "771": 46, "857209320503717e": 46, "772": 46, "790475207480968e": 46, "773": 46, "7246579670980434e": 46, "774": 46, "65974500215008e": 46, "775": 46, "5957238886105585e": 46, "776": 46, "532582373313546e": 46, "777": 46, "4703083710549495e": 46, "778": 46, "40888996300808e": 46, "779": 46, "348315394185244e": 46, "780": 46, "2885730706727105e": 46, "2296515582177255e": 46, "171539579468978e": 46, "783": 46, "114226012216223e": 46, "784": 46, "057699886783593e": 46, "00195038440947e": 46, "946966834883386e": 46, "892738714831724e": 46, "839255645128162e": 46, "789": 46, "7865073893161035e": 46, "7344838517945644e": 46, "791": 46, "6831750753998855e": 46, "632571239832806e": 46, "793": 46, "582662659968393e": 46, "533439783514639e": 46, "484893189401684e": 46, "4370135861158414e": 46, "797": 46, "389791809557051e": 46, "798": 46, "343218821995261e": 46, "799": 46, "297285709626039e": 46, "800": 46, "2519836807584633e": 46, "801": 46, "207304064918974e": 46, "802": 46, "1632383109280923e": 46, "803": 46, "119777984490796e": 46, "804": 46, "0769147677204536e": 46, "805": 46, "0346404566701807e": 46, "806": 46, "992946960452109e": 46, "807": 46, "9518262989727527e": 46, "808": 46, "91127060197297e": 46, "809": 46, "8712721072740293e": 46, "810": 46, "831823159500368e": 46, "811": 46, "79291620834115e": 46, "812": 46, "7545438069154676e": 46, "813": 46, "7166986112072625e": 46, "814": 46, "679373377825878e": 46, "815": 46, "6425609626973794e": 46, "816": 46, "60625432046131e": 46, "5704465018664383e": 46, "818": 46, "535130653762732e": 46, "819": 46, "500300016615044e": 46, "820": 46, "4659479241412505e": 46, "821": 46, "4320678016306087e": 46, "822": 46, "3986531644012435e": 46, "823": 46, "3656976172150075e": 46, "824": 46, "3331948524618315e": 46, "825": 46, "3011386494338866e": 46, "826": 46, "2695228725235466e": 46, "827": 46, "238341470639586e": 46, "828": 46, "2075884760544393e": 46, "829": 46, "1772580024815873e": 46, "830": 46, "1473442451657755e": 46, "117841478485599e": 46, "088744055878357e": 46, "833": 46, "060046408245776e": 46, "834": 46, "0317430429749966e": 46, "835": 46, "003828543006036e": 46, "836": 46, "976297565594483e": 46, "837": 46, "949144841480855e": 46, "838": 46, "9223651737713088e": 46, "839": 46, "8959534368152337e": 46, "840": 46, "8699045759210372e": 46, "8442136050473178e": 46, "818875607297657e": 46, "793885733041347e": 46, "844": 46, "769239199303403e": 46, "845": 46, "7449312891786651e": 46, "846": 46, "7209573497964506e": 46, "6973127929579093e": 46, "848": 46, "6739930930784257e": 46, "650993786938887e": 46, "850": 46, "6283104727068234e": 46, "605938808689276e": 46, "5838745132739276e": 46, "853": 46, "5621133631968823e": 46, "854": 46, "5406511938359275e": 46, "5194838971425951e": 46, "498607421968768e": 46, "4780177726832662e": 46, "858": 46, "4577110083756291e": 46, "859": 46, "437683242447562e": 46, "4179306418471782e": 46, "861": 46, "3984494259649153e": 46, "862": 46, "3792358662036097e": 46, "863": 46, "3602862850662532e": 46, "864": 46, "341597055866288e": 46, "865": 46, "3231646014039378e": 46, "866": 46, "3049853940133655e": 46, "867": 46, "2870559541431299e": 46, "269372850183054e": 46, "2519326977123633e": 46, "2347321588196066e": 46, "871": 46, "217767941323583e": 46, "872": 46, "201036798469105e": 46, "1845355279110761e": 46, "1682609714160612e": 46, "875": 46, "152210014075458e": 46, "876": 46, "136379583878647e": 46, "877": 46, "1207666510181047e": 46, "878": 46, "1053682271319834e": 46, "879": 46, "090181364978928e": 46, "880": 46, "0752031579870268e": 46, "881": 46, "0604307395852179e": 46, "882": 46, "0458612819916141e": 46, "0314919971368875e": 46, "0173201345490836e": 46, "885": 46, "0033429816790807e": 46, "886": 46, "895578637246975e": 46, "887": 46, "759621420205265e": 46, "625532145380201e": 46, "493285147546725e": 46, "890": 46, "3628551164479e": 46, "891": 46, "234217088721998e": 46, "107346442453208e": 46, "982218896602567e": 46, "894": 46, "858810500619308e": 46, "737097636041496e": 46, "617057007632026e": 46, "498665639019465e": 46, "898": 46, "381900873406225e": 46, "266740360996993e": 46, "153162058902952e": 46, "901": 46, "04114423163307e": 46, "902": 46, "930665437036461e": 46, "821704532877173e": 46, "71424066226727e": 46, "608253257484617e": 46, "906": [46, 60], "503722035383636e": 46, "400626986584763e": 46, "298948379400162e": 46, "909": 46, "198666754833949e": 46, "09976291818609e": 46, "002217939823003e": 46, "906013148755061e": 46, "913": 46, "811130133982537e": 46, "717550736731428e": 46, "625257042884367e": 46, "534231389431823e": 46, "917": 46, "444456354642378e": 46, "918": 46, "35591475658727e": 46, "268589647581184e": 46, "182464315033788e": 46, "921": 46, "097522274092465e": 46, "922": 46, "013747268116727e": 46, "931123263847961e": 46, "849634445174112e": 46, "769265216173688e": 46, "690000195677042e": 46, "6118242125742767e": 46, "534722304045493e": 46, "929": 46, "4586797121211655e": 46, "383681884834191e": 46, "309714466727463e": 46, "236763300738726e": 46, "164814423789034e": 46, "093854065721601e": 46, "0238686459851815e": 46, "9548447702941143e": 46, "886769225627127e": 46, "819628984093517e": 46, "753411194334228e": 46, "688103183630812e": 46, "941": 46, "623692451270183e": 46, "942": 46, "560166670756158e": 46, "497513684323499e": 46, "4357214966138604e": 46, "945": 46, "374778284382607e": 46, "946": 46, "3146723828127433e": 46, "947": 46, "255392285937742e": 46, "948": 46, "196926650939042e": 46, "949": 46, "139264286603403e": 46, "950": 46, "082394154349409e": 46, "951": 46, "026305373010949e": 46, "952": 46, "970987207121857e": 46, "916429066888301e": 46, "862620510921282e": 46, "955": 46, "809551240211115e": 46, "956": 46, "7572110993411804e": 46, "705590068837061e": 46, "6546782690498294e": 46, "959": 46, "6044659570055255e": 46, "960": 46, "5549435215560785e": 46, "506101484240894e": 46, "457930495020287e": 46, "963": 46, "410421337747203e": 46, "964": 46, "363564916457091e": 46, "3173522661039894e": 46, "27177453839846e": 46, "967": 46, "226823012568907e": 46, "968": 46, "18248908455579e": 46, "138764267205407e": 46, "0956401951870296e": 46, "971": 46, "053108611128666e": 46, "972": 46, "011161378149839e": 46, "9697904651577707e": 46, "928987954782195e": 46, "975": 46, "8887460381335765e": 46, "976": 46, "8490570129782678e": 46, "809913282837525e": 46, "7713073556456228e": 46, "979": 46, "733231842002208e": 46, "980": 46, "6956794549358718e": 46, "981": 46, "6586430081313818e": 46, "982": 46, "6221154116416602e": 46, "983": 46, "5860896744937203e": 46, "984": 46, "5505589020810506e": 46, "985": 46, "5155162937637426e": 46, "986": 46, "480955141420751e": 46, "987": 46, "4468688322695497e": 46, "988": 46, "413250840996505e": 46, "989": 46, "380094733222787e": 46, "990": 46, "3473941636760532e": 46, "991": 46, "3151428740681202e": 46, "992": 46, "2833346908563155e": 46, "993": 46, "2519635254418385e": 46, "994": 46, "2210233759685583e": 46, "995": 46, "1905083170126303e": 46, "996": 46, "1604125116859914e": 46, "997": 46, "1307301970457093e": 46, "998": 46, "1014556933272555e": 46, "999": 46, "072583399247498e": 46, "0441077852041042e": 46, "1001": 46, "016023404407948e": 46, "1002": 46, "988324878740525e": 46, "1003": 46, "9610069089538715e": 46, "1004": 46, "934064265915551e": 46, "1005": 46, "9074917935399035e": 46, "1006": 46, "881284405121477e": 46, "1007": 46, "8554370838921893e": 46, "1008": 46, "8299448851004696e": 46, "1009": 46, "804802927823209e": 46, "1010": 46, "780006401287035e": 46, "1011": 46, "755550557607619e": 46, "1012": 46, "7314307180782044e": 46, "1013": 46, "70764226689353e": 46, "1014": 46, "684180647878445e": 46, "1015": 46, "661041373862165e": 46, "1016": 46, "6382200125324833e": 46, "1017": 46, "6157121995544838e": 46, "1018": 46, "593513625303192e": 46, "1019": 46, "5716200429890295e": 46, "1020": 46, "5500272589058757e": 46, "1021": 46, "5287311423528937e": 46, "1022": 46, "5077276185552118e": 46, "1023": 46, "4870126649549754e": 46, "1024": 46, "4665823171826354e": 46, "1025": 46, "4464326683285988e": 46, "1026": 46, "4265598564692116e": 46, "1027": 46, "4069600824566074e": 46, "1028": 46, "3876295931521244e": 46, "1029": 46, "3685646891753328e": 46, "1030": 46, "3497617218728434e": 46, "1031": 46, "3312170911824881e": 46, "1032": 46, "3129272483674086e": 46, "1033": 46, "2948886942405e": 46, "1034": 46, "277097975239419e": 46, "1035": 46, "2595516847568828e": 46, "1036": 46, "2422464676774915e": 46, "1037": 46, "2251790106502366e": 46, "1038": 46, "2083460448557326e": 46, "1039": 46, "1917443509672249e": 46, "1040": 46, "175370751686568e": 46, "1041": 46, "1592221117566454e": 46, "1042": 46, "1432953401769533e": 46, "1043": 46, "1275873912643786e": 46, "1044": 46, "1120952556356904e": 46, "1045": 46, "0968159694944652e": 46, "1046": 46, "0817466086216224e": 46, "1047": 46, "0668842887956969e": 46, "1048": 46, "0522261642833315e": 46, "1049": 46, "0377694309296993e": 46, "1050": 46, "0235113218041585e": 46, "1051": 46, "0094491081610007e": 46, "1052": 46, "955800959468116e": 46, "1053": 46, "819016339413737e": 46, "1054": 46, "684111020480524e": 46, "1055": 46, "551059202512336e": 46, "1056": 46, "41983539667056e": 46, "1057": 46, "290414512693373e": 46, "1058": 46, "162771755192398e": 46, "1059": 46, "036882711834327e": 46, "1060": 46, "912723274012169e": 46, "1061": 46, "790269700494604e": 46, "1062": 46, "669498526513673e": 46, "1063": 46, "550386658345834e": 46, "1064": 46, "4329112850224e": 46, "1065": 46, "317049926499982e": 46, "1066": 46, "20278040915028e": 46, "1067": 46, "090080875328715e": 46, "1068": 46, "978929725877198e": 46, "1069": 46, "869305704937035e": 46, "1070": 46, "761187835174138e": 46, "1071": 46, "654555424792147e": 46, "1072": 46, "54938804180488e": 46, "1073": 46, "445665566833718e": 46, "1074": 46, "343368177647046e": 46, "1075": 46, "2424762666737146e": 46, "1076": 46, "142970521525175e": 46, "1077": 46, "0448318988346594e": 46, "1078": 46, "948041627199521e": 46, "1079": 46, "852581180555624e": 46, "1080": 46, "7584322804740845e": 46, "1081": 46, "665576913766078e": 46, "1082": 46, "573997293731076e": 46, "1083": 46, "483675900724828e": 46, "1084": 46, "394595459241093e": 46, "1085": 46, "3067389091504954e": 46, "1086": 46, "220089440885009e": 46, "1087": 46, "134630462323265e": 46, "1088": 46, "050345607732123e": 46, "1089": 46, "967218775966888e": 46, "1090": 46, "885234043123831e": 46, "1091": 46, "804375697464095e": 46, "1092": 46, "724628290895526e": 46, "1093": 46, "645976545818384e": 46, "1094": 46, "568405424836091e": 46, "1095": 46, "491900037077236e": 46, "1096": [46, 65], "416445795958666e": 46, "1097": 46, "3420282227507415e": 46, "1098": 46, "268633095463936e": 46, "1099": 46, "1962463458313255e": 46, "1100": 46, "124854140373132e": 46, "1101": 46, "054442809432531e": 46, "1102": 46, "984998868844853e": 46, "1103": 46, "916509026727359e": 46, "1104": 46, "848960189067868e": 46, "1105": 46, "782339415582198e": 46, "1106": 46, "7166339448727095e": 46, "1107": 46, "6518312303347455e": 46, "1108": 46, "587918844820352e": 46, "1109": 46, "5248845689998295e": 46, "462716319985976e": 46, "1111": 46, "401402217647644e": 46, "1112": 46, "340930532910021e": 46, "1113": 46, "281289667448394e": 46, "1114": 46, "222468225080945e": 46, "164454944361612e": 46, "1072387109440784e": 46, "1117": 46, "050808588781358e": 46, "1118": 46, "995153767474519e": 46, "1119": 46, "940263595804976e": 46, "1120": 46, "886127569791755e": 46, "1121": 46, "83273533446297e": 46, "1122": 46, "780076662289142e": 46, "1123": 46, "728141472198836e": 46, "1124": 46, "6769198434232496e": 46, "6264019576717673e": 46, "5765781335362466e": 46, "1127": 46, "5274388649262574e": 46, "1128": 46, "4789746989912544e": 46, "1129": 46, "431176412435023e": 46, "1130": 46, "3840348380620775e": 46, "1131": 46, "3375409442559155e": 46, "1132": 46, "2916858366707634e": 46, "1133": 46, "2464607544411714e": 46, "1134": 46, "20185701640442e": 46, "1135": 46, "1578660947274213e": 46, "1136": 46, "1144795853898352e": 46, "1137": [46, 63, 102], "071689163842817e": 46, "1138": 46, "0294866473975043e": 46, "1139": 46, "98786396035351e": 46, "1140": 46, "946813128879899e": 46, "1141": 46, "906326312921551e": 46, "1142": 46, "86639575404848e": 46, "1143": 46, "8270138008684686e": 46, "1144": 46, "7881729236898696e": 46, "749865690221446e": 46, "712084773076043e": 46, "1147": 46, "67482292575374e": 46, "1148": 46, "638073035428225e": 46, "1149": 46, "601828051333945e": 46, "1150": 46, "56608104233486e": 46, "1151": 46, "5308251803984455e": 46, "1152": 46, "4960536837939773e": 46, "1153": 46, "461759935102699e": 46, "1154": 46, "427937357377234e": 46, "1155": 46, "3945794772264324e": 46, "1156": 46, "3616798896013715e": 46, "1157": 46, "3292323296073995e": 46, "1158": 46, "297230564528598e": 46, "1159": 46, "265668479439641e": 46, "1160": 46, "2345400347809227e": 46, "1161": 46, "2038392742993523e": 46, "1162": 46, "173560312218078e": 46, "1163": 46, "1436973564022294e": 46, "1164": 46, "1142446998583604e": 46, "1165": 46, "0851966894625983e": 46, "1166": 46, "0565477676177174e": 46, "1167": 46, "0282924756612993e": 46, "1168": 46, "0004253862507363e": 46, "1169": 46, "9729411628519188e": 46, "1170": 46, "9458345541265103e": 46, "1171": 46, "9191003622777862e": 46, "1172": 46, "8927334941616805e": 46, "1173": 46, "8667288714541835e": 46, "1174": 46, "8410815328296521e": 46, "1175": 46, "8157865664294941e": 46, "1176": 46, "7908391227508154e": 46, "1177": 46, "766234453974245e": 46, "1178": 46, "7419678304298498e": 46, "1179": 46, "7180346107522614e": 46, "1180": 46, "6944302008399361e": 46, "1181": 46, "6711501048505505e": 46, "1182": 46, "6481898622687437e": 46, "1183": 46, "6255450647095954e": 46, "6032113977710588e": 46, "1185": 46, "5811845708510086e": 46, "1186": 46, "5594603828450653e": 46, "1187": 46, "5380346646190164e": 46, "1188": 46, "5169033203791969e": 46, "496062301292538e": 46, "1190": 46, "4755076200566074e": 46, "1191": 46, "4552353471039174e": 46, "1192": 46, "4352415865436047e": 46, "1193": 46, "4155225382861335e": 46, "1194": 46, "3960743990071075e": 46, "1195": 46, "376893472830978e": 46, "1196": 46, "3579760806659418e": 46, "3393185901943043e": 46, "1198": 46, "3209174368972213e": 46, "1199": 46, "3027690999003073e": 46, "1200": 46, "2848701103604469e": 46, "1201": 46, "2672170441103305e": 46, "1202": 46, "2498065056018573e": 46, "1203": 46, "2326351878065917e": 46, "1204": 46, "2156997683938283e": 46, "1205": 46, "1989970409922486e": 46, "1206": 46, "1825238009470132e": 46, "1207": 46, "1662768813921747e": 46, "1208": 46, "1502531949919336e": 46, "1209": 46, "1344496302303633e": 46, "1210": 46, "1188632171403412e": 46, "1211": 46, "1034909470615006e": 46, "1212": 46, "088329890520765e": 46, "1213": 46, "0733771059172907e": 46, "1214": 46, "058629781795617e": 46, "1215": 46, "0440850635700838e": 46, "1216": 46, "0297401890608049e": 46, "1217": 46, "0155923933842377e": 46, "1218": 46, "0016389793743943e": 46, "1219": 46, "878772652942522e": 46, "1220": 46, "743046389129484e": 46, "1221": 46, "609184832867373e": 46, "1222": 46, "477162405364844e": 46, "1223": 46, "346953929262571e": 46, "1224": 46, "218534373172311e": 46, "1225": 46, "091879177514704e": 46, "1226": 46, "966964255127543e": 46, "1227": 46, "843765347749792e": 46, "1228": 46, "72225926431386e": 46, "1229": 46, "602422442088333e": 46, "1230": 46, "484232104216341e": 46, "1231": 46, "367665665217973e": 46, "1232": 46, "252700643269565e": 46, "1233": 46, "139315271444288e": 46, "1234": [46, 49], "027487700817419e": 46, "1235": 46, "917196533515586e": 46, "1236": 46, "808420681895741e": 46, "1237": 46, "70113937456317e": 46, "1238": 46, "595331929789697e": 46, "1239": 46, "490978217279541e": 46, "1240": 46, "38805825978633e": 46, "1241": 46, "286552374709478e": 46, "1242": 46, "186441139990981e": 46, "1243": 46, "087705232362404e": 46, "1244": 46, "990325906208014e": 46, "1245": 46, "894284530766281e": 46, "1246": 46, "799562528394244e": 46, "1247": 46, "706142233350342e": 46, "614005175441214e": 46, "1249": 46, "523134156230471e": 46, "1250": 46, "433511536023269e": 46, "1251": 46, "345120350599629e": 46, "1252": 46, "257943509407669e": 46, "1253": 46, "171964483263876e": 46, "1254": 46, "087166664294984e": 46, "1255": 46, "003533916534866e": 46, "1256": 46, "921050242517416e": 46, "1257": 46, "839699790942513e": 46, "1258": 46, "759467113806551e": 46, "1259": 46, "68033669500627e": 46, "1260": 46, "60229352735577e": 46, "1261": 46, "525322494411694e": 46, "1262": 46, "449409064134838e": 46, "1263": 46, "374538642017021e": 46, "1264": 46, "300696790397088e": 46, "1265": 46, "227869591181543e": 46, "1266": 46, "156042934268715e": 46, "1267": 46, "085203085594984e": 46, "1268": 46, "015336450193677e": 46, "1269": 46, "946429851535188e": 46, "1270": 46, "878469863474089e": 46, "1271": 46, "811443703268355e": 46, "1272": 46, "745338379740247e": 46, "1273": 46, "680141277151451e": 46, "1274": 46, "6158399286683607e": 46, "1275": 46, "5524220444695906e": 46, "1276": 46, "489875390949823e": 46, "1277": 46, "428188197729902e": 46, "1278": 46, "3673484810309763e": 46, "1279": 46, "307344765907323e": 46, "2481652589569217e": 46, "1281": 46, "1897989532745137e": 46, "1282": 46, "132234434912973e": 46, "1283": 46, "0754609239472857e": 46, "1284": 46, "0194674123506714e": 46, "1285": 46, "9642431866822456e": 46, "1286": 46, "909777725564041e": 46, "1287": 46, "856060475024522e": 46, "1288": 46, "803081364117639e": 46, "1289": 46, "7508301157973897e": 46, "1290": 46, "699296772001884e": 46, "1291": 46, "648471378408556e": 46, "1292": 46, "598344404734277e": 46, "1293": 46, "548906053040536e": 46, "1294": 46, "500146983254948e": 46, "1295": 46, "452057792644223e": 46, "1296": 46, "404629236349358e": 46, "1297": 46, "3578525479156935e": 46, "1298": 46, "3117181936101093e": 46, "1299": 46, "2662179809977506e": 46, "1300": 46, "221342747583671e": 46, "1301": 46, "177084140486483e": 46, "1302": 46, "133433727673969e": 46, "090382846710801e": 46, "0479234984947036e": 46, "1305": 46, "006047521099574e": 46, "1306": 46, "9647467894946307e": 46, "yscale": [46, 47, 48, 49, 112], "proport": 46, "excercis": [46, 49], "halv": 46, "front": 46, "ritz": 47, "produc": [47, 77], "p_1": [47, 74, 77, 102, 110], "p_n": [47, 74, 77, 110], "column": [47, 103, 109, 112], "rewritten": [47, 74], "p_i": [47, 74, 77, 102, 110], "p_j": [47, 74, 77, 110], "cheapli": [47, 80, 81, 88, 118], "x_n": [47, 95], "r_n": 47, "bot_": [47, 77], "bot_c": 47, "gram": [47, 112], "schmidt": [47, 112], "miracl": 47, "pop": 47, "remain": 47, "roundoff": 47, "x_0": 47, "r_0": 47, "alpha_j": 47, "r_k": 47, "w_k": [47, 64], "p_k": [47, 77, 83], "x_k": 47, "r_": 47, "w_": [47, 80, 96], "beta_k": 47, "ap": [47, 78, 115], "wrn": [47, 78], "pap": [47, 78], "wr": [47, 78], "hist": 47, "err2": [48, 49], "relax": 48, "comparison": [48, 118], "rich": [48, 51, 56], "extrem": [49, 107], "qualiti": 49, "rayleigh": [49, 100, 102], "quotient": [49, 98, 100, 102, 109, 110], "residuum": [49, 71], "ideal": [49, 102], "ac": 49, "computation": [49, 50], "diag": [49, 61, 102, 109], "preform": [49, 62], "hv3": 49, "5628463859901822": 49, "3004844587339315": 49, "3642450612653385": 49, "4017278282832695": 49, "428927912054942": 49, "451197927296262": 49, "4709697187344926": 49, "489456390475471": 49, "5072557909082451": 49, "5246072026789994": 49, "5415208146951107": 49, "5578609944298918": 49, "5734139487420609": 49, "587947333438726": 49, "6012589050513686": 49, "613209024712011": 49, "6237346368041081": 49, "632846787976177": 49, "6406169867162068": 49, "6471585575973842": 49, "situat": [49, 50], "consider": 49, "captur": 49, "soon": 49, "quantiti": 49, "w_i": [49, 80, 102, 106], "date": 49, "b_i": [49, 108], "backward": [49, 50, 61, 74, 109, 110], "strictli": [49, 108], "forward": [49, 50, 61, 88, 109], "rewrit": [49, 51, 55, 59, 74, 97, 100], "fbg": 49, "guarante": [49, 51], "fb": 49, "m_": [49, 62, 102], "bg": 49, "fg": 49, "convergenct": 49, "o": [50, 61, 77, 80, 81, 98, 102, 103, 105], "format": 50, "de": [50, 113], "wikipedia": [50, 108], "org": [50, 63, 70, 73, 102, 108, 115, 116, 117], "wiki": [50, 108], "compressed_row_storag": 50, "doc": 50, "rll": 51, "ccccl": [51, 55, 56, 58, 81], "too": [51, 56, 118], "rephras": [51, 52], "lbb": [51, 59, 81, 84], "_q": [51, 52, 81], "null": [51, 79, 80, 96, 103], "otim": 51, "accordingli": [51, 71], "f_0": 51, "third": [51, 83, 88, 95, 96, 108], "00": [51, 74], "bv": 51, "partial_v": 51, "partial_q": 51, "karush": [51, 81], "kuhn": [51, 81], "tucker": [51, 81], "kkt": [51, 81], "whole": [51, 53, 71, 87, 97, 101, 102], "clear": [51, 87, 105, 106], "succ": 51, "prec": [51, 52, 60, 83, 87, 105, 106], "2_": [51, 63, 77, 100, 109], "q_h": [52, 83], "wrt": 52, "pair": [52, 53, 56, 97, 109], "clement": 52, "enough": [52, 59, 67, 74, 80, 103], "bubbl": [52, 56, 59, 74, 115], "cubic": [52, 56], "strong": [53, 62, 74, 85, 95, 97], "integ": [53, 96], "eas": 53, "fv": 53, "live": [53, 74], "csg": [53, 55, 68, 75, 80, 118], "basewebguiscen": [53, 55, 56, 71, 83, 85, 88, 93], "orderfac": 53, "surfacel2": 53, "definedonbound": 53, "undocu": [53, 56, 80], "mayb": [53, 56, 80], "typo": [53, 56, 80], "setheaps": 53, "10000000": 53, "sol_u": [53, 83], "sol_lam": 53, "total": [53, 55, 116, 117], "999999999999997": 53, "bndpart": 53, "region_wis": 53, "24998": 53, "88934": 53, "250025": 53, "610659": 53, "999999999999998": 53, "renam": 54, "off": [54, 97], "gg": 54, "secon": 55, "9999999999999974": 55, "advanc": [56, 63, 77], "difficulti": 56, "momentum": 56, "diverg": [56, 58, 59, 80, 85, 87, 118], "anywai": [56, 118], "beauti": 56, "dc": [56, 83, 88], "taylor": [56, 108, 109], "hood": 56, "bad": [56, 67, 69, 80, 103], "michael": 57, "neunteufel": [57, 68], "displac": [57, 58, 68, 72, 79], "bodi": [57, 60, 72], "frame": 57, "rigid": [57, 60], "stress": [58, 59, 68, 72], "tensor": [58, 60, 72, 74, 77], "sym": [58, 60, 65, 72, 79, 100], "cccll": 58, "ot": 58, "scalar": [58, 79, 109], "elast": [58, 79], "challeng": 58, "progress": [58, 60], "arnold": [58, 59, 65, 80], "falk": [58, 80], "winther": [58, 80], "2005": [58, 80], "skew": 59, "x_2": 59, "x_1": [59, 95], "rearrang": 59, "ccccccll": 59, "electromagnet": 59, "tangenti": [59, 66, 68], "stenberg": 59, "mode": [60, 74], "six": 60, "tet": 60, "decoupl": [60, 83, 108], "stretch": 60, "bend": [60, 65, 67, 68], "nt": [60, 65], "opdiv_t": 60, "f_e": 60, "resp": 60, "nedelec": [60, 66, 67, 80], "nabla_t": [60, 65], "g_t": 60, "g_e": 60, "g_v": 60, "nearli": [60, 109], "motiv": [60, 97, 109], "slightli": [60, 109], "sigma_h": [60, 65, 66, 69, 83, 84, 88], "tau_h": [60, 65, 83, 88], "astrid": 60, "sinwel": 60, "pechstein": [60, 65, 69], "tk": 60, "hdivdiv": [60, 65, 67], "type1": 60, "disp": [60, 65, 67, 68], "s11": 60, "1466": 60, "ulrich": 61, "trottenberg": [61, 62], "corneliu": 61, "oosterle": 61, "anton": 61, "schuller": 61, "academ": 61, "2001": 61, "wolfgang": 61, "hackbusch": [61, 62], "springer": 61, "1985": [61, 115], "hierarchi": 61, "present": [61, 62, 79, 98], "hierarch": [61, 74], "nest": [61, 62, 63, 64, 80, 105, 106], "v_l": [61, 62, 63, 64, 118], "n_l": [61, 64, 118], "h_l": [61, 62, 63, 64], "dl": 61, "spatial": [61, 110, 111], "p_l": [61, 62, 63, 64, 77], "a_l": [61, 62, 63], "d_l": [61, 62, 63], "2l": [61, 80, 106], "expens": [61, 106, 109], "a_0": [61, 62, 63], "mlprecondition": 61, "coarsepr": 61, "localpr": 61, "hx": 61, "cdof": 61, "leveldof": 61, "mlpreconditioner2": 61, "prol": [61, 64], "lammin": [61, 78, 80, 82, 100, 103, 106, 107], "lammax": [61, 78, 80, 82, 103, 106, 107], "5225660928343492": 61, "9634170326035583": 61, "7572606786524734": 61, "4164879047972151": 61, "2550708572760314": 61, "815523139527669": 61, "37989344758183696": 61, "308450122441681": 61, "341206724850267": 61, "3169": 61, "3560043386452667": 61, "150172892273618": 61, "466601479835905": 61, "12481": 61, "319937819401064": 61, "825268149129328": 61, "207500945135074": 61, "49537": 61, "31667701963457284": 61, "370873187419749": 61, "117889181764347": 61, "197377": 61, "3182030348089053": 61, "816107452862656": 61, "420623649790215": 61, "787969": 61, "3219928450516111": 61, "183205809357812": 61, "30858827998629": 61, "action": [61, 79, 102, 106], "presmooth": 61, "m_l": [61, 62, 64], "d_": 61, "coasr": [61, 62], "postsmooth": 61, "post": 61, "transpos": [61, 81, 106], "overal": 61, "seidel": [61, 62, 102, 107], "mgprecondition": 61, "smoothback": 61, "7651544666507633": 61, "9987999466057931": 61, "3053572711634862": 61, "5892049430232538": 61, "9967208414315467": 61, "6916369308059416": 61, "5497371221971641": 61, "9970667770354094": 61, "8137155683617994": 61, "4814120552195498": 61, "996951398840777": 61, "0708899746727645": 61, "45725397386741407": 61, "9961888045847009": 61, "1786334543121044": 61, "17521646837299754": 61, "00941187124058379": 61, "0010818082293433016": 61, "0001774124343507029": 61, "146247392809796e": 61, "2014276423085216e": 61, "973354406340976e": 61, "6349639615833913e": 61, "6495382905210624e": 61, "608662509689858e": 61, "2577596081448574e": 61, "468997807675418e": 61, "94941910837591e": 61, "056463652129439e": 61, "7024528929213845e": 61, "143292625079821e": 61, "494419632350608e": 61, "20000": 61, "2021": 61, "projectedmg": 61, "createtranspos": [61, 64], "coarsemat": 61, "46135753154810366": 61, "9962490853348933": 61, "159386196627027": 61, "17521646837299884": 61, "009411871240584515": 61, "0010818082293433783": 61, "00017741243435071894": 61, "146247392809993e": 61, "20142764230892e": 61, "973354406342218e": 61, "6349639615837404e": 61, "6495382905217427e": 61, "608662509690732e": 61, "2577596081450706e": 61, "46899780767589e": 61, "9494191083769515e": 61, "056463652131211e": 61, "7024528929217936e": 61, "143292625081005e": 61, "494419632355397e": 61, "interplai": 62, "smoother": 62, "suit": 62, "low": [62, 80, 112], "twice": [62, 79, 101], "al": 62, "c_l": [62, 108], "link": 62, "c_0": [62, 87, 95, 97], "s_l": [62, 85], "e_l": [62, 63, 64], "thank": [62, 83, 105, 106, 118], "varphi_l": 62, "psi_l": 62, "domin": [62, 80, 98], "bare": 62, "dinv": 62, "rough": 62, "random": 62, "quantifi": 62, "stronger": [62, 97], "2m": 62, "inlin": [62, 112], "xi": [62, 77, 97], "m_0": 62, "carefulli": 62, "perturb": 62, "condition": 63, "outlin": [63, 106], "w_l": [63, 64], "finest": 63, "e_0": [63, 97, 103], "pi_l": [63, 64], "cl\u00e9ment": [63, 106], "pi_0": [63, 64], "telescop": 63, "sum_l": [63, 97], "sum_k": [63, 97], "v_k": 63, "h_k": [63, 64], "put": [63, 112], "t_l": 63, "coarsest": 63, "underli": 63, "jinchao": [63, 102], "rev": [63, 102], "1992": [63, 102], "epub": [63, 102], "doi": [63, 102], "1034116": [63, 102], "reproduc": 64, "quickli": 64, "steeper": 64, "349233583359464": 64, "e_": [64, 102], "mlextens": 64, "bndmass": 64, "mone": 64, "coarsebndmass": 64, "coarsedof": 64, "coarseext": 64, "ext": 64, "extendrec": 64, "xc": 64, "pxc": 64, "uext": 64, "569199431018602": 64, "genuin": 65, "comodi": 65, "krendl": 65, "rafetsed": 65, "zulehn": 65, "hu": 65, "huang": 65, "possibli": 65, "newer": 65, "td": 65, "tightli": 65, "older": 65, "prager": 65, "syng": 65, "posteriori": 65, "deflect": [65, 67], "5em": 65, "partial_t": 65, "moment": 65, "3165": 65, "4261": 65, "methdo": 66, "stackrel": [66, 83], "longrightarrow": [66, 83], "8pt": [66, 83], "downarrow": [66, 83], "_k": 66, "3ex": [66, 83], "thick": [67, 68], "shear": [67, 68], "beta_h": 67, "lock": [67, 80], "joint": 68, "csgeometri": [68, 80, 118], "pnt": [68, 80, 118], "plane": 68, "finitecyl": 68, "addsurfac": 68, "hdivdivsurfac": 68, "fes3": 68, "u2": [68, 83], "u3": 68, "v3": 68, "gradv": 68, "gradu": 68, "nsurf": 68, "cross": [68, 113], "nel": 68, "ngradv": 68, "ngradu": 68, "sigman": 68, "taun": 68, "membran": 68, "tt": 68, "varepsilon_": 68, "compil": [68, 72], "symbolicenergi": 68, "nsurfmat": 68, "ptau": 68, "ftau": 68, "ctautau": 68, "etautau": 68, "uvec": 68, "sd": 68, "solsigma": 68, "newton": 68, "newtonsolv": 68, "newtonminim": 68, "loadstep": 68, "385554547969789e": 68, "uh": 68, "0464076953847663": 68, "04640769538476629": 68, "05969811055414346": 68, "060188892523224485": 68, "060197008583245344": 68, "060197013034633824": 68, "060197013034635836": 68, "16212877624059613": 68, "18047030359955413": 68, "1881411344828965": 68, "18829278797325397": 68, "18829323589939168": 68, "1882932359053115": 68, "3391246325802083": 68, "35472110553465824": 68, "35802220286281283": 68, "35820310983034076": 68, "35823429355522934": 68, "3582355218606291": 68, "35823552663766817": 68, "3582355266377316": 68, "545934144326212": 68, "5533557874560733": 68, "5598812394438284": 68, "5602257500879521": 68, "560256843307439": 68, "5602573408039925": 68, "5602573409856751": 68, "thin": [69, 118], "prismat": 69, "flat": 69, "anisotrop": 69, "h_x": 69, "partial_x": [69, 94, 101], "h_y": 69, "partial_i": [69, 101], "korn": 69, "introduct": 70, "interleav": 70, "latest": [70, 73], "offici": 70, "supplement": 70, "detail": [70, 77], "vectori": 70, "sabin": 70, "zaglmayr": 70, "phd": 70, "recommend": [70, 74], "textbook": [70, 98], "septemb": 70, "2017": 70, "gamma_n": [71, 72, 86, 88, 97, 101], "temperatur": [71, 74, 76, 110], "thermal": 71, "insul": 71, "transmiss": 71, "had": 71, "belong": [71, 97, 101, 105, 106], "adapt": 71, "u0": [71, 110, 111, 112, 115], "u_f": [71, 80, 103, 106], "dd": [71, 105], "df": 71, "fd": 71, "ff": 71, "f_d": 71, "f_f": 71, "condtion": 71, "maintain": 71, "pad": [71, 105], "worri": 71, "ud": 71, "boundarycf": [71, 74], "chamfer": 72, "cylboxedg": 72, "cylbox": 72, "makechamf": 72, "strain": 72, "hook": 72, "law": 72, "traction": 72, "fesstress": 72, "matrixvalu": 72, "gfstress": 72, "slider": [72, 74, 106], "5e4": 72, "1e4": 72, "draw_vol": [72, 75, 113, 118], "consult": [73, 107], "docu": 73, "verif": 73, "graviti": 73, "func": [73, 85], "how_to": 73, "howto_linalg": 73, "howto_numpi": 73, "xy": 73, "attain": 73, "phenomena": 74, "charg": 74, "electrostat": 74, "potenti": [74, 80], "select": 74, "script": [74, 95], "kink": 74, "formal": [74, 84, 97, 109], "infinit": [74, 84, 97, 98], "1_0": 74, "sum_i": [74, 97, 102, 103, 106, 108], "predefin": 74, "ne": 74, "funcf": 74, "cartesian": 74, "inspect": 74, "9999999999999964": 74, "499999999999999": 74, "4999999999999974": 74, "08333333333333291": 74, "662800535624399e": 74, "08333333333333307": 74, "1181654480683108e": 74, "16666666666666605": 74, "85722573273506e": 74, "204170427930421e": 74, "8287315681024927": 74, "1957737541722982": 74, "19794827628847217": 74, "4350095376417224": 74, "036081925033399936": 74, "2706849461530112e": 74, "036419664573553744": 74, "0793232627093197e": 74, "06562033841012835": 74, "478486166301863e": 74, "06871088406211634": 74, "734723475976807e": 74, "06941104395496575": 74, "949029909160572e": 74, "9081958235744878e": 74, "004044215842409425": 74, "00010949506857410921": 74, "005055833317030188": 74, "0004467008934476962": 74, "009656245121461408": 74, "2551405187698492e": 74, "724587470723463e": 74, "8163916471489756e": 74, "003295602986137172": 74, "00037798057948934126": 74, "006250616150810586": 74, "0006070238087351294": 74, "0051166744123425645": 74, "0009850043882244734": 74, "009775262366193539": 74, "0816681711721685e": 74, "632783294297951e": 74, "004200374856019856": 74, "0017754830163756964": 74, "0028410571431563554": 74, "0013223771120878588": 74, "008167506192283442": 74, "00045310590428783134": 74, "010139292127639758": 74, "66666667e": 74, "62349341e": 74, "00666667e": 74, "41938614e": 74, "58768986e": 74, "27043380e": 74, "18198359e": 74, "75906396e": 74, "61373488e": 74, "37816023e": 74, "59571120e": 74, "65080144e": 74, "90491892e": 74, "15375584e": 74, "72201759e": 74, "38794309e": 74, "46500883e": 74, "01059709e": 74, "22396274e": 74, "56496750e": 74, "66524538e": 74, "92210142e": 74, "90956415e": 74, "39617577e": 74, "06041231e": 74, "86702751e": 74, "06967160e": 74, "97947213e": 74, "91277642e": 74, "11175628e": 74, "15852596e": 74, "72752866e": 74, "95764202e": 74, "52020762e": 74, "33003422e": 74, "68347587e": 74, "23554864e": 74, "78842972e": 74, "04632471e": 74, "11111111e": 74, "58730159e": 74, "12517048e": 74, "65287341e": 74, "04844263e": 74, "80767289e": 74, "05785815e": 74, "57756990e": 74, "67777778e": 74, "39682540e": 74, "86914888e": 74, "63421433e": 74, "35674978e": 74, "81090441e": 74, "70825255e": 74, "12198974e": 74, "99252178e": 74, "37848562e": 74, "15456810e": 74, "48026033e": 74, "69786564e": 74, "22507913e": 74, "64996884e": 74, "46795278e": 74, "01918863e": 74, "25169512e": 74, "24131829e": 74, "88970269e": 74, "02538052e": 74, "09561861e": 74, "95165835e": 74, "89298369e": 74, "00668231e": 74, "56080516e": 74, "50759366e": 74, "62624400e": 74, "23170524e": 74, "38776040e": 74, "14247326e": 74, "05147539e": 74, "20161982e": 74, "17104988e": 74, "68410527e": 74, "96251115e": 74, "63058946e": 74, "33316884e": 74, "54836020e": 74, "99673786e": 74, "04333400e": 74, "28614435e": 74, "28786796e": 74, "36373064e": 74, "42984684e": 74, "67975607e": 74, "05017114e": 74, "21422613e": 74, "22749714e": 74, "01231228e": 74, "80040475e": 74, "03235807e": 74, "36233754e": 74, "56415614e": 74, "19613792e": 74, "11052790e": 74, "97669399e": 74, "13946661e": 74, "16227787e": 74, "83208976e": 74, "16902662e": 74, "47682560e": 74, "98236278e": 74, "10835203e": 74, "00587075e": 74, "54285092e": 74, "56260820e": 74, "85855089e": 74, "46723283e": 74, "19414012e": 74, "39435204e": 74, "63404990e": 74, "76492876e": 74, "99724319e": 74, "30871063e": 74, "91997734e": 74, "86300492e": 74, "89843315e": 74, "14967093e": 74, "20416263e": 74, "35262210e": 74, "40034946e": 74, "75317153e": 74, "20003175e": 74, "80161548e": 74, "77881017e": 74, "75704791e": 74, "28519735e": 74, "98506472e": 74, "24637796e": 74, "20246277e": 74, "86533680e": 74, "65603819e": 74, "17798587e": 74, "39661832e": 74, "42512937e": 74, "38610419e": 74, "41806640e": 74, "08513052e": 74, "15531330e": 74, "84374591e": 74, "03591803e": 74, "14717576e": 74, "97567491e": 74, "18746770e": 74, "11825842e": 74, "02642613e": 74, "82433803e": 74, "28400582e": 74, "89738810e": 74, "26215991e": 74, "78832306e": 74, "13978020e": 74, "94066240e": 74, "46507838e": 74, "45688875e": 74, "63499185e": 74, "47657413e": 74, "89614036e": 74, "81073187e": 74, "41063837e": 74, "04901124e": 74, "63998469e": 74, "67903582e": 74, "15873168e": 74, "26095800e": 74, "15866512e": 74, "03394806e": 74, "20360315e": 74, "84372631e": 74, "44292495e": 74, "22649519e": 74, "22214879e": 74, "30138177e": 74, "69926933e": 74, "68249759e": 74, "13317477e": 74, "38371554e": 74, "56081511e": 74, "01554149e": 74, "86452589e": 74, "65359773e": 74, "76577828e": 74, "32474227e": 74, "06852126e": 74, "29948886e": 74, "83915107e": 74, "29215552e": 74, "75494085e": 74, "93996993e": 74, "81598785e": 74, "70080819e": 74, "20710259e": 74, "14225686e": 74, "23298683e": 74, "26887948e": 74, "22447412e": 74, "65982942e": 74, "46644119e": 74, "43566373e": 74, "62363235e": 74, "92491430e": 74, "63463979e": 74, "55921383e": 74, "58003557e": 74, "97584791e": 74, "72386981e": 74, "69680035e": 74, "04304343e": 74, "88629681e": 74, "45816144e": 74, "74252409e": 74, "19168273e": 74, "23588458e": 74, "73491052e": 74, "46177993e": 74, "34920635e": 74, "56649872e": 74, "08916336e": 74, "18856044e": 74, "34503153e": 74, "07109762e": 74, "72977177e": 74, "24123503e": 74, "25322175e": 74, "50016337e": 74, "37266314e": 74, "43407504e": 74, "68927196e": 74, "99761394e": 74, "24523562e": 74, "45079365e": 74, "20278558e": 74, "39634548e": 74, "47646191e": 74, "91395496e": 74, "94214740e": 74, "17034605e": 74, "83371241e": 74, "22267988e": 74, "87581228e": 74, "27688891e": 74, "90189805e": 74, "02504840e": 74, "42063694e": 74, "08754364e": 74, "43069641e": 74, "04322115e": 74, "19502289e": 74, "05886485e": 74, "17266415e": 74, "52444753e": 74, "37948302e": 74, "38792594e": 74, "06372227e": 74, "03307384e": 74, "60426442e": 74, "68795971e": 74, "79711823e": 74, "46811512e": 74, "12007716e": 74, "15479975e": 74, "75456096e": 74, "23770460e": 74, "41373102e": 74, "32578507e": 74, "28331106e": 74, "12604564e": 74, "34032616e": 74, "83432663e": 74, "54285512e": 74, "03732654e": 74, "00000000e": 74, "02651352e": 74, "17444909e": 74, "71729962e": 74, "04295345e": 74, "53986083e": 74, "31340616e": 74, "73825402e": 74, "10673815e": 74, "42524628e": 74, "68063272e": 74, "86388258e": 74, "49944425e": 74, "12612009e": 74, "63003331e": 74, "05615795e": 74, "04452565e": 74, "52636441e": 74, "34678613e": 74, "89120579e": 74, "45788548e": 74, "14103409e": 74, "18773436e": 74, "28179168e": 74, "42879081e": 74, "06815699e": 74, "31053506e": 74, "77984470e": 74, "97926710e": 74, "30288929e": 74, "50442051e": 74, "21448524e": 74, "05261663e": 74, "13658800e": 74, "36909436e": 74, "30269301e": 74, "45569001e": 74, "52031126e": 74, "22889271e": 74, "06173136e": 74, "22902254e": 74, "12502359e": 74, "45261752e": 74, "05072273e": 74, "47899861e": 74, "95574753e": 74, "65063196e": 74, "78173444e": 74, "91358750e": 74, "93682062e": 74, "50358631e": 74, "90154230e": 74, "92176436e": 74, "42272101e": 74, "33243573e": 74, "39347185e": 74, "82286681e": 74, "99272270e": 74, "88735676e": 74, "33327795e": 74, "23052075e": 74, "59289558e": 74, "17484926e": 74, "38832225e": 74, "11274286e": 74, "02914557e": 74, "24856511e": 74, "46255587e": 74, "46730851e": 74, "39444956e": 74, "23493810e": 74, "09680027e": 74, "30408705e": 74, "18844850e": 74, "93070738e": 74, "73128488e": 74, "24729233e": 74, "64119171e": 74, "88135271e": 74, "67198008e": 74, "76652503e": 74, "14929094e": 74, "10455003e": 74, "42626166e": 74, "40022829e": 74, "75053646e": 74, "32202735e": 74, "64428432e": 74, "40405870e": 74, "83425690e": 74, "70940954e": 74, "89899776e": 74, "58213525e": 74, "13724910e": 74, "02840051e": 74, "56969874e": 74, "64893941e": 74, "17444576e": 74, "90065562e": 74, "76870051e": 74, "78117344e": 74, "60372397e": 74, "11519878e": 74, "09574110e": 74, "41019727e": 74, "91093951e": 74, "83757108e": 74, "19954481e": 74, "89402445e": 74, "30823297e": 74, "72535447e": 74, "07867885e": 74, "55036412e": 74, "63605128e": 74, "76999840e": 74, "47830128e": 74, "41001347e": 74, "89867542e": 74, "32947036e": 74, "43052514e": 74, "84225488e": 74, "27470834e": 74, "50682327e": 74, "04445533e": 74, "82746652e": 74, "23222011e": 74, "08658007e": 74, "93362996e": 74, "27068308e": 74, "82734566e": 74, "04378948e": 74, "76404167e": 74, "14677104e": 74, "25805960e": 74, "71933788e": 74, "70398951e": 74, "72312767e": 74, "55951239e": 74, "23468220e": 74, "17363736e": 74, "43405785e": 74, "43606881e": 74, "57030863e": 74, "14401498e": 74, "27373870e": 74, "67211217e": 74, "46279346e": 74, "12424681e": 74, "08686469e": 74, "31923341e": 74, "75245664e": 74, "18378034e": 74, "54910123e": 74, "48356595e": 74, "63609902e": 74, "71076796e": 74, "21921127e": 74, "70420964e": 74, "49706348e": 74, "91715363e": 74, "16192264e": 74, "31462394e": 74, "66339889e": 74, "07213824e": 74, "66713703e": 74, "90411155e": 74, "71013089e": 74, "06479309e": 74, "71428571e": 74, "11326140e": 74, "52915266e": 74, "09862199e": 74, "21240144e": 74, "81353155e": 74, "81662709e": 74, "85774805e": 74, "99280637e": 74, "06924526e": 74, "34826800e": 74, "93598132e": 74, "53171058e": 74, "10459024e": 74, "29849936e": 74, "30571429e": 74, "25121637e": 74, "58097206e": 74, "09384602e": 74, "10999455e": 74, "34576114e": 74, "34808772e": 74, "81873156e": 74, "58369941e": 74, "07623135e": 74, "48304492e": 74, "58390741e": 74, "99116470e": 74, "17018031e": 74, "05473882e": 74, "94354799e": 74, "68751578e": 74, "52761847e": 74, "34701629e": 74, "15674039e": 74, "91494610e": 74, "67167662e": 74, "43369229e": 74, "55632805e": 74, "84206913e": 74, "43752689e": 74, "62395745e": 74, "34223115e": 74, "40049428e": 74, "88721028e": 74, "65192015e": 74, "09425754e": 74, "30844242e": 74, "25440808e": 74, "64691905e": 74, "23352169e": 74, "19756385e": 74, "34050016e": 74, "30074832e": 74, "26447785e": 74, "47010385e": 74, "multidim": [74, 105, 106], "edgedof": 74, "edof": 74, "facedof": 74, "fdof": 74, "match": [74, 97, 108], "regex": 74, "overrid": 74, "earlier": 74, "elsewher": 74, "buildrefinementtre": 74, "array_y_": 74, "insid": [74, 97, 105, 106], "elementrang": 74, "geoparamcf": 74, "getbbboundari": 74, "getcurveord": 74, "gethpelementlevel": 74, "wip": 74, "codimens": 74, "getpmltrafo": 74, "pml": 74, "getparentel": 74, "parent": [74, 102], "getparentfac": 74, "fnum": 74, "getparentvertic": 74, "vnum": 74, "getperiodicnodepair": 74, "node_typ": 74, "master_nr": 74, "minion_nr": 74, "idnr": 74, "gettrafo": 74, "eid": 74, "elementtransform": 74, "localhcf": 74, "maptoallel": 74, "integrationrul": [74, 115], "union": 74, "ndarrai": 74, "meshpoint": 74, "steel_": 74, "2e6": 74, "mark_surface_el": 74, "onlyonc": 74, "refinefromtre": 74, "refinehp": 74, "toward": 74, "placement": 74, "vb": [74, 76], "regioncf": 74, "setelementord": 74, "compat": [74, 80], "setpml": 74, "pmltrafo": 74, "setrefinementflag": 74, "refinementflag": 74, "splitelements_alfeld": 74, "unsetpml": 74, "unset": 74, "__call__": 74, "float64": 74, "mappedintegrationpoint": 74, "aren": 74, "__getitem__": 74, "ngs_element": 74, "meshnod": 74, "libngpi": 74, "_mesh": 74, "filenam": 74, "mpi_comm": 74, "0x114ec85b0": [], "file": 74, "nnode": 74, "meshnoderang": 74, "nedg": 74, "nface": 74, "nfacet": 74, "modal": 74, "legendr": 74, "jaboci": 74, "simplici": [74, 77], "declar": 74, "wirebasket": 74, "wb_withedg": [74, 75], "wb_fulledg": 74, "far": 75, "profit": 75, "arithmet": 75, "cube": 75, "177430": 75, "024273223974312075": 75, "037204475895342": 75, "04829608173279241": 75, "047831452027208586": 75, "03503614777663428": 75, "029378085186036483": 75, "031006371846374843": 75, "02881189922538989": 75, "026991393488043674": 75, "025607813233479115": 75, "023059227507159427": 75, "020188714252706304": 75, "017677856690926363": 75, "01570390414750895": 75, "01450892008875497": 75, "013060236654630365": 75, "01148717272069801": 75, "010359419640115403": 75, "009639280718573347": 75, "008983784519869005": 75, "008250496171208304": 75, "007352872683189109": 75, "0064397891421690305": 75, "005596514201958335": 75, "004766219873666417": 75, "004022073286663706": 75, "0034196513449910823": 75, "0029400048222059856": 75, "0025083332705242": 75, "0021046499274098534": 75, "0017484379251981065": 75, "0014397425850613988": 75, "0011912144262735045": 75, "0009893154642094026": 75, "0008329679456139172": 75, "0007272861126943784": 75, "0006352763333349191": 75, "0005645223644237875": 75, "0004942564003676569": 75, "00042780257753367363": 75, "00036683687047396396": 75, "0003112297948991817": 75, "00026555485540291635": 75, "00023057965122062087": 75, "00020810720521774676": 75, "00019208909401800605": 75, "00017853792896837772": 75, "00016491550344460967": 75, "0001498362645389152": 75, "0001338648614332045": 75, "00011598796595447701": 75, "959344694700465e": 75, "519641137784833e": 75, "322459830883026e": 75, "417417797477789e": 75, "699684507733734e": 75, "166607912750655e": 75, "7110717192708665e": 75, "3231615399420306e": 75, "9523838011088034e": 75, "5483623051359466e": 75, "115776481808797e": 75, "6858896178966197e": 75, "2452143271619613e": 75, "8667683822022966e": 75, "5676517902103517e": 75, "3491991701423895e": 75, "1932267987396277e": 75, "1006946297625608e": 75, "0456629339641523e": 75, "883740543600398e": 75, "186544775446272e": 75, "152829147699458e": 75, "959623023960013e": 75, "777798497624973e": 75, "775007175940237e": 75, "979591970780287e": 75, "3697656755438388e": 75, "931468204779986e": 75, "6063431809725343e": 75, "339109257479704e": 75, "1073268104192383e": 75, "8783881773434057e": 75, "6729157958379345e": 75, "477359372021876e": 75, "2787374496223366e": 75, "1065178148932502e": 75, "440247699033299e": 75, "070630129019807e": 75, "801601436853941e": 75, "689323984540329e": 75, "779751500223053e": 75, "0322338191445864e": 75, "443176683566252e": 75, "983673740203993e": 75, "64890769583779e": 75, "3834677872461816e": 75, "1324039739542678e": 75, "9014339920530615e": 75, "6878351817818138e": 75, "4807078864792983e": 75, "3005077941994067e": 75, "1410181950377555e": 75, "815400446992752e": 75, "263818148215092e": 75, "984159946931181e": 75, "908274034770534e": 75, "0612004296881115e": 75, "384548734703711e": 75, "851545498892002e": 75, "4359368486597825e": 75, "100139362740519e": 75, "8136342454941936e": 75, "5808008395922967e": 75, "3538480472957442e": 75, "138838983489785e": 75, "8834840815121618e": 75, "6357941765358154e": 75, "4032958225323066e": 75, "1973176149489421e": 75, "0330722476742483e": 75, "060421857389568e": 75, "010205668737527e": 75, "1550389688295956e": 75, "394917627264948e": 75, "746988905891274e": 75, "180098524265756e": 75, "6298437650060975e": 75, "151239212626374e": 75, "7171682211344884e": 75, "28636674165708e": 75, "875922769123227e": 75, "4976441070032594e": 75, "1695613375814276e": 75, "868479538952061e": 75, "6186157638062868e": 75, "3965604941420359e": 75, "230062807166462e": 75, "0837253706493335e": 75, "728766308288062e": 75, "732708184104283e": 75, "863948847061986e": 75, "947907556144233e": 75, "079255401192082e": 75, "246753131763292e": 75, "5036598509313203e": 75, "883349334841279e": 75, "346108176246629e": 75, "922398248092175e": 75, "5494201485235853e": 75, "2453548564298967e": 75, "9788107295271953e": 75, "7312763680539798e": 75, "5149410265326552e": 75, "3206146501632598e": 75, "1601092281831917e": 75, "0257310986172217e": 75, "035057863467162e": 75, "012900680539926e": 75, "053091225238836e": 75, "177975481974726e": 75, "4105955877807516e": 75, "6972458570229063e": 75, "059962390744391e": 75, "48344467893236e": 75, "962748743407555e": 75, "5116661890005876e": 75, "1313848999463623e": 75, "838939606568788e": 75, "5917993944175503e": 75, "3925445641690011e": 75, "222905569117103e": 75, "0798810040492257e": 75, "507026363501187e": 75, "35640106452074e": 75, "287100776090044e": 75, "446668911117099e": 75, "738961003585408e": 75, "955476591094188e": 75, "179276503633465e": 75, "51484360347095e": 75, "961192049799402e": 75, "506908218354334e": 75, "14706588838844e": 75, "8529520194379847e": 75, "5975760598785288e": 75, "3938574627111934e": 75, "2231484138440663e": 75, "0799504864837223e": 75, "576679382931486e": 75, "47711133461441e": 75, "410634905428783e": 75, "409720725027058e": 75, "482969009887021e": 75, "62576805756395e": 75, "8570338555821037e": 75, "2128164846413054e": 75, "7228777450440256e": 75, "363532192858452e": 75, "037214875409793e": 75, "743140248349613e": 75, "5116759654916236e": 75, "3371286004187721e": 75, "199662120862354e": 75, "0800838951175999e": 75, "724302716978304e": 75, "623330289029238e": 75, "573761126328625e": 75, "52514963956198e": 75, "550103983705584e": 75, "6103899203810424e": 75, "8099867233648296e": 75, "1789412583431215e": 75, "6741498611348335e": 75, "3329352056374313e": 75, "watch": 75, "usag": 75, "vari": [76, 109], "conduct": [76, 80, 106], "leav": 76, "lambda_l": 76, "lambda_r": 76, "circ1": 76, "circ2": 76, "air": [76, 80, 86], "glue": [76, 105, 115], "reg": 76, "bitmask": 76, "0101": 76, "approxiamt": 77, "pi_n": 77, "appear": 77, "rodrigu": 77, "p_2": [77, 102], "odd": 77, "equ_leadingcoef": 77, "equ_ortho": 77, "p_m": [77, 102], "equ_threeterm": 77, "lemma_ortho": 77, "sturm": 77, "liouvil": 77, "a_n": 77, "lh": 77, "rh": [77, 81, 88], "lemma_sturmliouvil": 77, "pi_p": 77, "setn": 77, "lemma_l2est": 77, "_n": 77, "dubin": 77, "2i": 77, "2y": 77, "kl": [77, 101], "2k": 77, "dy": [77, 94], "simplic": 77, "schwab": 77, "2000": [77, 80, 115], "i_p": 77, "equ_projbased1": 77, "equ_projbased2": 77, "mixtur": 77, "demkowicz": 77, "been": [77, 97], "commut": [77, 80, 83, 87], "diagram": [77, 83], "_1": 77, "partial_": 77, "lemma_polext": 77, "major": 77, "u_p": 77, "bp": 78, "transfrom": 78, "trig": [78, 115], "bfa": 78, "blockvector": [78, 81], "pru": 78, "papu": 78, "9999999999999993": [78, 93], "2767086131940664": 78, "4581124500620444": 78, "5609747825506695": 78, "8265269617122366": 78, "6554150775649203": 78, "1394475982666885": 78, "5322956420524558": 78, "5553195508570907": 78, "3537925843263867": 78, "6212944266166138": 78, "188825753642556": 78, "3039156633342224": 78, "8189245277010125": 78, "7193044232234074": 78, "3399977719072915": 78, "23579818503123626": 78, "10413037941302165": 78, "07040550708946706": 78, "037804053507087466": 78, "016156585638137988": 78, "012593342528373389": 78, "006189980987403972": 78, "005902541516360615": 78, "0028055888297778067": 78, "002337664016570221": 78, "0012247331428186258": 78, "0006326345289847728": 78, "0003932290411182632": 78, "00017806460385637164": 78, "00011591557965286251": 78, "363795123305388e": 78, "2438720043138195e": 78, "4154057869546288e": 78, "842020482095398e": 78, "918088260700753e": 78, "0779340720189697e": 78, "368838315548264e": 78, "395473964859314e": 78, "1178478574773807e": 78, "6523579663332994e": 78, "78527647500959e": 78, "9786828275515905e": 78, "2922568833716852e": 78, "513821514284221e": 78, "phase": 79, "voltag": 79, "coil": 79, "u_x": 79, "b_x": 79, "b_y": 79, "bx": 79, "6441": 79, "0189391": 79, "2676": 79, "uxi": 79, "150513": 79, "00112175": 79, "reconstruct": [79, 83], "fvec": 79, "linerar": 79, "unconstrain": 79, "shat": 79, "190039": 79, "203514": 79, "gfu0": [79, 105], "proj": [79, 105], "bmat": 79, "projpr": 79, "projinv": 79, "gfu1": 79, "unless": [80, 95], "degener": 80, "h_": [80, 100], "magnet": 80, "permeabl": 80, "coloumb": 80, "gaug": 80, "equip": [80, 87], "effect": 80, "detour": 80, "r_h": 80, "d_h": 80, "psi_h": 80, "afw": 80, "numerisch": 80, "mathematik": 80, "orthobrick": [80, 118], "4635327629266928": 80, "42789858702521705": 80, "3232297657475674": 80, "25464403586309087": 80, "18615733922752714": 80, "14800181052391703": 80, "11949520952077154": 80, "09282291331667633": 80, "07679038814089593": 80, "06389531595609149": 80, "05056242146491291": 80, "04060539621517081": 80, "03430579733377514": 80, "030065910434030483": 80, "025774846052082172": 80, "01983965339095311": 80, "013867502737470573": 80, "009567470112709246": 80, "006601850082293865": 80, "004463903340199571": 80, "002938211266571423": 80, "002000033787596275": 80, "0013982543263219135": 80, "0009922984038274098": 80, "0007815351507657772": 80, "000683642014896617": 80, "0006042081173435654": 80, "0004933831969703863": 80, "0003658814417513913": 80, "00027461820027847346": 80, "00021606301815433576": 80, "0001852656638868365": 80, "00016757613019838458": 80, "00015014932580892883": 80, "00012635246751698076": 80, "00010095216118821378": 80, "677150772435917e": 80, "705147728680346e": 80, "400991083489937e": 80, "6417376943526984e": 80, "212176823477045e": 80, "7186175188828105e": 80, "323767518440678e": 80, "069312434365388e": 80, "911627307675492e": 80, "8718180412834895e": 80, "842446272464718e": 80, "7710075176906277e": 80, "649936644773816e": 80, "5042919233686429e": 80, "4060059508048765e": 80, "3294831066099182e": 80, "2250262778494888e": 80, "0757704058947594e": 80, "740608113448077e": 80, "838580733733294e": 80, "401844236565597e": 80, "329876676381426e": 80, "392817659702821e": 80, "5330312963314107e": 80, "8791455960178543e": 80, "512762255199913e": 80, "400764857435027e": 80, "4201528772553445e": 80, "484543077553714e": 80, "506645750744541e": 80, "5221995110452216e": 80, "4801364239010767e": 80, "4110760181683581e": 80, "2533077908298905e": 80, "0275036694747827e": 80, "43762385593524e": 80, "11756578349743e": 80, "085538139091289e": 80, "140103064211771e": 80, "020347788031209e": 80, "092098918926114e": 80, "4553367053311626e": 80, "009547208619791e": 80, "655442290755333e": 80, "3974281500533848e": 80, "20185210357764e": 80, "015471598348598e": 80, "26051191101564e": 80, "635817941556107e": 80, "120263469848235e": 80, "142946942564037e": 80, "4856977656683026e": 80, "9171532625864503e": 80, "4620885627225223e": 80, "1143891383548138e": 80, "8993136308760616e": 80, "7017039819867693e": 80, "4333454712960677e": 80, "1557028423569548e": 80, "95521894798872e": 80, "947450640234518e": 80, "438531508912747e": 80, "346737344250734e": 80, "6087661839121814e": 80, "1829807261609314e": 80, "7843641797264262e": 80, "349635933929682e": 80, "0666980034078006e": 80, "8682450158839147e": 80, "6702589191564442e": 80, "5608872971611618e": 80, "4141783443506158e": 80, "1801844070219922e": 80, "680627093063401e": 80, "362346931360255e": 80, "562143501253274e": 80, "519927604494129e": 80, "603811278315021e": 80, "069583126200502e": 80, "926136120458067e": 80, "022852060313368e": 80, "873362458040147e": 80, "179038940459572e": 80, "3427726344761957e": 80, "6056347314808085e": 80, "0391573266438795e": 80, "6060002408897057e": 80, "290854582112953e": 80, "0736797747190897e": 80, "326212478264851e": 80, "434050375655718e": 80, "529219410275793e": 80, "445632525789044e": 80, "515875985552747e": 80, "642173216119092e": 80, "969780154913643e": 80, "510174891172396e": 80, "133217721853538e": 80, "7576109259346328e": 80, "3543762860934322e": 80, "8993384818526183e": 80, "4438616067029353e": 80, "1284839854964043e": 80, "820233339776046e": 80, "007363468914282e": 80, "633510002398147e": 80, "440755426206628e": 80, "829576433200149e": 80, "897243155937746e": 80, "9525636053155235e": 80, "264312876504194e": 80, "8402817281136264e": 80, "492327674466352e": 80, "08848867205207e": 80, "5505614653778326e": 80, "8329546473066384e": 80, "175796464246952e": 80, "663515736510115e": 80, "2634537302230126e": 80, "361744949075666e": 80, "973280254961185e": 80, "230426840079289e": 80, "1134450354834574e": 80, "draw_surf": [80, 113], "02952541052556933": 80, "916054099105543": 80, "37161190298016": 80, "fine": [80, 106], "technic": [80, 85, 106], "phi": [80, 85, 94, 99, 101, 103, 109], "zhao": 80, "polyhedr": 80, "2002": [80, 116, 117], "multiscal": 80, "emg": 80, "ch": [80, 106, 109], "_d": 80, "8800": 80, "77372": 80, "6907017058419115": [], "01614225372601486": [], "0004606080177779278": [], "0543115072734211e": [], "8277013573557717e": [], "371148839371415e": [], "4772398928330267e": [], "0905496471464366e": [], "1153690820532784e": [], "439845264878815e": [], "min_u": 81, "among": 81, "critic": [81, 100], "1_": [81, 106], "uzawa": 81, "variant": [81, 102, 118], "Of": 81, "understand": [81, 87], "recast": 81, "famou": [81, 83], "fesu": 81, "gtild": 81, "sinv": 81, "gflam": 81, "703743410155205": 81, "3225265331211531": 81, "08319858163652133": 81, "011164430253673224": 81, "004908344302198841": 81, "0037297526149230515": 81, "004084493303524705": 81, "0039564363704141705": 81, "003887881371824783": 81, "0012220936083446857": 81, "0048117028501103625": 81, "001119893199509765": 81, "001091990754645669": 81, "0004286672278231922": 81, "0002774621847545223": 81, "00024363444237340782": 81, "0003106485695833687": 81, "121981264833085e": 81, "00010239582278435417": 81, "0003676605804261631": 81, "9310833633668124e": 81, "7508838982218637e": 81, "3465320163714765e": 81, "0140399025034617e": 81, "3565598727971024e": 81, "9391378833519324e": 81, "41219703568913e": 81, "169377982668791e": 81, "666394876987844e": 81, "2759200329443015e": 81, "0062559923710714e": 81, "847639150203589e": 81, "679881932018409e": 81, "691426682666645e": 81, "2483483518660437e": 81, "903124515027671e": 81, "6512098719669792e": 81, "1450732120796066e": 81, "9003103940717294e": 81, "4393364295270112e": 81, "274042939289355e": 81, "4096354981790524e": 81, "863231069066677e": 81, "200585510453696e": 81, "2663206605847748e": 81, "6548401927103137e": 81, "717237975378517e": 81, "680123317031415e": 81, "8459548801315727e": 81, "3510335949228405e": 81, "475412640277428e": 81, "596072483706002e": 81, "0493100331886202e": 81, "pm": 81, "minr": 81, "gmre": 81, "blockmatrix": 81, "prelam": 81, "invk": 81, "maxstep": [81, 88], "2klinearsolv": 81, "026599068921026": 81, "670656458376696": 81, "8942223632946207": 81, "331220850212279": 81, "21210334827420216": 81, "08041676507609673": 81, "07555302264134667": 81, "01111098776001083": 81, "011079512345275792": 81, "004420322769338356": 81, "004402626310257936": 81, "0030515645344240377": 81, "0030477871355662632": 81, "0023020803578562453": 81, "0022722008472360698": 81, "002051286439828685": 81, "001976642633411403": 81, "0016545061633674307": 81, "0016298296965029826": 81, "0011540473831746607": 81, "0009532475079662616": 81, "0009096390840312319": 81, "0009087979890387037": 81, "0006392790085624193": 81, "0006367061161793228": 81, "0005426806983504564": 81, "0005386945761424414": 81, "0003025870322957196": 81, "00030221897251729243": 81, "0001627245181712355": 81, "00016253323735641908": 81, "0001314039071922258": 81, "0001311906600423513": 81, "00011191614403906308": 81, "0001115805257393666": 81, "488780443126758e": 81, "339498173721879e": 81, "844091210048576e": 81, "814655457963396e": 81, "254954253150321e": 81, "1840551261819056e": 81, "2033153880269234e": 81, "527992296989246e": 81, "238169762360775e": 81, "2276268741351758e": 81, "2749177600714037e": 81, "2708722287817419e": 81, "281304347500229e": 81, "228068276285971e": 81, "417040471280639e": 81, "3523838094911906e": 81, "411062793176153e": 81, "163363108159107e": 81, "161908443302e": 81, "8100435097304153e": 81, "6762281791262442e": 81, "3190121867396265e": 81, "3264446751512045e": 81, "322275284548528e": 81, "151174912451708e": 81, "drawgeo": [82, 118], "h1amg": 82, "4808": 82, "2404": 82, "7212": 82, "41126275116341915": [], "9997000069488873": [], "708265793347658": [], "518614851058216": [], "12122255023163": 82, "9048885559917332": [], "4917394522507745": [], "493118616513672": [], "000678570975291": [], "547495742671513": 82, "284907146159062": [], "4708842708052208": [], "1709827044069105": [], "333179134466149": 82, "55492332618035": [], "55684616149044": [], "8349109479366956": [], "9896518436225312": [], "2653356627565175": [], "0671698225418824": [], "8986641193333975": [], "0164272097507228": [], "6933847600804386": [], "5821228060238792": 82, "5154823734323597": [], "3969918947407196": [], "4218273346654056": [], "2302931869125273": [], "753047859622945": [], "396798206786912": [], "1320892898867807": [], "9379934196258192": [], "791575326590573": [], "653688963907376": [], "4950052624467906": [], "37924142383433823": [], "26383160494968916": [], "19637059924697317": [], "12785237182947506": [], "08256723985001498": [], "06272640281322496": [], "041147383075796885": [], "030342235877553518": [], "02221876513803312": [], "016611695048539613": [], "010799090847257489": [], "007832024578957035": [], "005806718322528601": [], "004554579604230051": [], "0036181815711946587": [], "003118606579872757": [], "0023249659677882202": [], "0019700393080777324": [], "001572081369426179": [], "0012782128943740678": [], "0009321416200745111": [], "000640209585863162": [], "000442201353893672": [], "00029436328549711213": [], "00020039254939595297": [], "0001390498139439942": [], "55207156234048e": [], "70573261445275e": [], "877037269533597e": [], "4985261330516704e": [], "7039506182589195e": [], "099622240249225e": [], "373956774281435e": [], "415372454192049e": [], "0016786125722715e": [], "909112488028385e": [], "2374236385832936e": [], "586113617201631e": [], "129607106322828e": [], "3254862647512544e": [], "1897619356873755e": [], "3876816899103735e": [], "lucki": 83, "accid": 83, "happen": [83, 102], "plai": [83, 84, 100], "rt_k": [83, 84, 85, 88], "filter": 83, "sol_sigma": 83, "q2": 83, "x2": 83, "p2": 83, "a2": 83, "f2": 83, "gfu2": 83, "upost": 83, "game": 84, "mimic": 84, "compens": 84, "analyi": 84, "rt_0": 85, "bdm_1": 85, "bdm_k": 85, "r_j": 85, "s_j": [85, 97], "jacobian": [85, 109, 118], "algebra": [85, 102], "rt0": 85, "bdm2": 85, "scenediv": 85, "695004544305167e": 85, "plug": [86, 88], "role": [86, 100], "0x10f2bc0b0": [], "stdtemp": 86, "stdflux": 86, "mixedflux": 86, "mixedtemp": 86, "arcross": 86, "iff": [87, 106, 109], "mollifi": 87, "omega_n": 87, "d_i": 87, "opdiv_": 87, "n_j": [87, 97], "disadvantag": 88, "overcom": 88, "reinforc": 88, "ccccccl": 88, "paramt": 88, "b_1": [88, 99, 108], "b_2": 88, "submatrix": 88, "behav": [88, 95], "eliminate_intern": 88, "harmonic_extension_tran": 88, "harmonic_extens": 88, "inner_solv": 88, "3766313310061909": [], "10608193520813963": [], "02537449045713497": [], "009211818637816959": [], "0027698298339901705": [], "0007513083315122621": [], "0003100098687187837": [], "544144155753244e": [], "417241324804766e": [], "963174584217277e": [], "4749995026727172e": [], "027416791776354e": [], "3480564361458936e": [], "379824934894357e": [], "116560856633816e": [], "0690433729174107e": [], "8795972827131724e": [], "274291627498353e": [], "43946644737781e": [], "727593166439194e": [], "0547439650095032e": [], "466548278031449e": [], "5745792118592407e": [], "476348446627756e": [], "0843950152734397e": [], "c_f": [89, 99, 100], "makestructured2dmesh": [89, 93, 94], "nx": [89, 93, 94], "ny": [89, 93, 94], "h1seminorm": [89, 93, 100], "l2norm": [89, 93, 100], "lobpcg": [89, 100], "lam1": 89, "h1norm": [93, 94, 100], "meanvalu": 93, "meanvalmat": 93, "0000000000000007": 93, "869604494897487": 93, "869604494897613": 93, "739208989947937": 93, "478769914585975": 93, "evp": 94, "tracenorm": 94, "investig": 94, "plan": 94, "fubini": [94, 97], "alpha_d": 95, "_0": [95, 96], "alpha_i": 95, "supp": 95, "neighbourhood": [95, 97], "equ_intbypart": [], "valid": 95, "demand": 95, "d_g": 95, "l_1": [95, 96], "loc": [95, 96], "badli": 95, "l_": [95, 96, 97, 98, 101, 106], "unbound": [95, 96, 116, 117], "d_w": 95, "1_g": 95, "focu": 95, "w_p": 96, "l_p": 96, "lim_": [96, 109], "moder": 96, "o_i": 96, "ball": [96, 99], "w_2": 96, "clearli": [97, 100], "whose": 97, "cover": 97, "s_i": 97, "parameter": 97, "nabla_x": 97, "nabla_": 97, "int_q": [], "sharp": [97, 100, 103], "g_i": 97, "elementari": [97, 99], "ds_i": 97, "outsid": [97, 106, 109], "flip": 97, "composit": [97, 98, 115], "s_1": 97, "s_m": 97, "rcll": 97, "eu": 97, "theo_subdomainh1": 97, "sec_traceh1": [], "g_n": 97, "equ_tracenorm": [], "z_l": 97, "everyth": 97, "lambda_0": 97, "sqrt2": 97, "w_e": 97, "u_g": 97, "cosin": 97, "sum_n": [], "intent": 98, "nd": 98, "thm": 98, "naiver": 98, "girault": 98, "equ_factor": [], "equ_tartar_cond": [], "c_3": 98, "c_4": 98, "z_": 98, "theo_tartar": [], "lemma_bh": [], "_u": 98, "a_2": 98, "lv": 98, "lu": 98, "869652441595159": [], "7392330948581": [], "47845542715927": [], "34810630900802": [], "34813860755308": [], "141600299464456": [], "3183091114966053": [], "abl": 101, "manifold": 101, "vice": [101, 118], "versa": [101, 118], "ly": 101, "_x": 101, "disc": 101, "polygon": 101, "beta_i": 101, "prod_": 101, "tini": [], "hermann": 102, "who": 102, "jac": [102, 103], "bjac": 102, "cccc": 102, "ddot": [102, 109, 111], "vdot": [102, 108], "mm": 102, "tall": 102, "isomorphismu": 102, "kappa_a": 102, "msm": 102, "reproven": 102, "lion": 102, "nepomnyashchikh": 102, "preconditiong": 102, "strengthen": 102, "z_i": 102, "_2": 102, "_m": 103, "phi_t": 103, "02082965485133204": [], "762471943377774": [], "6390234196904": [], "deterior": [103, 106], "04897732520659094": [], "500747231467046": [], "641673981516014": [], "summand": 103, "lam2": 103, "4457610878408913e": [], "021712747056103647": [], "6917198310303028": [], "69169": [], "4638303264": [], "cjac": 103, "gfconst": 103, "e0": [103, 105], "a0": [103, 105], "010000000000000484": [], "025544381033002772": [], "04491872161403106": [], "691719830172751": [], "22669102794413": [], "bottomo": 104, "dissect": 105, "m_x": 105, "m_y": 105, "precontion": 105, "logic": 105, "dirichet": 105, "domaindof": 105, "numset": [105, 115], "invi": [105, 106], "lami": 105, "02753241632854": 105, "subdomain": 105, "h_1": 105, "hh": 105, "gfi": 105, "domi": 105, "gfcoars": 105, "mv": 105, "consti": 105, "inva0": 105, "coarsegrid": 105, "7946": 105, "2975": 105, "337032": 105, "9739": 105, "324899": 105, "333629": 105, "6868": 105, "35572": 105, "1655": 105, "31221": 105, "39022": 105, "365027": 105, "386817": 105, "7111": 105, "307914": 105, "5794": 105, "2131": 105, "pre2": 105, "13234921846973": 105, "idiag": 105, "pre3": 105, "724988999951798": 105, "expert": 105, "nice": 105, "nbel": 105, "nb": 105, "pymeti": 105, "ndom": 105, "n_cut": 105, "membership": 105, "part_graph": 105, "gfdom": [105, 106], "sine": [97, 105], "domdof": 105, "00110000000001111111111111111111111111111111111111": 105, "11111111111111111111111111111111111111111111111111": 105, "1111111111111111111111111111111111111": 105, "10163889987329": 105, "mdcomp": 105, "94990000871906": 105, "bigcup": 106, "h_i": 106, "enlarg": 106, "slide": 106, "fesdom": 106, "06687894741407885": [], "99999999999935": [], "857165311304115": [], "behaviour": 106, "uniti": 106, "ch_i": 106, "bounded": 106, "paid": 106, "a0inv": 106, "place": 106, "prolongationop": 106, "multtran": 106, "hy": 106, "c2l": 106, "0427258429588369": [], "692782966558739": 106, "5414706478167886": [], "pai": 106, "entiti": 107, "defineproblem": 107, "ed": 107, "fa": 107, "createblocksmooth": 107, "03616817538237669": 107, "038578886687444205": 107, "028786277945169303": 107, "02717043861464373": 107, "017929160922748995": 107, "011843671131637522": 107, "008858810330184645": 107, "005512321246644729": 107, "0035742193069537506": 107, "0022787217503585614": 107, "0018222848385735526": 107, "0011428466557880732": 107, "0005434954855783924": 107, "0003437652718687495": 107, "00017718883102318885": 107, "00011375493321065046": 107, "490762189941222e": 107, "84032156624639e": 107, "3546130827285455e": 107, "3136911569268165e": 107, "402546355528151e": 107, "554507451136723e": 107, "801171468526849e": 107, "1678144767741274e": 107, "5293620323637416e": 107, "902098365795283e": 107, "076773468362999e": 107, "9335995335618345e": 107, "0838424427178355e": 107, "1715084968823221e": 107, "653829414967276e": 107, "229139870798433e": 107, "188084777154004e": 107, "2931264312198394e": 107, "452500262063084e": 107, "420344679804673e": 107, "6351941581130006e": 107, "2285806360324746e": 107, "734731997623074e": 107, "564004473485101e": 107, "8274090136404232e": 107, "808562920476457e": 107, "7976737044634345e": 107, "367143553464296e": 107, "2073949988316887e": 107, "33643118654821e": 107, "592476359799728e": 107, "2561165106050925e": 107, "542308870311771e": 107, "7131383862528984e": 107, "1614959668268976e": 107, "841635350994417e": 107, "027036794325895e": 107, "06934594552348519": 107, "7187250629149218": 107, "explor": 107, "topologi": 107, "program": 107, "promin": 108, "c_i": 108, "y_": [108, 109], "y_j": [108, 109], "b_l": 108, "c_j": 108, "adjust": 108, "stage": 108, "il": 108, "ss": 108, "hline": 108, "trapezoid": [108, 111], "deuflhard": 108, "bornemann": 108, "ordinari": [108, 109, 110], "lm": 108, "c_m": 108, "za": 108, "en": 108, "list_of_rung": 108, "kutta_method": 108, "heun": 108, "rk": 108, "dirk": 108, "rk2": 108, "rk3": [108, 109], "rk4": 108, "od": [109, 110, 111, 112, 118], "y_0": [109, 112], "histori": 109, "y_k": 109, "tau_j": 109, "int_a": 109, "concept": 109, "fall": 109, "imaginari": 109, "amplitud": 109, "behavior": 109, "deliv": 109, "stab_e": 109, "ab": [109, 116, 117], "stab_i": 109, "stab_trapez": 109, "stab_improvede": 109, "stab_rk3": 109, "meshgrid": 109, "figur": 109, "contourf": 109, "blue": 109, "extent": 109, "stiff": [109, 110], "pull": [97, 99, 109], "corollari": [98, 109], "courant": 109, "lewi": 109, "cfl": 109, "axi": 109, "mform": [110, 111, 112, 115], "aform": [110, 111, 112, 115], "mstarinv": [110, 111, 112], "v0": [111, 115], "gfv": 111, "hochbruck": 112, "ostermann": 112, "acta": 112, "p209": 112, "sampl": 112, "ill": 112, "qr": 112, "linalg": 112, "eigh": 112, "exponentialpropag": 112, "un": 112, "asmal": [112, 115], "msmall": 112, "mu0": 112, "feb": 112, "2022": 112, "ut": 112, "mmax": 112, "gfuref": 112, "20600328199376758": 112, "06978025266715498": 112, "03049776255121646": 112, "011407488793323194": 112, "0035849111823151934": 112, "0007281408027218528": 112, "00016400656081982313": 112, "0002207732294693555": 112, "00010127534375465337": 112, "2105692323236415e": 112, "378919613280206e": 112, "240522273706592e": 112, "612651755831167e": 112, "143020583810261e": 112, "8219274917452472e": 112, "968077666128608e": 112, "11208822466509e": 112, "34534586041024e": 112, "4499449472635008e": 112, "xlabel": [100, 112], "ylabel": 112, "fesc": 113, "covari": 113, "festr": 113, "gfe": 113, "gfh": 113, "peak": [113, 118], "traceop": [113, 118], "geom_fre": [113, 118], "gfetr": 113, "dh": 113, "ehat": 113, "dehat": 113, "bel": [113, 118], "btr": [113, 118], "invmass": 113, "gfhtr": 113, "cohen": 115, "joli": 115, "robert": 115, "tordman": 115, "sinum": 115, "pp": 115, "2047": 115, "2078": 115, "geever": 115, "mulder": 115, "van": 115, "der": 115, "vegt": 115, "ner": 115, "arxiv": [115, 116, 117], "pdf": 115, "1803": 115, "10065": 115, "h1lumpingfespac": 115, "intrul": 115, "getintegrationrul": 115, "minv": 115, "unew": 115, "uold": 115, "finer": 115, "diaz": 115, "grote": 115, "sisc": 115, "2014": 115, "hole": [115, 118], "grade": 115, "substep": 115, "localdof": 115, "pl": 115, "mmat": 115, "amat": 115, "minva": 115, "createsparsematrix": 115, "deletezeroel": 115, "apl": 115, "znew": 115, "zold": 115, "pajetrac": 115, "ring_resonator_import": [116, 117], "fullb": [116, 117], "envelop": [116, 117], "tpeak": 116, "t_envelop": 116, "fcen": 116, "lsrc": [116, 117], "dampingp": [116, 117], "emb_p": [116, 117], "bstab": [116, 117], "gfstab": [116, 117], "invp": [116, 117, 118], "hvstab": 116, "dampingu": [116, 117], "invu": [116, 117, 118], "mstabinv": [116, 117], "kapidani": [116, 117], "08733": [116, 117], "nameerror": 117, "getoperatorinfo": [117, 118], "createdevicematrix": 117, "m_p": 118, "m_u": 118, "symplect": 118, "n_r": 118, "hesthaven": 118, "warbuton": 118, "fes_pt": 118, "all_dofs_togeth": 118, "fes_pf": 118, "fes_p": 118, "fes_u": 118, "piola": 118, "pf": 118, "qf": 118, "gfpt": 118, "gfpf": 118, "mp": 118, "anymor": 118, "huge": 118, "sphere": 118, "fes_tr": 118, "ndof_p": 118, "ndof_u": 118, "gftr": 118, "650405": 118, "585960": 118, "1951215": 118, "phat": 118, "summatrix": 118, "constantebematrix": 118, "105x35": 118, "invmassp": 118, "invmassu": 118, "delta_h": 118, "50000": 118, "rais": 118, "bfpre": 118, "eigensi": 118, "strip": 118, "refract": 118, "travel": 118, "4214848016971962e": 0, "985783": 0, "987115": 0, "990019": 0, "991396": 0, "995728": 0, "0x10f9c3cb0": 3, "0x104b4eab0": 5, "0x108426570": 7, "7695164087369285e": 20, "7193429256716374e": 20, "268299050241808e": 20, "860373752689047e": 20, "583071243121154e": 20, "336225652920629e": 20, "911054003166856e": 20, "7284332019465428e": 20, "5632647714169753e": 20, "4138806122733448e": 20, "2787721169956141e": 20, "156574908062523e": 20, "0460550393450818e": 20, "460965197737416e": 20, "556900320854911e": 20, "739227318013271e": 20, "999690227069886e": 20, "330822151353692e": 20, "725869823910824e": 20, "1787253881538545e": 20, "683864703529036e": 20, "236291551289977e": 20, "831487175498005e": 20, "4653646485897784e": 20, "13422759984395e": 20, "834732889335216e": 20, "5638568499710417e": 20, "3188647563516927e": 20, "097283211876793e": 20, "8968751750592807e": 20, "7156173727118616e": 20, "5516798718170072e": 20, "4034076037199853e": 20, "2693036540219108e": 20, "1480141493998299e": 20, "038314588716573e": 20, "390974803808211e": 20, "493611611120708e": 20, "68199683202877e": 20, "947936681618655e": 20, "284020343838074e": 20, "683545153190244e": 20, "140448925990281e": 20, "6492487579455906e": 20, "204985670127121e": 20, "803174544451103e": 20, "4397588432028527e": 20, "1110696554423215e": 20, "813788656814363e": 20, "5449146088074634e": 20, "3017330592352852e": 20, "081788938037014e": 20, "8828617717300045e": 20, "7029432662799763e": 20, "5402170320713702e": 20, "393040246283478e": 20, "259927067541286e": 20, "1395336353993288e": 20, "0306445032160072e": 20, "321603674500034e": 20, "430869694970826e": 20, "625250580230097e": 20, "0014958478667025685": 20, "0007978295322313949": 20, "00038943081125074753": 20, "00020285820875469044": 20, "00010870660188901054": 20, "770924855637092e": 20, "4406636395646876e": 20, "3387850598294938e": 20, "2616147425749304e": 20, "7789183584086063e": 20, "712122195637219e": 20, "944919015348182e": 20, "720041089537677e": 20, "1583250244859396e": 20, "96610009288972e": 20, "690711212037661e": 20, "226654284810232e": 20, "3834878734993238e": 20, "759857607292753e": 20, "4857074071786705e": 20, "1436471199431326e": 20, "800144211961727e": 20, "2081699356439377e": 20, "0825055599990776e": 20, "4996245094746733e": 20, "5035529140291798e": 20, "315483334952038e": 20, "5661479455200574e": 20, "460411787704436e": 20, "256368936213191e": 20, "046557116957373e": 20, "471853134470111e": 20, "0x1100f19b0": 36, "08403599336703081": 36, "039719199172007266": 36, "012295554254862232": 36, "002090155434740104": 36, "0015921163492495977": 36, "00032163144522053027": 36, "0014866501749880513": 36, "00021211111709580662": 36, "0008992713272898125": 36, "978704242733474e": 36, "0001098955691027568": 36, "807312175347717e": 36, "489313462296583e": 36, "221169479606888e": 36, "781348531117141e": 36, "0003300855718339687": 36, "00024191378324455717": 36, "020987188299733e": 36, "826321378295108e": 36, "00015062641088966434": 36, "8389135607894873e": 36, "6630927894245534e": 36, "2402517040290023e": 36, "3571857067357736e": 36, "4810668192195197e": 36, "262984886244836e": 36, "3851381731396843e": 36, "743376650868103e": 36, "285413755416545e": 36, "3523659696551574e": 36, "244585587637658e": 36, "263814523480582e": 36, "853889992406012e": 36, "9674478544352723e": 36, "058549690852318e": 36, "4600208647899614e": 36, "741238228358143e": 36, "2862121680725187e": 36, "5150643407144097e": 36, "013274444294837e": 36, "012327202784362e": 36, "71536513584648e": 36, "97114114043464e": 36, "086794866188334e": 36, "929757400965807e": 36, "899874795420475e": 36, "856943890798022e": 36, "084407398310177e": 36, "267265829481618e": 36, "2658594225046567e": 36, "036435535904501e": 36, "0732668295063278e": 36, "60705867906093e": 36, "0901725214091162e": 36, "2794250500362985e": 36, "939530542711083e": 36, "4768529746514433e": 36, "788020236213966e": 36, "2881162717038755e": 36, "071906426860242e": 36, "028766789993286e": 36, "524195061557538e": 36, "8946700877593e": 36, "4910579564156747e": 36, "393627933708715e": 36, "1968827941112676e": 36, "0584476646892676e": 36, "029983189623052e": 36, "036949286914897e": 36, "484920847364358e": 36, "1977269578435969e": 36, "272087064206138e": 36, "466487920950049e": 36, "03928317996476e": 36, "362222379104745e": 36, "0615545064832078e": 36, "693037054349978e": 36, "4350027616028076e": 36, "641283314925269e": 36, "230074255155068e": 36, "2748610643302937e": 36, "550488070945601e": 36, "1216623254775887e": 36, "2207835620859474e": 36, "0725269490829812e": 36, "1034039308779896e": 36, "1613882360278316e": 36, "572543852143892e": 36, "3150970214747e": 36, "123319117412042e": 36, "440244826617772e": 36, "5829511466357765e": 36, "7340814037899676e": 36, "1639881961709998e": 36, "231930225188199e": 36, "502853187740042e": 36, "1466717238681095e": 36, "5975082991153628e": 36, "989415389923594e": 36, "275169977516033e": 36, "97660013436803e": 36, "484872942271117e": 36, "138996459047197e": 36, "614169950038918e": 36, "058129564559538e": 36, "7417895718620437e": 36, "4104078421382945e": 36, "9757317672963435e": 36, "1736771525528759e": 36, "1205851718345907e": 36, "1265370992704002e": 36, "682826719257287e": 36, "199770496047123e": 36, "1305318401099017e": 36, "676839191571237e": 36, "5082420696695675e": 36, "4603616161693418e": 36, "8806201273777965e": 36, "0890342427952224e": 36, "238859731975605e": 36, "5611793604062375e": 36, "0737743488158924e": 36, "231681816035939e": 36, "282640046313574e": 36, "615814435963506e": 36, "931107269633639e": 36, "1076008787337947e": 36, "95943034503172e": 36, "3973228926363824e": 36, "39672841563637e": 36, "4658109434063316e": 36, "1512768904418793e": 36, "448694370441934e": 36, "5359349747107148e": 36, "1534353295992376e": 36, "9535021844261957e": 36, "0949677410279221e": 36, "711362847113301e": 36, "249269886604353e": 36, "0054451002189233": 36, "8601107411343798": 36, "26070192253320407": 36, "07092390115693369": 36, "18854148259681972": 36, "04148923094502458": 36, "02005492668176014": 36, "004938527407413817": 36, "00506578630825297": 36, "0027497652637540134": 36, "0007957605690849747": 36, "0001984910326123418": 36, "365734582921594e": 36, "470109812434369e": 36, "0399520711869953e": 36, "03803538893713e": 36, "2971600959391046e": 36, "891915274509856e": 36, "1322924763160186e": 36, "289165694895563e": 36, "366572297205431e": 36, "015297213263261e": 36, "143791373427488e": 36, "0003865097990257e": 36, "8604797053614292e": 36, "5321585933379075e": 36, "066717212960867e": 36, "0658429619877678e": 36, "79436621500629e": 36, "9930310566480447e": 36, "578802189496742e": 36, "4206891706730323e": 36, "4005662627630184e": 36, "0859773145073165e": 36, "409441258426675e": 36, "8648535638150565e": 36, "2427741208251113e": 36, "903331555357855e": 36, "0x11689ad70": 37, "02435467077416054": 37, "0010069624297833427": 37, "00072575275270304": 37, "0007372917166614866": 37, "000485759008986729": 37, "00013426732431939142": 37, "0001311934975161032": 37, "751979957694994e": 37, "00015055318197153592": 37, "97741566044456e": 37, "5404009953667064e": 37, "1325741386167397e": 37, "0260991543091472e": 37, "181919482266692e": 37, "1302939542824453e": 37, "7112644172060512e": 37, "984965667491204e": 37, "938071596869605e": 37, "285198734363106e": 37, "687990678239058e": 37, "668782245353977e": 37, "0305159271698057e": 37, "116660981436105e": 37, "0399176824490903e": 37, "6122116192215167e": 37, "121259452703569e": 37, "2919423179987626e": 37, "023337332538642e": 37, "822066806547833e": 37, "6881209340761316e": 37, "600989474182239e": 37, "4868172975861718e": 37, "135581156529742e": 37, "2265448661893766e": 37, "435765802839064e": 37, "100904956269387e": 37, "188768704102683e": 37, "677423484961529e": 37, "658279508628814e": 37, "186426258692621e": 37, "0483366158224835e": 37, "3578200401047469e": 37, "8432956854680502e": 37, "8050317764783965e": 37, "083104315060971e": 37, "856061714579069e": 37, "0314375528516302e": 37, "8591763684147068e": 37, "343548913704862e": 37, "408205631841212e": 37, "7239379264572693e": 37, "8746140007234795e": 37, "463937846504967e": 37, "344401460864077e": 37, "1099764585506533e": 37, "8609049249625636e": 37, "512240581712697e": 37, "1703921368069058e": 37, "8988147067161234e": 37, "8693467253881563e": 37, "953099543202327e": 37, "148493900910183e": 37, "6874567762247306e": 37, "368672723407919e": 37, "906101025063608e": 37, "5241925996941638e": 37, "455447632887452e": 37, "184164248145967e": 37, "5790154543317293e": 37, "978091286016452e": 37, "0227289168542456e": 37, "7816133003389567e": 37, "1670556074469393e": 37, "1966471281399916e": 37, "247405221084545e": 37, "3632578880499895e": 37, "1702896786837807e": 37, "939783135295073e": 37, "2013805684441344e": 37, "273850331925116e": 37, "65732270732313e": 37, "203835528633597e": 37, "0336808824407275e": 37, "8332407245527504e": 37, "802324198473617e": 37, "38208537270351e": 37, "427844652861404e": 37, "8028984307223542e": 37, "7223643267070172e": 37, "031239517074223e": 37, "222410990264675e": 37, "810163080708926e": 37, "545594720120551e": 37, "9727663852554436e": 37, "216641503105924e": 37, "075986210059934e": 37, "998656293142337e": 37, "947344744993265e": 37, "4091598173624993e": 37, "772113120764983e": 37, "063808784129008e": 37, "008878082947587e": 37, "1882851382662877e": 37, "1562752023672363e": 37, "1841828144011415e": 37, "1535764366809262e": 37, "958647592720708e": 37, "5797080742980353e": 37, "2233339222843006e": 37, "92715773612873e": 37, "3196800353064734e": 37, "5225189901793799": 37, "019190121909900614": 37, "007175095267110477": 37, "0007041293195291046": 37, "00014885168670717742": 37, "7978921520476553e": 37, "323436588989013e": 37, "782735899466158e": 37, "253381724877694e": 37, "042700556217399e": 37, "8920270277895326e": 37, "1315250560019168e": 37, "756363093681179e": 37, "434177837437274e": 37, "834859785388983e": 37, "75278037344685e": 37, "7683328181717154e": 37, "0x10e62b370": 74, "6907017058419188": 80, "016142253726003288": 80, "00046060801777785996": 80, "0543115072725482e": 80, "827701356859736e": 80, "371148837710201e": 80, "4772398927159935e": 80, "0905496456047593e": 80, "1153690810008113e": 80, "439845269878378e": 80, "4112627511634189": 82, "9997000069488868": 82, "7082657933476595": 82, "518614851058217": 82, "9048885559917323": 82, "491739452250771": 82, "4931186165136685": 82, "000678570975289": 82, "28490714615906": 82, "470884270805224": 82, "1709827044069097": 82, "554923326180351": 82, "5568461614904385": 82, "834910947936696": 82, "9896518436225294": 82, "2653356627565184": 82, "0671698225418793": 82, "8986641193333993": 82, "0164272097507205": 82, "6933847600804413": 82, "515482373432361": 82, "396991894740717": 82, "421827334665405": 82, "2302931869125247": 82, "7530478596229406": 82, "396798206786888": 82, "1320892898866788": 82, "9379934196252216": 82, "7915753265894718": 82, "6536889639070059": 82, "49500526244711335": 82, "3792414238344053": 82, "26383160494969576": 82, "19637059924697148": 82, "12785237182946413": 82, "08256723984998703": 82, "062726402813143": 82, "04114738307546007": 82, "030342235876079864": 82, "02221876513070121": 82, "016611695018770196": 82, "010799090730549585": 82, "00783202396117536": 82, "005806715173611227": 82, "00455456388222293": 82, "003618124376564341": 82, "003118324144784658": 82, "0023233598679969283": 82, "0019630787003360574": 82, "0015468505894658086": 82, "0012554566353486874": 82, "000939137931332681": 82, "0006417347703526879": 82, "00044087458850293774": 82, "0002896780138800494": 82, "00019118678476234282": 82, "00012863037195565613": 82, "342158091018633e": 82, "765769436445624e": 82, "8939261174304786e": 82, "499758246185846e": 82, "7042474835943714e": 82, "0996949003811196e": 82, "374027799317532e": 82, "4153782699900764e": 82, "0016791348512434e": 82, "9091125247936137e": 82, "2374234348779396e": 82, "58610199600768e": 82, "129538011639655e": 82, "325129256404813e": 82, "1881774164484624e": 82, "3802840698086986e": 82, "0x10e0800b0": 86, "37663133100619084": 88, "1060819352081399": 88, "025374490457135055": 88, "009211818637816995": 88, "0027698298339901796": 88, "0007513083315122667": 88, "00031000986871878634": 88, "544144155753355e": 88, "417241324804803e": 88, "963174584217338e": 88, "4749995026727443e": 88, "0274167917763645e": 88, "348056436145933e": 88, "379824934894444e": 88, "1165608566338454e": 88, "0690433729174223e": 88, "879597282713204e": 88, "274291627498475e": 88, "439466447377861e": 88, "727593166439319e": 88, "0547439650094062e": 88, "4665482780186696e": 88, "5745792117678356e": 88, "476348440103906e": 88, "0843949800157813e": 88, "869643540605704": [], "739241272429613": [], "47844064377136": [], "34809472590798": [], "348124745557854": [], "141598882831114": [], "3183092550309383": [], "020831301863592395": 103, "762472029308668": 103, "6209503608706": 103, "04897732520653299": 103, "4967019608058028": 103, "559079216644538": 103, "4456256298405192e": 103, "024384741600227022": 103, "6917198310276222": 103, "69173": 103, "29497965478": 103, "010000000000006035": 103, "024547976218031113": 103, "042529997182085555": 103, "6917198260952784": 103, "9148388881307": 103, "06687894741407857": 106, "9999999999993507": 106, "857165311304314": 106, "042725842958836": 106, "5414706478167917": 106, "seem": 100, "NOT": 100, "decid": 100, "worth": 100, "spend": 100, "eigenpair": 100, "2024": 100, "prior": 100, "setupproblem": 100, "869628309307659": [], "7392150117493": [], "478424110777446": [], "34802724573098": [], "34803204941966": [], "141596458698612": [], "31830950064612823": [], "0012635768719629055": [], "0015431016565831178": [], "002160439889586695": [], "0026337255877426262": [], "016779901557172523": [], "0044372096042167445": [], "006235301874375921": [], "007799129966774403": [], "011838792808594279": [], "026683793983073464": [], "008035424153974569": [], "011579771235533573": [], "014670660247574846": [], "01905227999332052": [], "044323026822480675": [], "011194121594796533": [], "01513686562383098": [], "019656123572507612": [], "02665685581702428": [], "06424488510453069": [], "013724476574388139": [], "017509029156754848": [], "022014491267939137": [], "0346527848985903": [], "08032973098010252": [], "01593769774785921": [], "018609008627307074": [], "0234333081105748": [], "0414100209593258": [], "087222838471436": [], "017647743857678644": [], "019084434780015255": [], "024110305413209063": [], "044111965831562336": [], "09131281374248629": [], "018935946363274177": [], "019430278654624416": [], "024465988109196042": [], "0458524513236905": [], "09298674245807584": [], "01948320906258061": [], "01961257643966117": [], "024599387860621387": [], "046782250958777395": [], "0940943786465612": [], "01967307598732575": [], "01979858820539404": [], "024729444766245903": [], "04753975460157749": [], "09499756575610192": [], "019789012320256313": [], "019893971261205415": [], "024882676385190275": [], "048095144263524375": [], "0962363856532873": [], "019884355077440623": [], "019949498424846772": [], "02502363603839887": [], "04864531638944237": [], "097575476094044": [], "019964447412095916": [], "020008115385938167": [], "02510415518478326": [], "049249022535257245": [], "09835713030432568": [], "02005947562613552": [], "020074220038705067": [], "025137777951692607": [], "04958294542734793": [], "09875539352816443": [], "020105841107583945": [], "020129840002911983": [], "025162103976793453": [], "049734314985161406": [], "09901921082574323": [], "02012481935442808": [], "020161266232497182": [], "025185013938652703": [], "04982542764153873": [], "09917222222655063": [], "020136792170430923": [], "020174699295529935": [], "025205679193165634": [], "049913621306600243": [], "09938598591811257": [], "020151768753707514": [], "020184193018727137": [], "025219232691640083": [], "05001051222581272": [], "09961475934322361": [], "020172949620638127": [], "020193339012928663": [], "025229657526617485": [], "05012209667772819": [], "09986509867095594": [], "020189697643675463": [], "0202054266401894": [], "025247490879078398": [], "050220233815150304": [], "10010020486772027": [], "020200293921186146": [], "020216918586713102": [], "025266174217356892": [], "05029740874954706": [], "1002947472714904": [], "020210484972975607": [], "02022542934216563": [], "02527762460037911": [], "050348393463227295": [], "10041409593194814": [], "02021892149639123": [], "020234929876054845": [], "025283988782146168": [], "050383398457115466": [], "10047915860071926": [], "020225090087822275": [], "020241103054927205": [], "02528737936477818": [], "0504034443245379": [], "10053878926816107": [], "020229048232239005": [], "02024407879208344": [], "025291020329172267": [], "0504184843828775": [], "10060245103898284": [], "020233373308917262": [], "020246064931821527": [], "02529499027692929": [], "05044448036700551": [], "10068045623689988": [], "020235834710061112": [], "020247325190959814": [], "025299514842624254": [], "05048074697435256": [], "1007521833497727": [], "02023767423038611": [], "020248770890531422": [], "025302949252495065": [], "05050983988857252": [], "10081150859624197": [], "020239022496296197": [], "020250240773562283": [], "02530527188405281": [], "050525874454102636": [], "10085163227251612": [], "020240699829329602": [], "020251531270210704": [], "025307003279442915": [], "050534674430928676": [], "10088583653279268": [], "020243648865348532": [], "020252952537570697": [], "02530894184359456": [], "050542343866030674": [], "10091573843615315": [], "020246012434213916": [], "0202539291763848": [], "025310933968090803": [], "05055261533843816": [], "10095169693539005": [], "020247230258532745": [], "020254511082542583": [], "02531265621775951": [], "05056663014127183": [], "1009811446274588": [], "020248096665725603": [], "020254991967787715": [], "025314071468940883": [], "05058126542674991": [], "10100395461926376": [], "02024912994576699": [], "02025546858962521": [], "025315620820705653": [], "050590042227438035": [], "10102605837248835": [], "020250434661867756": [], "020255956300457234": [], "025317698391340307": [], "0505959700291319": [], "10105466985802965": [], "020251775687285808": [], "020256552718952485": [], "025319108427207804": [], "05059988308072507": [], "10108510110985544": [], "020253226373096723": [], "020257383043519435": [], "02531992836579781": [], "05060476808889458": [], "1011032574411552": [], "020254379521631876": [], "02025829159398878": [], "025320503217097567": [], "05061039033355456": [], "10111668507202594": [], "02025506947649731": [], "020258820471803468": [], "025321147138425357": [], "05061491189197765": [], "10112578133951669": [], "020255534523064108": [], "020259208182993947": [], "02532181027052458": [], "05061883425258704": [], "10113599075576155": [], "0202560820638151": [], "020259496053270414": [], "025322681896367837": [], "05062307757556287": [], "10114779272924326": [], "020256681535182498": [], "020259822122084235": [], "025323457166890828": [], "05062681768983571": [], "10116253504379875": [], "020257123078882198": [], "02026009258232687": [], "02532401487462275": [], "05062981794771001": [], "10117391691153466": [], "020257562067849667": [], "020260363979295815": [], "025324385112965173": [], "050631600847737476": [], "10117983272473739": [], "020258120133494074": [], "020260609594117386": [], "02532469505560991": [], "05063300256810361": [], "10118535264540406": [], "020258695478232273": [], "02026090926885565": [], "025324992906763263": [], "05063470180513135": [], "10119208826220466": [], "020259077897562202": [], "020261239646758952": [], "025325391359324323": [], "050637109906803944": [], "10119944178146419": [], "020259295621395137": [], "02026146795381236": [], "025325798201875426": [], "05063985810021853": [], "10120496984205096": [], "020259551137001827": [], "020261604056381187": [], "025326188294111412": [], "05064179588081378": [], "1012099613748096": [], "02025976305892916": [], "020261694379941225": [], "025326501662463807": [], "05064275178405737": [], "10121575078220442": [], "02026007228210075": [], "02026179747044315": [], "02532675957257084": [], "050643602508946395": [], "101222282069653": [], "02026045575436321": [], "02026195950758276": [], "02532704178408242": [], "0506444968294112": [], "10122824899758727": [], "020260741039029334": [], "020262149599619077": [], "02532725986930254": [], "05064547450179345": [], "10123252977345149": [], "02026093154953008": [], "02026231390604444": [], "025327440224874997": [], "05064684403176447": [], "10123606820193504": [], "020261060217821213": [], "020262407506987743": [], "025327574567339164": [], "050648126227180804": [], "10123920345797212": [], "020261164000351935": [], "02026249938435706": [], "025327750461126394": [], "0506490538058756": [], "10124245750954464": [], "020261276359761726": [], "02026258660634833": [], "025327975407140078": [], "05064987304726801": [], "10124619331676998": [], "020261419380747457": [], "020262674595840968": [], "025328207825522447": [], "0506504693117123": [], "1012502360292436": [], "020261543146186282": [], "020262751572672894": [], "025328321813835725": [], "05065096690862751": [], "10125335599326896": [], "020261650704290125": [], "020262832327029308": [], "025328424291704146": [], "05065145107294275": [], "10125590838635698": [], "02026173540895992": [], "020262946927301035": [], "025328520320564585": [], "050651942256287504": [], "10125848288419885": [], "02026183600252659": [], "0202630250418244": [], "025328621081281037": [], "05065262091534791": [], "10126098055279592": [], "02026194087442255": [], "0202630985838787": [], "02532872583286071": [], "05065322279364227": [], "10126320015555233": [], "02026203039939586": [], "02026318018515885": [], "02532881652890877": [], "050653662965427296": [], "10126571488852738": [], "020262103610438075": [], "020263231467218746": [], "02532890907160921": [], "050654043310977837": [], "10126826612076671": [], "020262169915512825": [], "020263272442133343": [], "0253289844091876": [], "05065435061478128": [], "10127053096469098": [], "020262229473933663": [], "02026331306174319": [], "025329063174662984": [], "05065453833863135": [], "10127216225635921": [], "020262310564161005": [], "020263363643360156": [], "025329145713958744": [], "0506547700735776": [], "10127357981730863": [], "020262414319645972": [], "020263414687479716": [], "025329206217628276": [], "050655109473086386": [], "10127516989902416": [], "02026252780389921": [], "020263476123158236": [], "025329257454653777": [], "05065550129417997": [], "10127742137221903": [], "020262627856852077": [], "02026353278246328": [], "0253293112597379": [], "050655754959635174": [], "10128010522665407": [], "020262686504246962": [], "020263566590311713": [], "02532935788590044": [], "050655958049846246": [], "10128197125876996": [], "020262738228858143": [], "020263596125381516": [], "025329412590453456": [], "05065615923854833": [], "10128346355300917": [], "02026279399280463": [], "020263620520531756": [], "025329469536980655": [], "050656387359654234": [], "10128472265368113": [], "020262862580648935": [], "020263659463539405": [], "02532952985181092": [], "05065658862681304": [], "10128601948448229": [], "020262930398904404": [], "020263709104489314": [], "02532957396112654": [], "0506567819573558": [], "1012873812863375": [], "020262993412628664": [], "020263745191704926": [], "02532960340039471": [], "05065697309649189": [], "10128881517231514": [], "02026303614811907": [], "020263764621606825": [], "025329631217384733": [], "05065716900391105": [], "10129031232692362": [], "020263080418345854": [], "020263784298822817": [], "025329661867618706": [], "050657379228634045": [], "10129177913480947": [], "02026312831961571": [], "020263801881842496": [], "025329697712532552": [], "050657590368884925": [], "10129292859150064": [], "020263169188841242": [], "02026382013302836": [], "025329735546441315": [], "05065780596508206": [], "10129417090361359": [], "020263201737283038": [], "020263840100242174": [], "025329765643662988": [], "050657935897120684": [], "10129529645684575": [], "02026323398643456": [], "020263866302983276": [], "025329794389496188": [], "05065803228916753": [], "10129607726186901": [], "0202632741404568": [], "020263889352574078": [], "025329827066816208": [], "050658140147735835": [], "10129694559664247": [], "020263306965314535": [], "02026390358257203": [], "025329853993653367": [], "05065827804697147": [], "10129779611767945": [], "020263336626834695": [], "020263913636751417": [], "025329872311139277": [], "05065839487711033": [], "10129872046886589": [], "020263361770624093": [], "020263922242558442": [], "02532988698526253": [], "050658522595126446": [], "10129947473768121": [], "020263386524513097": [], "020263935017014685": [], "02532990086089205": [], "05065863468988592": [], "10130052827840487": [], "020263411404948882": [], "020263950163861094": [], "025329919369835457": [], "0506587337642407": [], "10130157949291106": [], "02026344065522071": [], "02026396743313646": [], "02532994702466543": [], "05065880568555839": [], "10130235636697257": [], "02026347112825": [], "0202639817160777": [], "025329967476529835": [], "05065888890514608": [], "10130292001031707": [], "020263498537169345": [], "0202639895834853": [], "02532997807905016": [], "05065897776727898": [], "1013034486016576": [], "020263523950062083": [], "020263995113973463": [], "025329988042572443": [], "050659038967339476": [], "10130422065276407": [], "020263547106830624": [], "020264002913330158": [], "025329999013605647": [], "050659094206375606": [], "10130496737727389": [], "02026356834104288": [], "020264012658412555": [], "025330010885450942": [], "05065916129541428": [], "10130578067332599": [], "020263587259165567": [], "020264022492359396": [], "025330018141571684": [], "05065921880573287": [], "10130644027329672": [], "02026360500882366": [], "02026403006781422": [], "025330026944975933": [], "05065927625372328": [], "10130701710894308": [], "020263630048952465": [], "020264038038751424": [], "025330038983538538": [], "05065931344840186": [], "10130767065583518": [], "020263657533359906": [], "020264043887837126": [], "02533005207965049": [], "05065935487694154": [], "10130830649312048": [], "0202636786924161": [], "020264048635593387": [], "02533006263588609": [], "05065939544463593": [], "10130889875416915": [], "020263692275336344": [], "020264055242938863": [], "025330069455099222": [], "05065944496754275": [], "10130941922311404": [], "020263704261571844": [], "020264062032324046": [], "025330074852165527": [], "0506594923192354": [], "10130988947348606": [], "020263720766986203": [], "020264067230426834": [], "02533007971496116": [], "05065952958170294": [], "10131039576460005": [], "020263737811614176": [], "02026407169561139": [], "025330086901818802": [], "050659560983865995": [], "10131095188723432": [], "020263755969856637": [], "020264077289851325": [], "025330098569866732": [], "0506595950651862": [], "10131161851190656": [], "020263775027741432": [], "020264082778679166": [], "025330109298374884": [], "05065963815566523": [], "10131225993512519": [], "020263789324262517": [], "020264087257881716": [], "025330116752047105": [], "05065969060273149": [], "10131275819325734": [], "020263802152418423": [], "020264091720552886": [], "025330123312691147": [], "050659723640196955": [], "10131315378317828": [], "020263817283557833": [], "020264096042136918": [], "025330128107438694": [], "05065974941564368": [], "10131356846584368": [], "020263831430726836": [], "020264099939891148": [], "02533013280362941": [], "05065977569694484": [], "1013139830748731": [], "020263846384559674": [], "02026410476924414": [], "025330137758017776": [], "05065980985552569": [], "1013144545583659": [], "020263861139618096": [], "020264109360660084": [], "02533014414192507": [], "050659850381163836": [], "10131484147731343": [], "020263871216010435": [], "02026411433873727": [], "025330151654892448": [], "050659885221385495": [], "10131524588079328": [], "02026388178360032": [], "020264118681840398": [], "025330159157539344": [], "05065991454406229": [], "10131565022299957": [], "02026389480464825": [], "020264123257272577": [], "025330166111792903": [], "050659943723555347": [], "10131601930197877": [], "020263907524554942": [], "020264127292281102": [], "025330171255548643": [], "050659968726987324": [], "10131631589177079": [], "020263918582227782": [], "02026413036437906": [], "025330174882763817": [], "05065999354123659": [], "1013165580302891": [], "02026392900368319": [], "020264133978833098": [], "02533017841934876": [], "0506600182313482": [], "1013168293260634": [], "020263940507103347": [], "02026413800540375": [], "025330182779048444": [], "05066004570126979": [], "10131712320564205": [], "02026395065493311": [], "020264142234089497": [], "025330188080649796": [], "050660075468487484": [], "1013173517898158": [], "020263958037958916": [], "020264146678171613": [], "025330193184287947": [], "05066009838932657": [], "10131752256857127": [], "02026396718151312": [], "020264151690861668": [], "02533019872700151": [], "05066011753745938": [], "10131765826317278": [], "0202639781206283": [], "02026415538615217": [], "02533020234421988": [], "050660132717888356": [], "10131780771962176": [], "02026398617265851": [], "02026415832734703": [], "025330205215292487": [], "050660148628735635": [], "10131798447614851": [], "020263993724271553": [], "02026416152470912": [], "025330208375503795": [], "05066016921072244": [], "10131816172830443": [], "020264000756026128": [], "020264164955090046": [], "025330211827126064": [], "05066019171043986": [], "10131829446227952": [], "020264006637148495": [], "020264167847468015": [], "025330215015247418": [], "050660207157066796": [], "101318398002165": [], "020264013863472163": [], "02026417065437526": [], "0253302172885952": [], "05066021714061092": [], "10131850677803438": [], "02026402106356359": [], "0202641733387163": [], "02533021941908903": [], "05066022798048256": [], "10131861060656461": [], "020264029147402912": [], "020264176488624122": [], "02533022165887258": [], "050660238301950086": [], "10131872657110261": [], "020264036844797502": [], "02026418008027615": [], "025330224224150048": [], "05066025393029214": [], "10131883930986971": [], "020264041276506665": [], "020264183347701113": [], "02533022704407508": [], "050660268807244065": [], "10131892295929439": [], "020264045982083853": [], "02026418591939065": [], "0253302297517991": [], "05066027897241426": [], "101318992504802": [], "020264051603578012": [], "02026418731853007": [], "025330231567386955": [], "05066028678583665": [], "1013190616978164": [], "020264058831578644": [], "020264188938969516": [], "025330233423574763": [], "0506602961852959": [], "10131914309350179": [], "020264065081811333": [], "020264190931860937": [], "025330235201335028": [], "05066030785452459": [], "10131923187176176": [], "020264069485632856": [], "02026419343223858": [], "02533023738497784": [], "05066031846732057": [], "10131930496322138": [], "020264073777483453": [], "020264196481441867": [], "025330239797702873": [], "05066033034502625": [], "10131936716953774": [], "02026407740908318": [], "02026419871068021": [], "02533024214676063": [], "05066033894055089": [], "10131942243311555": [], "02026408132651846": [], "020264200607108863": [], "02533024436008551": [], "050660345734860765": [], "1013194796747517": [], "02026408577836974": [], "020264201902099557": [], "025330246270646877": [], "05066035341561563": [], "10131953258318875": [], "020264090247304307": [], "020264203211558345": [], "02533024814678622": [], "05066036242455523": [], "10131958500918162": [], "020264094216417484": [], "020264204557221326": [], "02533024997654606": [], "05066037194844719": [], "10131963774277003": [], "020264097713343508": [], "02026420564521766": [], "025330251562546834": [], "050660381169861796": [], "10131968402509609": [], "020264101701651972": [], "02026420681335264": [], "025330253096182195": [], "05066039040040905": [], "10131972847482666": [], "020264106003417083": [], "020264208264071954": [], "025330254981165107": [], "05066039709360508": [], "10131977734125687": [], "02026410961062969": [], "020264209939735413": [], "025330257260480573": [], "05066040417166843": [], "10131981772138911": [], "020264112748328615": [], "020264211502437884": [], "025330259200261034": [], "05066041204307573": [], "10131985702859528": [], "02026411583431677": [], "020264212706887677": [], "02533026091486802": [], "050660420142886645": [], "10131990207063625": [], "020264118794142177": [], "020264213669474562": [], "025330262243343022": [], "05066042591051764": [], "10131994367321945": [], "020264122018970276": [], "020264214548451433": [], "025330263352558613": [], "050660432802104395": [], "10131998106712278": [], "020264126175664622": [], "020264215377761987": [], "025330264379722044": [], "05066044196351089": [], "10132002341239055": [], "020264129241790576": [], "020264216421038515": [], "025330265853931586": [], "05066044802255247": [], "10132006199367578": [], "020264131787926652": [], "02026421764535234": [], "025330267616587437": [], "05066045324152591": [], "10132008769260657": [], "020264134060223753": [], "020264218925041086": [], "02533026902904868": [], "05066045848329342": [], "1013201147278199": [], "020264136630325905": [], "020264219954687007": [], "025330270131061764": [], "050660465733349765": [], "1013201415284256": [], "020264138636623453": [], "02026422078425282": [], "025330271164133833": [], "05066047222144832": [], "10132017548163498": [], "020264141243545686": [], "02026422142245604": [], "025330272264780188": [], "050660477181545364": [], "10132020677261687": [], "020264144014103855": [], "020264222290982806": [], "025330273098115638": [], "050660482633039135": [], "10132023571676993": [], "02026414658488062": [], "0202642230197074": [], "02533027392965766": [], "05066048791680118": [], "10132026108620314": [], "020264148673461935": [], "020264223647286438": [], "025330274895686167": [], "0506604922417107": [], "10132028150937089": [], "020264150874613685": [], "02026422441180352": [], "025330275888993725": [], "05066049634323496": [], "10132030362742628": [], "020264153139036272": [], "020264225312679355": [], "02533027683597142": [], "05066049962328041": [], "10132032173471575": [], "02026415524987449": [], "020264225985845895": [], "02533027760733883": [], "05066050357314546": [], "10132033924092086": [], "020264157054998976": [], "02026422646021426": [], "025330278136344433": [], "05066050784172538": [], "10132035588876223": [], "020264158800229935": [], "020264226925157513": [], "02533027869425457": [], "050660511997875204": [], "10132037508385211": [], "020264160688066444": [], "020264227369555184": [], "02533027926862719": [], "05066051574231228": [], "10132039690708901": [], "02026416283335588": [], "020264227844721584": [], "02533027986187982": [], "050660519011383846": [], "1013204171393515": [], "020264164621312496": [], "020264228346440784": [], "02533028059218228": [], "050660521121880804": [], "10132043389512557": [], "020264166693813715": [], "020264228710374955": [], "02533028127191442": [], "05066052327223405": [], "10132044756357961": [], "020264168776997743": [], "020264229125656473": [], "02533028178280633": [], "05066052576421402": [], "10132046064619692": [], "020264170741430058": [], "020264229539333406": [], "02533028215371114": [], "05066052975429277": [], "10132047657193882": [], "020264172403658996": [], "02026422996032094": [], "02533028254389684": [], "05066053299179081": [], "1013204905311326": [], "02026417404756639": [], "02026423025120399": [], "02533028296198513": [], "050660535504503265": [], "10132050272485141": [], "020264176067348542": [], "020264230533827105": [], "025330283487552344": [], "05066053741301097": [], "10132051590685939": [], "020264178004387658": [], "02026423081492654": [], "025330284034132455": [], "0506605391977715": [], "10132052951919045": [], "020264179341714792": [], "020264231083600395": [], "025330284498515588": [], "050660541055875544": [], "101320542256974": [], "020264180556076858": [], "020264231346024605": [], "025330284834386492": [], "050660543455916834": [], "1013205575259011": [], "020264181889916664": [], "020264231610391762": [], "025330285197342952": [], "050660546475634824": [], "10132057288709805": [], "020264183372305317": [], "02026423187150305": [], "025330285541003278": [], "05066054957221371": [], "10132058412965995": [], "020264185274071835": [], "020264232104813464": [], "025330285900984042": [], "05066055164818641": [], "10132059364874729": [], "02026418719153764": [], "0202642323776019": [], "025330286298473538": [], "05066055286808217": [], "10132060144492015": [], "020264188771999755": [], "02026423262369785": [], "025330286768599698": [], "05066055426127287": [], "10132061109477106": [], "020264189773252964": [], "0202642328355811": [], "02533028708938372": [], "050660556251231954": [], "10132062631982891": [], "020264190756726173": [], "020264233006505043": [], "025330287314083287": [], "05066055823305505": [], "10132064215991282": [], "02026419182032499": [], "020264233163674594": [], "025330287626570445": [], "05066056023475652": [], "10132065582649241": [], "0202641929555655": [], "020264233304563735": [], "025330287957289633": [], "050660561790778734": [], "10132066362466899": [], "020264194122375987": [], "02026423343014223": [], "02533028824389837": [], "05066056307450642": [], "1013206693695857": [], "020264195177377115": [], "020264233579567865": [], "02533028854624576": [], "050660564327549916": [], "10132067631554072": [], "02026419638312774": [], "02026423374014791": [], "02533028880272067": [], "05066056543741892": [], "1013206875910459": [], "020264197528954773": [], "020264233898142643": [], "025330289022258527": [], "050660566415085616": [], "10132070118786513": [], "020264198648514937": [], "02026423403137632": [], "025330289243890077": [], "05066056742027291": [], "10132071118058694": [], "020264199494647528": [], "020264234131726237": [], "02533028944411341": [], "05066056854707564": [], "10132071831797519": [], "02026420025922982": [], "020264234244473715": [], "025330289655286595": [], "050660569638727906": [], "10132072424785281": [], "020264200978683675": [], "020264234335301872": [], "025330289858909852": [], "05066057065254703": [], "10132073126121677": [], "020264201659005818": [], "020264234445123316": [], "025330290085341194": [], "05066057144108374": [], "10132073992137267": [], "020264202408040815": [], "02026423454919856": [], "025330290305150504": [], "050660572172329034": [], "10132075011274165": [], "020264203328567293": [], "02026423467098331": [], "02533029045860147": [], "05066057296525833": [], "10132076023869371": [], "020264204344303195": [], "020264234773747832": [], "02533029062128869": [], "050660573809353": [], "1013207694925752": [], "10066207816841641": [], "1013203798362012": [], "10132118298175001": [], "10132113609639114": [], "10132108968329477": [], "3171": [], "030698072823": [], "16767": [], "501262764494": [], "37452": [], "24558061415": [], "71430": [], "35947953808": [], "113317": [], "50368739422": [], "setuptraceproblem": 100, "l2gammanorm": 100, "306377152389474": [], "3130323762459348": [], "3130352795103182": [], "3130352851589546": [], "3130352034332624": [], "setupkorn": 100, "epsseminorm": 100, "0040644919054533685": [], "004064491905451217": [], "c_p": 99, "b_r": 99, "upgrad": 100, "02026423260401859": 100, "020264234576601207": 100, "02533029173591055": 100, "05066057588433866": 100, "10132093820158766": 100, "31830950064612845": 100, "14159645869861": 100, "agreement": 100, "1006620781684165": 100, "10132037983620126": 100, "10132118307694851": 100, "10132118070154268": 100, "10132105302197744": 100, "790734649436": 100, "2135": 100, "5622834775527": 100, "7804": 100, "143924722659": 100, "34633": 100, "51884502968": 100, "133659": 100, "64804621154": 100, "1789330005993": 100, "3530": 100, "0518596989186": 100, "8675": 100, "114305718216": 100, "16992": 100, "87607717275": 100, "23725": 100, "09568036216": 100, "eigenspac": 100, "004064491905451973": [], "3063771523894732": 100, "3130323762459355": 100, "3130352795102438": 100, "3130352852984504": 100, "313035178821016": 100, "004064491905453039": [], "gamma_b": 97, "parsev": 97, "li": 97, "s_0": 97, "g_k": 97, "ignor": 97, "2_g": 95, "calculu": 97, "opreatornam": [], "a_k": 99, "b_k": 99, "004064491905452003": [], "setuppoincareproblem": 100, "243526026376946": 100, "1427436944464913": 100, "141601541800638": 100, "1415927947831186": 100, "1415938335169886": 100, "004064491905450742": 100}, "objects": {}, "objtypes": {}, "objnames": {}, "titleterms": {"nitsch": 0, "": [0, 36, 39, 100], "method": [0, 2, 3, 5, 6, 9, 11, 20, 24, 36, 43, 44, 45, 48, 49, 50, 51, 52, 55, 58, 59, 61, 65, 74, 80, 102, 105, 106, 108, 109, 110, 111, 115], "boundari": [0, 8, 39, 51, 53, 54, 64, 71, 80], "interfac": [0, 13], "condit": [0, 8, 28, 51, 53, 54, 71, 80, 109], "hybrid": [0, 1, 3, 88], "dg": [1, 2], "ellipt": [1, 2], "equat": [1, 3, 4, 5, 6, 41, 43, 44, 51, 55, 56, 65, 74, 80, 101, 109, 110, 111, 112, 118], "problem": [2, 26, 27, 28, 29, 43, 44, 47, 51, 54, 80, 81], "fourth": 3, "order": [3, 8, 28, 43, 44, 51, 55, 107], "c": 3, "0": 3, "continu": [3, 60], "interior": 3, "penalti": [3, 54, 80], "instationari": 4, "transport": [4, 6], "split": 5, "time": [5, 43, 84, 110, 111, 115], "depend": [5, 43, 54, 80], "convect": 5, "diffus": 5, "stationari": 6, "discontinu": [6, 43, 44, 118], "galerkin": [6, 43, 44, 110, 118], "h": [7, 39, 66, 74, 84, 85, 87, 97, 98, 103], "div": [7, 58, 59, 85, 87], "conform": [7, 11], "stoke": [7, 21, 51, 52, 56, 80], "finit": [8, 9, 10, 11, 12, 14, 24, 43, 44, 52, 56, 60, 74, 77, 83, 85, 107], "element": [8, 9, 10, 11, 12, 14, 24, 43, 44, 52, 56, 60, 69, 74, 77, 83, 85, 107], "error": [8, 31, 32, 33, 34, 44, 52, 60, 77, 83, 84], "analysi": [8, 43, 62, 63, 80, 83, 84, 105, 106], "estim": [8, 31, 32, 33, 34, 44, 52, 60, 77, 100], "l_2": [8, 77, 84, 103], "norm": [8, 39, 73, 98, 100, 103], "approxim": [8, 26, 29, 62], "dirichlet": [8, 51, 54, 80], "high": [8, 44, 107], "grade": 8, "mesh": [8, 14, 105], "around": 8, "vertex": 8, "singular": 8, "implement": [10, 40, 118], "non": [11, 38, 43, 44, 57], "The": [11, 14, 19, 31, 34, 43, 44, 45, 46, 48, 49, 60, 62, 65, 74, 77, 78, 87, 93, 94, 97, 101, 102, 115], "first": [11, 28], "lemma": [11, 99, 102], "strang": 11, "second": [11, 28, 43, 44, 51, 55], "p": 11, "1": [11, 66, 74, 84, 97, 98, 103], "triangl": [11, 77], "system": [12, 28, 51], "assembl": 12, "ngsolv": [13, 44, 74], "petsc": [13, 22], "precondition": [13, 35, 36, 40, 49, 61, 63, 79, 102, 103, 104, 106, 107], "distribut": [14, 23], "space": [14, 39, 43, 44, 47, 56, 74, 87, 96, 97, 98, 99, 102, 105, 110], "paralleldof": 14, "class": 14, "introduct": [19, 24, 38, 43, 44], "mpi": 19, "mpi4pi": 19, "librari": 19, "iter": [20, 43, 44, 45, 46, 49, 50, 62, 75, 81], "parallel": [20, 21, 40, 43, 44], "richardson": [20, 46, 49], "solv": [21, 47, 74, 118], "us": 22, "consist": 23, "vector": 23, "matric": [23, 61], "inner": 23, "product": 23, "matrix": 23, "multipl": 23, "oper": [23, 52, 97, 118], "thi": 24, "repositori": 24, "contain": 24, "an": [24, 43, 44], "interact": [24, 43, 44], "basic": [25, 50], "properti": [25, 62], "coerciv": [26, 28], "variat": [26, 27, 29, 56, 60, 72, 110], "riesz": 27, "represent": 27, "theorem": [27, 97, 101], "symmetr": 27, "exercis": [28, 73, 99, 104, 108, 109, 118], "minim": [28, 47, 51, 81, 105, 106], "inf": [28, 29], "sup": [28, 29], "deriv": [28, 95], "bilinear": [28, 74], "form": [28, 74], "repeat": 28, "2d": 28, "build": 28, "from": [28, 61], "block": [28, 81, 102, 107], "exampl": [28, 52, 54, 81, 103, 108], "complex": 28, "valu": [28, 99], "real": 28, "One": 28, "i": 28, "enough": 28, "mean": [28, 99], "onto": [28, 30], "stabl": 29, "project": [30, 61, 77, 79], "subspac": 30, "A": [31, 43, 44, 79, 104, 116, 117], "posteriori": [31, 44], "zienkiewicz": 31, "zhu": 31, "equilibr": 32, "residu": [32, 34], "goal": 33, "driven": 33, "bddc": [35, 40], "feti": [36, 37], "dp": 37, "overlap": [38, 43, 44, 102, 105, 106, 107], "domain": [38, 39, 43, 44, 87, 97, 99, 105, 106], "decomposit": [38, 43, 44, 64, 105, 106], "lagrang": 38, "paramet": [38, 46, 54, 80], "trace": [39, 87, 94, 97, 100], "natur": [39, 71], "interpol": [39, 77, 97, 99], "bottom": 39, "edg": [39, 97], "sub": [39, 43, 44, 87, 97, 98, 102], "helmholtz": [41, 43], "grate": 42, "abstract": [43, 44, 51, 52, 86], "theori": [43, 44, 51, 52, 86], "mix": [43, 44, 51, 52, 55, 58, 86], "elast": [43, 69, 72], "plate": [43, 65, 67, 69], "shell": [43, 68], "solver": [43, 44, 75], "correct": [43, 44, 80], "multigrid": [43, 44, 61, 62], "saddl": [43, 44, 81], "point": [43, 44, 81, 99, 109], "practic": 43, "ordinari": 43, "differenti": [43, 118], "numer": [43, 94], "parabol": [43, 109, 112], "wave": [43, 111, 118], "addit": [43, 102], "appendix": 43, "some": [43, 103], "inequ": [43, 89, 92, 93, 94, 99, 100], "sobolev": [43, 44, 74, 96, 97, 99], "literatur": 44, "instal": 44, "chebyshev": 45, "polynomi": [45, 77], "optim": [46, 62, 63], "relax": 46, "alpha": 46, "experi": [46, 73, 100, 106], "conjug": 47, "gradient": [47, 48, 49], "expand": 47, "krylov": 47, "precondit": [49, 61, 81], "jacobi": [49, 102], "gauss": 49, "seidel": 49, "constrain": [51, 81], "within": 51, "prove": 52, "discret": [52, 118], "lbb": 52, "fortin": 52, "nearli": [54, 63], "incompress": 54, "materi": 54, "formul": [56, 58, 60, 72, 74, 80, 86, 101, 110], "linear": [57, 72, 73, 74, 109], "dynam": 57, "declaremathoper": [58, 59], "opdiv": [58, 59, 87], "helling": 58, "reissner": [58, 67, 69], "primal": [58, 86], "dual": [58, 73, 86], "opcurl": [59, 66], "curl": 59, "ep": 59, "varepsilon": 59, "reduc": 59, "symmetri": 59, "tangenti": 60, "displac": 60, "normal": [60, 87], "stress": 60, "diverg": 60, "nn": 60, "piec": 60, "wise": 60, "smooth": 60, "function": [60, 74, 87, 99, 109], "tdnn": [60, 66, 69], "multilevel": 61, "finest": 61, "level": [61, 63, 64, 80, 106], "algorithm": [62, 64], "smoth": 62, "converg": [62, 108], "v": 62, "cycl": 62, "multi": [63, 64], "ml": 63, "extens": [64, 97], "effici": [64, 118], "comput": [64, 73], "extend": 64, "data": 64, "hellan": 65, "herrmann": 65, "johnson": 65, "kirchhoff": 65, "relationship": 66, "between": 66, "hhj": 66, "commut": 66, "diagram": 66, "mindlin": [67, 69], "nonlinear": 68, "3d": [69, 72], "preambl": 70, "essenti": 71, "solid": 72, "mechan": 72, "get": 73, "start": 73, "netgen": 73, "opencascad": 73, "geometr": 73, "model": 73, "coefficientfunct": 73, "work": 73, "gridfunct": 73, "algebra": 73, "bilienarform": 73, "linearform": 73, "poisson": [74, 101], "weak": [74, 101], "visual": 74, "basi": 74, "variabl": 76, "coeffici": 76, "hp": 77, "legendr": 77, "orthogon": 77, "base": [77, 105, 109], "1d": [77, 99], "case": 77, "brambl": [78, 99], "pasciak": 78, "transform": [78, 85], "small": [79, 103], "number": 79, "constraint": 79, "flux": 80, "maxwel": 80, "robust": [80, 104], "two": 80, "smoother": 80, "coars": [80, 105, 106], "grid": [80, 105, 106], "structur": 81, "schur": 81, "complement": 81, "local": [83, 115], "post": 83, "process": 83, "operatornam": [85, 87], "piola": 85, "applic": [86, 97], "techniqu": 88, "friedrich": [89, 92, 99, 100], "poincar\u00e9": [93, 99, 100], "verif": 94, "proof": 94, "gener": [95, 97, 102], "integr": [97, 109, 112], "part": 97, "over": 97, "2": [97, 106], "equival": 98, "shift": 101, "schwarz": [102, 107], "mathbb": 102, "r": 102, "n": 102, "hilbert": [99, 102], "upper": 102, "bound": 102, "asm": 103, "diagon": [103, 108], "term": 103, "b": 104, "ad": 105, "graph": 105, "partit": 105, "dd": 106, "comparison": 106, "rung": 108, "kutta": 108, "butcher": 108, "tableau": 108, "simpl": [108, 109], "explicit": [108, 109], "implicit": [108, 109, 110], "singl": 109, "step": [99, 109, 110, 111, 115], "euler": [109, 110], "ee": 109, "ie": 109, "trapezoid": 109, "mid": 109, "rule": 109, "improv": 109, "rk2": 109, "stabil": 109, "classif": 109, "hyperbol": 109, "heat": 110, "newmark": 111, "exponenti": 112, "mass": 115, "lump": 115, "verlet": 115, "geometri": 115, "detail": 115, "nano": [116, 117], "optic": [116, 117], "ring": [116, 117], "reson": [116, 117], "test": 118, "eigenvalu": 118, "laplac": 118, "invers": 100, "korn": 100, "wip": [], "squar": [97, 99], "scale": 99, "fraction": 99, "evalu": 99, "definit": 97, "one": 97}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinx": 60}, "alltitles": {"Nitsche\u2019s Method for boundary and interface conditions": [[0, "nitsche-s-method-for-boundary-and-interface-conditions"]], "Nitsche\u2019s method:": [[0, "nitsche-s-method"]], "Interfaces": [[0, "interfaces"]], "Hybrid Interfaces": [[0, "hybrid-interfaces"]], "Hybrid DG for elliptic equations": [[1, "hybrid-dg-for-elliptic-equations"]], "DG - Methods for elliptic problems": [[2, "dg-methods-for-elliptic-problems"]], "Fourth Order Equation": [[3, "fourth-order-equation"]], "Hybridized C^0-continuous interior penalty method:": [[3, "hybridized-c-0-continuous-interior-penalty-method"]], "Instationary Transport Equation": [[4, "instationary-transport-equation"]], "Splitting Methods for the time-dependent convection diffusion equation": [[5, "splitting-methods-for-the-time-dependent-convection-diffusion-equation"]], "Stationary Transport Equation": [[6, "stationary-transport-equation"]], "Discontinuous Galerkin method": [[6, "discontinuous-galerkin-method"]], "H(div)-conforming Stokes": [[7, "h-div-conforming-stokes"]], "Finite element error analysis": [[8, "finite-element-error-analysis"]], "Error estimates in L_2-norm": [[8, "error-estimates-in-l-2-norm"]], "Approximation of Dirichlet boundary conditions": [[8, "approximation-of-dirichlet-boundary-conditions"]], "High order elements": [[8, "high-order-elements"]], "Graded meshes around vertex singularities": [[8, "graded-meshes-around-vertex-singularities"]], "Finite Element Method": [[9, "finite-element-method"], [44, null]], "Implementation of Finite Elements": [[10, "implementation-of-finite-elements"]], "Non-conforming Finite Element Methods": [[11, "non-conforming-finite-element-methods"]], "The First Lemma of Strang": [[11, "the-first-lemma-of-strang"]], "The Second Lemma of Strang": [[11, "the-second-lemma-of-strang"]], "The non-conforming P^1 triangle}": [[11, "the-non-conforming-p-1-triangle"]], "Finite element system assembling": [[12, "finite-element-system-assembling"]], "NGSolve - PETSc interface": [[13, "ngsolve-petsc-interface"]], "PETSc preconditioner for NGSolve": [[13, "petsc-preconditioner-for-ngsolve"]], "Distributed Meshes and Spaces": [[14, "distributed-meshes-and-spaces"]], "Distributed finite element spaces": [[14, "distributed-finite-element-spaces"]], "The ParallelDofs class": [[14, "the-paralleldofs-class"]], "Introduction to MPI with mpi4py": [[19, "introduction-to-mpi-with-mpi4py"]], "The MPI library": [[19, "the-mpi-library"]], "Iteration methods in parallel": [[20, "iteration-methods-in-parallel"]], "Richardson iteration": [[20, "richardson-iteration"]], "Solving Stokes in parallel": [[21, "solving-stokes-in-parallel"]], "Using PETSc": [[22, "using-petsc"]], "Consistent and Distributed Vectors": [[23, "consistent-and-distributed-vectors"]], "Consistent vectors:": [[23, "consistent-vectors"]], "Distributed vectors and matrices": [[23, "distributed-vectors-and-matrices"]], "Inner products:": [[23, "inner-products"]], "Matrix vector multiplication:": [[23, "matrix-vector-multiplication"]], "Vector operations:": [[23, "vector-operations"]], "This repository contains an interactive introduction to the Finite Element Method": [[24, "this-repository-contains-an-interactive-introduction-to-the-finite-element-method"]], "Basic properties": [[25, "basic-properties"]], "Coercive variational problems and their approximation": [[26, "coercive-variational-problems-and-their-approximation"]], "Approximation of coercive variational problems": [[26, "approximation-of-coercive-variational-problems"]], "Riesz representation theorem and symmetric variational problems": [[27, "riesz-representation-theorem-and-symmetric-variational-problems"]], "Symmetric variational problems": [[27, "symmetric-variational-problems"]], "Inf-sup stable variational problems": [[29, "inf-sup-stable-variational-problems"]], "Approximation of inf-sup stable variational problems": [[29, "approximation-of-inf-sup-stable-variational-problems"]], "Projection onto subspaces": [[30, "projection-onto-subspaces"]], "A posteriori error estimates": [[31, "a-posteriori-error-estimates"], [44, null]], "The Zienkiewicz Zhu error estimator": [[31, "the-zienkiewicz-zhu-error-estimator"]], "Equilibrated Residual Error Estimates": [[32, "equilibrated-residual-error-estimates"]], "Goal driven error estimates": [[33, "goal-driven-error-estimates"]], "The residual error estimator": [[34, "the-residual-error-estimator"]], "BDDC - Preconditioner": [[35, "bddc-preconditioner"]], "FETI methods": [[36, "feti-methods"]], "Preconditioner for S": [[36, "preconditioner-for-s"]], "FETI-DP": [[37, "feti-dp"]], "Introduction to Non-overlapping Domain Decomposition": [[38, "introduction-to-non-overlapping-domain-decomposition"]], "Domain Decomposition with Lagrange parameters": [[38, "domain-decomposition-with-lagrange-parameters"]], "Traces spaces": [[39, "traces-spaces"]], "Natural trace space": [[39, "natural-trace-space"]], "Interpolation space H^s": [[39, "interpolation-space-h-s"]], "Trace norm on bottom edge": [[39, "trace-norm-on-bottom-edge"]], "Trace norm on boundary sub-domains": [[39, "trace-norm-on-boundary-sub-domains"]], "Implement a parallel BDDC preconditioner": [[40, "implement-a-parallel-bddc-preconditioner"]], "Helmholtz Equation": [[41, "helmholtz-equation"]], "Grating": [[42, "grating"]], "An Interactive Introduction to the Finite Element Method": [[43, "an-interactive-introduction-to-the-finite-element-method"], [44, "an-interactive-introduction-to-the-finite-element-method"]], "The Galerkin Method": [[43, "the-galerkin-method"], [44, null]], "Abstract Theory": [[43, "abstract-theory"], [44, null], [51, "abstract-theory"]], "Mixed Finite Element Methods": [[43, "mixed-finite-element-methods"], [44, null]], "Discontinuous Galerkin Methods": [[43, "discontinuous-galerkin-methods"], [44, null]], "Mixed Methods for Second Order Equations": [[43, "mixed-methods-for-second-order-equations"], [44, null]], "Mixed Methods for Elasticity": [[43, "mixed-methods-for-elasticity"]], "Mixed Methods for Plates and Shells": [[43, "mixed-methods-for-plates-and-shells"]], "The Helmholtz equation": [[43, "the-helmholtz-equation"]], "Iterative Solvers": [[43, "iterative-solvers"], [75, "iterative-solvers"]], "Iteration Methods": [[43, "iteration-methods"], [44, null]], "Sub-space Correction Methods": [[43, "sub-space-correction-methods"], [44, null]], "Multigrid Methods": [[43, "multigrid-methods"], [44, null]], "Saddle-point Problems": [[43, "saddle-point-problems"], [44, null]], "Non-overlapping Domain Decomposition Methods": [[43, "non-overlapping-domain-decomposition-methods"], [44, null]], "Parallel Solvers": [[43, "parallel-solvers"], [44, null]], "Time-dependent Problems": [[43, "time-dependent-problems"]], "A practical introduction": [[43, "a-practical-introduction"]], "Ordinary differential equations": [[43, "ordinary-differential-equations"]], "Numerical analysis of Parabolic Equations": [[43, "numerical-analysis-of-parabolic-equations"]], "Numerical analysis of Wave Equations": [[43, "numerical-analysis-of-wave-equations"]], "Additional methods": [[43, "additional-methods"]], "Appendix": [[43, "appendix"]], "Some inequalities in Sobolev spaces": [[43, "some-inequalities-in-sobolev-spaces"]], "Literature": [[44, "literature"]], "Installing NGSolve": [[44, "installing-ngsolve"]], "Sobolev Spaces": [[44, null]], "High Order Finite Elements": [[44, null]], "The Chebyshev Method": [[45, "the-chebyshev-method"]], "Chebyshev polynomials": [[45, "chebyshev-polynomials"]], "The Chebyshev iteration": [[45, "the-chebyshev-iteration"]], "Conjugate Gradients": [[47, "conjugate-gradients"]], "Solving the minimization problem": [[47, "solving-the-minimization-problem"]], "Expanding the Krylov-space": [[47, "expanding-the-krylov-space"]], "Basic Iterative Methods": [[50, "basic-iterative-methods"]], "Constrained minimization problem": [[51, "constrained-minimization-problem"]], "Stokes equation within the abstract theory": [[51, "stokes-equation-within-the-abstract-theory"]], "Dirichlet boundary conditions as mixed system": [[51, "dirichlet-boundary-conditions-as-mixed-system"]], "Mixed method for second order equation": [[51, "mixed-method-for-second-order-equation"]], "Abstract theory for mixed finite element methods": [[52, "abstract-theory-for-mixed-finite-element-methods"]], "Finite element error estimates": [[52, "finite-element-error-estimates"]], "Proving discrete LBB by the Fortin operator": [[52, "proving-discrete-lbb-by-the-fortin-operator"]], "Example: Finite elements for Stokes": [[52, "example-finite-elements-for-stokes"]], "Boundary Conditions": [[53, "boundary-conditions"], [71, "boundary-conditions"]], "Parameter Dependent Problems": [[54, "parameter-dependent-problems"], [80, "parameter-dependent-problems"]], "Example: Dirichlet boundary condition by penalty": [[54, "example-dirichlet-boundary-condition-by-penalty"]], "Example: Nearly incompressible materials": [[54, "example-nearly-incompressible-materials"]], "Mixed Methods for second order equations": [[55, "mixed-methods-for-second-order-equations"]], "Stokes Equation": [[56, "stokes-equation"]], "Variational Formulation": [[56, "variational-formulation"]], "Finite Element Spaces": [[56, "finite-element-spaces"]], "\\DeclareMathOperator{\\opdiv}{div}\nHellinger Reissner mixed formulation": [[58, "declaremathoperator-opdiv-div-hellinger-reissner-mixed-formulation"]], "Primal mixed method:": [[58, "primal-mixed-method"]], "Dual mixed method": [[58, "dual-mixed-method"]], "\\DeclareMathOperator{\\opdiv}{div}\n\\DeclareMathOperator{\\opcurl}{curl}\n\\DeclareMathOperator{\\eps}{\\varepsilon}\nReduced symmetry methods": [[59, "declaremathoperator-opdiv-div-declaremathoperator-opcurl-curl-declaremathoperator-eps-varepsilon-reduced-symmetry-methods"]], "Tangential displacement normal normal stress continuous finite elements": [[60, "tangential-displacement-normal-normal-stress-continuous-finite-elements"]], "The divergence of nn-continuous piece-wise smooth functions:": [[60, "the-divergence-of-nn-continuous-piece-wise-smooth-functions"]], "TDNNS Variational formulation:": [[60, "tdnns-variational-formulation"]], "Error estimates:": [[60, "error-estimates"]], "Multigrid and Multilevel Methods": [[61, "multigrid-and-multilevel-methods"]], "Multilevel preconditioner": [[61, "multilevel-preconditioner"]], "Multigrid Preconditioning": [[61, "multigrid-preconditioning"]], "Projection matrices from the finest level": [[61, "projection-matrices-from-the-finest-level"]], "Analysis of the Multigrid Iteration": [[62, "analysis-of-the-multigrid-iteration"]], "The Algorithm": [[62, "the-algorithm"]], "The Approximation Property": [[62, "the-approximation-property"]], "The Smothing Property": [[62, "the-smothing-property"]], "Optimal convergence of the V-cycle": [[62, "optimal-convergence-of-the-v-cycle"]], "Analysis of the multi-level preconditioner": [[63, "analysis-of-the-multi-level-preconditioner"]], "Nearly optimal analysis of the ML - preconditioner": [[63, "nearly-optimal-analysis-of-the-ml-preconditioner"]], "Optimal analysis of the multi-level preconditioner": [[63, "optimal-analysis-of-the-multi-level-preconditioner"]], "Multi-level Extension": [[64, "multi-level-extension"]], "Efficiently computable multi-level decomposition": [[64, "efficiently-computable-multi-level-decomposition"]], "Algorithm": [[64, "algorithm"]], "Extending boundary data": [[64, "extending-boundary-data"]], "The Hellan Herrmann Johnson Method for Kirchhoff plates": [[65, "the-hellan-herrmann-johnson-method-for-kirchhoff-plates"]], "Kirchhoff Plate equation": [[65, "kirchhoff-plate-equation"]], "Hellan-Herrmann-Johnson method": [[65, "hellan-herrmann-johnson-method"]], "Relationship between HHJ and TDNNS": [[66, "relationship-between-hhj-and-tdnns"]], "Commuting diagram for H^1 - H(\\opcurl)": [[66, "commuting-diagram-for-h-1-h-opcurl"]], "Reissner Mindlin Plates": [[67, "reissner-mindlin-plates"]], "Nonlinear Shells": [[68, "nonlinear-shells"]], "Preamble": [[70, "preamble"]], "Natural boundary conditions": [[71, "natural-boundary-conditions"]], "Essential boundary conditions": [[71, "essential-boundary-conditions"]], "3D Solid Mechanics": [[72, "d-solid-mechanics"]], "Linear elasticity": [[72, "linear-elasticity"]], "Variational formulation:": [[72, "variational-formulation"]], "Exercises": [[73, "exercises"], [99, "exercises"], [28, "exercises"]], "Get started with Netgen-Opencascade geometric modeling": [[73, "get-started-with-netgen-opencascade-geometric-modeling"]], "Experiment with CoefficientFunctions": [[73, "experiment-with-coefficientfunctions"]], "Work with GridFunctions": [[73, "work-with-gridfunctions"]], "Linear Algebra": [[73, "linear-algebra"]], "Experiments with BilienarForms and LinearForms": [[73, "experiments-with-bilienarforms-and-linearforms"]], "Computing dual norms": [[73, "computing-dual-norms"]], "Solving the Poisson Equation": [[74, "solving-the-poisson-equation"]], "Weak formulation": [[74, "weak-formulation"]], "The Sobolev space H^1, linear and bilinear forms": [[74, "the-sobolev-space-h-1-linear-and-bilinear-forms"]], "The Finite Element Method": [[74, "the-finite-element-method"]], "Poisson equation in NGSolve:": [[74, "poisson-equation-in-ngsolve"]], "Visualizing the basis functions": [[74, "visualizing-the-basis-functions"]], "Variable Coefficients": [[76, "variable-coefficients"]], "hp - Finite Elements": [[77, "hp-finite-elements"]], "Legendre Polynomials": [[77, "legendre-polynomials"]], "Error estimate of the L_2 projection": [[77, "error-estimate-of-the-l-2-projection"]], "Orthogonal polynomials on triangles": [[77, "orthogonal-polynomials-on-triangles"]], "Projection based interpolation": [[77, "projection-based-interpolation"]], "The 1D case": [[77, "the-1d-case"]], "Projection based interpolation on triangles": [[77, "projection-based-interpolation-on-triangles"]], "The Bramble-Pasciak Transformation": [[78, "the-bramble-pasciak-transformation"]], "A Small Number of Constraints": [[79, "a-small-number-of-constraints"]], "Projected preconditioner": [[79, "projected-preconditioner"]], "Dirichlet boundary conditions by penalty:": [[80, "dirichlet-boundary-conditions-by-penalty"]], "Penalty formulation for the flux:": [[80, "penalty-formulation-for-the-flux"]], "Maxwell equations:": [[80, "maxwell-equations"]], "Penalty formulation for the Stokes equation:": [[80, "penalty-formulation-for-the-stokes-equation"]], "Robust two-level methods for parameter dependent problems": [[80, "robust-two-level-methods-for-parameter-dependent-problems"]], "Robust smoothers": [[80, "robust-smoothers"]], "Robust coarse-grid correction": [[80, "robust-coarse-grid-correction"]], "Two-level analysis for Maxwell equations": [[80, "two-level-analysis-for-maxwell-equations"]], "Structure of Saddle-point Problems": [[81, "structure-of-saddle-point-problems"]], "Constrained minimization problems": [[81, "constrained-minimization-problems"]], "Examples": [[81, "examples"], [108, "examples"]], "Schur complement iteration": [[81, "schur-complement-iteration"]], "Block-preconditioning": [[81, "block-preconditioning"]], "Finite Element Error Analysis": [[83, "finite-element-error-analysis"]], "Local post-processing": [[83, "local-post-processing"]], "Error Analysis in L_2 \\times H^1": [[84, "error-analysis-in-l-2-times-h-1"]], "Finite Elements in H(\\operatorname{div})": [[85, "finite-elements-in-h-operatorname-div"]], "Piola Transformation": [[85, "piola-transformation"]], "Application of the abstract theory": [[86, "application-of-the-abstract-theory"]], "Dual mixed formulation": [[86, "dual-mixed-formulation"]], "Primal mixed formulation": [[86, "primal-mixed-formulation"]], "The function space H(\\operatorname{div})": [[87, "the-function-space-h-operatorname-div"]], "Normal-trace of functions in H(\\opdiv)": [[87, "normal-trace-of-functions-in-h-opdiv"]], "H(\\opdiv) on sub-domains": [[87, "h-opdiv-on-sub-domains"]], "Hybridization Techniques": [[88, "hybridization-techniques"]], "Friedrichs\u2019 Inequality": [[89, "friedrichs-inequality"], [92, "friedrichs-inequality"]], "The Poincar\u00e9 inequality": [[93, "the-poincare-inequality"]], "The Trace Inequality": [[94, "the-trace-inequality"]], "Numerical verification": [[94, "numerical-verification"]], "Proof of the trace inequality:": [[94, "proof-of-the-trace-inequality"]], "Additive Schwarz Methods": [[102, "additive-schwarz-methods"]], "Block-Jacobi and general additive Schwarz preconditioners": [[102, "block-jacobi-and-general-additive-schwarz-preconditioners"]], "Sub-spaces of {\\mathbb R}^N and of Hilbert-spaces": [[102, "sub-spaces-of-mathbb-r-n-and-of-hilbert-spaces"]], "The Additive Schwarz Lemma": [[102, "the-additive-schwarz-lemma"]], "The upper-bound by the overlap": [[102, "the-upper-bound-by-the-overlap"]], "Some Examples of ASM preconditioners": [[103, "some-examples-of-asm-preconditioners"]], "Diagonal preconditioner for L_2-norm": [[103, "diagonal-preconditioner-for-l-2-norm"]], "Diagonal preconditioner for the H^1 norm": [[103, "diagonal-preconditioner-for-the-h-1-norm"]], "H^1-norm with small L_2-term": [[103, "h-1-norm-with-small-l-2-term"]], "Exercise: Robust preconditioners": [[104, "exercise-robust-preconditioners"]], "Exercise A:": [[104, "exercise-a"]], "Exercise B:": [[104, "exercise-b"]], "Domain Decomposition with minimal overlap": [[105, "domain-decomposition-with-minimal-overlap"]], "Analysis of the method": [[105, "analysis-of-the-method"]], "Adding a coarse grid space": [[105, "adding-a-coarse-grid-space"]], "Graph-based mesh partitioning": [[105, "graph-based-mesh-partitioning"]], "Overlapping Domain Decomposition Methods": [[106, "overlapping-domain-decomposition-methods"]], "Experiments with overlapping DD": [[106, "experiments-with-overlapping-dd"]], "Analysis of the DD preconditioner": [[106, "analysis-of-the-dd-preconditioner"]], "Overlapping DD Methods with coarse grid": [[106, "overlapping-dd-methods-with-coarse-grid"]], "Analysis of the 2-level method:": [[106, "analysis-of-the-2-level-method"]], "Comparison to DD with minimal overlap": [[106, "comparison-to-dd-with-minimal-overlap"]], "Schwarz preconditioners for high order finite elements": [[107, "schwarz-preconditioners-for-high-order-finite-elements"]], "Overlapping blocks": [[107, "overlapping-blocks"]], "Runge Kutta Methods": [[108, "runge-kutta-methods"]], "Butcher tableaus of simple methods": [[108, "butcher-tableaus-of-simple-methods"]], "Convergence of Runge Kutta methods": [[108, "convergence-of-runge-kutta-methods"]], "Explicit methods:": [[108, "explicit-methods"]], "Diagonally implicit Runge-Kutta methods:": [[108, "diagonally-implicit-runge-kutta-methods"]], "Exercise:": [[108, "exercise"], [118, "exercise"]], "Single-step methods": [[109, "single-step-methods"]], "Simple methods based on the integral equation": [[109, "simple-methods-based-on-the-integral-equation"]], "Explicit Euler method (EE)": [[109, "explicit-euler-method-ee"]], "Implicit Euler method (IE)": [[109, "implicit-euler-method-ie"]], "Trapezoidal method": [[109, "trapezoidal-method"]], "Explicit mid-point rule (=improved Euler method = RK2 method)": [[109, "explicit-mid-point-rule-improved-euler-method-rk2-method"]], "Linear stability classification": [[109, "linear-stability-classification"]], "Stability function": [[109, "stability-function"]], "Stability conditions": [[109, "stability-conditions"]], "Single step methods and parabolic equations": [[109, "single-step-methods-and-parabolic-equations"]], "Single step methods and hyperbolic equations": [[109, "single-step-methods-and-hyperbolic-equations"]], "Exercises:": [[109, "exercises"]], "Heat Equation": [[110, "heat-equation"]], "Variational formulation in space": [[110, "variational-formulation-in-space"]], "Galerkin method in space": [[110, "galerkin-method-in-space"]], "Implicit Euler time-stepping": [[110, "implicit-euler-time-stepping"]], "Wave Equation": [[111, "wave-equation"]], "Newmark time-stepping method": [[111, "newmark-time-stepping-method"]], "Exponential Integrators for Parabolic Equations": [[112, "exponential-integrators-for-parabolic-equations"]], "Mass-lumping and Local time-stepping": [[115, "mass-lumping-and-local-time-stepping"]], "The Verlet method:": [[115, "the-verlet-method"]], "Geometry with local details:": [[115, "geometry-with-local-details"]], "Nano-optics: A ring-resonator": [[116, "nano-optics-a-ring-resonator"], [117, "nano-optics-a-ring-resonator"]], "Discontinuous Galerkin for the Wave Equation": [[118, "discontinuous-galerkin-for-the-wave-equation"]], "Testing the differential operators": [[118, "testing-the-differential-operators"]], "Efficient implementation:": [[118, "efficient-implementation"]], "Solving the wave equation:": [[118, "solving-the-wave-equation"]], "Eigenvalues of the discretized Laplace-operator": [[118, "eigenvalues-of-the-discretized-laplace-operator"]], "Friedrichs\u2019 inequality": [[99, "friedrichs-inequality"], [100, "friedrichs-inequality"]], "Poincar\u00e9 inequality": [[99, "poincare-inequality"], [100, "poincare-inequality"]], "Friedrichs\u2019 inequality in 1D": [[99, "friedrichs-inequality-in-1d"]], "Friedrichs\u2019 inequality on the square": [[99, "friedrichs-inequality-on-the-square"]], "Poincar\u00e9 inequality in 1D": [[99, "poincare-inequality-in-1d"]], "Bramble-Hilbert Lemma": [[99, "bramble-hilbert-lemma"]], "Mean-value interpolation": [[99, "mean-value-interpolation"]], "Scaled domain": [[99, "scaled-domain"]], "Fractional Sobolev spaces": [[99, "fractional-sobolev-spaces"]], "Step function": [[99, "step-function"]], "Point evaluation functional": [[99, "point-evaluation-functional"]], "Sobolev spaces": [[96, "sobolev-spaces"]], "The weak formulation of the Poisson equation": [[101, "the-weak-formulation-of-the-poisson-equation"]], "Shift theorems": [[101, "shift-theorems"]], "Experiments with norms": [[100, "experiments-with-norms"]], "Inverse estimates": [[100, "inverse-estimates"]], "Trace inequality": [[100, "trace-inequality"]], "Korn\u2019s inequality": [[100, "korn-s-inequality"]], "Trace theorems and their applications": [[97, "trace-theorems-and-their-applications"]], "Integration by parts": [[97, "integration-by-parts"]], "Sobolev spaces over sub-domains": [[97, "sobolev-spaces-over-sub-domains"]], "Extension operators": [[97, "extension-operators"]], "The trace space H^{1/2}": [[97, "the-trace-space-h-1-2"]], "Interpolation spaces": [[97, "interpolation-spaces"]], "General definition:": [[97, "general-definition"]], "The trace space on one edge of the square": [[97, "the-trace-space-on-one-edge-of-the-square"]], "Generalized derivatives": [[95, "generalized-derivatives"]], "Equivalent norms on H^1 and on sub-spaces": [[98, "equivalent-norms-on-h-1-and-on-sub-spaces"]], "Minimization problem": [[28, "minimization-problem"]], "inf-sup condition of the first-order derivative bilinear-form": [[28, "inf-sup-condition-of-the-first-order-derivative-bilinear-form"]], "Repeat the exercise in 2D.": [[28, "repeat-the-exercise-in-2d"]], "Building systems from building-blocks": [[28, "building-systems-from-building-blocks"]], "Coercive examples": [[28, "coercive-examples"]], "inf-sup condition": [[28, "inf-sup-condition"]], "complex-valued problem as real system": [[28, "complex-valued-problem-as-real-system"]], "One sup is enough": [[28, "one-sup-is-enough"]], "Second inf-sup condition means onto": [[28, "second-inf-sup-condition-means-onto"]], "The Richardson Iteration": [[46, "the-richardson-iteration"]], "Optimizing the relaxation parameter \\alpha": [[46, "optimizing-the-relaxation-parameter-alpha"]], "Experiments with the Richardson iteration": [[46, "experiments-with-the-richardson-iteration"]], "Preconditioning": [[49, "preconditioning"]], "The preconditioned Richardson iteration": [[49, "the-preconditioned-richardson-iteration"]], "The preconditioned gradient method": [[49, "the-preconditioned-gradient-method"]], "Jacobi and Gauss Seidel Preconditioners": [[49, "jacobi-and-gauss-seidel-preconditioners"]], "The Gradient Method": [[48, "the-gradient-method"]], "Non-linear dynamics": [[57, "non-linear-dynamics"]], "3D-TDNNS Elasticity and Reissner Mindlin Plate elements": [[69, "d-tdnns-elasticity-and-reissner-mindlin-plate-elements"]]}, "indexentries": {}}) \ No newline at end of file +Search.setIndex({"docnames": ["DG/Nitsche", "DG/elliptic", "DG/elliptic_stdDG", "DG/fourthorder", "DG/instationary", "DG/splitting", "DG/stationary", "DG/stokes", "FEM/erroranalysis", "FEM/finiteelements", "FEM/myFiniteElement", "FEM/nonconforming", "FEM/sytemassembling", "MPIparallel/PETSc_interface", "MPIparallel/distmesh", "MPIparallel/hdivnstsimple/NavierStokesMT", "MPIparallel/hdivnstsimple/TestConvert", "MPIparallel/hdivnstsimple/veclaplace", "MPIparallel/hdivnstsimple/veclaplace-auxiliary", "MPIparallel/intro", "MPIparallel/paralleliteration", "MPIparallel/parallelstokes", "MPIparallel/petsc", "MPIparallel/vectypes", "README", "abstracttheory/BasicProperties", "abstracttheory/Coercive", "abstracttheory/RieszRepresentation", "abstracttheory/exercises", "abstracttheory/infsup", "abstracttheory/subspaceprojection", "aposteriori/aposteriori", "aposteriori/equilibrated", "aposteriori/goaldriven", "aposteriori/residualEE", "domaindecomposition/BDDC", "domaindecomposition/FETI", "domaindecomposition/FETI-DP", "domaindecomposition/introduction", "domaindecomposition/traces", "ex20210609", "helmholtz/absorbing", "helmholtz/grating", "iFEM", "intro", "iterative/Chebyshev", "iterative/Richardson", "iterative/conjugategradients", "iterative/gradientmethod", "iterative/preconditioning", "iterative/simple", "mixed/abstract", "mixed/abstractfem", "mixed/boundary", "mixed/pardep", "mixed/secondorder", "mixed/stokes", "mixedelasticity/dynamics", "mixedelasticity/hellingerreissner", "mixedelasticity/reducedsymmetry", "mixedelasticity/tdnns", "multigrid/algorithms", "multigrid/analysisMG", "multigrid/analysisML", "multigrid/multilevel-extension", "plates/hhj", "plates/hhj-tdnns", "plates/reissnermindlin", "plates/shells", "plates/tdnnsplate", "preamble", "primal/boundary_conditions", "primal/elasticity3D", "primal/exercises", "primal/first_example", "primal/solvers", "primal/subdomains", "pversion/hpfem", "saddlepoint/bramblepasciak", "saddlepoint/fewconstraints", "saddlepoint/parameterdependent", "saddlepoint/structure", "saddlepoint/useBP", "secondorder/erroranalysis", "secondorder/erroranalysisl2h1", "secondorder/finiteelements", "secondorder/framework", "secondorder/hdiv", "secondorder/hybridization", "sobolev/Friedrichs", "sobolev/Untitled", "sobolev/Untitled1", "sobolev/Untitled2", "sobolev/poincare", "sobolev/trace", "sobolevspaces/GeneralizedDerivatives", "sobolevspaces/SobolevSpaces", "sobolevspaces/Traces", "sobolevspaces/equivalentnorms", "sobolevspaces/exercises", "sobolevspaces/experiments", "sobolevspaces/preciseweak", "subspacecorrection/asm", "subspacecorrection/examples", "subspacecorrection/exercise", "subspacecorrection/minimaldd", "subspacecorrection/overlapping", "subspacecorrection/pversion", "timedependent/ODEs/runge_kutta", "timedependent/ODEs/singlestep", "timedependent/intro/heatequation", "timedependent/intro/waveequation", "timedependent/parabolic/exponential", "timedependent/waves/Maxwell-DG", "timedependent/waves/Untitled", "timedependent/waves/lts", "timedependent/waves/ringresonator", "timedependent/waves/testpml/ringresonator", "timedependent/waves/wave-leapfrogDG"], "filenames": ["DG/Nitsche.ipynb", "DG/elliptic.ipynb", "DG/elliptic_stdDG.ipynb", "DG/fourthorder.ipynb", "DG/instationary.ipynb", "DG/splitting.ipynb", "DG/stationary.ipynb", "DG/stokes.ipynb", "FEM/erroranalysis.ipynb", "FEM/finiteelements.ipynb", "FEM/myFiniteElement.ipynb", "FEM/nonconforming.ipynb", "FEM/sytemassembling.ipynb", "MPIparallel/PETSc_interface.ipynb", "MPIparallel/distmesh.ipynb", "MPIparallel/hdivnstsimple/NavierStokesMT.ipynb", "MPIparallel/hdivnstsimple/TestConvert.ipynb", "MPIparallel/hdivnstsimple/veclaplace.ipynb", "MPIparallel/hdivnstsimple/veclaplace-auxiliary.ipynb", "MPIparallel/intro.ipynb", "MPIparallel/paralleliteration.ipynb", "MPIparallel/parallelstokes.ipynb", "MPIparallel/petsc.ipynb", "MPIparallel/vectypes.ipynb", "README.md", "abstracttheory/BasicProperties.ipynb", "abstracttheory/Coercive.ipynb", "abstracttheory/RieszRepresentation.ipynb", "abstracttheory/exercises.ipynb", "abstracttheory/infsup.ipynb", "abstracttheory/subspaceprojection.ipynb", "aposteriori/aposteriori.ipynb", "aposteriori/equilibrated.ipynb", "aposteriori/goaldriven.ipynb", "aposteriori/residualEE.ipynb", "domaindecomposition/BDDC.ipynb", "domaindecomposition/FETI.ipynb", "domaindecomposition/FETI-DP.ipynb", "domaindecomposition/introduction.ipynb", "domaindecomposition/traces.ipynb", "ex20210609.ipynb", "helmholtz/absorbing.ipynb", "helmholtz/grating.ipynb", "iFEM.ipynb", "intro.md", "iterative/Chebyshev.ipynb", "iterative/Richardson.ipynb", "iterative/conjugategradients.ipynb", "iterative/gradientmethod.ipynb", "iterative/preconditioning.ipynb", "iterative/simple.ipynb", "mixed/abstract.ipynb", "mixed/abstractfem.ipynb", "mixed/boundary.ipynb", "mixed/pardep.ipynb", "mixed/secondorder.ipynb", "mixed/stokes.ipynb", "mixedelasticity/dynamics.ipynb", "mixedelasticity/hellingerreissner.ipynb", "mixedelasticity/reducedsymmetry.ipynb", "mixedelasticity/tdnns.ipynb", "multigrid/algorithms.ipynb", "multigrid/analysisMG.ipynb", "multigrid/analysisML.ipynb", "multigrid/multilevel-extension.ipynb", "plates/hhj.ipynb", "plates/hhj-tdnns.ipynb", "plates/reissnermindlin.ipynb", "plates/shells.ipynb", "plates/tdnnsplate.ipynb", "preamble.ipynb", "primal/boundary_conditions.ipynb", "primal/elasticity3D.ipynb", "primal/exercises.ipynb", "primal/first_example.ipynb", "primal/solvers.ipynb", "primal/subdomains.ipynb", "pversion/hpfem.ipynb", "saddlepoint/bramblepasciak.ipynb", "saddlepoint/fewconstraints.ipynb", "saddlepoint/parameterdependent.ipynb", "saddlepoint/structure.ipynb", "saddlepoint/useBP.ipynb", "secondorder/erroranalysis.ipynb", "secondorder/erroranalysisl2h1.ipynb", "secondorder/finiteelements.ipynb", "secondorder/framework.ipynb", "secondorder/hdiv.ipynb", "secondorder/hybridization.ipynb", "sobolev/Friedrichs.ipynb", "sobolev/Untitled.ipynb", "sobolev/Untitled1.ipynb", "sobolev/Untitled2.ipynb", "sobolev/poincare.ipynb", "sobolev/trace.ipynb", "sobolevspaces/GeneralizedDerivatives.ipynb", "sobolevspaces/SobolevSpaces.ipynb", "sobolevspaces/Traces.ipynb", "sobolevspaces/equivalentnorms.ipynb", "sobolevspaces/exercises.ipynb", "sobolevspaces/experiments.ipynb", "sobolevspaces/preciseweak.ipynb", "subspacecorrection/asm.ipynb", "subspacecorrection/examples.ipynb", "subspacecorrection/exercise.ipynb", "subspacecorrection/minimaldd.ipynb", "subspacecorrection/overlapping.ipynb", "subspacecorrection/pversion.ipynb", "timedependent/ODEs/runge_kutta.ipynb", "timedependent/ODEs/singlestep.ipynb", "timedependent/intro/heatequation.ipynb", "timedependent/intro/waveequation.ipynb", "timedependent/parabolic/exponential.ipynb", "timedependent/waves/Maxwell-DG.ipynb", "timedependent/waves/Untitled.ipynb", "timedependent/waves/lts.ipynb", "timedependent/waves/ringresonator.ipynb", "timedependent/waves/testpml/ringresonator.ipynb", "timedependent/waves/wave-leapfrogDG.ipynb"], "titles": ["38. Nitsche\u2019s Method for boundary and interface conditions", "40. Hybrid DG for elliptic equations", "DG - Methods for elliptic problems", "42. Fourth Order Equation", "37. Instationary Transport Equation", "41. Splitting Methods for the time-dependent convection diffusion equation", "36. Stationary Transport Equation", "43. H(div)-conforming Stokes", "22. Finite element error analysis", "20. Finite Element Method", "24. Implementation of Finite Elements", "23. Non-conforming Finite Element Methods", "21. Finite element system assembling", "84. NGSolve - PETSc interface", "79. Distributed Meshes and Spaces", "<no title>", "<no title>", "<no title>", "<no title>", "78. Introduction to MPI with mpi4py", "82. Iteration methods in parallel", "85. Solving Stokes in parallel", "83. Using PETSc", "81. Consistent and Distributed Vectors", "This repository contains an interactive introduction to the Finite Element Method", "7. Basic properties", "10. Coercive variational problems and their approximation", "9. Riesz representation theorem and symmetric variational problems", "12. Exercises", "11. Inf-sup stable variational problems", "8. Projection onto subspaces", "25. A posteriori error estimates", "28. Equilibrated Residual Error Estimates", "27. Goal driven error estimates", "26. The residual error estimator", "77. BDDC - Preconditioner", "75. FETI methods", "76. FETI-DP", "72. Introduction to Non-overlapping Domain Decomposition", "73. Traces spaces", "Implement a parallel BDDC preconditioner", "Helmholtz Equation", "Grating", "An Interactive Introduction to the Finite Element Method", "An Interactive Introduction to the Finite Element Method", "54. The Chebyshev Method", "51. The Richardson Iteration", "55. Conjugate Gradients", "52. The Gradient Method", "53. Preconditioning", "50. Basic Iterative Methods", "33. Abstract Theory", "34. Abstract theory for mixed finite element methods", "31. Boundary Conditions", "35. Parameter Dependent Problems", "32. Mixed Methods for second order equations", "30. Stokes Equation", "Non-linear dynamics", "\\(\\DeclareMathOperator{\\opdiv}{div}\\)\nHellinger Reissner mixed formulation", "\\(\\DeclareMathOperator{\\opdiv}{div}\\)\n\\(\\DeclareMathOperator{\\opcurl}{curl}\\)\n\\(\\DeclareMathOperator{\\eps}{\\varepsilon}\\)\nReduced symmetry methods", "Tangential displacement normal normal stress continuous finite elements", "62. Multigrid and Multilevel Methods", "64. Analysis of the Multigrid Iteration", "63. Analysis of the multi-level preconditioner", "65. Multi-level Extension", "The Hellan Herrmann Johnson Method for Kirchhoff plates", "Relationship between HHJ and TDNNS", "Reissner Mindlin Plates", "Nonlinear Shells", "3D-TDNNS Elasticity and Reissner Mindlin Plate elements", "Preamble", "2. Boundary Conditions", "5. 3D Solid Mechanics", "6. Exercises", "1. Solving the Poisson Equation", "4. Iterative Solvers", "3. Variable Coefficients", "29. hp - Finite Elements", "67. The Bramble-Pasciak Transformation", "68. A Small Number of Constraints", "70. Parameter Dependent Problems", "66. Structure of Saddle-point Problems", "<no title>", "47. Finite Element Error Analysis", "48. Error Analysis in \\(L_2 \\times H^1\\)", "46. Finite Elements in \\(H(\\operatorname{div})\\)", "44. Application of the abstract theory", "45. The function space \\(H(\\operatorname{div})\\)", "49. Hybridization Techniques", "Friedrichs\u2019 Inequality", "<no title>", "<no title>", "Friedrichs\u2019 Inequality", "The Poincar\u00e9 inequality", "The Trace Inequality", "13. Generalized derivatives", "14. Sobolev spaces", "15. Trace theorems and their applications", "16. Equivalent norms on \\(H^1\\) and on sub-spaces", "19. Exercises", "18. Experiments with norms", "17. The weak formulation of the Poisson equation", "56. Additive Schwarz Methods", "57. Some Examples of ASM preconditioners", "61. Exercise: Robust preconditioners", "59. Domain Decomposition with minimal overlap", "60. Overlapping Domain Decomposition Methods", "58. Schwarz preconditioners for high order finite elements", "Runge Kutta Methods", "Single-step methods", "Heat Equation", "Wave Equation", "Exponential Integrators for Parabolic Equations", "<no title>", "<no title>", "Mass-lumping and Local time-stepping", "Nano-optics: A ring-resonator", "Nano-optics: A ring-resonator", "Discontinuous Galerkin for the Wave Equation"], "terms": {"from": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 29, 31, 32, 34, 35, 36, 37, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 60, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 93, 94, 95, 97, 98, 100, 102, 103, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118], "netgen": [0, 1, 2, 3, 4, 5, 6, 7, 14, 15, 17, 18, 21, 35, 36, 37, 40, 41, 42, 44, 45, 53, 55, 56, 60, 61, 62, 64, 65, 67, 68, 70, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 88, 100, 105, 110, 111, 112, 115, 118], "occ": [0, 15, 17, 18, 21, 72, 75, 76, 82, 100, 105, 110, 111, 112, 115, 118], "import": [0, 1, 2, 3, 4, 5, 6, 7, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 26, 35, 36, 37, 40, 41, 42, 44, 45, 46, 47, 48, 49, 52, 53, 55, 56, 60, 61, 62, 64, 65, 67, 68, 71, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 86, 88, 89, 93, 94, 96, 100, 103, 105, 106, 107, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118], "ngsolv": [0, 1, 2, 3, 4, 5, 6, 7, 10, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 35, 36, 37, 40, 41, 42, 45, 46, 47, 48, 49, 53, 55, 56, 60, 61, 62, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 88, 89, 93, 94, 100, 103, 105, 106, 107, 110, 111, 112, 113, 114, 115, 116, 117, 118], "webgui": [0, 1, 2, 3, 4, 5, 6, 7, 10, 13, 14, 15, 16, 17, 18, 20, 21, 22, 24, 35, 36, 37, 40, 41, 44, 45, 46, 47, 53, 55, 56, 61, 62, 64, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 88, 89, 93, 94, 100, 105, 106, 107, 110, 111, 112, 113, 115, 116, 117, 118], "draw": [0, 1, 2, 3, 4, 5, 6, 7, 10, 13, 14, 15, 16, 17, 18, 20, 21, 22, 35, 36, 37, 40, 41, 42, 44, 45, 46, 47, 53, 55, 56, 60, 61, 62, 64, 65, 67, 68, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 88, 89, 93, 94, 100, 105, 106, 107, 110, 111, 112, 113, 115, 116, 117, 118], "mesh": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 13, 15, 16, 17, 18, 20, 21, 22, 23, 31, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 53, 55, 56, 60, 61, 62, 63, 64, 65, 67, 68, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 86, 88, 89, 93, 94, 97, 100, 103, 106, 107, 110, 111, 112, 113, 115, 116, 117, 118], "unit_squar": [0, 1, 2, 3, 4, 5, 6, 10, 13, 14, 16, 20, 22, 23, 40, 41, 45, 46, 47, 48, 49, 53, 55, 56, 61, 62, 64, 65, 67, 71, 74, 81, 83, 85, 88, 100, 103, 105, 106, 107, 110, 111, 112, 115, 118], "generatemesh": [0, 1, 2, 3, 4, 5, 6, 7, 10, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 35, 36, 37, 40, 41, 42, 45, 46, 47, 48, 49, 53, 55, 56, 60, 61, 62, 64, 65, 67, 68, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 88, 100, 103, 105, 106, 107, 110, 111, 112, 113, 115, 118], "maxh": [0, 1, 2, 3, 4, 5, 6, 7, 10, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 35, 36, 37, 40, 41, 42, 45, 46, 47, 48, 49, 53, 55, 56, 60, 61, 62, 64, 65, 67, 68, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 88, 100, 103, 105, 106, 107, 110, 111, 112, 113, 115, 118], "0": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 115, 116, 117, 118], "05": [0, 6, 7, 15, 17, 18, 20, 21, 36, 37, 40, 41, 46, 56, 61, 74, 75, 76, 78, 80, 81, 82, 88, 103, 105, 107, 110, 111, 112, 116, 117, 118], "A": [0, 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 45, 46, 47, 48, 49, 50, 51, 52, 54, 58, 59, 60, 61, 62, 63, 67, 70, 71, 73, 74, 76, 77, 78, 80, 81, 82, 88, 96, 98, 100, 101, 102, 103, 105, 106, 108, 109, 110, 111, 112, 115, 118], "penalti": [0, 1, 37, 67, 74], "approxim": [0, 11, 12, 25, 31, 34, 38, 44, 45, 46, 49, 52, 60, 61, 63, 65, 74, 75, 77, 80, 83, 94, 106, 108, 109, 110, 111, 112, 115], "dirichlet": [0, 1, 3, 5, 7, 10, 11, 12, 13, 17, 18, 20, 21, 26, 29, 31, 34, 35, 36, 37, 39, 40, 41, 42, 53, 56, 60, 61, 64, 65, 67, 68, 71, 72, 74, 75, 76, 77, 78, 79, 81, 82, 86, 88, 89, 97, 100, 101, 103, 104, 105, 106, 110], "u": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 88, 89, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 115, 118], "u_d": [0, 8, 12, 39, 51, 53, 71, 72, 80, 81, 86, 101, 110], "i": [0, 1, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 83, 84, 85, 86, 87, 88, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 107, 108, 109, 110, 111, 112, 115, 116, 117, 118], "int_": [0, 1, 3, 4, 6, 8, 11, 12, 26, 27, 28, 32, 34, 36, 38, 39, 40, 41, 49, 51, 52, 53, 54, 55, 60, 63, 65, 68, 71, 72, 73, 74, 76, 77, 79, 80, 81, 83, 84, 85, 86, 87, 88, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 108, 109, 110, 118], "omega": [0, 1, 4, 6, 8, 9, 11, 12, 25, 26, 27, 28, 31, 32, 34, 38, 39, 41, 42, 49, 51, 53, 55, 56, 59, 63, 64, 71, 72, 73, 74, 76, 81, 83, 84, 86, 87, 88, 89, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 109, 110, 111], "nabla": [0, 1, 3, 5, 6, 11, 12, 26, 27, 28, 29, 31, 32, 34, 36, 37, 38, 39, 40, 41, 47, 48, 49, 51, 53, 54, 55, 56, 59, 60, 63, 65, 66, 67, 68, 71, 72, 73, 74, 76, 77, 80, 81, 83, 84, 85, 86, 87, 89, 92, 93, 94, 97, 98, 99, 100, 101, 103, 104, 106, 109, 110, 118], "v": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 64, 65, 66, 67, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 115, 118], "gamma_d": [0, 8, 11, 12, 53, 54, 71, 72, 80, 81, 86, 89, 92, 98, 100, 101, 104], "alpha": [0, 1, 2, 3, 5, 8, 9, 11, 12, 28, 31, 47, 48, 49, 51, 71, 77, 78, 80, 95, 96, 98, 99, 101, 103, 105, 118], "f": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 17, 20, 21, 22, 23, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 63, 65, 67, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 88, 97, 99, 101, 105, 107, 108, 109, 110, 111, 118], "qquad": [0, 6, 8, 9, 11, 12, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 39, 41, 45, 47, 48, 49, 50, 51, 55, 60, 61, 62, 63, 64, 65, 71, 72, 74, 77, 79, 80, 81, 85, 86, 89, 92, 94, 95, 97, 98, 99, 100, 101, 102, 103, 108, 109, 110, 111, 112], "foral": [0, 8, 9, 11, 12, 25, 26, 27, 28, 29, 30, 32, 33, 34, 38, 39, 47, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63, 65, 67, 71, 73, 74, 77, 79, 80, 81, 83, 86, 87, 88, 89, 92, 95, 97, 98, 99, 100, 101, 102, 106, 109, 110, 111, 112], "fe": [0, 1, 2, 4, 5, 6, 10, 13, 14, 20, 22, 23, 31, 35, 36, 37, 40, 41, 42, 45, 46, 47, 48, 49, 61, 62, 64, 68, 71, 72, 74, 75, 76, 79, 80, 86, 89, 93, 94, 100, 103, 105, 106, 107, 110, 111, 112, 115, 118], "h1": [0, 3, 10, 13, 14, 20, 21, 22, 23, 35, 36, 37, 40, 41, 42, 45, 46, 47, 48, 49, 53, 56, 61, 62, 64, 65, 67, 68, 71, 72, 74, 75, 76, 81, 82, 86, 89, 93, 94, 100, 103, 105, 106, 107, 110, 111, 112, 115], "order": [0, 1, 2, 4, 5, 6, 7, 10, 11, 13, 14, 15, 16, 17, 18, 21, 22, 23, 32, 38, 41, 42, 45, 46, 47, 48, 49, 53, 56, 60, 61, 62, 64, 65, 67, 68, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 88, 89, 93, 94, 96, 97, 98, 100, 102, 103, 105, 106, 108, 109, 110, 111, 112, 113, 115, 116, 117, 118], "2": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 59, 60, 61, 62, 63, 64, 65, 67, 68, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 93, 94, 95, 96, 98, 99, 100, 101, 102, 103, 104, 105, 107, 108, 109, 110, 111, 112, 113, 115, 116, 118], "tnt": [0, 2, 10, 13, 16, 20, 21, 22, 23, 35, 36, 37, 40, 41, 45, 46, 47, 48, 49, 61, 62, 64, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 89, 93, 94, 100, 103, 105, 106, 107, 110, 111, 112, 113, 115, 118], "pen": 0, "100": [0, 5, 15, 20, 36, 37, 46, 62, 75, 80, 86, 105, 107, 110, 111, 112, 113, 115, 118], "bilinearform": [0, 1, 2, 3, 4, 5, 6, 7, 10, 13, 16, 17, 18, 20, 21, 22, 35, 36, 37, 40, 41, 42, 45, 46, 47, 48, 49, 53, 55, 56, 60, 61, 62, 64, 65, 67, 68, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 86, 88, 89, 93, 94, 100, 103, 105, 106, 107, 110, 111, 112, 113, 115, 118], "grad": [0, 1, 2, 3, 4, 5, 6, 7, 10, 13, 20, 21, 22, 35, 36, 37, 40, 41, 42, 45, 46, 47, 48, 49, 53, 56, 61, 62, 64, 65, 67, 68, 71, 72, 74, 75, 76, 78, 79, 81, 82, 83, 86, 89, 93, 94, 100, 103, 105, 106, 107, 110, 111, 112, 115, 118], "dx": [0, 1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 13, 16, 17, 18, 20, 21, 22, 23, 25, 26, 27, 28, 34, 35, 36, 37, 39, 40, 41, 42, 45, 46, 47, 48, 49, 53, 55, 56, 61, 62, 63, 64, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 86, 88, 89, 93, 94, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 118], "d": [0, 1, 2, 5, 6, 7, 8, 11, 12, 13, 17, 18, 22, 25, 26, 27, 30, 32, 34, 35, 36, 37, 41, 42, 44, 45, 49, 51, 53, 55, 56, 57, 58, 59, 61, 62, 63, 64, 70, 71, 72, 73, 74, 77, 79, 80, 81, 85, 86, 87, 89, 92, 94, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110, 112, 118], "assembl": [0, 1, 2, 3, 4, 5, 6, 7, 10, 13, 16, 17, 18, 20, 21, 22, 23, 35, 36, 37, 40, 41, 42, 44, 45, 46, 47, 48, 49, 53, 55, 56, 60, 61, 62, 64, 65, 67, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 86, 88, 89, 93, 94, 100, 103, 105, 106, 107, 110, 111, 112, 113, 115, 118], "linearform": [0, 1, 2, 3, 4, 5, 6, 7, 10, 13, 16, 17, 20, 22, 23, 35, 36, 37, 40, 41, 42, 45, 46, 47, 48, 49, 53, 55, 56, 60, 61, 65, 67, 71, 72, 74, 75, 76, 79, 80, 81, 83, 86, 88, 93, 105, 107, 110, 111], "10": [0, 1, 2, 4, 5, 17, 18, 20, 36, 37, 38, 40, 41, 42, 45, 46, 47, 48, 49, 53, 56, 60, 61, 62, 63, 71, 75, 78, 79, 80, 81, 82, 88, 89, 93, 94, 102, 107, 111, 112, 115, 117, 118], "gfu": [0, 1, 2, 4, 5, 6, 7, 10, 13, 14, 16, 17, 18, 20, 21, 22, 23, 35, 36, 37, 40, 41, 42, 45, 46, 47, 48, 49, 53, 55, 56, 61, 62, 64, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 86, 88, 89, 93, 94, 100, 105, 107, 110, 111, 112, 115, 116, 117, 118], "gridfunct": [0, 1, 2, 3, 4, 5, 6, 7, 10, 13, 14, 16, 17, 18, 20, 21, 22, 23, 35, 36, 37, 40, 41, 42, 45, 46, 47, 48, 49, 53, 55, 56, 60, 61, 62, 64, 65, 67, 68, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 88, 89, 93, 94, 100, 103, 105, 106, 107, 110, 111, 112, 113, 115, 118], "vec": [0, 1, 2, 3, 4, 5, 6, 7, 10, 13, 14, 16, 17, 18, 20, 21, 22, 23, 35, 36, 37, 40, 41, 42, 45, 46, 47, 48, 49, 53, 55, 56, 60, 61, 62, 64, 65, 67, 68, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 88, 89, 93, 94, 100, 103, 105, 106, 107, 110, 111, 112, 113, 115, 116, 117, 118], "data": [0, 1, 2, 3, 4, 5, 6, 7, 10, 13, 14, 16, 17, 18, 19, 20, 21, 31, 32, 35, 36, 37, 38, 39, 40, 41, 42, 45, 46, 47, 48, 49, 53, 55, 56, 60, 61, 62, 65, 67, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 86, 88, 89, 93, 94, 100, 105, 106, 107, 110, 111, 112, 113, 115, 116, 117, 118], "mat": [0, 1, 2, 3, 5, 6, 7, 10, 13, 16, 17, 18, 20, 21, 22, 35, 36, 37, 40, 41, 42, 45, 46, 47, 48, 49, 53, 55, 56, 60, 61, 62, 64, 65, 67, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 86, 88, 89, 93, 94, 100, 103, 105, 106, 107, 110, 111, 112, 113, 115, 116, 117, 118], "invers": [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 16, 17, 21, 35, 36, 37, 40, 41, 42, 49, 50, 53, 55, 56, 60, 61, 63, 64, 65, 67, 71, 74, 75, 76, 78, 79, 81, 82, 83, 86, 88, 89, 93, 94, 102, 103, 105, 106, 110, 111, 112, 113, 115, 118], "print": [0, 1, 2, 4, 10, 14, 17, 19, 20, 21, 22, 23, 36, 37, 40, 44, 45, 46, 48, 49, 53, 60, 61, 64, 65, 68, 74, 75, 76, 78, 79, 80, 82, 85, 89, 93, 94, 100, 103, 105, 106, 107, 112, 113, 115, 116, 117, 118], "error": [0, 11, 13, 20, 21, 22, 26, 27, 29, 43, 45, 46, 47, 48, 49, 62, 65, 69, 73, 74, 80, 88, 102, 106, 112], "bc": [0, 7, 35, 36, 37, 42, 53, 60, 68, 71, 78, 82, 86, 105, 118], "sqrt": [0, 28, 29, 32, 39, 45, 47, 48, 49, 50, 62, 63, 77, 78, 81, 85, 89, 94, 97, 100, 108, 109, 116], "integr": [0, 1, 6, 8, 10, 11, 12, 14, 23, 32, 33, 34, 43, 52, 53, 55, 63, 73, 74, 77, 81, 85, 86, 87, 88, 89, 93, 94, 95, 100, 103, 108, 110, 115, 118], "052752210661407825": 0, "exercis": [0, 10, 11, 26, 29, 32, 39, 43, 44, 49, 71, 72, 75, 76, 77, 97, 103, 105, 107], "how": [0, 10, 19, 22, 28, 38, 45, 46, 71, 75, 99], "doe": [0, 3, 8, 14, 20, 23, 29, 44, 46, 47, 62, 71, 74, 81, 94, 97, 99, 100, 105, 106, 115], "depend": [0, 4, 8, 11, 19, 29, 31, 32, 44, 49, 52, 60, 63, 73, 75, 77, 94, 99, 100, 103, 107, 109, 110, 116, 117], "paramet": [0, 1, 8, 10, 12, 36, 43, 44, 45, 48, 49, 59, 67, 68, 74, 79, 81, 88, 94, 96], "get": [0, 3, 10, 14, 23, 31, 32, 34, 36, 38, 44, 45, 47, 49, 51, 52, 54, 59, 62, 63, 64, 74, 77, 81, 83, 85, 86, 87, 89, 97, 100, 102, 103, 106, 107, 118], "reduc": [0, 12, 14, 28, 38, 43, 46, 47, 48, 62, 65, 71, 79, 98, 109, 111], "when": [0, 24, 38, 45, 46, 61, 95], "space": [0, 3, 6, 8, 9, 10, 11, 13, 25, 26, 27, 28, 29, 30, 32, 35, 36, 37, 38, 45, 51, 52, 53, 54, 55, 58, 59, 60, 61, 62, 63, 64, 67, 71, 73, 76, 77, 79, 80, 81, 83, 85, 86, 88, 95, 100, 101, 103, 106, 107, 111, 112, 118], "enrichr": 0, "modifi": [0, 39, 45, 46], "right": [0, 5, 6, 8, 10, 11, 20, 22, 23, 26, 28, 29, 32, 33, 34, 35, 36, 39, 42, 45, 46, 47, 49, 50, 51, 53, 59, 60, 62, 63, 66, 67, 71, 74, 76, 77, 78, 79, 80, 81, 86, 87, 88, 89, 93, 95, 96, 97, 98, 99, 100, 101, 102, 103, 109, 110, 111, 118], "hand": [0, 8, 10, 20, 22, 23, 29, 32, 33, 34, 35, 39, 62, 63, 71, 74, 79, 80, 86, 88, 95, 98, 99, 101, 102, 109, 118], "side": [0, 8, 10, 11, 20, 22, 23, 28, 29, 32, 33, 34, 35, 39, 62, 63, 71, 74, 76, 77, 79, 86, 88, 95, 97, 98, 99, 100, 101, 102, 103, 109, 118], "set": [0, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 16, 17, 18, 21, 23, 25, 26, 28, 32, 35, 36, 37, 39, 46, 49, 51, 52, 54, 56, 60, 61, 62, 64, 68, 71, 73, 74, 77, 78, 80, 82, 84, 85, 88, 95, 96, 98, 101, 102, 103, 105, 106, 110, 111, 112, 113, 115, 118], "x": [0, 4, 5, 6, 8, 9, 10, 13, 14, 15, 16, 17, 18, 21, 22, 26, 28, 34, 35, 36, 37, 39, 40, 41, 45, 46, 47, 48, 49, 50, 53, 55, 56, 60, 61, 62, 64, 65, 67, 71, 72, 73, 74, 75, 76, 77, 78, 81, 82, 83, 85, 86, 88, 89, 93, 94, 95, 96, 97, 98, 99, 100, 101, 105, 106, 107, 109, 110, 111, 112, 113, 115, 118], "y": [0, 4, 5, 6, 7, 9, 10, 14, 15, 16, 17, 18, 21, 28, 35, 36, 37, 39, 40, 41, 42, 45, 46, 47, 48, 49, 50, 53, 61, 64, 68, 72, 73, 74, 76, 77, 78, 81, 82, 85, 89, 93, 94, 97, 98, 99, 105, 106, 107, 108, 109, 110, 111, 112, 113, 115, 118], "partial": [0, 1, 3, 4, 5, 6, 8, 11, 12, 26, 31, 32, 34, 36, 38, 39, 40, 41, 44, 50, 51, 52, 53, 54, 55, 56, 59, 60, 63, 64, 65, 71, 73, 74, 76, 77, 81, 84, 86, 87, 89, 92, 94, 95, 96, 97, 98, 100, 101, 105, 110, 111, 115, 118], "frac": [0, 1, 4, 5, 8, 11, 12, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 39, 40, 41, 45, 46, 47, 48, 49, 51, 52, 53, 54, 59, 62, 63, 64, 67, 71, 73, 74, 76, 77, 79, 80, 81, 83, 84, 86, 87, 94, 95, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 108, 109, 110, 111, 112, 115, 118], "n": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 29, 30, 32, 34, 38, 39, 41, 42, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 60, 61, 63, 65, 66, 67, 68, 71, 72, 74, 76, 77, 79, 81, 84, 86, 87, 88, 93, 94, 95, 96, 97, 100, 101, 103, 105, 109, 110, 112, 113, 115, 118], "p": [0, 1, 7, 8, 9, 21, 25, 30, 31, 32, 40, 45, 47, 48, 49, 51, 52, 54, 56, 73, 77, 78, 79, 80, 81, 82, 83, 84, 85, 88, 96, 98, 99, 100, 103, 106, 107, 115, 118], "h": [0, 1, 2, 3, 5, 8, 11, 16, 21, 28, 31, 32, 33, 34, 36, 38, 40, 43, 44, 46, 51, 53, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 71, 72, 73, 75, 76, 77, 80, 81, 82, 83, 86, 88, 89, 92, 94, 95, 96, 99, 100, 101, 104, 105, 106, 109, 110, 113, 118], "4": [0, 5, 7, 8, 10, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 30, 36, 37, 38, 45, 46, 53, 61, 63, 64, 65, 68, 73, 74, 75, 77, 78, 80, 81, 82, 85, 88, 100, 101, 102, 103, 105, 107, 108, 111, 112, 118], "5": [0, 2, 3, 4, 5, 6, 7, 11, 15, 17, 18, 20, 21, 32, 35, 36, 37, 41, 42, 45, 46, 53, 56, 60, 61, 62, 68, 72, 74, 75, 76, 77, 78, 80, 81, 82, 88, 89, 93, 94, 100, 105, 107, 109, 110, 111, 112, 113, 115, 118], "specialcf": [0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 21, 55, 60, 65, 67, 68, 82, 88, 113, 116, 118], "mesh_siz": [0, 1, 2, 3, 5, 7, 21, 82], "normal": [0, 1, 2, 3, 4, 5, 6, 7, 11, 16, 17, 18, 32, 34, 38, 52, 55, 58, 65, 67, 68, 81, 85, 86, 88, 89, 93, 94, 97, 100, 108, 113, 118], "dim": [0, 7, 10, 15, 17, 18, 23, 29, 55, 61, 64, 68, 74, 76, 82, 88, 100, 105, 106, 115, 118], "skeleton": [0, 2, 6, 36, 118], "true": [0, 1, 2, 3, 4, 5, 6, 7, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 26, 27, 31, 33, 34, 40, 41, 42, 45, 46, 48, 49, 51, 52, 53, 60, 61, 64, 65, 67, 68, 71, 72, 74, 78, 79, 80, 81, 82, 85, 88, 89, 97, 98, 100, 101, 105, 106, 107, 110, 111, 112, 113, 115, 118], "sparsecholeski": [0, 1, 2, 5, 36, 37, 42, 60, 75, 82, 100, 106, 118], "3": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 36, 37, 41, 42, 45, 46, 53, 56, 60, 61, 63, 64, 68, 71, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 85, 86, 88, 89, 93, 94, 95, 98, 100, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 115, 116, 117, 118], "421484801697196e": [], "06": [0, 20, 36, 37, 46, 61, 74, 75, 78, 80, 81, 82, 88, 107, 112], "The": [0, 1, 3, 4, 5, 6, 8, 9, 10, 12, 13, 20, 22, 23, 24, 25, 26, 27, 29, 30, 32, 33, 35, 36, 37, 38, 39, 41, 47, 50, 51, 52, 53, 55, 56, 58, 59, 61, 63, 64, 67, 70, 71, 72, 73, 75, 76, 79, 80, 81, 83, 84, 85, 86, 88, 95, 96, 98, 100, 103, 105, 106, 107, 108, 109, 110, 112, 118], "bilinear": [0, 1, 4, 8, 11, 12, 25, 26, 27, 29, 32, 33, 35, 36, 37, 40, 46, 49, 51, 54, 60, 66, 71, 73, 76, 80, 81, 86, 94, 98, 101, 103, 106, 118], "form": [0, 1, 4, 8, 11, 12, 23, 25, 26, 27, 29, 32, 33, 35, 36, 37, 39, 40, 41, 44, 46, 49, 51, 52, 53, 54, 56, 60, 66, 71, 73, 76, 77, 79, 80, 81, 85, 86, 88, 94, 97, 98, 101, 102, 103, 106, 110, 118], "coerciv": [0, 1, 8, 11, 29, 34, 43, 44, 51, 98, 101], "w": [0, 3, 4, 5, 8, 9, 11, 17, 18, 20, 25, 26, 28, 29, 30, 31, 33, 39, 40, 45, 47, 49, 51, 61, 62, 65, 66, 67, 68, 71, 73, 77, 78, 79, 85, 95, 97, 98, 101, 102, 106, 110, 115, 116, 117, 118], "r": [0, 5, 7, 8, 9, 11, 12, 15, 17, 18, 20, 21, 23, 25, 26, 28, 29, 30, 32, 33, 34, 35, 36, 37, 40, 42, 44, 45, 46, 47, 48, 49, 50, 56, 61, 66, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 85, 86, 89, 92, 94, 95, 96, 97, 98, 99, 100, 101, 103, 106, 107, 109, 110, 112, 118], "t": [0, 1, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 21, 23, 25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 44, 45, 47, 48, 49, 50, 52, 54, 55, 59, 60, 61, 62, 63, 64, 65, 67, 68, 71, 72, 74, 77, 78, 79, 80, 81, 82, 84, 85, 86, 88, 93, 94, 97, 100, 102, 103, 105, 106, 108, 109, 110, 111, 112, 115, 116, 117, 118], "norm": [0, 11, 15, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 43, 44, 46, 48, 49, 50, 51, 60, 62, 63, 64, 72, 74, 77, 80, 81, 82, 84, 87, 93, 94, 96, 97, 101, 105, 106, 112, 113], "induc": [0, 26, 81, 103], "suffici": [0, 1, 8, 29], "larg": [0, 1, 12, 28, 29, 31, 49, 50, 62, 74, 75, 76, 80, 105, 109, 115], "we": [0, 1, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 67, 71, 74, 75, 77, 78, 79, 80, 81, 83, 84, 85, 86, 87, 88, 89, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 108, 109, 110, 111, 112, 115, 118], "check": [0, 30, 44, 74, 96, 105, 118], "posit": [0, 25, 28, 32, 35, 48, 49, 50, 61, 62, 65, 67, 75, 76, 81, 88, 89, 96, 98, 100, 101, 105, 109], "definit": [0, 8, 9, 11, 25, 27, 28, 29, 30, 34, 35, 48, 49, 50, 54, 61, 63, 65, 75, 77, 81, 87, 88, 95, 96, 100, 101, 102, 103, 106, 107, 109, 110], "comput": [0, 4, 12, 22, 23, 24, 26, 31, 32, 33, 34, 38, 39, 44, 45, 47, 49, 53, 61, 68, 70, 71, 74, 75, 79, 81, 85, 88, 94, 95, 99, 100, 105, 107, 108, 110, 118], "few": [0, 24, 38, 44, 45, 46, 77, 80, 81, 94, 100], "smallest": [0, 23, 25, 32, 45, 94, 100, 103, 105], "eigenvalu": [0, 39, 45, 46, 49, 62, 81, 89, 93, 94, 97, 100, 103, 105, 106, 107, 109], "lambda": [0, 25, 32, 36, 39, 45, 46, 47, 49, 53, 54, 62, 72, 76, 81, 83, 86, 89, 93, 94, 97, 98, 100, 102, 109, 118], "where": [0, 3, 6, 8, 9, 11, 19, 25, 32, 33, 34, 35, 37, 40, 49, 52, 54, 59, 60, 61, 62, 63, 64, 66, 67, 71, 74, 76, 77, 79, 80, 81, 97, 99, 100, 102, 103, 105, 106, 109, 110, 112, 115, 118], "matrix": [0, 3, 4, 8, 9, 10, 11, 12, 13, 20, 22, 25, 28, 35, 36, 37, 40, 46, 47, 48, 49, 50, 51, 59, 60, 61, 62, 64, 65, 71, 74, 75, 79, 80, 81, 88, 93, 102, 103, 105, 106, 108, 109, 110, 112, 115, 116, 117, 118], "defin": [0, 4, 8, 9, 10, 11, 12, 14, 19, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 39, 40, 45, 46, 48, 50, 52, 56, 57, 60, 61, 62, 63, 64, 73, 74, 77, 81, 85, 87, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 109, 112, 117, 118], "solver": [0, 1, 5, 13, 17, 22, 23, 38, 47, 80, 81, 88, 89, 93, 94, 100, 105, 106, 118], "pinvit": [0, 89, 93, 94, 118], "bfnorm": 0, "eval": [0, 89, 93, 94, 100], "evec": [0, 89, 93, 94, 100, 112], "pre": [0, 13, 17, 18, 20, 21, 36, 37, 40, 44, 45, 47, 49, 61, 72, 74, 75, 78, 80, 81, 82, 88, 89, 93, 94, 100, 105, 106, 107], "num": [0, 14, 89, 93, 94, 100, 105, 118], "printrat": [0, 13, 17, 18, 20, 21, 36, 37, 40, 61, 75, 79, 80, 81, 82, 88, 89, 93, 94, 100, 107], "fals": [0, 1, 4, 5, 10, 17, 18, 21, 36, 37, 45, 47, 64, 72, 74, 75, 79, 80, 82, 93, 94, 100, 106, 107, 113, 115, 116, 117, 118], "986399": [], "988057": [], "988341": [], "990988": [], "995908": [], "extend": [0, 10, 11, 25, 39, 51, 71, 87, 95, 97, 98, 99, 109], "non": [0, 1, 2, 5, 8, 9, 10, 26, 27, 29, 34, 35, 36, 51, 52, 54, 58, 60, 61, 62, 63, 68, 71, 74, 81, 87, 88, 96, 97, 98, 101, 102, 103, 105, 106, 108, 109, 118], "homogen": [0, 31, 34, 39, 53, 71, 74, 79, 112], "consid": [0, 3, 6, 8, 11, 26, 28, 29, 31, 32, 39, 41, 51, 55, 74, 79, 80, 81, 86, 97, 99, 103, 105, 109, 110, 111, 112], "an": [0, 3, 4, 5, 8, 9, 10, 11, 12, 13, 25, 26, 27, 28, 29, 30, 31, 32, 35, 38, 39, 40, 45, 46, 47, 49, 52, 53, 56, 58, 59, 60, 62, 63, 65, 70, 73, 74, 77, 78, 79, 80, 81, 84, 85, 88, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 109], "electr": [0, 74], "motor": 0, "rotat": [0, 57, 59, 60, 65, 67, 68], "rotor": 0, "fix": [0, 10, 26, 30, 37, 38, 46, 60, 72, 74, 77, 79, 94, 102, 103, 106], "part": [0, 1, 6, 14, 32, 34, 53, 55, 59, 63, 71, 77, 80, 81, 86, 87, 88, 95, 96, 98, 101, 102, 103, 109, 110, 118], "ar": [0, 1, 4, 5, 6, 8, 9, 10, 11, 12, 14, 19, 20, 22, 23, 25, 26, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 74, 75, 76, 77, 79, 80, 81, 84, 85, 86, 87, 88, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 107, 108, 109, 112, 118], "independ": [0, 9, 11, 25, 38, 62, 77, 80, 97, 99, 103, 106, 118], "continu": [0, 1, 6, 8, 11, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 51, 52, 54, 56, 58, 59, 62, 63, 66, 74, 76, 77, 80, 81, 84, 85, 86, 87, 88, 89, 92, 94, 96, 97, 98, 99, 100, 101, 105, 106, 118], "achiev": [0, 45], "squar": [0, 8, 26, 39, 49, 74, 98, 100, 101, 103, 105], "moveto": [0, 76, 105, 115, 118], "rectangl": [0, 15, 17, 18, 35, 36, 37, 76, 79, 94, 100, 105, 109, 115, 118], "1": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 71, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 92, 93, 94, 95, 96, 99, 100, 101, 102, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 115, 116, 117, 118], "face": [0, 1, 6, 10, 15, 17, 18, 21, 52, 60, 72, 74, 75, 76, 82, 85, 88, 100, 105, 107, 115, 118], "circo": 0, "circl": [0, 15, 17, 18, 76, 79, 115, 118], "circ": [0, 8, 9, 11, 34, 97, 99, 103, 118], "bar": [0, 76, 86], "45": [0, 14, 36, 37, 46, 74, 75, 80, 81, 82, 105, 107], "edg": [0, 1, 2, 3, 6, 9, 10, 11, 15, 17, 18, 31, 32, 34, 52, 57, 60, 66, 72, 74, 76, 77, 80, 84, 85, 88, 100, 105, 107], "name": [0, 10, 12, 15, 17, 18, 21, 29, 32, 36, 60, 65, 67, 72, 73, 74, 75, 76, 82, 98, 100, 102, 103, 105, 115, 117], "outer": [0, 72, 75, 97, 118], "gammai": 0, "gammao": 0, "inner": [0, 3, 11, 20, 25, 26, 27, 34, 46, 47, 49, 50, 62, 63, 74, 77, 80, 81, 95, 96, 98, 99, 100], "both": [0, 14, 23, 27, 28, 29, 30, 31, 39, 47, 51, 52, 59, 61, 62, 63, 66, 74, 76, 77, 80, 81, 84, 96, 97, 98, 100, 103, 109, 118], "compound": 0, "occgeometri": [0, 15, 17, 18, 21, 72, 75, 76, 82, 100, 105, 115, 118], "curv": [0, 7, 11, 15, 17, 18, 42, 58, 62, 65, 68, 72, 74, 75, 76, 78, 86, 118], "getmateri": [0, 36, 37, 42, 74, 76, 105], "getboundari": [0, 36, 37, 74, 76, 105], "default": [0, 14, 19, 35, 36, 37, 71, 74, 76, 86, 105], "def": [0, 2, 3, 7, 16, 17, 18, 40, 45, 47, 60, 61, 64, 65, 67, 68, 72, 78, 100, 106, 107, 109, 112], "meshrot": 0, "angl": [0, 8, 101], "unsetdeform": [0, 74], "deform": [0, 57, 72, 74, 79, 100, 110, 111, 115], "vectorh1": [0, 16, 18, 21, 56, 72, 78, 79, 82, 100], "rotmat": 0, "cf": [0, 10, 17, 18, 35, 36, 37, 72, 74], "co": [0, 30, 39, 45, 74, 97, 99, 101, 118], "sin": [0, 6, 39, 64, 71, 97, 98, 99, 101, 116], "reshap": 0, "center": [0, 8, 31, 73, 96, 99], "po": 0, "id": [0, 8, 10, 13, 14, 19, 20, 22, 23, 40, 68, 72, 74, 77, 97, 98, 102], "definedon": [0, 6, 7, 10, 17, 18, 21, 35, 36, 37, 53, 64, 71, 74, 78, 81, 82, 105], "materi": [0, 10, 24, 35, 36, 37, 43, 44, 70, 72, 73, 74, 76, 105, 115], "return": [0, 2, 3, 7, 10, 14, 16, 17, 18, 23, 40, 45, 47, 60, 61, 64, 65, 67, 68, 72, 74, 78, 100, 105, 106, 107, 109], "time": [0, 4, 8, 9, 11, 12, 14, 23, 24, 25, 26, 28, 29, 35, 38, 44, 47, 50, 51, 52, 53, 56, 59, 61, 62, 66, 73, 74, 77, 79, 81, 94, 95, 97, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 112, 116, 117, 118], "sleep": [0, 110, 111, 112, 115], "scene": [0, 4, 5, 15, 74, 85, 110, 111, 115, 116, 117, 118], "rang": [0, 10, 13, 14, 17, 18, 19, 20, 21, 22, 29, 35, 36, 37, 38, 39, 40, 42, 45, 46, 47, 49, 61, 62, 64, 68, 72, 74, 75, 77, 78, 79, 80, 81, 85, 97, 100, 101, 102, 105, 106, 110, 111, 112, 115, 118], "30": [0, 14, 20, 36, 37, 46, 64, 75, 76, 78, 80, 81, 82, 103, 107], "setdeform": [0, 74], "redraw": [0, 4, 5, 15, 68, 85, 110, 111, 115, 116, 117, 118], "03": [0, 72, 74, 86, 100], "without": [0, 20, 24, 28, 32, 37, 44, 48, 52, 81], "glu": [0, 37], "togeth": [0, 10, 23, 25, 32, 47, 61, 74, 80, 100, 103], "solut": [0, 1, 6, 8, 18, 20, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 38, 39, 44, 45, 46, 47, 48, 52, 56, 62, 63, 71, 73, 74, 77, 79, 80, 81, 88, 97, 101, 102, 105, 106, 107, 108, 109, 110, 112, 118], "region": [0, 10, 73, 74, 76, 105, 109], "8": [0, 6, 16, 17, 19, 20, 36, 37, 38, 41, 45, 46, 47, 48, 49, 61, 72, 74, 75, 78, 80, 81, 82, 88, 100, 105, 107, 108, 112, 115, 117, 118], "1e3": 0, "freedof": [0, 1, 2, 3, 5, 7, 10, 13, 17, 35, 36, 37, 41, 42, 53, 56, 60, 61, 65, 67, 71, 74, 76, 79, 81, 86, 88, 89, 100, 103, 105, 106, 107, 115], "contactboundari": 0, "class": [0, 9, 10, 13, 19, 20, 21, 22, 23, 40, 44, 53, 56, 61, 63, 64, 74, 76, 80, 98, 106, 108], "between": [0, 8, 12, 13, 19, 20, 23, 32, 36, 38, 39, 43, 44, 60, 71, 72, 74, 94, 97, 105], "two": [0, 8, 9, 20, 23, 28, 30, 32, 34, 36, 44, 45, 46, 48, 50, 61, 71, 73, 74, 79, 85, 94, 97, 98, 102, 103, 105, 106, 111], "differ": [0, 9, 10, 20, 43, 44, 45, 46, 52, 56, 61, 62, 63, 64, 71, 74, 75, 76, 77, 98, 106, 109, 110, 115], "It": [0, 5, 6, 9, 11, 14, 23, 24, 25, 26, 29, 30, 31, 32, 34, 35, 38, 45, 52, 58, 61, 62, 71, 74, 75, 77, 79, 80, 81, 85, 88, 94, 95, 97, 106, 109, 112], "over": [0, 6, 8, 11, 12, 20, 25, 31, 45, 47, 52, 53, 74, 80, 84, 85, 105, 106, 109, 110, 118], "primari": 0, "find": [0, 3, 4, 6, 7, 8, 11, 12, 26, 28, 29, 32, 33, 38, 39, 45, 46, 51, 52, 53, 55, 56, 58, 59, 60, 62, 65, 67, 71, 72, 73, 74, 76, 79, 80, 81, 83, 86, 88, 97, 98, 99, 100, 101, 102, 105, 107, 109, 112], "closest": [0, 30], "point": [0, 8, 9, 10, 11, 19, 26, 30, 33, 36, 46, 74, 78, 79, 80, 88, 95, 98, 100, 102, 105, 108, 115], "secondari": 0, "evalu": [0, 8, 9, 21, 26, 32, 36, 37, 64, 77, 78, 79, 81, 82, 95, 98, 101, 105, 112, 118], "other": [0, 2, 4, 5, 6, 10, 14, 20, 22, 23, 29, 35, 44, 49, 50, 52, 61, 63, 71, 73, 74, 80, 100, 102, 103, 105, 118], "function": [0, 1, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14, 19, 25, 27, 30, 31, 32, 33, 34, 35, 36, 37, 39, 43, 44, 47, 48, 51, 52, 53, 55, 56, 61, 62, 63, 64, 67, 71, 73, 76, 77, 80, 81, 82, 85, 86, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107, 108, 110, 111, 112, 115, 118], "contact": 0, "volum": [0, 6, 8, 73, 74, 76, 105], "addintegr": 0, "consisteni": 0, "term": [0, 1, 4, 5, 6, 8, 11, 12, 28, 31, 32, 34, 38, 44, 45, 46, 47, 53, 54, 56, 60, 62, 63, 67, 71, 74, 77, 80, 81, 83, 84, 86, 87, 88, 94, 97, 98, 101, 105, 118], "yet": [0, 47, 64], "implement": [0, 4, 11, 19, 37, 44, 61, 64, 85, 102, 106, 107, 109, 112], "updat": [0, 10, 20, 45, 47, 48, 49, 61, 74, 78, 80, 81, 111], "bf": [0, 1, 8, 31, 32], "intord": 0, "20": [0, 4, 6, 20, 36, 37, 41, 45, 46, 49, 61, 75, 78, 80, 81, 82, 88, 107, 112, 115, 116, 117, 118], "current": [0, 80], "veri": [0, 6, 20, 23, 44, 47, 49, 62, 63, 64, 72, 74, 79, 80, 86, 95, 100, 105, 109, 112], "simpl": [0, 3, 23, 29, 46, 49, 71, 80, 97, 102, 106], "highli": [0, 62, 76, 118], "accur": [0, 10, 74, 109], "us": [0, 3, 5, 6, 8, 9, 10, 11, 12, 13, 14, 19, 20, 23, 24, 26, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 43, 44, 45, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 61, 62, 63, 64, 65, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 83, 84, 85, 87, 88, 94, 95, 97, 98, 99, 100, 102, 103, 105, 106, 108, 109, 110, 115, 118], "gauss": [0, 61, 62, 74, 102, 107], "rule": [0, 8, 11, 12, 85, 97, 103, 106, 108, 111], "which": [0, 5, 10, 11, 14, 19, 22, 25, 26, 27, 28, 30, 32, 33, 35, 36, 38, 44, 45, 47, 48, 52, 56, 58, 61, 62, 63, 64, 74, 77, 79, 80, 81, 85, 94, 95, 96, 97, 99, 100, 102, 103, 105, 106, 107, 109, 110], "finit": [0, 3, 6, 23, 25, 26, 27, 29, 31, 32, 34, 35, 36, 46, 50, 53, 58, 61, 62, 63, 66, 67, 70, 71, 72, 73, 80, 81, 84, 96, 97, 98, 100, 102, 103, 105, 106, 110, 115], "element": [0, 1, 3, 4, 6, 23, 25, 27, 31, 32, 34, 35, 36, 37, 38, 46, 50, 53, 58, 59, 61, 62, 63, 65, 66, 67, 70, 71, 72, 73, 80, 81, 84, 88, 97, 98, 100, 102, 103, 105, 106, 109, 110, 115, 118], "One": [0, 8, 23, 31, 34, 35, 39, 48, 49, 77, 80, 81, 97, 105, 107, 108, 109], "can": [0, 1, 3, 6, 8, 10, 11, 12, 13, 14, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 38, 39, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 58, 60, 61, 62, 63, 64, 67, 70, 71, 74, 75, 77, 79, 80, 81, 83, 84, 86, 88, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 107, 109, 110, 112, 118], "observ": [0, 25, 29, 32, 34, 45, 46, 48, 49, 53, 60, 67, 73, 77, 80, 81, 86, 87, 89, 95, 99, 100, 105, 106], "oscil": [0, 11, 62, 109], "gradient": [0, 20, 31, 34, 35, 36, 43, 44, 50, 60, 67, 71, 75, 76, 79, 80, 81, 85, 97, 100, 118], "In": [0, 5, 8, 9, 11, 12, 19, 22, 25, 26, 27, 30, 31, 32, 33, 34, 38, 44, 47, 48, 49, 50, 52, 54, 56, 59, 61, 67, 71, 74, 76, 77, 78, 80, 81, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 108, 109, 110, 111, 112, 117], "one": [0, 8, 9, 10, 11, 12, 14, 19, 23, 26, 28, 29, 30, 31, 32, 33, 34, 38, 40, 45, 46, 47, 48, 49, 50, 52, 56, 60, 61, 62, 63, 64, 74, 76, 77, 79, 80, 81, 85, 86, 96, 98, 101, 102, 103, 105, 106, 107, 108, 118], "introduc": [0, 37, 45, 49, 51, 53, 54, 55, 59, 62, 77, 80, 85, 86, 97, 101, 108, 109, 111], "anoth": [0, 47, 50, 60, 76, 80, 88, 109], "field": [0, 6, 26, 37, 38, 52, 55, 56, 60, 68, 71, 74, 79, 80, 81], "hat": [0, 7, 9, 28, 32, 34, 49, 61, 64, 74, 78, 79, 80, 97, 103, 109, 118], "onli": [0, 10, 11, 12, 14, 23, 25, 31, 34, 35, 36, 37, 38, 39, 46, 47, 50, 52, 53, 60, 62, 63, 68, 74, 77, 79, 80, 95, 97, 103, 106, 109, 110, 118], "thi": [0, 1, 5, 8, 10, 11, 19, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 58, 59, 60, 61, 62, 63, 64, 65, 67, 70, 73, 74, 76, 77, 78, 79, 80, 81, 83, 84, 85, 86, 88, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 108, 109, 110, 111, 112, 118], "common": [0, 8, 9, 31, 32, 97], "omega_i": [0, 23, 36, 38, 40, 87, 97, 101, 105, 106], "gamma": [0, 27, 39, 59, 77, 98, 103, 104, 108], "partial_n": [0, 3, 63, 71, 73], "now": [0, 5, 8, 10, 11, 22, 23, 25, 26, 27, 28, 29, 32, 34, 39, 45, 49, 51, 52, 53, 55, 60, 62, 63, 64, 67, 71, 74, 79, 80, 81, 83, 86, 87, 88, 97, 98, 100, 101, 103, 106, 107, 108, 109, 111], "ha": [0, 9, 11, 12, 24, 26, 27, 29, 31, 32, 38, 39, 49, 51, 61, 77, 79, 81, 83, 85, 88, 94, 95, 96, 97, 98, 101, 102, 103, 105, 108, 109, 111], "perform": [0, 11, 14, 23, 38, 45, 62, 75, 97, 100, 103, 105, 110, 112, 115], "valu": [0, 1, 3, 11, 14, 23, 25, 29, 31, 32, 33, 34, 39, 40, 45, 46, 48, 53, 56, 59, 60, 62, 64, 71, 74, 76, 77, 85, 86, 87, 94, 97, 98, 100, 102, 103, 106, 109, 110, 118], "often": [0, 11, 25, 26, 44, 45, 50, 61, 102, 105, 109, 110], "geometr": [0, 9, 30, 38, 62, 63, 68, 74, 76, 105, 107], "cylind": [0, 21, 68, 72, 75, 80, 82], "choos": [0, 8, 11, 26, 29, 30, 31, 34, 45, 46, 49, 53, 71, 74, 80, 84, 94, 97, 100, 101, 105, 115, 118], "global": [0, 8, 9, 10, 12, 14, 22, 23, 32, 35, 36, 40, 74, 77, 105, 106, 118], "On": [0, 8, 11, 12, 29, 32, 34, 36, 39, 51, 64, 80, 86, 97, 98, 100, 101, 103, 105, 109, 118], "trigonometr": [0, 45], "globalinterfacespac": 0, "allow": [0, 5, 9, 11, 30, 34, 35, 39, 45, 48, 49, 56, 65, 74, 77, 86, 97, 110], "provid": [0, 3, 8, 10, 12, 13, 14, 19, 27, 32, 33, 46, 49, 59, 61, 63, 70, 74, 77, 80, 81, 100, 105, 106, 118], "coordin": [0, 9, 74], "map": [0, 8, 13, 22, 25, 26, 36, 45, 58, 65, 74, 80, 85, 89, 93, 94, 97, 98, 99, 101, 102, 103, 118], "shift": [0, 24, 45, 109, 111], "atan2": 0, "materialcf": [0, 74, 76, 80, 86], "mask": [0, 37, 76, 106], "0000110000": 0, "comp": [0, 3, 5, 7, 10, 35, 36, 37, 53, 56, 74, 76, 80, 86], "vhat": [0, 1, 3, 5, 7, 17, 18, 88], "period": [0, 74], "uhat": [0, 1, 5, 7, 17, 18, 88], "trialfunct": [0, 1, 3, 4, 5, 6, 7, 10, 17, 18, 42, 53, 55, 56, 60, 65, 67, 68, 74, 83, 86, 88, 118], "testfunct": [0, 1, 3, 4, 5, 6, 7, 10, 17, 18, 42, 53, 55, 56, 60, 65, 67, 68, 74, 83, 86, 87, 88, 118], "gf": [0, 1, 16, 17, 18, 74], "gfuhat": [0, 16, 17, 18], "compon": [0, 1, 3, 5, 7, 10, 16, 17, 18, 35, 36, 37, 45, 49, 52, 53, 55, 56, 60, 62, 63, 65, 67, 68, 71, 72, 74, 80, 81, 83, 85, 86, 88, 105, 116, 117, 118], "declaremathoper": [1, 4, 5, 6, 51, 60, 65, 66, 67, 76, 83, 84, 85, 86, 87, 88], "opdiv": [1, 4, 5, 6, 32, 51, 60, 65, 66, 67, 76, 83, 84, 85, 86, 88], "div": [1, 4, 5, 6, 17, 18, 21, 25, 26, 43, 44, 51, 52, 54, 55, 56, 60, 65, 66, 67, 68, 72, 74, 76, 78, 79, 80, 81, 82, 83, 84, 86, 88, 97, 118], "discret": [1, 4, 6, 11, 29, 31, 32, 38, 44, 46, 50, 53, 56, 57, 58, 60, 61, 62, 65, 67, 74, 80, 81, 83, 84, 88, 94, 102, 103, 106, 109, 110, 111, 112], "oper": [1, 3, 4, 8, 9, 10, 11, 14, 19, 20, 25, 26, 28, 29, 30, 34, 38, 39, 40, 43, 46, 49, 50, 51, 54, 59, 61, 62, 63, 64, 74, 77, 80, 81, 83, 87, 93, 94, 95, 98, 100, 101, 102, 105, 106, 115], "more": [1, 5, 10, 29, 38, 47, 50, 61, 63, 64, 71, 74, 77, 95, 96, 97, 98, 102, 103, 106, 107, 109, 110, 115, 118], "tricki": [1, 61], "instead": [1, 26, 28, 31, 32, 44, 45, 52, 74, 79, 80, 97], "method": [1, 4, 10, 26, 31, 32, 33, 35, 37, 38, 47, 60, 62, 63, 64, 67, 68, 70, 72, 75, 77, 79, 81, 83, 86, 88, 98, 107, 112, 116, 117, 118], "go": [1, 6, 39, 51, 56, 59, 80], "directli": [1, 48, 74, 77, 81, 95], "hdg": [1, 5], "notebook": [1, 19, 24, 44, 70], "standard": [1, 10, 19, 20, 22, 32, 58, 75, 85, 88, 105], "here": [1, 4, 6, 10, 23, 32, 38, 47, 54, 70, 71, 74, 85, 88, 97, 99, 110], "involv": [1, 26, 61, 80], "discontinu": [1, 3, 10, 17, 18, 53, 56, 70, 74, 76, 80, 86, 88, 116, 117], "polynomi": [1, 6, 8, 10, 32, 34, 47, 73, 74, 85, 88, 96, 97, 98, 100, 107], "addit": [1, 3, 35, 36, 37, 39, 44, 45, 61, 63, 105, 106, 107, 108, 110, 118], "3d": [1, 6, 10, 31, 32, 43, 44, 52, 59, 60, 73, 74, 75, 88, 105], "start": [1, 13, 14, 19, 20, 21, 22, 23, 26, 28, 31, 32, 38, 44, 46, 53, 62, 63, 74, 78, 83, 97, 106, 108, 115, 118], "poisson": [1, 31, 34, 43, 44, 51, 71], "delta": [1, 11, 26, 29, 31, 32, 34, 39, 41, 45, 51, 53, 55, 56, 62, 63, 67, 68, 74, 81, 95, 97, 101, 110, 111, 115], "multipli": [1, 6, 50, 53, 55, 61, 64, 74, 78, 79, 97, 102, 110], "test": [1, 6, 8, 10, 12, 40, 53, 55, 56, 62, 71, 74, 86, 97, 110, 112], "everi": [1, 14, 19, 23, 25, 26, 28, 38, 40, 45, 46, 47, 49, 59, 63, 64, 80, 81, 83, 88, 94, 97, 100, 102, 105, 109, 112], "sum_t": [1, 3, 11, 23, 32, 34, 52, 60, 65, 83, 84, 88, 103, 109], "int_t": [1, 6, 11, 12, 32, 34, 52, 60, 65, 77, 83, 84, 85, 88, 109, 118], "sinc": [1, 3, 4, 8, 10, 11, 14, 25, 26, 29, 30, 32, 34, 35, 37, 38, 46, 47, 48, 49, 58, 59, 62, 63, 74, 77, 80, 81, 83, 85, 94, 95, 97, 98, 101, 102, 103, 105, 106, 108, 109, 111, 112, 118], "deriv": [1, 3, 6, 8, 9, 11, 31, 34, 38, 44, 51, 55, 63, 68, 71, 74, 78, 81, 96, 97, 106, 109, 110, 111], "smuggl": 1, "singl": [1, 23, 43, 49, 63, 108], "widehat": [1, 3, 5, 8, 9, 11, 34, 85, 88, 96, 103], "symmetr": [1, 5, 8, 25, 26, 28, 29, 35, 43, 44, 46, 49, 50, 51, 58, 59, 60, 61, 62, 65, 67, 68, 72, 75, 81, 88, 98, 100, 109, 118], "self": [1, 10, 40, 46, 49, 61, 64, 74, 106], "adjoint": [1, 35, 46, 49, 102], "what": [1, 3, 22, 26, 28, 34, 48, 49, 73, 74, 75, 83, 84, 85, 86, 88, 102], "don": [1, 3, 36, 44, 55, 67, 71, 88, 102], "like": [1, 10, 14, 23, 36, 38, 44, 48, 49, 59, 62, 71, 72, 74, 88, 106], "For": [1, 5, 9, 11, 22, 25, 26, 27, 28, 30, 31, 34, 38, 39, 44, 49, 51, 53, 56, 62, 63, 64, 67, 74, 75, 77, 78, 80, 81, 87, 94, 95, 96, 97, 99, 100, 101, 102, 103, 105, 106, 108, 109, 110, 111, 112], "restrict": [1, 5, 12, 21, 28, 61, 64, 71, 74, 77, 82, 86, 95, 96, 97, 98, 101, 106], "same": [1, 8, 9, 10, 11, 19, 20, 23, 26, 30, 32, 34, 36, 38, 39, 49, 61, 64, 66, 74, 77, 85, 86, 88, 94, 96, 98, 106, 107, 108, 109, 118], "ad": [1, 23, 38, 47, 56, 59, 62, 80, 100, 103, 106, 115], "zero": [1, 2, 11, 51, 56, 64, 71, 81, 97, 103, 105, 109, 118], "mai": [1, 8, 9, 11, 19, 24, 31, 32, 38, 44, 56, 77, 80, 100], "have": [1, 3, 4, 6, 8, 10, 11, 12, 27, 29, 34, 35, 36, 37, 38, 39, 44, 45, 46, 47, 49, 51, 52, 53, 56, 57, 59, 60, 61, 62, 63, 64, 67, 71, 74, 75, 77, 79, 80, 81, 86, 87, 94, 96, 97, 98, 100, 101, 102, 103, 105, 106, 109, 115], "add": [1, 23, 28, 29, 35, 36, 37, 40, 44, 79, 80, 97, 103, 105, 106, 118], "stabil": [1, 47, 58, 59, 83, 106, 108, 112], "size": [1, 8, 11, 14, 19, 22, 45, 46, 61, 63, 73, 74, 75, 77, 80, 81, 94, 100, 102, 103, 105, 106, 109, 111], "typic": [1, 38, 50, 51, 74, 85, 102, 110, 111], "2d": [1, 6, 9, 10, 52, 59, 73, 74, 76, 105], "condit": [1, 4, 6, 10, 11, 12, 26, 29, 31, 32, 37, 39, 41, 43, 44, 45, 46, 49, 52, 56, 59, 61, 62, 63, 65, 68, 72, 74, 76, 81, 84, 86, 88, 97, 100, 101, 102, 103, 105, 106, 107, 108, 110, 111, 112], "drawback": [1, 81], "so": [1, 3, 25, 27, 31, 49, 50, 51, 53, 64, 71, 74, 75, 77, 79, 80, 88, 102, 103, 105, 106, 108], "call": [1, 5, 8, 9, 10, 11, 14, 19, 23, 25, 29, 30, 31, 37, 46, 49, 50, 53, 54, 63, 74, 77, 80, 81, 87, 88, 94, 95, 96, 98, 100, 101, 102, 103, 106, 107, 108, 109, 117, 118], "interior": [1, 64, 101, 115], "version": [1, 3, 44, 48, 70, 77, 78, 100, 102, 107, 118], "exist": [1, 8, 9, 11, 25, 26, 27, 28, 29, 30, 31, 32, 46, 48, 52, 64, 77, 80, 87, 96, 97, 98, 99, 100, 101, 102, 103], "sophist": 1, "robust": [1, 32, 44, 69, 107], "geom2d": [1, 2, 3, 4, 5, 6, 7, 35, 36, 37, 40, 41, 42, 45, 53, 55, 56, 60, 61, 62, 64, 65, 67, 78, 79, 81, 82, 83, 85, 86, 88], "fes1": [1, 5, 68], "l2": [1, 2, 4, 5, 6, 7, 10, 14, 17, 18, 55, 56, 74, 78, 83, 86, 88, 105, 106, 118], "fes2": [1, 5, 68], "facetfespac": [1, 5, 88, 118], "left": [1, 3, 5, 6, 8, 10, 11, 13, 23, 26, 28, 29, 32, 34, 36, 39, 41, 42, 45, 46, 47, 49, 50, 51, 53, 59, 60, 62, 63, 64, 66, 67, 68, 71, 74, 76, 77, 78, 79, 80, 81, 86, 87, 88, 89, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 107, 109, 110, 111, 118], "bottom": [1, 3, 10, 13, 35, 36, 37, 42, 60, 64, 71, 79, 88, 97, 105, 106], "highest_order_dc": 1, "element_vb": [1, 118], "bnd": [1, 4, 5, 10, 53, 55, 64, 68, 74, 118], "condens": [1, 74], "ndof": [1, 2, 10, 14, 17, 18, 21, 22, 36, 37, 40, 53, 60, 61, 65, 74, 75, 80, 82, 105, 106, 118], "nze": [1, 2, 115], "inv": [1, 2, 5, 13, 20, 36, 37, 40, 42, 61, 64, 71, 72, 75, 80, 107, 118], "3792": 1, "107040": 1, "76416": 1, "els": [1, 11, 14, 17, 18, 19, 21, 25, 35, 36, 37, 39, 40, 61, 82, 105, 106, 116, 118], "bvp": [1, 8], "lf": 1, "scipi": [1, 2, 44, 50, 74, 112], "spars": [1, 2, 22, 45, 50, 74, 75, 105], "sp": [1, 2, 118], "matplotlib": [1, 2, 44, 45, 46, 47, 48, 49, 62, 100, 109, 112], "pyplot": [1, 2, 45, 46, 47, 48, 49, 62, 100, 109, 112], "plt": [1, 2, 45, 46, 47, 48, 49, 62, 100, 109, 112], "scipymat": [1, 2], "csr_matrix": [1, 2, 50, 74], "csr": [1, 2, 22, 50, 74], "spy": [1, 2], "precis": [1, 2, 45, 53, 96, 97, 101], "1e": [1, 2, 5, 7, 13, 16, 17, 22, 45, 46, 47, 48, 49, 56, 60, 72, 78, 79, 80, 82, 103, 115], "markers": [1, 2], "dgjump": [2, 6, 10, 74, 118], "intern": [2, 36, 67, 71, 72, 74], "jump": [2, 32, 34, 84, 118], "mean": [2, 11, 27, 29, 34, 38, 40, 44, 46, 49, 52, 56, 58, 74, 77, 79, 81, 88, 97, 100, 102, 103, 109, 110, 118], "2320": 2, "88800": 2, "123040": 2, "kirchhoff": [3, 67], "plate": 3, "int": [3, 8, 10, 11, 25, 26, 32, 37, 39, 40, 51, 53, 54, 55, 56, 58, 59, 60, 65, 67, 71, 74, 77, 80, 81, 83, 84, 86, 88, 96, 99, 104, 110, 111, 115], "conform": [3, 9, 43, 44, 52, 56, 60, 74, 77, 80, 88, 97, 103], "requir": [3, 11, 23, 33, 51, 59, 61, 63, 74, 79, 81, 83, 98, 101, 106, 118], "But": [3, 6, 23, 29, 31, 32, 33, 45, 52, 56, 74, 77, 83, 97, 98, 101, 102, 103], "good": [3, 8, 26, 28, 31, 33, 45, 48, 50, 58, 64, 83, 103, 106], "option": [3, 10, 50, 53, 56, 74, 80, 100], "avail": [3, 5, 10, 19, 44, 49, 50, 70, 74, 81, 112], "thu": [3, 4, 6, 11, 12, 25, 26, 27, 29, 30, 32, 38, 44, 45, 46, 48, 49, 51, 52, 53, 55, 56, 60, 62, 63, 64, 67, 71, 74, 77, 80, 81, 83, 84, 85, 87, 88, 89, 95, 96, 97, 98, 100, 101, 102, 103, 107, 109, 112, 115, 118], "wai": [3, 11, 12, 24, 29, 31, 33, 73, 79, 80, 103, 107], "out": [3, 6, 24, 35, 45, 62, 75, 80, 87, 95, 118], "treat": [3, 5, 53], "miss": [3, 38, 84], "galerkin": [3, 8, 11, 26, 29, 32, 33, 34, 52, 61, 63, 70, 74, 77, 102, 111, 112, 116, 117], "dg": [3, 4, 5, 6, 7, 10, 43, 44, 52, 65, 74, 118], "formul": [3, 8, 26, 29, 38, 43, 44, 54, 55, 59, 62, 65, 67, 81, 84, 88, 97, 98, 111], "e": [3, 6, 8, 9, 10, 11, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 36, 37, 38, 45, 46, 47, 48, 49, 50, 51, 53, 56, 58, 59, 60, 62, 63, 64, 71, 72, 73, 74, 75, 77, 80, 81, 84, 85, 87, 88, 94, 95, 96, 97, 98, 99, 100, 102, 106, 109, 110, 113, 115, 118], "_": [3, 8, 9, 11, 12, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 39, 46, 49, 51, 53, 59, 60, 62, 63, 64, 65, 67, 69, 73, 74, 77, 80, 81, 83, 84, 87, 89, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 110], "nn": [3, 65], "baker": 3, "77": [3, 32, 36, 37, 46, 75, 80, 107], "brenner": [3, 44], "gudi": 3, "sung": 3, "2010": [3, 112], "its": [3, 8, 9, 10, 14, 19, 22, 25, 26, 30, 31, 32, 34, 38, 39, 44, 46, 48, 49, 53, 62, 63, 74, 80, 85, 87, 96, 97, 100, 102, 106, 112], "new": [3, 4, 10, 24, 31, 34, 44, 45, 46, 47, 53, 54, 55, 59, 74, 88, 109, 110, 118], "facet": [3, 6, 60, 74, 105, 118], "base": [3, 10, 14, 35, 38, 43, 61, 62, 66, 74, 97, 118], "variabl": [3, 10, 14, 19, 35, 36, 37, 38, 44, 49, 51, 52, 53, 54, 55, 59, 62, 74, 86, 88, 109, 110, 118], "v_n": [3, 25, 30, 101, 118], "w_n": [3, 47], "n_e": 3, "cdot": [3, 6, 11, 12, 25, 26, 27, 28, 29, 30, 32, 35, 45, 46, 51, 52, 55, 60, 63, 64, 73, 74, 77, 84, 86, 94, 95, 96, 97, 98, 102, 110, 118], "orient": 3, "along": [3, 48, 57], "arbitrarili": [3, 103], "chosen": [3, 10, 26, 38, 48, 55, 80, 94, 103, 109], "vector": [3, 4, 6, 10, 12, 13, 20, 22, 25, 27, 32, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 58, 60, 61, 62, 64, 67, 68, 71, 73, 74, 76, 79, 80, 81, 93, 97, 98, 102, 103, 105, 106, 112, 118], "cannot": [3, 11, 16, 33, 34, 49, 51, 74, 81, 95, 106], "facetspac": 3, "trace": [3, 11, 43, 44, 51, 53, 60, 68, 72, 74, 77, 93, 118], "hdiv": [3, 7, 16, 17, 18, 55, 83, 85, 86, 88], "need": [3, 8, 10, 23, 32, 34, 36, 45, 46, 47, 48, 49, 51, 52, 55, 68, 74, 80, 85, 87, 88, 94, 95, 98, 100, 106, 108, 110, 111, 118], "basi": [3, 4, 8, 9, 10, 11, 12, 32, 34, 36, 45, 47, 61, 64, 77, 80, 85, 97, 100, 102, 103, 107, 110, 111, 112, 115, 118], "v1": [3, 21, 22, 68, 82], "v2": [3, 22, 68, 83], "orderinn": [3, 16, 17, 18, 56], "fespac": [3, 10, 56, 60, 65, 67, 68, 74, 118], "some": [3, 6, 8, 10, 11, 26, 27, 28, 29, 30, 32, 33, 37, 39, 44, 46, 47, 52, 61, 62, 71, 73, 74, 79, 83, 86, 96, 97, 98, 101, 102, 106, 107, 108, 109, 110, 118], "proxi": [3, 10, 74], "differenti": [3, 25, 26, 44, 50, 63, 68, 74, 77, 81, 87, 95, 96, 97, 100, 102, 108, 109, 110], "them": [3, 10, 20, 23, 44], "via": [3, 19, 22, 26, 28, 38, 44, 45, 49, 62, 63, 77, 96, 102, 103, 105, 106, 112, 118], "hess": 3, "hessian": [3, 48, 81], "note": [3, 19, 24, 29, 32, 44, 46, 70, 74, 77, 86, 100], "innerproduct": [3, 7, 17, 18, 20, 21, 22, 23, 40, 45, 47, 48, 49, 56, 60, 64, 65, 67, 68, 72, 73, 78, 79, 82, 100, 103, 105, 112], "jumpdn": 3, "hessenn": 3, "symbolicbfi": [3, 60, 65, 67, 68], "element_boundari": [3, 4, 5, 6, 7, 16, 17, 18, 60, 65, 67, 68, 88, 113, 118], "symboliclfi": [3, 60, 65, 67], "0x11383ba30": [], "disp_dg": 3, "bu": [4, 5, 6, 29, 81], "given": [4, 6, 10, 26, 28, 30, 32, 39, 44, 45, 47, 48, 49, 50, 51, 52, 56, 62, 63, 64, 71, 74, 80, 84, 97, 102, 103, 106, 109, 110], "initi": [4, 31, 45, 46, 109, 110, 111, 112], "u_0": [4, 30, 51, 63, 64, 71, 79, 97, 103, 110, 111, 112], "boundari": [4, 6, 7, 10, 11, 12, 17, 18, 21, 26, 28, 29, 31, 32, 34, 35, 36, 37, 38, 41, 43, 44, 49, 56, 63, 65, 68, 72, 73, 74, 76, 77, 78, 79, 81, 82, 85, 86, 87, 88, 89, 92, 94, 96, 97, 98, 100, 101, 103, 105, 107, 110, 118], "gamma_": [4, 6, 36, 38, 40, 87, 97], "explicit": [4, 5, 11, 28, 32, 43, 97, 106, 115, 118], "euler": [4, 108, 112], "approx": [4, 11, 39, 45, 46, 49, 51, 52, 62, 63, 80, 84, 87, 103, 108, 109, 118], "t_n": [4, 32, 45, 109], "t_": [4, 12, 32, 34, 45, 108, 109], "stationari": [4, 43, 44, 100, 102], "To": [4, 8, 11, 29, 31, 34, 38, 44, 45, 46, 49, 51, 53, 71, 74, 80, 81, 86, 97, 98, 100, 102, 103, 105, 106, 107, 108], "coeffici": [4, 23, 26, 32, 44, 49, 61, 62, 71, 73, 74, 77, 86, 97, 99, 100, 102, 103, 105, 106, 108, 109, 110, 118], "solv": [4, 5, 8, 10, 11, 13, 17, 22, 26, 28, 32, 33, 35, 36, 38, 43, 44, 50, 51, 56, 61, 62, 68, 71, 75, 79, 81, 82, 83, 97, 101, 102, 106, 108, 109, 111, 112], "mass": [4, 10, 64, 74, 109, 110, 113, 118], "m": [4, 5, 8, 9, 11, 14, 17, 18, 24, 25, 30, 44, 46, 49, 62, 68, 70, 77, 79, 80, 81, 93, 97, 100, 101, 102, 103, 105, 108, 109, 110, 111, 112, 115, 118], "tau": [4, 5, 17, 18, 26, 45, 51, 55, 58, 59, 60, 65, 67, 68, 77, 80, 83, 85, 86, 88, 102, 108, 109, 110, 111, 112, 115, 116, 117], "realiz": [4, 39], "second": [4, 5, 10, 29, 31, 38, 48, 49, 56, 62, 65, 68, 74, 80, 81, 83, 86, 94, 95, 100, 103, 106, 107, 109, 111, 112, 115], "advantag": [4, 6, 11, 38, 47, 50, 105], "block": [4, 19, 37, 38, 51, 62, 68, 80, 86, 88, 100, 118], "diagon": [4, 11, 20, 21, 47, 49, 50, 54, 78, 82, 88, 102, 115, 118], "cheap": [4, 11, 37, 49, 61, 64, 75, 79, 83], "invert": [4, 8, 9, 35, 37, 71, 80, 88, 97, 105, 106, 118], "b": [4, 5, 6, 8, 12, 19, 21, 25, 26, 28, 29, 33, 35, 36, 37, 40, 45, 46, 47, 48, 49, 50, 51, 52, 54, 60, 66, 68, 71, 74, 76, 78, 79, 80, 81, 82, 83, 85, 86, 98, 99, 100, 105, 108, 109, 113, 116, 117, 118], "coefficientfunct": [4, 5, 6, 7, 10, 15, 42, 68, 74, 85], "wind": [4, 6], "grid_siz": [4, 6, 76, 80], "nonassembl": [4, 5], "upwind": [4, 6], "uup": [4, 5, 6], "ifpo": [4, 5, 6, 105], "exp": [4, 5, 6, 41, 42, 73, 109, 110, 111, 112, 113, 115, 116, 118], "75": [4, 5, 36, 37, 46, 75, 80, 107], "min": [4, 5, 6, 8, 14, 15, 17, 18, 21, 26, 40, 45, 72, 76, 81, 82, 100, 103, 116, 117], "max": [4, 5, 6, 14, 15, 17, 18, 21, 26, 40, 45, 46, 72, 76, 81, 82, 103, 105, 106, 116, 117], "autoscal": [4, 5, 116, 117], "001": [4, 15, 17, 18, 40, 105, 115, 118], "tend": [4, 5, 15, 110, 111, 112, 115, 116, 117, 118], "50": [4, 14, 36, 37, 41, 45, 46, 74, 75, 76, 80, 81, 82, 105, 107, 118], "cnt": [4, 5, 15, 105, 118], "createvector": [4, 5, 20, 36, 37, 40, 45, 46, 47, 48, 49, 61, 78, 105, 106, 112, 113, 115], "free": [4, 10, 14, 59, 60, 65, 67, 71, 74, 79, 80, 116, 117, 118], "invm": [4, 10, 74], "rho": [4, 10, 45, 46, 49, 74, 102], "setnumthread": [4, 5], "taskmanag": [4, 15, 42, 68, 72, 75, 80, 82, 115, 116, 117, 118], "while": [4, 5, 15, 46, 48, 49, 56, 61, 62, 116, 117, 118], "appli": [4, 5, 8, 10, 11, 12, 32, 33, 34, 35, 44, 48, 49, 50, 52, 61, 62, 63, 67, 70, 72, 74, 77, 79, 80, 81, 87, 95, 96, 97, 98, 103, 105, 106, 109, 110, 111], "want": [5, 19, 24, 32, 33, 38, 47, 52, 53, 64, 74, 79, 80, 81, 98, 100, 110, 118], "varepsilon": [5, 25, 30, 45, 46, 47, 54, 58, 60, 67, 69, 72, 80, 87, 96, 100, 103, 104], "transport": [5, 43, 44, 108], "linear": [5, 8, 9, 11, 12, 25, 26, 27, 28, 29, 30, 31, 32, 33, 43, 45, 47, 48, 49, 50, 51, 54, 61, 67, 68, 71, 75, 79, 81, 85, 86, 95, 97, 98, 99, 101, 102, 106, 108, 110, 111, 112, 118], "navier": [5, 11, 56], "stoke": [5, 11, 43, 44, 81, 98], "easili": [5, 23, 32, 39, 45, 46, 47, 62, 63, 77, 109], "also": [5, 8, 9, 11, 14, 19, 25, 26, 27, 28, 29, 31, 32, 33, 34, 38, 39, 45, 46, 47, 48, 49, 51, 53, 56, 61, 63, 70, 74, 77, 80, 81, 86, 95, 96, 97, 100, 101, 102, 103, 108, 109], "system": [5, 25, 29, 32, 35, 36, 39, 40, 44, 45, 47, 48, 49, 50, 52, 54, 55, 56, 59, 65, 74, 75, 78, 79, 81, 86, 88, 108, 109, 110, 111], "difficult": [5, 103], "implicit": [5, 112], "explizit": 5, "treatment": [5, 72], "would": [5, 33, 52], "lead": [5, 9, 11, 26, 27, 37, 46, 50, 51, 61, 65, 77, 80, 81, 85, 86, 88, 94, 96, 102, 103, 105, 108, 109], "sever": [5, 11, 38, 56, 62, 105], "step": [5, 8, 11, 12, 20, 32, 33, 34, 38, 43, 45, 46, 48, 49, 61, 62, 68, 77, 79, 81, 102, 103, 105, 106, 108, 112], "fast": [5, 44, 48, 97, 100, 109], "becom": [5, 11, 38, 49, 86, 100, 115], "begin": [5, 6, 8, 9, 11, 12, 23, 26, 27, 29, 31, 32, 33, 34, 35, 36, 38, 39, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 71, 76, 77, 78, 79, 80, 81, 83, 84, 86, 87, 88, 89, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106, 108, 109, 110, 111, 112, 118], "arrai": [5, 6, 11, 22, 23, 36, 38, 50, 51, 53, 54, 55, 56, 58, 59, 60, 65, 66, 67, 71, 74, 78, 79, 81, 83, 86, 88, 95, 97, 99, 102, 108, 109, 118], "cc": [5, 23, 36, 59, 71, 79, 81, 88, 108, 118], "end": [5, 6, 8, 9, 11, 12, 15, 23, 26, 27, 29, 31, 32, 33, 34, 35, 36, 38, 39, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 71, 76, 77, 78, 79, 80, 81, 83, 84, 86, 87, 88, 89, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106, 108, 109, 110, 111, 112, 115, 118], "c": [5, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 32, 35, 36, 40, 44, 45, 46, 47, 49, 51, 52, 54, 61, 62, 63, 65, 71, 75, 77, 78, 79, 80, 81, 82, 87, 88, 89, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 108, 109, 110], "diff": 5, "conv": [5, 16], "ep": [5, 80, 103], "adiff": 5, "aconv": 5, "mstar": [5, 110, 111, 112], "asvector": [5, 40], "0x10ed11eb0": [], "convu": [5, 16], "keyboardinterrupt": 5, "traceback": [5, 117], "most": [5, 45, 96, 105, 108, 117], "recent": [5, 44, 60, 115, 117], "last": [5, 8, 10, 32, 33, 38, 47, 49, 74, 77, 81, 94, 106, 117], "cell": [5, 10, 19, 44, 74, 107, 117], "line": [5, 8, 9, 29, 30, 33, 45, 48, 84, 117], "15": [5, 14, 20, 36, 37, 46, 61, 75, 78, 80, 81, 82, 88, 107, 115], "13": [5, 14, 20, 36, 37, 46, 61, 75, 78, 80, 81, 82, 88, 107], "14": [5, 14, 20, 36, 37, 46, 61, 75, 78, 80, 81, 82, 88, 107], "16": [5, 20, 36, 37, 46, 61, 65, 74, 75, 78, 80, 81, 82, 85, 88, 100, 105, 107], "17": [5, 20, 36, 37, 46, 60, 61, 65, 74, 75, 78, 80, 81, 82, 88, 107], "higher": [5, 6, 8, 11, 71, 74, 88, 97, 115, 118], "imex": 5, "see": [5, 10, 11, 29, 35, 44, 51, 52, 56, 57, 58, 71, 74, 77, 78, 86, 97, 100, 112], "rung": [5, 43], "kutta": [5, 43], "pde": [5, 23, 26, 29, 38, 97, 102], "uri": 5, "ascher": 5, "steven": 5, "j": [5, 9, 12, 19, 28, 29, 32, 35, 36, 37, 40, 44, 46, 47, 49, 62, 65, 74, 77, 80, 85, 96, 97, 102, 105, 106, 108, 109, 110, 111, 112, 115, 116, 117, 118], "ruuth": 5, "raymond": 5, "spiteri": 5, "numer": [5, 11, 12, 34, 44, 47, 50, 74, 80, 81, 83, 100, 103, 108, 109, 112, 118], "mathemat": [5, 32, 44, 74, 100], "25": [5, 14, 20, 36, 37, 46, 72, 75, 78, 80, 81, 82, 85, 88, 105, 107], "1997": 5, "text": [6, 28, 32, 41, 45, 46, 47, 48, 49, 51, 53, 55, 56, 58, 59, 60, 61, 63, 65, 66, 68, 71, 72, 74, 77, 79, 80, 81, 85, 86, 87, 97, 99, 102, 103, 104, 105, 106, 108, 109, 110, 111, 112], "model": [6, 56, 67, 68, 71, 74, 75, 76, 115], "inject": [6, 28, 29, 97], "concentr": 6, "flow": [6, 26, 81, 109], "exampl": [6, 9, 11, 19, 25, 26, 29, 32, 39, 43, 44, 50, 51, 61, 71, 74, 79, 80, 82, 95, 100, 105, 107, 110, 111], "milk": 6, "coffe": 6, "u_": [6, 23, 29, 32, 34, 40, 51, 62, 63, 74, 89, 92, 94, 101, 103, 112], "inflow": [6, 15, 17, 18], "popular": 6, "Their": 6, "strength": 6, "techniqu": [6, 33, 38, 43, 44, 62, 77, 97, 98, 102, 109], "stabl": [6, 28, 43, 44, 52, 58, 64, 77, 80, 106, 108, 109], "combin": [6, 8, 10, 11, 14, 28, 34, 47, 49, 56, 61, 62, 63, 74, 97, 102, 107, 112, 118], "seen": [6, 47, 51, 61, 62, 80, 88, 96], "extens": [6, 11, 22, 25, 35, 43, 44, 61, 77, 88], "trial": [6, 10, 74, 76], "piecewis": [6, 31, 34, 97, 105, 106], "follow": [6, 8, 10, 11, 29, 31, 32, 33, 34, 35, 38, 39, 44, 45, 49, 51, 52, 61, 62, 63, 64, 71, 77, 80, 84, 85, 88, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 108, 118], "wise": [6, 14, 23, 32, 35, 56, 58, 68, 74, 83, 85, 103, 118], "smooth": [6, 8, 9, 12, 31, 39, 58, 61, 62, 87, 95, 96, 97, 101, 103], "evei": 6, "sum_": [6, 8, 9, 11, 12, 23, 31, 32, 33, 34, 36, 38, 39, 40, 45, 47, 49, 60, 63, 64, 74, 77, 84, 87, 88, 96, 97, 98, 99, 101, 102, 103, 108, 110, 118], "subset": [6, 8, 9, 11, 12, 14, 25, 27, 29, 32, 34, 35, 38, 39, 45, 47, 52, 61, 62, 64, 65, 66, 74, 77, 80, 81, 85, 89, 92, 94, 95, 97, 98, 99, 101, 102, 103, 106, 108, 109, 110], "b_n": 6, "outward": 6, "decis": 6, "blow": 6, "up": [6, 8, 11, 13, 14, 23, 26, 28, 29, 47, 49, 56, 61, 64, 77, 80, 94, 95, 96, 98, 106, 108, 109, 110, 118], "cl": [6, 11, 34, 95, 99], "u_t": [6, 60], "outflow": [6, 15, 17, 18, 55], "v_h": [6, 8, 11, 12, 23, 26, 27, 29, 32, 33, 34, 52, 60, 63, 66, 74, 80, 81, 83, 84, 88, 100, 102, 103, 106, 109, 110], "u_h": [6, 8, 11, 12, 26, 27, 29, 31, 32, 33, 34, 52, 60, 63, 74, 80, 83, 84, 88, 100, 102, 106, 109, 110], "all": [6, 8, 9, 10, 14, 19, 23, 25, 27, 28, 29, 30, 31, 32, 34, 35, 37, 44, 47, 49, 50, 51, 52, 61, 63, 64, 67, 70, 71, 72, 74, 80, 87, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108, 109, 110, 112, 118], "6": [6, 13, 20, 22, 36, 37, 38, 42, 45, 46, 53, 61, 68, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 85, 88, 100, 105, 107, 108, 109, 112, 115], "28": [6, 20, 36, 37, 46, 74, 75, 78, 80, 81, 82, 107], "hybrid": [7, 43, 44, 52, 65, 70], "lehrenfeld": [7, 70], "sch\u00f6berl": [7, 43, 44, 60, 69, 70, 80, 116, 117], "2016": 7, "bdm": [7, 32, 85], "k": [7, 8, 25, 26, 32, 39, 45, 46, 47, 48, 49, 56, 63, 64, 65, 77, 81, 83, 84, 85, 88, 95, 96, 97, 98, 99, 101, 109], "k_": 7, "splinegeometri": [7, 42, 60, 78, 82, 86], "geo": [7, 35, 36, 37, 42, 60, 68, 72, 76, 78, 79, 80, 82, 86, 105, 115, 118], "addrectangl": [7, 42, 60, 78, 82, 86], "41": [7, 14, 15, 17, 18, 20, 21, 36, 37, 46, 74, 75, 78, 80, 81, 82, 107], "wall": [7, 15, 17, 18, 21, 78, 82], "outlet": [7, 15, 17, 18, 21, 78, 82], "inlet": [7, 15, 17, 18, 21, 78, 82], "addcircl": [7, 42, 78, 82, 86], "leftdomain": [7, 42, 78, 82, 86], "rightdomain": [7, 42, 78, 82, 86], "cyl": [7, 15, 21, 68, 72, 75, 78, 82], "08": [7, 20, 36, 37, 46, 61, 75, 78, 80, 81, 82, 88, 107, 112], "0x105d6ea50": [], "vt": 7, "vf": 7, "tangentialfacetfespac": [7, 16, 17, 18, 113], "q": [7, 9, 21, 25, 28, 32, 51, 52, 53, 54, 56, 60, 76, 77, 78, 81, 82, 97, 98, 118], "nu": [7, 15, 17, 18, 72, 80], "tang": [7, 16, 17, 18, 60, 65, 67, 68], "thesi": [7, 57, 60, 70], "christoph": [7, 70], "page": [7, 45, 47], "71": [7, 36, 37, 46, 75, 80, 82, 107], "invstok": 7, "uin": [7, 15, 17, 18, 21, 78, 82], "re": [7, 32, 34, 46, 48, 49, 61, 79, 110], "vel": 7, "veloc": [7, 15, 56, 57, 81, 111], "pressur": [7, 56, 80, 81], "let": [8, 11, 12, 19, 24, 25, 26, 27, 28, 29, 30, 31, 34, 35, 38, 39, 45, 46, 47, 48, 60, 61, 62, 63, 64, 74, 77, 79, 80, 81, 83, 89, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 110], "variat": [8, 28, 43, 44, 51, 58, 65, 71, 73, 74, 76, 79, 80, 81, 83, 84, 88, 98, 101, 102, 111], "problem": [8, 10, 11, 12, 20, 32, 33, 35, 36, 37, 38, 39, 45, 48, 49, 58, 61, 62, 63, 65, 67, 68, 73, 74, 75, 77, 79, 83, 86, 88, 94, 97, 98, 100, 101, 102, 103, 104, 105, 106, 109], "sub": [8, 11, 22, 23, 25, 28, 30, 32, 35, 36, 37, 38, 40, 47, 51, 52, 61, 63, 71, 74, 75, 77, 79, 80, 81, 85, 95, 100, 101, 103, 105, 106, 108, 109, 110], "cea": [8, 11, 62], "": [8, 9, 11, 17, 18, 24, 25, 26, 27, 28, 30, 32, 37, 43, 44, 51, 52, 54, 62, 68, 69, 70, 72, 73, 74, 75, 79, 81, 89, 97, 98, 99, 101, 102, 108, 109, 112, 115, 118], "lemma": [8, 9, 25, 26, 29, 30, 34, 35, 43, 61, 62, 63, 77, 80, 97, 98, 103, 105, 106, 109], "bound": [8, 9, 11, 25, 26, 28, 29, 31, 32, 33, 34, 45, 46, 47, 49, 63, 80, 81, 94, 95, 96, 97, 98, 99, 100, 101, 103, 105, 106], "best": [8, 26, 52, 65, 77, 107], "_v": [8, 11, 25, 26, 27, 28, 29, 31, 33, 34, 51, 52, 73, 97, 98, 101], "leq": [8, 9, 11, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 45, 46, 47, 48, 49, 51, 52, 59, 62, 63, 64, 65, 69, 77, 80, 81, 83, 87, 89, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 109, 112], "inf_": [8, 11, 26, 28, 29, 30, 35, 39, 46, 52, 60, 63, 65, 77, 80, 97, 98, 102, 103, 105, 106], "constant": [8, 9, 10, 11, 14, 26, 27, 28, 31, 32, 34, 38, 40, 49, 52, 56, 57, 61, 62, 64, 65, 74, 76, 77, 85, 89, 95, 97, 98, 99, 100, 103, 105, 106, 108, 109, 118], "factor": [8, 26, 29, 46, 61, 62, 64, 68, 74, 77, 80, 81, 94, 95, 97, 98, 105, 106, 118], "ratio": 8, "take": [8, 13, 24, 27, 29, 30, 31, 34, 38, 39, 44, 52, 60, 63, 74, 76, 81, 84, 86, 96, 97, 101, 103, 105, 109], "interpol": [8, 9, 11, 16, 34, 44, 52, 63, 64, 71, 72, 73, 74, 80, 83, 106, 115, 118], "i_": [8, 9, 102], "cal": [8, 9, 11, 12, 31, 33, 34, 95, 96], "dimension": [8, 10, 25, 26, 27, 28, 29, 47, 50, 74, 77, 81, 84, 97, 98, 100, 103, 112], "domain": [8, 9, 10, 11, 23, 31, 35, 36, 37, 40, 41, 51, 61, 63, 64, 71, 74, 79, 80, 94, 95, 96, 98, 100, 101, 110, 116, 117], "relat": [8, 12, 27, 45, 48, 62, 76, 98], "affin": [8, 9, 58], "transform": [8, 9, 10, 11, 43, 44, 49, 74, 79, 82, 94, 97, 103], "f_t": [8, 9, 11, 12, 23, 32, 60], "rightarrow": [8, 9, 11, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 39, 48, 51, 52, 54, 56, 64, 66, 67, 72, 73, 74, 76, 77, 80, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 106, 109, 110, 112], "mathbb": [8, 9, 11, 12, 25, 26, 28, 29, 30, 33, 34, 35, 46, 47, 48, 49, 50, 61, 64, 72, 73, 74, 76, 79, 81, 89, 92, 94, 95, 96, 97, 98, 99, 100, 101, 103, 108, 109, 112, 118], "regular": [8, 9, 10, 31, 32, 37, 51, 60, 62, 63, 74, 80, 81, 88, 95, 101, 102, 106], "Then": [8, 11, 12, 14, 19, 23, 25, 26, 27, 28, 29, 30, 32, 34, 36, 37, 39, 44, 45, 46, 48, 51, 52, 61, 62, 63, 64, 77, 80, 81, 89, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 109, 115], "hold": [8, 9, 11, 25, 26, 27, 29, 30, 31, 32, 39, 47, 48, 49, 51, 61, 62, 63, 64, 72, 74, 77, 80, 87, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 106, 109], "det": [8, 85, 97, 103, 109, 118], "align": [8, 9, 12, 26, 27, 29, 45, 46, 48, 49, 50, 77, 95, 97, 98, 101], "x_": [8, 11, 47], "i_m": 8, "ldot": [8, 9, 12, 28, 32, 45, 46, 47, 48, 49, 61, 64, 74, 77, 87, 95, 97, 101, 102, 108, 109, 110, 112], "i_1": [8, 39], "j_m": 8, "j_1": 8, "b_": [8, 51, 108], "equat": [8, 11, 12, 26, 29, 31, 32, 33, 34, 36, 38, 39, 46, 50, 52, 53, 59, 63, 71, 72, 75, 76, 77, 79, 81, 86, 88, 97, 98, 102, 108, 115, 116, 117], "preceq": [8, 11, 33, 34, 62, 63, 64, 77, 80, 97, 98, 101, 103, 105], "proof": [8, 11, 25, 26, 27, 29, 30, 32, 34, 35, 52, 62, 63, 64, 73, 77, 80, 81, 84, 85, 87, 89, 95, 96, 97, 98, 101, 102, 103, 105, 106, 109], "chain": [8, 85, 97, 103], "box": [8, 11, 21, 25, 26, 27, 29, 30, 63, 72, 75, 76, 77, 80, 82, 94, 96, 97, 98, 101, 102, 105, 118], "diamet": 8, "h_t": [8, 11, 32, 34], "operatornam": [8, 23, 25, 26, 27, 29, 36, 39, 44, 47, 51, 52, 54, 55, 56, 57, 59, 60, 61, 64, 72, 74, 79, 80, 81, 83, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 109, 118], "diam": [8, 106], "triangul": [8, 9, 74, 107], "shape": [8, 9, 10, 15, 17, 18, 21, 23, 31, 32, 40, 44, 61, 74, 75, 76, 82, 100, 105, 106, 115, 118], "fulfil": [8, 26, 27, 29, 31, 34, 97, 101], "succeq": 8, "sim": [8, 71], "If": [8, 9, 10, 11, 19, 23, 24, 25, 26, 27, 30, 31, 34, 39, 44, 45, 46, 47, 49, 51, 52, 61, 62, 64, 67, 74, 77, 80, 81, 88, 94, 95, 97, 98, 100, 101, 102, 106, 108, 109, 110, 118], "studi": [8, 38, 56, 73, 97], "converg": [8, 25, 26, 29, 30, 31, 36, 37, 39, 46, 48, 49, 54, 63, 73, 75, 77, 80, 96, 97, 98, 100, 107, 112], "famili": [8, 85, 97], "decreas": [8, 38, 46, 49], "case": [8, 9, 12, 22, 26, 27, 28, 29, 33, 34, 49, 52, 56, 58, 63, 65, 67, 71, 74, 76, 80, 81, 96, 97, 98, 101, 102, 103, 112], "geq": [8, 11, 25, 26, 28, 29, 30, 31, 32, 45, 49, 51, 52, 62, 64, 65, 77, 81, 84, 99, 101], "refer": [8, 9, 10, 11, 34, 50, 60, 62, 63, 85, 103, 109, 118], "triangl": [8, 9, 31, 32, 34, 52, 64, 80, 83, 103, 115], "b_t": 8, "simeq": [8, 11, 34, 97, 98, 100, 101], "main": [8, 32], "applic": [8, 11, 31, 33, 43, 44, 47, 61, 70, 78, 79, 118], "brambl": [8, 11, 34, 43, 44, 62, 77, 82, 98], "hilbert": [8, 11, 25, 26, 27, 28, 29, 30, 34, 51, 52, 54, 74, 77, 80, 96, 97, 98, 101, 110], "sometim": 8, "itself": [8, 14, 19, 102, 111], "v_t": [8, 9, 23, 32, 60, 85], "psi_t": [8, 9], "contain": [8, 9, 22, 25, 31, 32, 34, 39, 47, 74, 80, 95, 96, 101, 106, 109], "i_t": [8, 9], "first": [8, 10, 12, 24, 25, 27, 30, 31, 34, 36, 44, 45, 46, 49, 51, 52, 53, 54, 55, 56, 59, 60, 62, 63, 68, 74, 77, 79, 80, 81, 86, 88, 94, 95, 97, 98, 99, 100, 101, 103, 106, 109, 111, 112, 115, 118], "prove": [8, 11, 27, 28, 30, 32, 46, 49, 51, 62, 63, 77, 80, 81, 94, 96, 97, 98, 99, 100, 101, 102, 103, 106], "psi_": [8, 9, 62], "varphi_": [8, 62, 64, 77, 87, 103], "project": [8, 9, 26, 27, 35, 43, 44, 62, 63, 80, 83, 105, 106, 110, 115], "l": [8, 11, 13, 14, 17, 18, 22, 25, 26, 27, 29, 44, 45, 49, 51, 61, 62, 63, 64, 66, 75, 77, 80, 81, 83, 86, 96, 97, 98, 100, 101, 102, 106, 108, 109, 115], "result": [8, 11, 12, 14, 19, 23, 35, 49, 60, 63, 64, 67, 69, 74, 77, 80, 94, 96, 97, 98, 103, 106, 107], "theorem": [8, 11, 26, 28, 29, 30, 34, 35, 43, 44, 51, 52, 62, 63, 64, 74, 77, 80, 81, 87, 96, 98, 99, 100, 102, 106], "v_": [8, 9, 11, 12, 29, 32, 40, 51, 61, 62, 65, 77, 80, 97, 100], "local": [8, 9, 10, 12, 14, 20, 22, 23, 31, 32, 33, 34, 35, 38, 40, 43, 44, 57, 61, 62, 64, 74, 75, 77, 78, 80, 95, 96, 97, 106], "each": [8, 10, 11, 12, 14, 23, 31, 34, 49, 56, 61, 74, 79, 80, 88, 95, 96, 97, 105], "back": [8, 14, 19, 35, 45, 49, 56, 59, 81, 97, 99, 106, 109, 118], "individu": [8, 10, 38, 72, 74, 97, 102, 105, 108], "quasi": [8, 26, 29, 34, 52, 64, 80, 106], "uniform": [8, 11, 14, 31, 46, 63, 75], "essenti": [8, 32, 53, 63, 86, 95, 97, 100, 105], "eqnarrai": [8, 11, 23, 31, 32, 34, 35, 39, 45, 48, 49, 51, 52, 56, 58, 60, 61, 62, 63, 64, 65, 76, 77, 80, 81, 83, 84, 86, 87, 89, 94, 96, 97, 102, 103, 106, 108, 109, 110, 111, 112, 118], "interest": [8, 49, 54, 67, 97], "rate": [8, 26, 46, 75, 77], "assum": [8, 10, 11, 12, 23, 26, 27, 28, 29, 32, 47, 48, 50, 51, 53, 62, 63, 71, 74, 80, 87, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 108, 109], "weak": [8, 27, 29, 41, 44, 54, 55, 56, 71, 76, 80, 85, 87, 95, 96, 97, 103, 110], "abov": [8, 9, 11, 26, 28, 29, 33, 34, 49, 63, 73, 74, 83, 100, 102, 105, 106, 109], "obtain": [8, 11, 12, 14, 25, 26, 29, 30, 31, 33, 36, 39, 45, 46, 47, 48, 49, 56, 59, 61, 63, 64, 65, 74, 77, 78, 80, 81, 85, 86, 88, 94, 97, 98, 100, 103, 105, 106, 109, 110, 111, 112, 118], "natur": [8, 23, 34, 44, 53, 56, 60, 86, 107], "suggest": [8, 44, 97], "faster": [8, 109, 118], "weaker": [8, 29, 53], "under": [8, 11, 45, 77, 81, 96], "certain": [8, 33, 105, 108, 109], "circumst": 8, "measur": [8, 11, 31, 48, 49, 89, 98, 101], "decai": [8, 64, 105, 106], "mbox": [8, 9, 11, 12, 25, 26, 29, 31, 33, 95, 97, 101], "em": [8, 9, 11, 31, 32, 34, 77], "dual": [8, 9, 12, 25, 29, 32, 33, 37, 39, 53, 59, 60, 97, 101, 102], "primal": [8, 33, 35, 36, 37, 59, 60, 68, 88], "coincid": [8, 35, 95, 97, 108, 109], "aubin": [8, 77], "nitsch": [8, 43, 44, 62, 63, 77], "trick": 8, "orthogon": [8, 25, 26, 27, 29, 30, 32, 34, 39, 47, 51, 52, 62, 63, 80, 83, 97, 98, 99, 100, 102, 112, 118], "insert": [8, 11, 12, 34, 45, 77, 81, 102, 105, 110, 111], "next": [8, 10, 13, 22, 26, 27, 36, 46, 48, 64, 77, 79, 84, 85, 95, 97, 102, 110], "after": [8, 10, 46, 74, 81, 98, 102], "divid": [8, 11, 23, 26, 62, 105], "till": 8, "neglect": 8, "v_d": [8, 98, 101], "v_0": [8, 51, 61, 63, 64, 65, 79, 80, 97, 98, 101, 111], "optr_": 8, "hd": 8, "h0": 8, "x_i": [8, 11, 12, 31, 34, 49], "vertic": [8, 10, 11, 12, 31, 34, 35, 37, 52, 57, 65, 67, 74, 77, 101, 106, 107], "There": [8, 9, 11, 25, 26, 27, 30, 31, 32, 37, 46, 48, 49, 51, 62, 63, 64, 76, 77, 79, 80, 86, 94, 96, 97, 98, 99, 101, 102, 103, 109], "gener": [8, 10, 11, 14, 22, 25, 26, 28, 29, 31, 32, 44, 46, 49, 50, 51, 59, 62, 63, 71, 73, 74, 75, 77, 80, 81, 83, 94, 96, 98, 100, 108, 109, 112], "item": [8, 9, 11, 31, 32], "alpha_1": [8, 11, 26, 28, 95], "alpha_2": [8, 11, 26, 28], "make": [8, 60, 74, 76, 97, 109], "i_h": [8, 11, 34, 52, 65, 66, 73, 80, 83, 106], "move": [8, 13, 48, 71, 86], "hfill": [8, 11], "analog": 8, "sobolev": [8, 62, 77, 87, 98, 100, 101], "index": [8, 45, 73, 95, 118], "nodal": [8, 9, 10, 11, 12, 34, 64, 66, 74, 97, 106, 115, 118], "instabl": 8, "grow": [8, 46, 100, 106, 109], "increas": [8, 47, 62, 68, 77, 100, 111], "better": [8, 31, 47, 64, 83, 100], "choic": [8, 62, 64, 73, 97, 101, 109], "convex": [8, 30, 48, 63, 81, 101, 102], "weight": [8, 32, 33, 77, 101, 108], "inform": [8, 38], "construct": [8, 9, 27, 28, 31, 32, 47, 51, 52, 75, 77, 79, 80, 84, 94, 97, 101, 102], "proper": [8, 39, 74, 77, 85], "refin": [8, 10, 13, 14, 17, 18, 21, 22, 31, 38, 61, 62, 63, 64, 73, 74, 75, 80, 81, 100, 106, 115], "sector": [8, 101], "corner": [8, 101], "pi": [8, 39, 41, 42, 71, 97, 98, 99, 101, 116], "beta": [8, 12, 47, 51, 52, 67, 68, 77, 78, 81, 101], "underlin": [8, 12, 61, 63, 81, 102, 106], "r_t": [8, 32], "distanc": [8, 48], "number": [8, 10, 14, 19, 22, 23, 34, 36, 38, 43, 44, 45, 46, 47, 61, 62, 63, 74, 75, 77, 80, 81, 88, 96, 100, 102, 103, 105, 106, 107], "roughli": 8, "densiti": [8, 56, 80, 87, 97, 110], "per": [8, 27, 37, 38, 40, 44, 47, 62, 76, 80, 85, 107, 118], "unit": [8, 73, 74, 77, 99, 101, 102, 105], "area": 8, "n_": [8, 61, 105], "el": [8, 14, 35, 37, 105, 106], "dimens": [8, 9, 32, 34, 61, 74, 85, 97, 106, 112], "ciarlet": 9, "tripl": 9, "n_t": [9, 12, 103], "psi": [9, 62, 80], "1_t": 9, "_t": [9, 12, 109], "linearli": 9, "varphi": [9, 12, 30, 32, 60, 62, 87, 95, 96, 97], "j_t": [9, 103], "delta_": [9, 25, 77], "ij": [9, 36, 38, 40, 49, 77, 87, 97, 108], "barycentr": 9, "express": [9, 10, 28, 60, 63, 74, 99, 102, 110, 111], "lagrang": [9, 36, 59, 79, 80, 81, 88, 102], "hermit": 9, "usual": [9, 31, 33, 38, 53, 66, 78, 81, 83, 105, 108], "span": [9, 29, 47, 74, 79, 97, 101, 103, 105, 112], "segment": 9, "quadrat": [9, 48, 74, 81, 102], "morlei": [9, 11, 65], "raviart": [9, 11, 59, 83, 85, 98], "thoma": [9, 59, 83, 85], "overlin": [9, 11, 25, 27, 34, 38, 81, 87, 89, 94, 95, 96, 97, 99, 104, 105, 106], "alpha_t": 9, "equival": [9, 25, 26, 29, 31, 32, 43, 44, 48, 49, 58, 63, 81, 84, 97, 99, 100, 101, 103, 109], "t_i": [9, 32], "_i": [9, 64, 101, 102, 105], "lagrangian": [9, 43, 51, 66], "t_1": [9, 32, 34, 45, 109], "t_m": 9, "subdivis": 9, "close": [9, 25, 26, 27, 29, 30, 46, 62, 74, 86, 97, 98, 101], "cup": [9, 39, 71, 87, 88, 97, 101, 103, 104], "cap": [9, 12, 27, 32, 34, 38, 80, 87, 96, 97, 98, 104, 106], "t_j": [9, 108, 109, 110], "either": [9, 23, 33, 44, 63, 74, 84, 86, 118], "empti": [9, 102], "vertex": [9, 11, 31, 32, 34, 35, 37, 60, 74, 80, 101, 106, 107], "wider": 9, "sens": [9, 32, 53, 60, 62, 74, 76, 80, 97, 118], "consist": [9, 11, 14, 20, 22, 24, 34, 35, 38, 39, 40, 43, 44, 58, 60, 62, 74, 79, 80, 81, 96, 97, 102, 108, 109, 118], "quadrilater": [9, 10, 60], "tetrahedra": 9, "hexhedra": 9, "prism": 9, "pyramid": 9, "complex": [9, 10, 29, 38, 41, 42, 50, 61, 74, 75], "conveni": [9, 44, 53, 63, 71, 78], "sai": [9, 26, 30, 36, 71, 95, 98], "neq": [9, 25, 26, 27, 29, 30, 34, 47, 49, 50, 77, 81, 95, 97, 98, 100, 106], "node": [9, 10, 14, 31, 38, 71, 74, 107, 115], "midpoint": 9, "widetild": [9, 31, 35, 40, 45, 71, 83, 96, 97, 101, 106], "tild": [9, 28, 31, 35, 39, 40, 48, 49, 64, 71, 77, 81, 94, 97, 101, 105], "sit": [9, 107], "locat": 9, "psi_1": 9, "psi_n": 9, "connect": [9, 10, 14, 22, 23, 34, 37, 65, 80, 95, 99, 105, 106], "c_t": [9, 12, 23], "ones": [9, 29, 62, 64, 71, 86, 105, 109], "1d": [9, 10, 89, 94, 97], "psi_j": 9, "varphi_i": [9, 11, 12, 34, 96, 102, 103, 105], "varphi_t": [9, 12, 60], "e_i": [9, 32, 102], "c_": [9, 12, 23, 49, 61, 62, 63, 68, 77, 80, 102, 103, 105, 106, 108], "lectur": [10, 24, 44, 70, 78, 102], "show": [10, 27, 28, 29, 31, 32, 34, 39, 44, 45, 51, 62, 63, 72, 77, 81, 94, 99, 103, 106, 109], "our": [10, 22, 51, 52, 97], "own": [10, 19], "within": [10, 14, 19, 24, 27, 44, 63, 98, 105, 108, 118], "languag": [10, 19], "triangular": [10, 49, 50, 51, 65, 85, 107, 108, 115], "packag": [10, 24, 44, 105], "github": [10, 24, 44], "tuwien": 10, "asc": 10, "ng": [10, 70], "myfe": 10, "myelement": 10, "cpp": 10, "hpp": 10, "physic": [10, 38, 74, 79, 81, 85, 88], "mydiffop": 10, "myfespac": 10, "python": [10, 13, 14, 19, 22, 24, 44, 70, 74, 105], "bind": [10, 105], "mymodul": 10, "libmyf": 10, "quad_domin": 10, "load": [10, 38, 68, 72, 74, 79], "librari": [10, 14, 22, 24, 70], "creat": [10, 13, 20, 22, 44, 73, 74, 76], "instanc": [10, 19], "secondord": 10, "top": [10, 42, 60, 71, 74, 79], "constructor": 10, "flag": [10, 44, 53, 56, 74, 80], "you": [10, 24, 44, 49, 71, 73, 75, 100, 105], "vert": 10, "39": [10, 14, 20, 36, 37, 46, 64, 74, 75, 78, 80, 81, 82, 93, 107], "94": [10, 36, 37, 46, 75, 80, 107], "builtin": [10, 74], "133": [10, 36, 46, 75, 80], "tran": [10, 68], "type": [10, 13, 20, 22, 23, 32, 63, 65, 74, 76, 81, 106], "n5ngfem22t_differentialoperatorins_10mydiffopidee": 10, "nv": [10, 74, 106], "document": [10, 70, 73, 107], "docinfo": 10, "structur": [10, 32, 43, 44, 54], "help": [10, 18, 20, 74, 82, 100, 118], "look": [10, 23, 48, 71, 72, 74, 80, 97, 100], "modul": [10, 13, 19, 74, 82], "my": [10, 35, 36, 37, 105], "keyword": [10, 74], "argument": [10, 30, 32, 45, 74, 84, 101], "bool": [10, 74], "should": [10, 31, 44, 74, 97, 105, 118], "regexpr": [10, 74], "string": [10, 74], "than": [10, 14, 31, 32, 35, 53, 63, 64, 74, 85, 95, 96, 97, 105], "dirichlet_bbnd": [10, 74], "bboundari": [10, 35, 37, 74], "dirichlet_bbbnd": [10, 74], "bbboundari": [10, 74], "specif": [10, 63, 74], "multi": [10, 38, 44, 61, 74, 95], "enabl": [10, 44, 74], "dof": [10, 14, 20, 22, 23, 32, 35, 36, 37, 40, 60, 64, 74, 80, 85, 105, 106, 107, 115], "coupl": [10, 40, 51, 74, 108], "chang": [10, 46, 71, 74, 97], "sparsiti": [10, 74], "pattern": [10, 74], "matric": [10, 11, 13, 36, 49, 50, 51, 58, 62, 64, 74, 75, 78, 100, 102, 109, 110, 112, 118], "autoupd": [10, 61, 64, 74, 80, 106], "automat": [10, 68, 74], "low_order_spac": [10, 74], "lowest": [10, 65, 74, 84, 85, 88, 100], "high": [10, 23, 40, 51, 62, 74, 76, 112], "precondition": [10, 17, 18, 20, 21, 38, 43, 44, 45, 47, 50, 62, 72, 74, 75, 78, 80, 81, 82, 88, 105], "order_polici": [10, 74], "oldstyl": [10, 74], "decad": [10, 38, 74], "resolut": [10, 74], "ngs_object": [10, 74], "pybind11_builtin": [10, 74], "pybind11_object": [10, 74], "object": [10, 13, 14, 19, 22, 74], "getnvert": 10, "__getstate__": [10, 74], "tupl": [10, 19, 74], "__init__": [10, 40, 61, 64, 74, 106], "kwarg": [10, 53, 56, 74, 80], "none": [10, 14, 17, 19, 35, 36, 37, 45, 47, 61, 68, 74, 81, 105, 106], "__setstate__": [10, 74], "arg0": [10, 74], "static": [10, 74], "__flags_doc__": [10, 74], "pycapsul": [10, 74], "dict": [10, 74], "descriptor": [10, 74], "__dict__": [10, 74], "attribut": [10, 74], "__pybind11_module_local_v4_clang_libcpp_cxxabi1002__": 10, "capsul": 10, "inherit": [10, 26, 52, 74, 109], "applym": [10, 74], "la": [10, 40, 45, 61, 74, 78, 80, 103, 105, 106, 107], "basevector": [10, 74, 105], "fem": [10, 32, 44, 74, 77, 107], "convertl2oper": [10, 74], "l2space": [10, 74], "basematrix": [10, 40, 61, 74, 79, 93, 103, 105, 106], "couplingtyp": [10, 17, 18, 74], "dofnr": [10, 74], "coupling_typ": [10, 17, 18, 74], "degre": [10, 32, 37, 45, 52, 60, 69, 71, 74, 75, 77, 85, 88], "freedom": [10, 32, 37, 52, 59, 60, 69, 71, 74, 75, 85, 88], "input": [10, 20, 31, 40, 62, 74], "createdirectsolverclust": [10, 74], "list": [10, 14, 19, 22, 35, 36, 37, 40, 45, 74, 89, 93, 94, 100, 103, 105, 106, 107], "createsmoothingblock": [10, 74], "pyngcor": [10, 74], "table_i": [10, 74], "arg": [10, 74, 83], "overload": [10, 74], "vol_or_bnd": [10, 74], "vorb": [10, 74, 76], "vol": [10, 14, 21, 32, 36, 37, 74, 76, 93, 105, 106], "fespaceelementrang": [10, 74], "iter": [10, 26, 35, 36, 37, 47, 48, 61, 63, 68, 74, 78, 79, 80, 82, 88, 102, 105, 107], "bbnd": [10, 35, 37, 74], "finalizeupd": [10, 74], "final": [10, 26, 27, 45, 47, 51, 52, 64, 74, 77, 94, 95, 96, 99, 102, 105, 106], "bitarrai": [10, 64, 71, 74, 105, 106], "includ": [10, 19, 20, 59, 71, 74, 76, 97, 107, 110], "getdofnr": [10, 74, 85, 107], "ei": [10, 21, 74, 82], "elementid": [10, 74], "ni": [10, 12, 74], "nodeid": [10, 74, 85], "getdof": [10, 36, 37, 64, 74, 105, 115], "getf": [10, 74], "correspond": [10, 11, 12, 22, 31, 34, 39, 45, 49, 62, 63, 65, 69, 74, 80, 88, 100, 102, 103, 105, 115], "getord": [10, 74], "isotrop": [10, 74], "support": [10, 74, 87, 95, 96, 97, 105, 106], "gettrac": [10, 74], "arg1": [10, 74], "arg2": [10, 74], "arg3": [10, 74], "gettracetran": [10, 74], "hidealldof": [10, 74], "ngstd": [10, 74], "dummyargu": [10, 74], "visibl": [10, 74], "hidden_dof": [10, 17, 18, 74], "overwritten": [10, 74], "ani": [10, 25, 27, 32, 50, 52, 74, 77, 80, 102, 103, 109], "paralleldof": [10, 22, 23, 40, 74], "identif": [10, 74], "mpi": [10, 13, 14, 15, 17, 18, 20, 21, 22, 23, 40, 44, 74], "distribut": [10, 20, 32, 40, 43, 44, 60, 74, 76, 95], "prolong": [10, 61, 63, 64, 74, 80, 106], "ngmg": [10, 74], "grid": [10, 14, 38, 40, 45, 61, 62, 74, 109], "dofrang": [10, 74], "deprec": [10, 74], "productspac": [10, 74], "setcouplingtyp": [10, 17, 18, 74], "intrang": [10, 17, 18, 74, 106], "interv": [10, 39, 45, 74, 95, 97, 99, 108, 109, 110], "setdefinedon": [10, 74], "setord": [10, 74, 78], "element_typ": [10, 74], "et": [10, 62, 74], "solvem": [10, 74], "symbol": [10, 74], "traceoper": [10, 74, 118], "tracespac": [10, 74], "averag": [10, 31, 32, 33, 40, 64, 74, 79, 106, 118], "updatedoft": [10, 74], "tabl": [10, 74], "__eq__": [10, 74], "__mul__": [10, 74], "ngcomp": [10, 74], "compoundfespac": [10, 74], "__pow__": [10, 74], "compoundfespaceallsam": [10, 74], "__str__": [10, 74], "str": [10, 19, 35, 36, 37, 45, 74, 105], "__timing__": [10, 74], "__special_treated_flags__": [10, 74], "readonli": [10, 74], "properti": [10, 26, 31, 43, 44, 48, 61, 63, 65, 74, 77, 80, 83, 86, 87, 106], "globalord": [10, 74], "queri": [10, 19, 74], "is_complex": [10, 74], "loembed": [10, 74], "lospac": [10, 74], "ndofglob": [10, 14, 21, 22, 74], "__hash__": [10, 74], "__memory__": [10, 74], "__new__": [10, 74], "pybind11_typ": [10, 74], "signatur": [10, 74], "1st": 10, "2nd": 10, "et_segm": 10, "et_quad": 10, "geom": 10, "tetrahedr": [10, 107, 115], "et_tet": 10, "3rd": 10, "reason": [11, 118], "simpler": 11, "even": [11, 38, 62, 76, 77, 118], "accuraci": [11, 31], "framework": [11, 23, 32], "violat": [11, 34], "straight": [11, 88], "inexact": [11, 79], "replac": [11, 31, 34, 52, 61, 63, 71, 73, 79, 98, 100, 103, 109, 110], "a_h": [11, 80, 106], "f_h": 11, "do": [11, 24, 46, 49, 50, 53, 64, 71, 77, 79, 83, 94, 103, 106, 109, 110], "uniformli": [11, 97, 100], "sup_": [11, 25, 26, 27, 28, 29, 32, 34, 35, 39, 45, 46, 51, 52, 73, 80, 81, 83, 84, 87, 94, 100, 102, 109], "w_h": [11, 26, 29, 33, 65, 66, 67, 80], "arbitrari": [11, 26, 28, 29, 46, 63, 65, 74, 80, 87, 97, 99, 102, 103], "label": [11, 31, 32, 33, 34, 45, 77, 105], "equ_strang1a": 11, "inequ": [11, 25, 28, 31, 51, 52, 62, 64, 69, 77, 80, 83, 97, 98, 102, 103, 106], "ref": [11, 31, 33, 34, 77, 97], "lump": [11, 43], "l_2": [11, 25, 26, 28, 29, 31, 32, 34, 38, 39, 43, 44, 51, 53, 55, 56, 58, 59, 60, 62, 63, 64, 65, 67, 69, 73, 74, 80, 83, 86, 87, 89, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 105, 106, 110], "newlin": [11, 31], "exact": [11, 32, 62, 108, 118], "varphi_j": [11, 12, 102], "x_j": [11, 49], "verifi": [11, 26, 28, 39, 46, 48, 52, 62, 80, 86, 96, 97, 100, 103, 108, 109], "equ_uniformel": 11, "done": [11, 14, 20, 47, 63, 105, 118], "estim": [11, 26, 29, 35, 45, 47, 48, 59, 62, 63, 64, 65, 80, 83, 94, 97, 99, 102, 103, 105, 106], "equ_consist": 11, "summat": [11, 14], "give": [11, 19, 23, 28, 32, 44, 60, 71, 73, 77, 79, 81, 84, 85, 87, 88, 97, 100, 101, 107], "modif": [11, 77], "preserv": [11, 52, 77, 85, 97, 109], "avoid": [11, 31, 38, 48, 69, 118], "layer": [11, 105], "parabol": [11, 108, 110], "hyperbol": [11, 111], "skip": [11, 28, 29, 56, 63, 80, 95], "_h": [11, 34], "These": [11, 23, 33, 49, 80, 85, 97, 106, 108], "must": [11, 31, 32, 38, 39, 51, 52, 56, 58, 75, 80, 81, 100, 108, 112], "As": [11, 12, 36, 62, 86, 87, 102, 110], "well": [11, 25, 34, 38, 39, 49, 59, 60, 62, 63, 65, 74, 77, 80, 81, 87, 94, 97, 101, 105, 106, 109, 112, 115, 118], "assumpt": [11, 29, 31, 62, 63, 98], "equ_strang2": 11, "remark": [11, 32, 79], "again": [11, 28, 29, 44, 55, 56, 80, 97, 98, 103, 106, 109], "rest": [11, 34, 61, 64, 71, 80, 84, 101, 106], "crouzeix": [11, 108], "nc": [11, 106], "mid": 11, "across": [11, 32, 34, 40, 77, 85, 97], "inclus": [11, 65], "neighbor": [11, 31, 34, 38], "sign": 11, "subtract": 11, "cauchi": [11, 25, 29, 30, 34, 62, 64, 94, 96, 97, 98, 99, 102], "schwarz": [11, 25, 34, 35, 43, 44, 61, 62, 63, 64, 80, 97, 99, 106], "scale": [11, 25, 32, 34, 36, 40, 45, 62, 63, 75, 77, 78, 84, 94, 97, 105, 118], "h_e": [11, 32, 34], "onc": [11, 71, 73], "p_0": [11, 32, 47, 77, 85], "similar": [11, 20, 25, 31, 34, 38, 48, 50, 59, 61, 62, 63, 72, 76, 77, 80, 85, 88, 97, 99, 110, 111, 112], "vanish": [11, 32, 34, 47, 77, 83, 95, 97], "rescal": [11, 45, 106], "fluid": [11, 56], "dynam": [11, 43], "describ": [11, 44, 72, 79], "later": [11, 27, 46, 52, 74, 81, 97, 109], "exactli": [11, 38, 39, 46, 53, 77, 102, 103, 112], "entri": [11, 23, 49, 50, 59, 64, 74, 102], "row": [11, 50, 54, 58, 59, 79, 81, 108], "associ": [11, 32, 74, 107], "That": 11, "simplif": 11, "code": [11, 44, 48], "leftrightarrow": [12, 25], "u_i": [12, 23, 29, 36, 38, 40, 62, 74, 79, 80, 97, 102, 103, 105, 106, 110, 112], "psi_i": [12, 32, 80, 106], "expans": [12, 39, 61, 109, 110], "With": [12, 19, 29, 30, 45, 49, 61, 65, 79, 85, 97, 103, 105], "a_": [12, 23, 49, 51, 61, 62, 71, 74, 102, 108], "ji": [12, 102, 108], "f_j": [12, 74], "prefer": 12, "sum": [12, 14, 21, 23, 31, 32, 34, 39, 47, 50, 53, 62, 63, 64, 72, 80, 82, 95, 97, 99, 102, 103, 105, 106, 108, 109, 118], "contribut": [12, 23, 31, 34, 95, 101, 105], "a_t": [12, 23], "g": [12, 21, 23, 26, 29, 31, 36, 37, 39, 47, 49, 51, 52, 60, 64, 71, 72, 77, 78, 79, 81, 82, 86, 88, 95, 97, 98, 101, 102, 107, 108, 109, 110, 115, 118], "f_i": [12, 23], "f_": [12, 23, 34, 51, 60], "integrand": [12, 77], "gamma_f": 12, "setminu": [12, 97, 104, 105, 106], "x_d": 12, "gamma_i": [12, 97], "altern": [12, 14, 44, 56, 96], "approach": [12, 32, 38, 44], "robin": [12, 41, 49, 71, 101], "ngs2petsc": [13, 21], "ipyparallel": [13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 40], "cluster": [13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 38], "await": [13, 14, 15, 17, 18, 19, 20, 21, 22, 23], "engin": [13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 32, 44], "start_and_connect": [13, 14, 15, 17, 18, 19, 20, 21, 22, 23], "activ": [13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 37, 44], "launcher": [13, 14, 19, 20, 21, 22, 23], "mpienginesetlaunch": [13, 14, 19, 20, 21, 22, 23], "px": [13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 40], "comm": [13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 40, 74], "comm_world": [13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 40], "ngmesh": [13, 14, 21, 22, 74, 75, 80], "transfer": [13, 80, 97, 118], "n2p": [13, 21], "petsc4pi": [13, 21, 22], "psc": [13, 21, 22], "createpetscmatrix": 13, "vectormap": 13, "psc_mat": 13, "vecmap": 13, "row_pardof": [13, 40], "view": 13, "fit": [13, 60], "psc_f": 13, "psc_u": 13, "createvec": [13, 22], "parallel": [13, 14, 22, 23, 38, 74, 75, 118], "krylov": [13, 81], "ksp": [13, 22], "setoper": [13, 22], "settyp": [13, 22], "cg": [13, 17, 22, 47, 75, 78, 88], "setnormtyp": [13, 22], "normtyp": [13, 22], "norm_natur": [13, 22], "getpc": [13, 22], "gamg": [13, 17, 18, 22], "settoler": [13, 22], "rtol": [13, 22], "atol": [13, 22], "divtol": [13, 22], "1e16": [13, 22], "max_it": [13, 22], "400": [13, 14, 22, 46, 75, 81, 107, 118], "p2n": 13, "wrap": 13, "cgsolver": [13, 17, 18, 20, 21, 36, 37, 40, 61, 72, 75, 79, 80, 81, 105, 107], "krylovspac": [13, 17, 18, 20, 21, 36, 37, 40, 61, 72, 75, 79, 80, 81, 82, 107], "rank": [13, 14, 15, 17, 18, 19, 20, 21, 23, 40, 81, 102, 103], "client": [14, 40], "world": [14, 19], "communiactor": 14, "mpi4pi": [14, 15, 17, 18, 20, 21, 23, 40, 44], "master": [14, 70], "team": [14, 19, 40], "processor": [14, 19, 23, 38, 118], "process": [14, 19, 23], "graph": [14, 38, 50, 96], "partit": [14, 38, 97, 106], "meti": [14, 105], "assign": [14, 105, 107], "sent": 14, "accord": [14, 25, 29, 33, 101], "keep": [14, 37, 53, 109], "kept": 14, "special": [14, 80, 96], "administr": 14, "work": [14, 23, 24, 38, 44, 45, 60, 68, 97, 105, 115], "possibl": [14, 24, 26, 31, 32, 44, 97, 98, 105, 107], "len": [14, 36, 37, 40, 48, 64, 105, 115], "elements2d": 14, "receiv": [14, 40], "got": [14, 19, 24], "getn": [14, 21, 74], "stdout": [14, 19, 20, 21, 23], "1280": [14, 46], "1184": [14, 46], "1248": [14, 46], "232": [14, 46], "collect": [14, 19, 51, 96], "commun": [14, 19, 20, 23, 38, 74], "reduct": [14, 45, 46, 48, 77, 79], "root": [14, 19, 26, 49], "allreduc": [14, 23], "broadcast": [14, 19], "member": 14, "sumup": 14, "3712": 14, "retriev": 14, "worker": 14, "enumer": [14, 22, 32, 35, 36, 37, 40, 49, 105], "7585": 14, "2657": 14, "2481": 14, "2593": 14, "sumlocdof": 14, "7731": 14, "larger": [14, 35, 38, 53, 89, 97], "interfac": [14, 19, 22, 24, 36, 38, 40, 42, 43, 44, 59, 74, 76, 87, 97, 104, 105], "count": [14, 32], "multiplel": 14, "24999999999999895": 14, "scope": 14, "24999999999999872": 14, "piec": [14, 56, 97], "visual": [14, 16, 24, 106], "gfl2": 14, "bone": [14, 19], "pardof": [14, 22, 40], "know": [14, 19, 22, 31, 38, 39, 64, 74, 98, 102, 115], "share": [14, 23, 107], "ask": 14, "particular": [14, 38, 49, 56, 63, 85, 100], "nr": [14, 23, 35, 36, 37, 40, 105, 106], "partner": 14, "otherp": 14, "proc2dof": [14, 40], "12": [14, 20, 36, 37, 45, 46, 61, 69, 75, 78, 80, 81, 82, 88, 107, 108, 115], "23": [14, 20, 36, 37, 46, 74, 75, 78, 80, 81, 82, 88, 105, 107], "33": [14, 20, 36, 37, 46, 75, 78, 80, 81, 82, 107], "43": [14, 36, 37, 46, 74, 75, 78, 80, 81, 82, 107], "47": [14, 36, 37, 46, 74, 75, 80, 81, 82, 107], "49": [14, 36, 37, 46, 75, 80, 81, 82, 107], "53": [14, 36, 37, 46, 75, 80, 81, 82, 107], "54": [14, 36, 37, 46, 75, 80, 81, 82, 107], "55": [14, 36, 37, 46, 75, 80, 81, 82, 107], "56": [14, 36, 37, 46, 74, 75, 80, 81, 82, 105, 107], "57": [14, 36, 37, 46, 75, 80, 81, 82, 107], "58": [14, 36, 37, 46, 75, 80, 81, 82, 107], "59": [14, 36, 37, 46, 75, 80, 81, 82, 107], "185": [14, 46, 75], "186": [14, 46, 75], "187": [14, 46, 74, 75], "188": [14, 46, 74, 75], "189": [14, 46, 75], "190": [14, 46, 75], "191": [14, 46, 74, 75], "192": [14, 46, 74, 75], "193": [14, 46, 75], "194": [14, 46, 75], "195": [14, 46, 75], "196": [14, 46, 75], "197": [14, 46, 75], "198": [14, 32, 46, 75], "692": [14, 46], "733": [14, 46], "734": [14, 46], "795": [14, 46], "796": [14, 46], "851": [14, 46], "852": [14, 46], "904": [14, 46], "905": [14, 46], "925": [14, 46], "934": [14, 46], "935": [14, 46], "937": [14, 46], "938": [14, 46], "953": [14, 46], "954": [14, 46], "957": [14, 46], "958": [14, 46], "961": [14, 46], "962": [14, 46], "965": [14, 46], "966": [14, 46], "969": [14, 46], "970": [14, 46], "973": [14, 46], "974": [14, 46], "977": [14, 46], "978": [14, 46], "11": [14, 20, 36, 37, 46, 61, 75, 78, 80, 81, 82, 88, 102, 107, 108, 117], "22": [14, 20, 36, 37, 46, 61, 75, 78, 80, 81, 82, 85, 88, 102, 105, 107], "32": [14, 20, 36, 37, 46, 68, 75, 78, 80, 81, 82, 100, 105, 107], "34": [14, 20, 36, 37, 46, 63, 74, 75, 78, 80, 81, 82, 102, 105, 107], "48": [14, 36, 37, 46, 74, 75, 80, 81, 82, 107], "91": [14, 36, 37, 46, 75, 80, 107], "120": [14, 36, 46, 74, 75, 80, 107], "144": [14, 46, 75, 80], "149": [14, 46, 75, 80], "166": [14, 46, 75], "179": [14, 46, 75], "241": [14, 46], "299": [14, 46], "301": [14, 46], "352": [14, 46], "354": [14, 46], "358": [14, 46], "360": [14, 46], "398": [14, 46], "427": [14, 46], "431": [14, 46], "433": [14, 46], "732": [14, 46], "792": [14, 46], "794": [14, 46], "847": [14, 46], "849": [14, 46], "855": [14, 46], "857": [14, 46], "895": [14, 46], "897": [14, 46], "927": [14, 46], "931": [14, 46], "933": [14, 46], "1145": [14, 46], "1146": [14, 46], "1317": 14, "1318": 14, "1459": 14, "1460": 14, "1487": 14, "1488": 14, "1587": 14, "1588": 14, "1663": 14, "1664": 14, "29": [14, 20, 36, 37, 46, 75, 78, 80, 81, 82, 107], "38": [14, 20, 36, 37, 46, 74, 75, 78, 80, 81, 82, 107, 115], "52": [14, 36, 37, 46, 75, 80, 81, 82, 107], "177": [14, 46, 75], "178": [14, 46, 75], "180": [14, 46, 75], "181": [14, 46, 75], "182": [14, 46, 75], "183": [14, 46, 75], "184": [14, 46, 75], "702": [14, 46], "781": [14, 46], "782": [14, 46], "831": [14, 46], "832": [14, 46], "869": [14, 46], "870": [14, 46], "888": [14, 46], "889": [14, 46], "892": [14, 46], "899": [14, 46], "900": [14, 46], "903": [14, 46], "907": [14, 46], "908": [14, 46], "911": [14, 46], "912": [14, 46], "915": [14, 46], "916": [14, 46], "40": [14, 20, 36, 37, 42, 46, 53, 74, 75, 78, 80, 81, 82, 107], "46": [14, 36, 37, 46, 74, 75, 80, 81, 82, 107], "51": [14, 36, 37, 46, 75, 80, 81, 82, 107], "60": [14, 36, 37, 46, 75, 80, 81, 82, 107], "61": [14, 36, 37, 46, 61, 74, 75, 80, 82, 107], "62": [14, 36, 37, 46, 74, 75, 80, 82, 107], "704": [14, 46], "785": [14, 46], "786": [14, 46], "842": [14, 46], "843": [14, 46], "873": [14, 46], "874": [14, 46], "883": [14, 46], "884": [14, 46], "893": [14, 46], "896": [14, 46], "919": [14, 46], "920": [14, 46], "923": [14, 46], "924": [14, 46], "928": [14, 46], "932": [14, 46], "936": [14, 46], "939": [14, 46], "940": [14, 46], "24": [14, 20, 36, 37, 44, 46, 75, 78, 80, 81, 82, 88, 105, 107, 108], "87": [14, 36, 37, 46, 75, 80, 85, 107], "119": [14, 36, 46, 74, 75, 80, 107], "157": [14, 46, 75, 80], "172": [14, 46, 75], "229": [14, 46], "293": [14, 46, 71], "295": [14, 46], "349": [14, 46], "351": [14, 46], "376": [14, 46], "378": [14, 46], "408": [14, 46], "411": [14, 46], "423": [14, 46], "432": [14, 46], "434": [14, 46], "435": [14, 46], "438": [14, 46], "721": [14, 46], "787": [14, 46], "841": [14, 46], "868": [14, 46], "926": [14, 46], "930": [14, 46], "1115": [14, 46], "1116": [14, 46], "1303": [14, 46], "1304": [14, 46], "1449": 14, "1450": 14, "1523": 14, "1524": 14, "1611": 14, "1612": 14, "1637": 14, "1638": 14, "1653": 14, "1654": 14, "37": [14, 20, 36, 37, 46, 75, 78, 80, 81, 82, 107], "89": [14, 36, 37, 46, 65, 75, 80, 107], "121": [14, 36, 46, 75, 80, 107], "153": [14, 46, 75, 80], "175": [14, 46, 75], "230": [14, 46], "296": [14, 46], "298": [14, 46], "364": [14, 46], "368": [14, 46], "418": [14, 46], "420": [14, 46], "422": [14, 46], "676": [14, 46], "722": [14, 46], "724": [14, 46], "788": [14, 46], "790": [14, 46], "856": [14, 46], "860": [14, 46], "910": [14, 46], "914": [14, 46], "943": [14, 46], "944": [14, 46], "1125": [14, 46], "1126": [14, 46], "1313": 14, "1314": 14, "1501": 14, "1502": 14, "1627": 14, "1628": 14, "navierstokessimpl": [15, 17, 18], "navierstok": [15, 17, 18], "ngsglobal": [15, 17, 18], "msg_level": [15, 17, 18], "revers": [15, 17, 18, 102], "07": [15, 17, 18, 20, 36, 37, 46, 60, 61, 74, 75, 78, 80, 81, 82, 88, 107, 112], "timestep": 15, "navstok": 15, "solveiniti": 15, "dotimestep": 15, "printmast": 15, "xaux": [16, 18], "gfaux": 16, "convertoper": [16, 18, 113], "convuhat": 16, "embu": 16, "embuhat": 16, "embed": [16, 21, 24, 80, 82, 97, 98, 102], "facetvari": 16, "curl": [16, 57, 60, 66, 67, 68, 80, 85, 113], "fescurl": 16, "hcurl": [16, 60, 67, 68, 80], "mtcurl": 16, "rhscurl": 16, "gfvi": 16, "rt": [17, 18, 85, 88], "sigma": [17, 18, 32, 35, 45, 46, 51, 55, 58, 59, 60, 62, 65, 66, 67, 68, 69, 72, 74, 80, 81, 83, 84, 85, 86, 87, 88, 106, 109, 116, 117], "hcurldiv": [17, 18], "vectorl2": [17, 18, 113, 118], "compress": [17, 18, 35, 36, 37, 50], "wirebasket_dof": [17, 18], "interface_dof": [17, 18], "skew2vec": [17, 18], "stokesa": [17, 18], "eliminate_hidden": [17, 18], "gfsigma": [17, 18], "inva": [17, 18], "masterinvers": 17, "ngspetsc": [17, 18, 21], "pc": [17, 18], "krylovsolv": 17, "solverparamet": 17, "ksp_type": 17, "pc_type": [17, 18], "ksp_monitor": 17, "ksp_rtol": 17, "gfucorr": 17, "petscpc": [17, 18, 21], "maxit": [17, 18, 21, 36, 37, 45, 47, 75, 78, 79, 80, 81, 82, 89, 93, 94, 100, 107, 118], "1000": [17, 18, 46, 78, 79, 82, 109], "abbrevi": 19, "messag": 19, "pass": [19, 110], "mani": [19, 22, 44, 54, 62, 74, 79, 81, 102], "tutori": [19, 23, 24, 73], "jupyt": [19, 24, 44, 70], "repres": [19, 23, 27, 32, 35, 47, 61, 63, 80, 95, 96, 102, 105, 106, 112], "pip": [19, 44, 100], "instal": [19, 24, 70, 100], "th": [19, 32, 49, 65, 77, 102, 106], "tag": 19, "magic": [19, 65], "execut": [19, 44, 73], "9": [19, 20, 36, 37, 46, 47, 61, 68, 74, 75, 78, 80, 81, 82, 86, 88, 93, 105, 107, 112, 117], "about": [19, 22, 38, 71, 97], "particip": 19, "group": [19, 74], "am": 19, "proc": 19, "send": [19, 38, 44], "recv": 19, "destin": 19, "sourc": [19, 31, 32, 34, 41, 42, 44, 53, 55, 74, 86, 110], "expect": [19, 103], "smaller": [19, 35, 62, 85, 105, 106, 115], "kind": [19, 39, 45, 71, 73, 77, 80, 86, 110], "fruit": 19, "appl": 19, "banana": 19, "clementin": 19, "durian": 19, "elderberri": 19, "fig": [19, 45], "grape": 19, "honeydew": 19, "melon": 19, "dst": 19, "dest": 19, "src": [19, 116], "everyon": 19, "scatter": [19, 42], "split": [19, 29, 31, 35, 36, 37, 38, 43, 44, 49, 51, 61, 62, 71, 80, 95, 97, 102, 103, 105, 106], "bcast": 19, "hello": 19, "boss": 19, "person": 19, "technologi": 19, "behind": [19, 44, 47], "pickl": 19, "convert": [19, 22, 74], "byte": 19, "stream": 19, "serial": 19, "exchang": [19, 38], "setup": [20, 75, 76, 94, 105, 106], "jacobi": [20, 45, 61, 62, 63, 77, 79, 80, 103, 107], "extract": [20, 98, 102], "cumul": [20, 22, 23, 40, 64], "identifi": [20, 23, 32, 36, 95, 102], "residu": [20, 31, 36, 37, 44, 45, 46, 48, 49, 61, 75, 80, 81, 88, 102, 107], "calcul": [20, 32, 46, 48, 49, 61, 74, 85, 118], "pure": [20, 23], "precondit": [20, 38, 43, 44, 45, 47, 75, 78, 79, 102, 106, 107], "convers": [20, 23, 97, 118], "output": [20, 40, 62], "product": [20, 25, 26, 27, 36, 46, 47, 48, 49, 50, 62, 63, 74, 77, 80, 95, 96, 97, 98, 99, 100, 102, 106], "act": 20, "opposit": [20, 27, 31, 49], "err": [20, 45, 46, 47, 49, 78, 82, 85, 112], "002131411608940556": 20, "0016785598117133912": 20, "0014383176229297977": 20, "0012601136081994502": 20, "0011163969057570045": 20, "0009957540133089201": 20, "000892013039583751": 20, "0008013860460216729": 20, "0007213664248458749": 20, "0006501978632935307": 20, "0005865868529358019": 20, "0005295374859014327": 20, "00047825313447910644": 20, "0004320763401729044": 20, "0003904510870202349": 20, "00035289842915932834": 20, "00031900021889388745": 20, "0002883878366131279": 20, "0002607340736402399": 20, "00023574705190481803": 20, "00021316549799011987": 20, "00019275494792186845": 20, "00017430461490466548": 20, "00015762474697784634": 20, "00014254435985880777": 20, "00012890926660311873": 20, "00011658034877248673": 20, "00010543202872418053": 20, "53509125215299e": 20, "623457969303072e": 20, "7": [20, 36, 37, 44, 46, 61, 68, 74, 75, 76, 78, 80, 81, 82, 86, 88, 100, 107, 112, 115, 117], "79905007837357e": 20, "053506705294771e": 20, "3792719216495e": 20, "769516408736931e": [], "218066951299397e": 20, "71934292567164e": [], "268299050241807e": [], "860373752689044e": [], "4914425821440545e": 20, "1577761578216526e": 20, "856002200721243e": 20, "5830712431211527e": [], "336225652920634e": [], "112971647279069e": 20, "9110540031668575e": [], "7284332019465414e": [], "563264771416978e": [], "4138806122733465e": [], "2787721169956143e": [], "1565749080625242e": [], "0460550393450774e": [], "460965197737418e": [], "556900320854897e": [], "739227318013283e": [], "999690227069895e": [], "330822151353702e": [], "7258698239108366e": [], "178725388153858e": [], "6838647035290175e": [], "236291551289987e": [], "831487175498001e": [], "4653646485897776e": [], "1342275998439424e": [], "8347328893352102e": [], "5638568499710354e": [], "318864756351698e": [], "097283211876788e": [], "896875175059282e": [], "715617372711863e": [], "551679871817e": [], "4034076037199845e": [], "2693036540219163e": [], "148014149399825e": [], "0383145887165753e": [], "390974803808237e": [], "493611611120727e": [], "681996832028874e": [], "947936681618619e": [], "284020343837914e": [], "683545153190265e": [], "140448925990265e": [], "649248757945639e": [], "204985670127124e": [], "8031745444511146e": [], "439758843202849e": [], "111069655442327e": [], "8137886568143383e": [], "54491460880751e": [], "3017330592352966e": [], "0817889380370092e": [], "8828617717300159e": [], "7029432662799943e": [], "540217032071367e": [], "3930402462835032e": [], "259927067541289e": [], "1395336353993158e": [], "0306445032160044e": [], "321603674500005e": [], "430869694970844e": [], "625250580230147e": [], "iteraton": 20, "conjug": [20, 35, 36, 43, 44, 50, 75, 79, 81], "goe": 20, "2kcg": [20, 36, 37, 61, 75, 80, 81, 88, 107], "046167213571327394": 20, "07053899603094559": 20, "05070470124514234": 20, "0360268233935707": 20, "023620592653494303": 20, "012187751064729127": 20, "0048687652674056035": 20, "0036905492669662104": 20, "002385951928666893": 20, "0014958478667025682": [], "0007978295322313946": [], "0003894308112507473": [], "0002028582087546903": [], "00010870660188901049": [], "7709248556370906e": [], "440663639564687e": [], "3387850598294928e": [], "18": [20, 36, 37, 46, 61, 75, 78, 80, 81, 82, 88, 107], "261614742574918e": [], "19": [20, 36, 37, 46, 74, 75, 78, 80, 81, 82, 88, 93, 107], "7789183584086133e": [], "71212219563724e": [], "21": [20, 36, 37, 46, 61, 75, 78, 80, 81, 82, 88, 107], "9449190153480686e": [], "720041089537808e": [], "158325024486417e": [], "966100092888579e": [], "6907112120357873e": [], "26": [20, 36, 37, 46, 75, 78, 80, 81, 82, 107], "226654284814047e": [], "27": [20, 36, 37, 46, 75, 78, 80, 81, 82, 107], "3834878735043118e": [], "759857607322895e": [], "09": [20, 36, 37, 46, 61, 75, 80, 81, 88, 107, 112], "4857074072199563e": [], "1436471199765605e": [], "31": [20, 36, 37, 44, 46, 75, 78, 80, 81, 82, 107, 115], "800144212325028e": [], "2081699355731026e": [], "0825055598730917e": [], "4996245070654885e": [], "35": [20, 36, 37, 46, 74, 75, 78, 80, 81, 82, 107], "5035529096415395e": [], "36": [20, 36, 37, 46, 74, 75, 78, 80, 81, 82, 107], "315483330039497e": [], "5661479470419015e": [], "460411710771445e": [], "2563691054597154e": [], "046560309172732e": [], "4718578422851718e": [], "bramblepasciakcg": [21, 78, 82], "z": [21, 27, 28, 39, 45, 46, 47, 62, 72, 74, 80, 82, 97, 98, 101, 102, 108, 109, 112, 113, 115, 118], "41888": 21, "39464": 21, "41712": 21, "petsc": [21, 43, 44], "u1": [21, 68, 82], "bfa1": [21, 82], "bfb": [21, 78, 82], "bfc": [21, 82], "prea1": [21, 82], "mata": [21, 82], "ri": [21, 82], "prea": [21, 78, 79, 82], "bfschur": [21, 78, 82], "preschur": [21, 78, 82], "gfp": [21, 78, 82, 118], "resf": [21, 78, 82], "resg": [21, 78, 82], "sol": [21, 64, 78, 82, 88], "500": [21, 36, 37, 45, 46, 65, 67], "clip": [21, 80, 82], "http": [22, 24, 44, 50, 63, 73, 102, 108, 115, 116, 117], "www": 22, "mc": 22, "anl": 22, "gov": 22, "portabl": 22, "toolkit": 22, "scientif": [22, 44, 108], "offer": 22, "learn": [22, 24, 50], "numpi": [22, 44, 45, 62, 73, 74, 109], "np": [22, 45, 74, 109], "ndglob": 22, "aij": 22, "locmat": 22, "local_mat": [22, 40], "val": [22, 40, 74], "col": [22, 40, 61], "ind": 22, "dtype": 22, "int32": 22, "apsc_loc": 22, "createaij": 22, "height": [22, 31, 45, 106], "width": [22, 38, 64, 106], "comm_self": 22, "indexset": 22, "purpos": 22, "globnum": 22, "nglob": 22, "enumerateglob": 22, "iset": 22, "creategener": 22, "indic": [22, 74, 81, 103], "lgmap": 22, "createi": 22, "local2glob": 22, "createpython": 22, "setlgmap": 22, "setislocalmat": 22, "mpiaij": 22, "copi": [22, 61, 112], "v2loc": 22, "getsubvector": 22, "getarrai": 22, "restoresubvector": 22, "v1loc": 22, "dougla": [23, 32, 85], "haas": 23, "langer": 23, "ellipt": [23, 26, 35, 39, 43, 44, 51, 52, 62, 63, 74, 88, 110], "siam": [23, 63, 102], "2003": [23, 35], "store": [23, 50, 79, 106, 118], "represent": [23, 29, 43, 44, 45, 74, 100, 102, 103, 106, 112], "recal": 23, "rectangular": [23, 40, 51, 79, 102, 112], "ccc": [23, 51, 66, 78, 81, 83, 88, 108], "thei": [23, 28, 61, 62, 71, 77, 80, 105, 106, 108, 118], "never": [23, 44], "dens": [23, 25, 40, 50, 77, 87, 94, 97, 98, 101, 106], "similarli": [23, 74], "understood": [23, 67, 74, 76, 84, 99], "storag": 23, "00666667": 23, "00436698": 23, "0243206": 23, "0233311": 23, "00641114": 23, "0134663": 23, "0174519": 23, "0231253": 23, "0241589": 23, "0596323": 23, "0233791": 23, "00976904": 23, "0123374": 23, "030805": 23, "0421362": 23, "0232821": 23, "0185708": 23, "00929141": 23, "0115905": 23, "0143129": 23, "0157114": 23, "012363": 23, "0183463": 23, "0327422": 23, "0232373": 23, "0382184": 23, "0151684": 23, "0134339": 23, "0339567": 23, "0187142": 23, "0148526": 23, "0133493": 23, "0228366": 23, "0344815": 23, "00444576": 23, "00532115": 23, "0159095": 23, "019749": 23, "0263138": 23, "0185867": 23, "019659": 23, "0139698": 23, "0156347": 23, "0344221": 23, "0278865": 23, "0320692": 23, "0231229": 23, "00838466": 23, "0152942": 23, "00674705": 23, "euclidean": 23, "built": [23, 38, 53, 74, 85], "sequenti": [23, 61], "ip": 23, "doubl": [23, 81], "localip": 23, "local_vec": [23, 40], "36321061217922673": 23, "2941827144102711": 23, "3426066734105022": 23, "a_i": [23, 102], "r_i": [23, 49, 80, 102], "interpret": [23, 33, 49, 60, 81], "uniqu": [23, 25, 26, 27, 28, 29, 30, 48, 51, 74, 77, 80, 85, 87, 101, 102], "just": [23, 24, 37, 58, 64, 71, 74, 81, 84, 118], "prepar": 24, "joachim": [24, 43, 44, 70], "schoeberl": 24, "colleagu": 24, "tu": [24, 43, 44, 54], "wien": [24, 43, 44], "cours": [24, 44, 70, 81], "teach": [24, 44], "theori": [24, 29, 49, 61, 62, 63, 70, 77, 98, 105, 106], "reader": [24, 78], "experi": [24, 44, 45, 49, 70, 75, 76, 81, 94, 103, 105], "read": [24, 32, 70, 74, 81, 102, 110], "onlin": [24, 44], "book": [24, 44], "jschoeberl": [24, 44], "io": [24, 44], "ifem": [24, 44, 70], "intro": 24, "html": [24, 50, 73], "try": [24, 28, 44, 56, 73, 80], "your": [24, 44, 73, 75, 99], "launch": 24, "binder": 24, "click": 24, "logo": 24, "minut": [24, 44], "readi": [24, 80], "through": [24, 30, 33, 85], "press": [24, 61], "enter": [24, 74, 76], "experiment": [24, 46], "run": [24, 44, 46, 49], "lite": [24, 44], "jupyterlite_ngsolv": 24, "lab": [24, 44], "path": [24, 44], "ipynb": [24, 44], "develop": [24, 62, 77, 80, 104], "hochsteg": 24, "home": 24, "offic": 24, "noth": [24, 71], "excel": 24, "matlab": 24, "long": [24, 38, 105], "chen": [24, 65], "mu": [25, 36, 37, 51, 53, 54, 72, 80, 81, 118], "quad": [25, 28, 29, 30, 32, 38, 47, 51, 52, 53, 54, 62, 67, 71, 74, 79, 85, 86, 87, 95, 97, 100, 102, 104, 106, 109], "lebesgu": 25, "being": [25, 74, 100, 105], "sup": [25, 43, 44, 52, 83], "complet": [25, 27, 29, 62, 63, 71, 74, 80, 96, 108, 118], "sequenc": [25, 29, 30, 31, 61, 64, 73, 94, 96, 97, 98, 100], "u_n": [25, 29, 74, 94, 97, 110], "banach": [25, 26, 96, 97], "closur": [25, 31, 39, 96, 97, 101], "denot": [25, 77, 95, 96, 109], "canon": [25, 39, 60, 73, 80], "ast": [25, 26, 27, 28, 29, 32, 39, 45, 46, 48, 49, 51, 73, 83, 101, 102], "satisfi": [25, 26, 28, 32, 34, 45, 49, 56, 59, 62, 63, 65, 67, 73, 74, 77, 80, 81, 95, 106, 108, 109, 110], "_a": [25, 26, 27, 32, 35, 47, 48, 49, 50, 52, 62, 63, 64, 80, 81, 98, 100, 102, 103, 105, 106], "simpli": [25, 48, 77, 80], "tv": 25, "2ta": 25, "forc": [25, 56, 72, 79], "trivial": [25, 51, 64, 80, 84, 96, 97, 98, 103], "statement": [25, 101], "respect": [25, 26, 29, 32, 33, 36, 39, 45, 46, 47, 51, 77, 81, 96, 97, 99, 102], "subspac": [25, 26, 27, 29, 43, 44, 63, 102], "alwai": [25, 31, 108], "kernel": [25, 34, 38, 51, 52, 65, 79, 97, 98, 100, 103], "ker": [25, 27, 79, 80, 98], "necessarili": [25, 26, 28, 59, 95, 102], "bot": [25, 27, 29, 30, 35, 36, 37, 47, 51, 80, 97, 98], "_w": [25, 28, 29, 39, 97, 98], "principl": 25, "onto": [25, 27, 29, 31, 36, 43, 44, 51, 64, 77, 80, 97, 98, 99, 102, 106], "limit": [25, 39, 67, 94, 97, 103], "compact": [25, 87, 95, 96, 97, 98], "lambda_n": [25, 46], "u_m": [25, 97, 112], "eigensystem": [25, 62, 112], "mapsto": [25, 28, 51, 61, 73, 79, 85, 94, 99, 102, 106], "sketch": [25, 98], "maxim": [25, 62, 72, 100, 106], "u_1": [25, 27, 28, 29, 30, 59, 74, 79, 88, 104, 110, 112], "lambda_1": [25, 26, 46, 100], "tu_1": 25, "repeat": [25, 49], "procedur": [25, 77], "complement": [25, 35, 36, 79, 80, 100], "u_2": [25, 27, 28, 29, 59, 88, 104], "chapter": [26, 50, 96, 108], "discuss": [26, 62, 71, 80], "pose": [26, 29, 32, 38, 39, 53, 97, 101], "known": [26, 31, 44, 47, 59, 65, 67, 74, 88, 109, 110], "diffus": [26, 43, 44], "reaction": 26, "neumann": [26, 38, 39, 53, 71, 76, 86, 88, 101, 105], "lambda_": [26, 32, 38, 105], "lambda_2": [26, 46, 100], "gamma_1": [26, 28, 45, 49, 102], "gamma_2": [26, 28, 45, 49, 102], "almost": 26, "everywher": 26, "convect": [26, 43, 44], "aris": [26, 50], "incompress": [26, 56, 81], "write": [26, 45, 49, 52, 54, 62, 74, 77, 79, 102, 103, 106, 109], "written": [26, 83, 108, 112], "dualiti": [26, 53], "notat": [26, 53, 61, 63, 71, 102, 106], "contract": 26, "lipschitz": [26, 89, 92, 94, 96, 97, 98], "v_1": [26, 28, 29, 61, 64, 81, 97, 98, 104], "v_2": [26, 28, 29, 81, 104], "lax": [26, 28, 98, 101], "milgram": [26, 28, 98, 101], "j_v": 26, "riesz": [26, 29, 43, 44], "isomorph": [26, 102], "below": [26, 49], "state": [26, 29, 58, 95, 96, 97, 98, 100, 109], "claim": [26, 28, 52, 62, 98, 103], "solvabl": [26, 28, 29, 51], "origin": [26, 28, 29, 30, 32, 35, 47], "c\u00e9a": 26, "optim": [26, 29, 32, 38, 45, 48, 49, 61, 64, 75, 77, 80, 83], "fundament": [26, 97, 99], "pick": [26, 27, 29], "underbrac": [26, 27, 30, 45, 46, 49, 77, 83, 98], "wa": [26, 34, 35, 63, 97, 100, 102], "infimum": [26, 80, 103], "addition": [26, 33, 44], "improv": [26, 29, 31, 44, 47, 49, 62, 63, 80, 89, 97, 105, 107, 108, 112], "l_u": 27, "u_l": [27, 62, 63, 64, 76, 97, 98], "furthermor": [27, 29, 63, 77, 85, 97], "contradict": [27, 29, 30, 98], "otherwis": [27, 32, 56, 95, 103], "sup_v": [27, 32], "neg": [27, 47, 48, 54, 81, 98, 101, 105, 109], "impli": [27, 28, 29, 30, 77, 80, 81, 96, 97, 98, 102, 103], "tell": [27, 74], "minim": [27, 30, 32, 35, 38, 39, 43, 44, 45, 46, 48, 58, 63, 77, 80, 97, 102, 109], "min_": [28, 32, 45, 47, 48, 51, 63, 81, 83], "tfrac": [28, 30, 38, 45, 47, 48, 51, 59, 72, 77, 81, 89, 93, 94, 97, 100, 102, 105, 106, 109, 111, 118], "hint": [28, 99], "prime": [28, 34, 77, 85, 89, 94, 95, 97, 99, 103, 109], "int_0": [28, 39, 77, 89, 94, 95, 97, 108], "beta_1": [28, 29], "fraction": [28, 81, 97], "swap": [28, 86, 100], "surject": [28, 29, 51, 97], "h_0": [28, 32, 39, 51, 56, 74, 97, 98, 101, 103, 110], "beta_2": [28, 29], "big": [28, 38, 45, 49, 52, 62, 63, 64, 75, 77, 80, 94, 100, 102, 103, 105, 106, 109, 110, 112, 118], "young": 28, "further": [28, 31, 70, 80, 97], "why": [28, 53, 97], "simplifi": [28, 45, 49, 106], "come": [28, 38, 74, 81, 83, 106, 110, 118], "candid": [28, 51, 52, 84], "supremum": [28, 73], "search": [28, 32, 48, 58, 59, 67, 74, 80, 100, 110], "necessari": [29, 35, 98, 109], "f_1": 29, "f_2": 29, "convent": 29, "atop": [29, 32, 34, 35, 39, 45, 63, 81, 83, 97, 101, 102, 106, 109], "reformul": [29, 47, 62, 102], "immedi": [29, 35, 47, 81, 98, 102, 103, 105, 106, 108], "aka": [29, 95, 107], "conclud": [29, 97], "By": [29, 30, 35, 45, 48, 49, 51, 52, 61, 63, 74, 77, 80, 81, 97, 98, 100, 102, 105, 106, 109, 110], "insur": 29, "around": [29, 103], "babu\u0161ka": 29, "aziz": 29, "oplu": 29, "v_g": 29, "real": [29, 109], "v_r": [29, 118], "v_i": [29, 36, 38, 40, 80, 101, 102, 105, 106], "u_r": [29, 76], "contrast": [29, 34, 49, 59, 74, 109, 111], "extra": [29, 53, 59, 77, 88, 107], "beta_": 29, "1h": 29, "actual": [29, 34, 79, 97], "brezzi": [29, 32, 44, 51, 52, 59, 65, 70, 85], "xu": [29, 63, 102], "zikatanov": 29, "euklidean": [30, 46, 73], "character": [30, 48, 97], "v_m": [30, 112], "therefor": 30, "minimum": [30, 48, 100, 102], "dt": [30, 110, 112, 118], "were": [30, 60, 88, 96], "decompos": [30, 36, 38, 51, 63, 64, 80, 98, 101, 102, 103, 106], "p_": [30, 31, 47, 61, 63, 64, 77, 97, 98, 118], "projector": [30, 43, 62, 80, 81, 100, 102, 105, 106, 115], "pu": [30, 106], "pv": 30, "p_su": 30, "p_sv": 30, "Such": [31, 38, 44, 106], "eta": [31, 32, 33, 34, 97], "reliabl": [31, 32, 33, 34], "upper": [31, 32, 33, 49, 86, 100, 106], "c_1": [31, 98, 100, 103, 106, 108], "equ_reli": 31, "effici": [31, 32, 34, 38, 47, 61, 77], "lower": [31, 32, 38, 49, 83, 86, 100, 105, 106, 108], "c_2": [31, 98, 100, 103, 106], "equ_effici": 31, "unknown": [31, 38, 56, 57, 75, 77, 109, 110, 111], "bigskip": [31, 32, 34], "guid": [31, 118], "eta_t": [31, 33, 34], "omega_t": [31, 34], "patch": [31, 32, 34, 80, 106], "simplest": [31, 56], "zz": 31, "semi": [31, 34, 80, 96, 97, 98, 100, 103, 106, 109, 110], "p_h": [31, 52, 83], "hope": [31, 100], "much": [31, 35, 38, 48, 65], "equ_superconverg": 31, "small": [31, 33, 38, 43, 44, 47, 54, 62, 67, 76, 77, 80, 81, 83, 100, 105, 106, 112, 115, 118], "ll": [31, 109], "super": [31, 40, 61, 74, 106], "inde": [31, 39, 77, 97, 98, 101, 102], "short": [31, 61, 74, 85, 97, 105, 109, 112], "rigor": [31, 33], "analysi": [31, 44, 49, 61, 69, 77, 88, 100, 102, 103, 107], "subsubsect": 31, "algorithm": [31, 38, 43, 45, 47, 50, 61, 74, 81, 94], "control": [31, 72, 74, 103], "recurs": [31, 47, 61, 62, 63], "quot": 31, "loop": [31, 49], "hspace": 31, "1cm": 31, "toler": 31, "stop": [31, 47], "care": 31, "red": 31, "green": [31, 33], "mark": [31, 71, 74, 105], "four": [31, 47], "includegraph": 31, "2cm": 31, "pictur": 31, "refine_irreg": 31, "irregular": 31, "refine_reg": 31, "wors": 31, "refinebad": 31, "remov": [31, 45], "refinegood": 31, "bisect": [31, 74, 105], "cut": [31, 97], "middl": 31, "old": [31, 46, 110], "occur": 31, "ensur": 31, "termin": 31, "cycl": 31, "sort": 31, "length": [31, 97], "largest": [31, 45, 46, 49, 94, 100, 103], "equilibr": [31, 44], "tex": 31, "subsect": 32, "energi": [32, 33, 35, 43, 48, 49, 50, 64, 67, 68, 80, 115, 118], "aim": [32, 38, 44], "direct": [32, 38, 48, 50, 51, 52, 61, 72, 75, 78, 82, 94, 97, 105, 106], "feasibl": [32, 45, 61, 102, 105], "mathcal": [32, 47, 63, 66, 102], "r_e": 32, "lambda_t": 32, "_e": [32, 77, 84, 97], "eqc": 32, "rel": [32, 109], "er": 32, "idea": [32, 34, 35, 38, 47, 63, 88, 97, 98, 112, 115], "lift": [32, 35], "envolv": 32, "flux": [32, 33, 53, 55, 71, 76, 83, 85, 86], "postprocess": [32, 83], "equilibrium": [32, 72], "sigma_": [32, 60, 65, 87, 88], "could": [32, 49, 52, 79, 88, 109], "alreadi": [32, 39, 62, 63, 106], "compar": [32, 38, 45, 52, 77, 107, 109], "cost": [32, 38, 79, 105], "omega_v": 32, "cup_": [32, 97], "proce": [32, 44, 49, 103, 106, 111], "sum_v": [32, 60], "multipl": [32, 47, 49, 61, 77, 102], "phi_v": 32, "equal": [32, 38, 76, 77, 98, 102], "marini": [32, 85], "q_i": [32, 85], "ii": [32, 49, 102], "iii": [32, 44], "opcurl": [32, 60, 67], "unisolv": 32, "t_2": [32, 34], "counter": [32, 100], "clock": 32, "t_0": [32, 45, 109], "specifi": [32, 71, 74, 101, 108], "sigma_n": [32, 60, 86, 87], "e_1": 32, "e_2": 32, "const": 32, "e_3": 32, "constrain": [32, 35, 80, 88], "furthoer": 32, "mix": [32, 54, 59, 65, 68, 70, 80, 83, 84, 88], "shown": [32, 38, 51, 58, 62, 63, 77, 80, 87, 102], "proven": [32, 45, 46, 49, 62, 63, 64, 77, 80, 84, 87, 94, 97, 100, 103], "overestim": 32, "less": [32, 71, 95], "noindent": 32, "literatur": [32, 62, 63, 102, 118], "braess": [32, 44, 62, 65, 77], "sch": 32, "oberl": 32, "newblock": 32, "maxwel": [32, 116, 117], "262": [32, 46], "651": [32, 46], "672": [32, 46], "2008": 32, "pillwein": 32, "mechan": [32, 44, 54, 100], "1189": [32, 46], "1197": [32, 46], "2009": [32, 115], "surfac": [33, 68, 74], "descib": 33, "design": [33, 38, 58, 81, 118], "heurist": 33, "unfortun": [33, 37], "correct": [33, 36, 49, 61, 62, 63, 71, 79, 102, 103, 105, 106], "equ_incorrect": 33, "2_t": 33, "desir": 33, "classic": [34, 43, 95, 108], "n_1": 34, "n_2": 34, "ment": 34, "pi_h": [34, 106], "omega_x": 34, "bigcup_": 34, "omega_": 34, "emptyset": [34, 97], "ement": 34, "equ_clement_bh": 34, "due": [34, 62, 72, 80, 101, 106, 118], "equ_clement_bh2": 34, "adjac": [34, 105], "lefteqn": 34, "overlap": [34, 35, 61, 71, 80, 87, 97], "geqc": 34, "grew": 35, "feti": [35, 43, 44], "dp": [35, 43, 44], "invent": 35, "clark": 35, "dormann": 35, "substructur": 35, "stand": [35, 37], "alanc": 35, "omain": 35, "ecomposit": 35, "onstraint": 35, "decomposit": [35, 61, 63, 80, 87, 102, 103, 112], "unlik": 35, "cheaper": [35, 79, 105], "down": [35, 54], "artifici": [35, 62], "befor": [35, 106], "supset": 35, "fictiti": [35, 80, 102], "Its": [35, 80, 85, 97, 101, 102], "spectrum": [35, 45, 81, 106], "_c": [35, 45, 47, 49], "sup_u": [35, 81], "scroll": 35, "elimin": [35, 50, 74], "except": [35, 118], "schur": [35, 36, 40, 79], "witch": 35, "bring": [35, 99], "interact": [35, 45], "csg2d": [35, 36, 37, 79], "mx": [35, 36, 37, 64, 105], "rect": [35, 36, 37, 79, 105, 115, 118], "pmin": [35, 36, 37, 79], "pmax": [35, 36, 37, 79], "02": [35, 42, 62, 74, 82, 112, 115, 118], "dom": [35, 36, 37, 74, 105], "fesi": [35, 36, 37], "fesvertex": [35, 37], "domtrial": [35, 36, 37], "domtest": [35, 36, 37], "uvert": [35, 37], "vvert": [35, 37], "dvert": [35, 37], "differentialsymbol": [35, 37], "ui": [35, 36, 37], "vi": [35, 36, 37], "1e6": [35, 37, 74], "gftot": [35, 36, 37], "tear": 36, "interconnect": 36, "break": [36, 37, 44, 45, 46, 47, 48, 49, 78, 88], "apart": 36, "enforc": [36, 38, 53, 59], "04": [36, 61, 74], "mat00": [36, 37, 105], "mat01": [36, 37, 105], "mat02": [36, 37, 105], "mat10": [36, 37, 105], "mat11": [36, 37, 105], "mat12": [36, 37, 105], "mat20": [36, 37, 105], "mat21": [36, 37, 105], "mat22": [36, 37, 105], "pi_i": 36, "817": [36, 46, 61], "although": [36, 50, 75, 111], "constraint": [36, 44, 52, 56, 67, 77, 80, 81, 102], "feslam": [36, 37, 81], "inter": [36, 37], "neighbour": [36, 37, 77], "feslami": [36, 37], "lam": [36, 37, 40, 45, 53, 61, 72, 76, 78, 80, 81, 86, 100, 103, 106, 107, 112, 118], "intertri": [36, 37], "intertest": [36, 37], "108": [36, 37, 46, 75, 80, 107], "u_j": [36, 38, 97, 102], "mu_": [36, 38], "trialspac": [36, 37, 113, 118], "testspac": [36, 37, 113, 118], "zip": [36, 37, 40, 100, 112], "dom1": [36, 37], "dom2": [36, 37], "0x1107d1bb0": [], "obvious": 36, "saddl": [36, 78, 79, 80, 88], "explicitli": [36, 47, 81, 102, 106], "build": [36, 40, 72, 105, 107], "recov": [36, 51, 102], "ainv": [36, 37, 40, 81], "identitymatrix": [36, 37, 45, 79], "08403599336703113": [], "03971919917200744": [], "012295554254865788": [], "0020901554347403867": [], "0015921163492494676": [], "0003216314452335512": [], "0014866501738760762": [], "00021211111709024764": [], "000899271327545316": [], "978704242742513e": [], "00010989556910276669": [], "807312175413424e": [], "489313462052698e": [], "2211684881705134e": [], "7663058771209864e": [], "0003633998734140186": [], "0001352619325951499": [], "8964649988663094e": [], "00014306804838131818": [], "9254573086860635e": [], "042581454137236e": [], "4281221761962518e": [], "8235209177426652e": [], "387142841664182e": [], "4454491314789472e": [], "2624858625647429e": [], "3836188899738758e": [], "121103256791653e": [], "39235568858624e": [], "1657481110350776e": [], "8293593651314615e": [], "184364070224477e": [], "79990240813575e": [], "2398158865007236e": [], "1125928073258183e": [], "141746880294224e": [], "1884181554368676e": [], "286194750732054e": [], "9088222270713893e": [], "446017065156852e": [], "652017571974451e": [], "42": [36, 37, 42, 46, 74, 75, 78, 80, 81, 82, 107], "776444039291786e": [], "0338834017156139e": [], "44": [36, 37, 46, 74, 75, 80, 81, 82, 106, 107], "941258142377164e": [], "8288921201760967e": [], "634922998282079e": [], "841438389885371e": [], "7684030183248516e": [], "2321571144415932e": [], "1034518226186206e": [], "498290775472622e": [], "9531123494393727e": [], "12208866558199e": [], "0951448281697898e": [], "2794258185310817e": [], "249148010989853e": [], "322033976123568e": [], "747594642794803e": [], "575282285473072e": [], "5348972354633607e": [], "73687786636755e": [], "3798080438293656e": [], "63": [36, 37, 46, 75, 80, 82, 107], "910468666833205e": [], "64": [36, 37, 46, 75, 80, 82, 100, 105, 107], "3471932802189886e": [], "65": [36, 37, 46, 75, 80, 82, 105, 107], "5565122033962706e": [], "66": [36, 37, 46, 75, 80, 82, 107], "354758555754366e": [], "67": [36, 37, 46, 65, 75, 80, 82, 107], "7998658666188764e": [], "68": [36, 37, 46, 75, 80, 82, 103, 107], "2061379442750012e": [], "69": [36, 37, 46, 75, 80, 82, 107], "5570103924688024e": [], "70": [36, 37, 46, 75, 80, 82, 107], "72598022235102e": [], "294819561431963e": [], "72": [36, 37, 46, 75, 80, 82, 107], "418149620187612e": [], "73": [36, 37, 46, 65, 75, 80, 82, 107], "436971866280808e": [], "74": [36, 37, 46, 75, 80, 82, 107], "752415244835483e": [], "409430826899846e": [], "76": [36, 37, 46, 75, 80, 107], "6093537661467296e": [], "684044879498471e": [], "78": [36, 37, 46, 75, 80, 107], "0953726141653895e": [], "79": [36, 37, 46, 74, 75, 80, 107], "6429039542122068e": [], "80": [36, 37, 46, 59, 74, 75, 80, 107], "2325700389369532e": [], "81": [36, 37, 46, 75, 80, 107, 115], "7421283661741647e": [], "82": [36, 37, 46, 75, 80, 107], "226588470826822e": [], "83": [36, 37, 46, 62, 74, 75, 80, 107], "202529124800455e": [], "84": [36, 37, 46, 74, 75, 80, 107], "1965287632251513e": [], "85": [36, 37, 46, 62, 65, 75, 80, 107], "991538436040081e": [], "86": [36, 37, 46, 75, 80, 85, 107], "1522344802302885e": [], "753696940783753e": [], "88": [36, 37, 46, 75, 80, 107], "8501344424674616e": [], "253114257383795e": [], "90": [36, 37, 46, 75, 80, 107], "6592798493252714e": [], "337514523964305e": [], "92": [36, 37, 46, 75, 80, 107], "5830333107310454e": [], "93": [36, 37, 46, 62, 75, 79, 80, 107], "3042922401246623e": [], "538759307284333e": [], "95": [36, 37, 46, 75, 80, 107], "9952323110386574e": [], "96": [36, 37, 46, 75, 80, 107], "634371597786884e": [], "97": [36, 37, 46, 75, 80, 107], "4119444055232988e": [], "98": [36, 37, 46, 75, 80, 107], "95712879462653e": [], "99": [36, 37, 46, 75, 80, 107], "826718189247856e": [], "693092500765816e": [], "101": [36, 37, 46, 75, 80, 107], "1493153212620434e": [], "102": [36, 37, 46, 75, 80, 107], "4027067950677983e": [], "103": [36, 37, 46, 75, 77, 80, 107], "189708423554782e": [], "104": [36, 37, 46, 75, 80, 107], "059437133008698e": [], "105": [36, 37, 46, 75, 80, 107], "2067646653165054e": [], "106": [36, 37, 46, 75, 80, 107], "166046337767076e": [], "107": [36, 37, 46, 75, 80, 107], "4529776235602213e": [], "061018471079863e": [], "109": [36, 37, 46, 75, 80, 107], "146868539980557e": [], "110": [36, 37, 46, 75, 80, 107], "850475731877533e": [], "111": [36, 37, 46, 75, 80, 107], "458857887878654e": [], "112": [36, 46, 75, 80, 107], "239930354401104e": [], "113": [36, 46, 75, 80, 107], "040223762942861e": [], "114": [36, 46, 75, 80, 107], "106060276351354e": [], "115": [36, 46, 75, 80, 107], "6342433285110853e": [], "116": [36, 46, 75, 80, 107], "2336346456624966e": [], "117": [36, 46, 75, 80, 107], "960736975554042e": [], "118": [36, 46, 75, 80, 107], "7057992648229475e": [], "898767531167215e": [], "1426136878531401e": [], "283256767782974e": [], "122": [36, 46, 75, 80, 107], "3542192081055123e": [], "123": [36, 46, 75, 80, 107], "190324598082598e": [], "124": [36, 46, 75, 80, 107], "567521890031852e": [], "125": [36, 46, 74, 75, 80, 105, 107], "240919261535391e": [], "126": [36, 46, 75, 80, 85, 107], "6683315588418853e": [], "127": [36, 46, 75, 80, 85, 107], "658406953454254e": [], "128": [36, 46, 75, 80, 85, 107], "8991669435132413e": [], "129": [36, 46, 75, 80, 107], "819350672722197e": [], "130": [36, 46, 75, 80, 107], "2604985397225282e": [], "131": [36, 46, 75, 80, 107], "293519084453663e": [], "132": [36, 46, 75, 80, 107], "629544221375508e": [], "041531348724701e": [], "134": [36, 46, 75, 80], "49971132536481e": [], "135": [36, 46, 75, 80], "1808955225706007e": [], "136": [36, 46, 75, 80], "0017171087148768e": [], "137": [36, 46, 75, 80, 105], "8543138051673505e": [], "138": [36, 46, 75, 80], "614180859308858e": [], "139": [36, 46, 75, 80], "263672898942178e": [], "140": [46, 75, 80], "508107566529912e": [], "pi_": [36, 45, 62, 63, 64, 77, 80], "cheat": [36, 60], "bit": [36, 106], "tr": [36, 39, 72, 93, 94, 97, 98, 100, 101], "bnddof": [36, 37], "innerdof": [36, 37], "massbnd": [36, 37], "invmassbnd": [36, 37], "massint": [36, 37], "emb": [36, 37, 98, 102], "inconsist": [36, 37, 64], "silenc": [36, 37, 64], "warn": [36, 37, 53, 56, 64, 80], "check_unus": [36, 37, 64, 100], "schurdir": [36, 37], "0054451002189304": [], "8601107411343848": [], "2607019225332404": [], "07092390115693345": [], "18854148259682355": [], "04148923094503056": [], "020054926681759795": [], "004938527407571722": [], "005065786308082779": [], "002749765263754158": [], "0007957605690849746": [], "0001984910326123447": [], "365734582928892e": [], "4701098109064105e": [], "0399328746235653e": [], "91735329499063e": [], "4662094308941554e": [], "911368584729481e": [], "2562257911243696e": [], "607052720869526e": [], "4898814355970646e": [], "844567562043741e": [], "0742247817595927e": [], "7388766438578904e": [], "6766702323965994e": [], "5346248999878193e": [], "0667266478239325e": [], "0658429743096915e": [], "794327426693509e": [], "6660173659549895e": [], "239423571009264e": [], "318254606802137e": [], "628468213793402e": [], "130895179418738e": [], "240932100290787e": [], "3160034244536579e": [], "671721073849679e": [], "07397937791977e": [], "singular": [37, 38, 108], "float": [37, 74], "still": [37, 44, 58, 61, 79, 97], "getbboundari": [37, 74], "plu": [37, 47, 60, 62, 79], "manual": 37, "1110": [37, 46], "1111000000000000": 37, "0011010100000000": 37, "0000010110100000": 37, "0101101000000000": 37, "0001011001000000": 37, "0000010011010000": 37, "0000101000001100": 37, "0000001001000110": 37, "0000000001010011": 37, "0x122886ff0": [], "024354670773929814": [], "0010069624298413963": [], "0007257527526679271": [], "0007372917166344344": [], "0004857590089870653": [], "0001342673243212529": [], "0001311934975240688": [], "751979957283966e": [], "00015055318196890573": [], "977415661918507e": [], "5404009953906476e": [], "1325741386287239e": [], "0260991543034553e": [], "181919482486156e": [], "130293954396114e": [], "7112644172547505e": [], "984965667877817e": [], "938071598071031e": [], "285198733080419e": [], "6879906763574446e": [], "6687819085422767e": [], "0305071648258239e": [], "084729652495866e": [], "818596185832861e": [], "3678245666709534e": [], "121908072142562e": [], "2919346610617832e": [], "969236833947717e": [], "610245101588181e": [], "680748392755818e": [], "0328407016824796e": [], "8782325109198685e": [], "3449176054002532e": [], "605992255716323e": [], "434667600420021e": [], "496065924727306e": [], "3850678148964707e": [], "1201619929329266e": [], "183918982655803e": [], "158738762663768e": [], "415101715392477e": [], "412283723911601e": [], "900437915550626e": [], "8262356006669e": [], "814490717970144e": [], "0020489389219248e": [], "0315094070085892e": [], "859175344155667e": [], "3429153469812714e": [], "39108056975843e": [], "582695978454712e": [], "460971025992667e": [], "369704074980719e": [], "346437641843319e": [], "268101999339796e": [], "18799767245361e": [], "539881791126982e": [], "180971576449435e": [], "973058107135382e": [], "5539247215031593e": [], "254428310403994e": [], "388104088450164e": [], "241808163158216e": [], "103497437837806e": [], "5484612734050725e": [], "5733025090213116e": [], "349986313897202e": [], "519560533108015e": [], "15353310052962e": [], "075455716756426e": [], "3629440354974526e": [], "1356603894188464e": [], "2213505502598344e": [], "021181077480107e": [], "404566400298224e": [], "3900834128532658e": [], "12206667487681e": [], "617515749390516e": [], "0459605500103746e": [], "3628238804522186e": [], "743107122010834e": [], "79805244656853e": [], "0459305100184687e": [], "420344800492138e": [], "326866828294926e": [], "459660447967909e": [], "661920779281694e": [], "7756173861270337e": [], "3116533821768697e": [], "2688407376535317e": [], "052956821772828e": [], "328228874088445e": [], "5358027741008827e": [], "2169447149188275e": [], "0674203207925698e": [], "222817027963728e": [], "1498610524430083e": [], "821069303010594e": [], "2625155724587296e": [], "268680660438417e": [], "0649786528841276e": [], "4065259386543846e": [], "0205639433467574e": [], "6208499608407905e": [], "3095225638677511e": [], "0803709062159593e": [], "4036960813875217e": [], "4800744181604987e": [], "046912429408346e": [], "2997059938742978e": [], "5225189901743328": [], "0191901219098294": [], "0071750952671920274": [], "0007041293195431499": [], "00014885168671707776": [], "7978921519512417e": [], "323436581992132e": [], "782735888864785e": [], "2533817206019935e": [], "042700555831697e": [], "8920270277123354e": [], "1315250559845716e": [], "756363094144343e": [], "434177876387799e": [], "834859832130559e": [], "752780385214213e": [], "7683364462529449e": [], "complic": 38, "geometri": [38, 73, 74, 75, 118], "balanc": [38, 53, 55, 56, 77], "hard": [38, 41, 102], "reach": 38, "practic": [38, 49, 105], "access": [38, 74], "memori": [38, 75, 118], "network": [38, 50], "modern": 38, "core": 38, "talk": [38, 97], "amount": 38, "transistor": 38, "gb": 38, "think": [38, 50, 51, 61], "At": 38, "least": [38, 48, 52, 107], "competit": 38, "bottl": 38, "neck": 38, "magnitud": [38, 106], "goal": [38, 44, 45, 49, 64, 80, 102], "effort": 38, "latenc": 38, "band": 38, "establish": [38, 77], "multigrid": [38, 74, 80, 81], "level": [38, 44, 52, 62, 74, 100], "coarser": [38, 61, 62, 63, 118], "relev": 38, "omega_j": [38, 87, 97, 106], "ccccll": [38, 51, 53, 54, 55, 56, 60, 65, 67, 81, 83, 86], "v_j": [38, 96, 102, 105], "taken": [38, 45, 100], "account": 38, "analyz": [38, 61, 62, 74, 80, 101, 102], "abstract": [39, 74, 98], "eigen": [39, 45, 62, 97, 98, 100, 109], "orthonorm": [39, 45, 97, 98], "z_k": [39, 97], "mathbf": [39, 81, 103], "z_0": [39, 97], "lambda_k": [39, 97], "expand": [39, 45, 46, 62, 74, 97, 99], "u_k": [39, 63, 95, 97, 98], "seri": [39, 63, 97, 99, 101], "laplac": [39, 62, 105], "fourier": [39, 63, 77, 97, 99, 101], "infti": [39, 77, 87, 95, 96, 97, 98, 99, 101, 106, 109], "separ": [39, 81], "ansatz": 39, "kx": [39, 101], "cosh": 39, "omega_1": [39, 87, 104], "omega_2": [39, 87, 104], "disjoint": 39, "howev": [39, 46, 49, 61, 62, 63, 79, 80, 81, 97, 100, 106, 115], "prescrib": [39, 79, 86], "eigenfunct": [39, 89, 93, 94, 100, 105], "int_i": [39, 77], "dist": [39, 106], "i_2": 39, "coars": [40, 61, 62, 64], "createvvector": 40, "ndofloc": 40, "dof2proc": 40, "scalingmat": 40, "diagonalmatrix": [40, 64, 105], "setparallelstatu": 40, "parallel_statu": 40, "averagingt": 40, "hv": [40, 46, 49, 78, 113, 118], "parallelprecondition": 40, "atild": 40, "mult": [40, 61, 106], "hv1": 40, "hv2": [40, 46, 49], "eigenvalues_precondition": [40, 45, 61, 78, 80, 103, 105, 106, 107], "sparsematrixd": 40, "exproc": 40, "exchangeproc": 40, "skel_dof2proc": 40, "skel_pardof": 40, "hmat": 40, "creatematrix": [40, 61, 64], "multivector": [40, 79, 105, 112], "couplingmat": 40, "hinv": 40, "coo": [40, 74], "sparseschur": 40, "createfromcoo": 40, "indi": 40, "indj": 40, "globschur": 40, "parallelmatrix": 40, "globinv": 40, "dummypardof": 40, "globcoupl": 40, "col_pardof": 40, "globcouplingmat": 40, "parallelpreconditioner2": 40, "invloc": 40, "invglob": 40, "hv1glob": 40, "createrowvector": [40, 64, 81], "hv2glob": 40, "createcolvector": 40, "dir": 40, "holmholtz": 41, "frequenc": [41, 62, 63, 71], "wave": [41, 109, 115], "absorb": [41, 43], "gamma_r": [41, 49, 71, 79, 101], "math": [41, 42, 80, 116], "1j": [41, 42, 109], "anim": [41, 74, 105], "simul": [42, 44], "gui": [42, 60, 65, 67, 68, 72, 106], "005": [42, 110], "setmateri": [42, 86], "medium": 42, "dot": [42, 109, 110, 111, 118], "cfn": 42, "preambl": 43, "solid": [43, 44, 75, 100], "mechanid": 43, "basic": [43, 44, 56, 62, 105, 115], "inf": [43, 44, 52, 83], "instationari": [43, 44], "fourth": [43, 44], "eror": 43, "helling": [43, 60], "reissner": [43, 60], "symmetri": 43, "tdnn": [43, 67, 68], "hellan": 43, "herrmann": 43, "johnson": [43, 44], "relationship": 43, "hhj": [43, 65], "mindlin": 43, "nonlinear": 43, "grate": 43, "richardson": [43, 44, 45, 47, 48, 50, 81], "chebyshev": [43, 44, 47, 50], "asm": [43, 44, 61, 63, 80, 102, 105, 106], "ml": [43, 61], "mg": [43, 61], "augment": [43, 80], "pasciak": [43, 44, 80, 82], "constrainst": 43, "bddc": [43, 44, 72, 74, 75, 88], "heat": [43, 71, 74, 76, 109, 111], "multistep": 43, "exponenti": [43, 77, 109], "conserv": [43, 115, 118], "hht": 43, "friedrich": [43, 51, 98, 103, 106, 109], "poincar\u00e9": [43, 98, 103], "tartar": [43, 98, 100, 101], "threorem": 43, "institut": 44, "power": [44, 46], "tool": [44, 61, 63, 80, 99, 102, 105, 106], "scienc": 44, "intersect": [44, 96, 98], "theoret": 44, "touch": 44, "commerci": 44, "programm": 44, "explain": [44, 70, 73, 97], "student": 44, "open": [44, 74, 95, 96, 99, 106], "frontend": [44, 70], "summer": 44, "found": [44, 48, 62, 70, 81, 98, 102, 107], "pleas": 44, "mail": 44, "author": [44, 70, 102], "section": [44, 48, 50, 73, 106], "draft": 44, "clean": 44, "star": 44, "faustmann": 44, "tuwel": 44, "boffi": [44, 70], "fortin": [44, 59, 70], "scott": 44, "ern": 44, "guermond": 44, "easi": [44, 58], "webgui_jupyter_widget": 44, "consol": 44, "python3": 44, "__version__": 44, "unit_cub": [44, 53, 55, 113], "issu": [44, 58, 76, 86, 112], "pip3": 44, "extern": 44, "manag": 44, "environ": [44, 71], "virtual": 44, "command": 44, "explan": 44, "conflict": 44, "did": [44, 111], "venv": 44, "user": 44, "numpd": 44, "bin": 44, "compuat": 44, "render": 44, "nbextens": 44, "py": [44, 70, 95], "login": 44, "server": 44, "browser": 44, "jupyterhub": 44, "cerbsim": 44, "com": 44, "ngshub_xx": 44, "pwd": 44, "xx": 44, "01": [44, 45, 62, 67, 74, 103, 111, 115], "might": 44, "driven": 44, "hp": [44, 74, 100], "multilevel": [44, 80], "spd": [45, 46, 48, 49, 50, 62, 81], "damp": [45, 46, 49, 62], "tau_k": 45, "tau_n": [45, 55, 85, 86], "tau_2": 45, "tau_1": 45, "tau_i": 45, "lambda_i": [45, 46, 49, 62, 109], "n_i": [45, 87, 97, 102], "0_i": 45, "max_": [45, 46, 62, 96], "rare": 45, "pol": 45, "three": [45, 60, 71, 77, 79, 85], "recurr": [45, 77], "induct": [45, 62], "formula": [45, 77, 87, 95, 109], "arcco": 45, "chebi": 45, "told": 45, "widget": 45, "ipywidget": 45, "ax": 45, "subplot": 45, "figsiz": 45, "canva": 45, "toolbar_vis": 45, "header_vis": 45, "set_ylim": 45, "linspac": [45, 62, 109], "plot": [45, 46, 47, 48, 49, 62, 73, 100, 107, 112], "legend": 45, "scaledchebi": 45, "gamma1": 45, "gamma2": 45, "fac": 45, "tau_": [45, 60, 65, 88], "opt": [45, 46, 48], "set_titl": 45, "s1": [45, 108], "s2": 45, "color": [45, 109], "linestyl": 45, "dash": 45, "tauopt": 45, "maximum": [45, 46], "rho_n": 45, "2n": [45, 77], "kappa": [45, 46, 47, 61, 63, 80, 81, 103, 105, 106], "log": [45, 46, 47, 48, 49, 63, 112], "substitut": [45, 49, 50, 56, 77], "cancel": [45, 77, 87, 95, 118], "_b": [45, 98, 100], "previou": [45, 47, 80, 96, 103, 106], "increment": [45, 110], "rho_": [45, 46, 48], "yousef": 45, "saad": [45, 47], "399": [45, 46], "chebyiter": 45, "tol": [45, 47, 72, 78, 82], "200": [45, 46, 47, 75, 78, 80, 81, 88, 100, 115], "callback": [45, 47], "theta": 45, "sigma1": 45, "err0": [45, 46, 47, 48, 49, 78], "createsmooth": [45, 47, 49, 61, 62, 79, 103, 115], "funceion": 45, "lanczo": 45, "023921286926102014": 45, "6757907507089311": 45, "errhist": [45, 46, 48, 49], "append": [45, 46, 47, 48, 49, 100, 105, 107, 112], "set_yscal": 45, "sensit": 45, "properli": 46, "cosen": 46, "misfit": 46, "propag": [46, 49, 102, 115], "strategi": 46, "spectral": [46, 47, 49, 62, 102, 103, 105], "radiu": [46, 49, 96, 99, 102], "asymptot": [46, 103], "diagoniz": [46, 109], "featur": 46, "full": [46, 62, 63, 81, 97, 102], "eigenvector": [46, 49, 100, 109], "lambda_j": 46, "sum_j": [46, 102], "0_j": 46, "monoton": [46, 49], "fact": 46, "parallelogram": [46, 58], "ident": [46, 77, 112], "whenev": 46, "max_i": 46, "alpha_": [46, 48], "determin": [46, 108], "setrandom": [46, 49, 62], "7956752990680338": 46, "448900761214395": 46, "691753672693137": 46, "814352226978437": 46, "898245924316241": 46, "961884348845643": 46, "011768153572898": 46, "051348606027109": 46, "082967519865576": 46, "1083784321502765": 46, "128937157167869": 46, "145700503692558": 46, "159492305023506": 46, "170953469301783": 46, "180581597168563": 46, "188762568457179": 46, "195795581626075": 46, "201912825655762": 46, "20729480460904": 46, "212082195607958": 46, "10000": [46, 48, 49], "02974211765794692": 46, "028315523074329833": 46, "027410842175647522": 46, "026686352908694286": 46, "02605354778036957": 46, "025474574374679673": 46, "024931283632543395": 46, "024414250705698613": 46, "023918188335835474": 46, "023439891145440477": 46, "022977263391911276": 46, "02252883553082078": 46, "02209351174170106": 46, "02167043155414069": 46, "021258890368765174": 46, "020858291715411852": 46, "02046811734348254": 46, "020087907739980797": 46, "01971724897913322": 46, "019355763553309795": 46, "019003103789169966": 46, "01865894699243924": 46, "018322991779705176": 46, "017994955245204867": 46, "01767457072797152": 46, "01736158601934315": 46, "017055761899451082": 46, "016756870923679827": 46, "016464696402088225": 46, "01617903153000453": 46, "015899678638718388": 46, "015626448542843247": 46, "015359159966462567": 46, "015097639034237173": 46, "014841718816667147": 46, "014591238920965869": 46, "01434604512072099": 46, "014105989018833337": 46, "013870927739243541": 46, "013640723643751601": 46, "013415244070862429": 46, "013194361094089788": 46, "012977951297551641": 46, "012765895567014494": 46, "012558078894809354": 46, "012354390197259415": 46, "0121547221434405": 46, "011958970994245996": 46, "011767036450854718": 46, "01157882151180759": 46, "011394232337990156": 46, "011213178124896332": 46, "01103557098161611": 46, "01086132581604804": 46, "010690360225888162": 46, "0105225943949912": 46, "010357950994738508": 46, "010196355090081538": 46, "010037734049959545": 46, "009882017461817013": 46, "009729137049970023": 46, "00957902659759177": 46, "00943162187210645": 46, "009286860553797623": 46, "00914468216745215": 46, "009005028016874708": 46, "008867841122120142": 46, "008733066159301757": 46, "008600649402844286": 46, "008470538670058644": 46, "008342683267924778": 46, "008217033941975723": 46, "008093542827183131": 46, "007972163400751166": 46, "00785285043673079": 46, "007735559962372405": 46, "007620249216139159": 46, "007506876607308029": 46, "007395401677089779": 46, "007285785061202624": 46, "007177988453838204": 46, "007071974572961421": 46, "006967707126888932": 46, "0068651507820937825": 46, "0067642711321864776": 46, "006665034668024815": 46, "006567408748907632": 46, "006471361574809355": 46, "0063768621596142555": 46, "0062838803053114995": 46, "006192386577113453": 46, "006102352279461678": 46, "006013749432886288": 46, "005926550751686317": 46, "005840729622399467": 46, "005756260083031563": 46, "005673116803016881": 46, "005591275063881841": 46, "005510710740585726": 46, "0054314002835130675": 46, "0053533207010933665": 46, "0052764495430249175": 46, "005200764884080136": 46, "005126245308471082": 46, "00505286989475429": 46, "004980618201255226": 46, "0049094702519929204": 46, "004839406523086855": 46, "0047704079296280195": 46, "004702455812997286": 46, "004635531928614874": 46, "004569618434104862": 46, "004504697877859927": 46, "004440753187991515": 46, "004377767661651467": 46, "0043157249547117315": 46, "004254609071788941": 46, "004194404356601538": 46, "004135095482647261": 46, "004076667444189602": 46, "004019105547541827": 46, "003962395402637919": 46, "003906522914880215": 46, "0038514742772535683": 46, "003797235962696573": 46, "0037437947167205878": 46, "003691137550267643": 46, "0036392517327986876": 46, "003588124785603924": 46, "0035377444753272353": 46, "003488098807697223": 46, "0034391760214572452": 46, "003390964582487553": 46, "003343453178112618": 46, "0032966307115871057": 46, "0032504862967541446": 46, "0032050092528697147": 46, "003160189099587527": 46, "003116015552098299": 46, "003072478516418594": 46, "003029568084823295": 46, "141": [46, 75, 80], "002987274531417232": 46, "142": [46, 75, 80], "002945588307840723": 46, "143": [46, 75, 80], "002904500039104571": 46, "002864000519549906": 46, "145": [46, 75, 80], "0028240807089284594": 46, "146": [46, 75, 80, 105], "0027847317285992117": 46, "147": [46, 75, 80], "0027459448578374505": 46, "148": [46, 75, 80], "002707711530251991": 46, "0026700233303073207": 46, "150": [46, 75, 80], "002632871989946613": 46, "151": [46, 75, 80], "0025962493853125836": 46, "152": [46, 75, 80], "002560147533562283": 46, "002524558589773273": 46, "154": [46, 75, 80], "0024894748439375424": 46, "155": [46, 75, 80], "0024548887180404605": 46, "156": [46, 75, 80], "0024207927632217833": 46, "0023871796570160172": 46, "158": [46, 75, 80], "002354042200669435": 46, "159": [46, 75, 80], "0023213733165311098": 46, "160": [46, 75], "002289166045515667": 46, "161": [46, 75], "0022574135446350964": 46, "162": [46, 75], "002226109084597644": 46, "163": [46, 75], "0021952460474713676": 46, "164": [46, 75], "0021648179244101325": 46, "165": [46, 75], "002134818313440375": 46, "0021052409173061668": 46, "167": [46, 75], "0020760795413710255": 46, "168": [46, 75], "0020473280915745116": 46, "169": [46, 75], "002018980572441813": 46, "170": [46, 75], "0019910310851446664": 46, "171": [46, 75], "0019634738256118496": 46, "0019363030826879543": 46, "173": [46, 75], "001909513236338424": 46, "174": [46, 75], "0018830987558998633": 46, "0018570541983739639": 46, "176": [46, 75], "0018313742067635904": 46, "0018060535084499963": 46, "001781086913609521": 46, "0017564693136689225": 46, "0017321956797978454": 46, "0017082610614374385": 46, "0016846605848640193": 46, "0016613894517866516": 46, "0016384429379776749": 46, "0016158163919351772": 46, "001593505233576355": 46, "0015715049529611042": 46, "0015498111090446118": 46, "0015284193284582851": 46, "0015073253043182886": 46, "0014865247950606303": 46, "0014660136233021089": 46, "0014457876747266": 46, "0014258428969956122": 46, "001406175298682715": 46, "0013867809482308554": 46, "0013676559729323798": 46, "0013487965579305366": 46, "199": [46, 75], "0013301989452423582": 46, "0013118594328021408": 46, "201": [46, 75], "0012937743735248989": 46, "202": [46, 75], "0012759401743892452": 46, "203": [46, 75], "0012583532955394456": 46, "204": [46, 75], "0012410102494057379": 46, "205": [46, 75], "0012239075998425912": 46, "206": [46, 75], "0012070419612846086": 46, "207": [46, 75], "001190409997919305": 46, "208": [46, 75], "0011740084228764713": 46, "209": [46, 75], "0011578339974337177": 46, "210": [46, 72, 75], "00114188353023771": 46, "211": [46, 75], "0011261538765406645": 46, "212": [46, 75], "0011106419374519126": 46, "213": [46, 75], "0010953446592037578": 46, "214": [46, 75], "0010802590324318184": 46, "215": [46, 74, 75], "001065382091468879": 46, "216": [46, 74], "0010507109136523886": 46, "217": [46, 61, 74], "0010362426186451216": 46, "218": [46, 74], "0010219743677684654": 46, "219": 46, "0010079033633484853": 46, "220": 46, "000994026848073895": 46, "221": [46, 74], "0009803421043661597": 46, "222": [46, 74], "0009668464537611202": 46, "223": [46, 74], "000953537256301915": 46, "224": [46, 74], "0009404119099430902": 46, "225": [46, 74], "000927467849965456": 46, "226": [46, 74], "0009147025484014691": 46, "227": [46, 74], "0009021135134710553": 46, "228": [46, 103], "0008896982890273583": 46, "0008774544540124627": 46, "0008653796219227064": 46, "231": 46, "0008534714402833544": 46, "0008417275901325724": 46, "233": [46, 74, 105], "0008301457855142871": 46, "234": 46, "0008187237729799078": 46, "235": 46, "0008074593310986968": 46, "236": 46, "0007963502699764032": 46, "237": 46, "000785394430782293": 46, "238": 46, "0007745896852841808": 46, "239": 46, "0007639339353912823": 46, "240": 46, "0007534251127049187": 46, "0007430611780766196": 46, "242": 46, "0007328401211737334": 46, "243": 46, "0007227599600523393": 46, "244": 46, "0007128187407370412": 46, "245": 46, "000703014536807873": 46, "246": 46, "0006933454489940485": 46, "247": 46, "0006838096047742041": 46, "248": 46, "0006744051579833437": 46, "249": 46, "0006651302884261447": 46, "250": 46, "0006559832014964314": 46, "251": 46, "0006469621278029652": 46, "252": 46, "0006380653228011725": 46, "253": 46, "0006292910664307944": 46, "254": 46, "000620637662759349": 46, "255": 46, "00061210343963129": 46, "256": 46, "000603686748322705": 46, "257": 46, "0005953859632015506": 46, "258": 46, "0005871994813932063": 46, "259": 46, "0005791257224512458": 46, "260": 46, "0005711631280335377": 46, "261": 46, "000563310161583251": 46, "0005555653080149196": 46, "263": 46, "0005479270734053628": 46, "264": 46, "0005403939846894724": 46, "265": 46, "0005329645893605536": 46, "266": 46, "0005256374551755312": 46, "267": 46, "0005184111698643815": 46, "268": 46, "0005112843408443743": 46, "269": 46, "0005042555949383612": 46, "270": 46, "0004973235780976221": 46, "271": 46, "0004904869551287794": 46, "272": 46, "00048374440942494824": 46, "273": 46, "0004770946427009313": 46, "274": 46, "000470536374732366": 46, "275": 46, "0004640683430989626": 46, "276": 46, "0004576893029314665": 46, "277": [46, 47], "00045139802666244205": 46, "278": 46, "0004451933037808829": 46, "279": 46, "00043907394059037843": 46, "280": [46, 74], "0004330387599710549": 46, "281": [46, 74], "00042708660114481857": 46, "282": [46, 74], "0004212163194443691": 46, "283": [46, 53, 74], "0004154267860854548": 46, "284": 46, "0004097168879425399": 46, "285": 46, "00040408552732787813": 46, "286": [46, 112], "0003985316217737422": 46, "287": 46, "0003930541038178998": 46, "288": 46, "00038765192079231786": 46, "289": 46, "0003823240346148249": 46, "290": 46, "00037706942158399916": 46, "291": 46, "000371887072176918": 46, "292": 46, "00036677599084996784": 46, "00036173519584250553": 46, "294": 46, "0003567637189834118": 46, "0003518606055004487": 46, "0003470249138323727": 46, "297": 46, "00034225571544383636": 46, "0003375520946429079": 46, "00033291314840126285": 46, "300": 46, "00032833798617694766": 46, "00032382572973983466": 46, "302": 46, "00031937551299935366": 46, "303": 46, "000314986481834931": 46, "304": 46, "00031065779392879563": 46, "305": 46, "0003063886186010778": 46, "306": 46, "00030217813664752045": 46, "307": 46, "0002980255401792292": 46, "308": 46, "00029393003246500445": 46, "309": 46, "0002898908277756472": 46, "310": 46, "0002859071512307771": 46, "311": 46, "000281978238647573": 46, "312": 46, "0002781033363919083": 46, "313": 46, "00027428170123139963": 46, "314": 46, "00027051260019073385": 46, "315": 46, "00026679531040890817": 46, "316": 46, "0002631291189986039": 46, "317": 46, "0002595133229074687": 46, "318": 46, "00025594722878148363": 46, "319": 46, "0002524301528301413": 46, "320": 46, "0002489614206936301": 46, "321": 46, "0002455403673118469": 46, "322": 46, "00024216633679531238": 46, "323": 46, "00023883868229783445": 46, "324": 46, "00023555676589107158": 46, "325": 46, "00023231995844078663": 46, "326": 46, "00022912763948485545": 46, "327": 46, "00022597919711308994": 46, "328": 46, "00022287402784859796": 46, "329": [46, 77], "00021981153653095173": 46, "330": 46, "00021679113620092907": 46, "331": 46, "00021381224798692054": 46, "332": 46, "00021087430099283637": 46, "333": 46, "00020797673218777952": 46, "334": 46, "00020511898629702412": 46, "335": 46, "00020230051569474947": 46, "336": 46, "00019952078029812246": 46, "337": [46, 77], "00019677924746292868": 46, "338": 46, "0001940753918806743": 46, "339": 46, "0001914086954771383": 46, "340": 46, "00018877864731223603": 46, "341": 46, "00018618474348148243": 46, "342": 46, "00018362648701864706": 46, "343": 46, "0001811033877998466": 46, "344": 46, "0001786149624489968": 46, "345": 46, "00017616073424457884": 46, "346": 46, "00017374023302765528": 46, "347": 46, "00017135299511121462": 46, "348": 46, "000168998563190804": 46, "00016667648625635052": 46, "350": 46, "00016438631950522982": 46, "00016212762425659415": 46, "00015989996786680568": 46, "353": 46, "00015770292364614483": 46, "0001555360707766003": 46, "355": 46, "000153398994230856": 46, "356": 46, "0001512912846923413": 46, "357": 46, "0001492125384764743": 46, "00014716235745298453": 46, "359": 46, "00014514034896921082": 46, "00014314612577460858": 46, "361": 46, "00014117930594623312": 46, "362": 46, "00013923951281523983": 46, "363": 46, "00013732637489447186": 46, "0001354395258069982": 46, "365": 46, "00013357860421564497": 46, "366": 46, "00013174325375354127": 46, "367": 46, "00012993312295558898": 46, "00012814786519089072": 46, "369": 46, "0001263871385961654": 46, "370": 46, "00012465060600999609": 46, "371": 46, "00012293793490808928": 46, "372": 46, "00012124879733930423": 46, "373": 46, "00011958286986273097": 46, "374": 46, "00011793983348546948": 46, "375": 46, "00011631937360145951": 46, "00011472117993089234": 46, "377": 46, "00011314494646081535": 46, "00011159037138615583": 46, "379": 46, "00011005715705197291": 46, "380": 46, "00010854500989614187": 46, "381": 46, "000107053640393076": 46, "382": 46, "00010558276299811141": 46, "383": 46, "00010413209609269955": 46, "384": 46, "00010270136193037442": 46, "385": 46, "00010129028658340466": 46, "386": 46, "98985998902484e": 46, "387": 46, "852603540368492e": 46, "388": 46, "717233033971179e": 46, "389": 46, "583722552709536e": 46, "390": 46, "45204653576357e": 46, "391": 46, "322179773720817e": 46, "392": 46, "19409740372493e": 46, "393": 46, "067774904721001e": 46, "394": 46, "943188092742385e": 46, "395": 46, "820313116279269e": 46, "396": 46, "699126451692341e": 46, "397": 46, "579604898714938e": 46, "461725575996149e": 46, "345465916709958e": 46, "230803664237456e": 46, "401": 46, "11771686788897e": 46, "402": 46, "006183878700617e": 46, "403": 46, "896183345282972e": 46, "404": 46, "787694209726307e": 46, "405": 46, "680695703563715e": 46, "406": 46, "575167343788693e": 46, "407": 46, "471088928931207e": 46, "368440535182689e": 46, "409": 46, "267202512577547e": 46, "410": 46, "167355481226384e": 46, "068880327604704e": 46, "412": 46, "971758200881336e": 46, "413": 46, "875970509314675e": 46, "414": 46, "78149891668565e": 46, "415": 46, "688325338782177e": 46, "416": 46, "596431939936081e": 46, "417": 46, "505801129603892e": 46, "416415558992872e": 46, "419": 46, "328258117750278e": 46, "241311930663991e": 46, "421": 46, "155560354442374e": 46, "070986974525415e": 46, "98757560193412e": 46, "424": 46, "905310270171566e": 46, "425": 46, "8241752321672265e": 46, "426": 46, "744154957255584e": 46, "665234128197446e": 46, "428": 46, "587397638255004e": 46, "429": 46, "510630588292769e": 46, "430": 46, "434918283921399e": 46, "360246232685851e": 46, "28660014129065e": 46, "213965912854191e": 46, "142329644220869e": 46, "071677623287515e": 46, "436": 46, "001996326380935e": 46, "437": 46, "9332724156658535e": 46, "865492736595519e": 46, "439": 46, "7986443153856565e": 46, "440": 46, "7327143565346456e": 46, "441": 46, "6676902403680316e": 46, "442": 46, "603559520622855e": 46, "443": 46, "5403099220737555e": 46, "444": 46, "477929338164458e": 46, "445": 46, "416405828703569e": 46, "446": 46, "3557276175693415e": 46, "447": 46, "29588309046074e": 46, "448": 46, "2368607926721074e": 46, "449": 46, "17864942689424e": 46, "450": 46, "121237851055954e": 46, "451": 46, "064615076190458e": 46, "452": 46, "008770264329065e": 46, "453": 46, "953692726428111e": 46, "454": 46, "8993719203166894e": 46, "455": 46, "8457974486872674e": 46, "456": 46, "79295905709389e": 46, "457": 46, "7408466320005056e": 46, "458": 46, "689450198832634e": 46, "459": 46, "638759920077451e": 46, "460": 46, "5887660933918107e": 46, "461": 46, "5394591497527506e": 46, "462": 46, "490829651617686e": 46, "463": 46, "4428682911205534e": 46, "464": 46, "395565888293071e": 46, "465": 46, "348913389301089e": 46, "466": 46, "302901864714575e": 46, "467": 46, "2575225077989435e": 46, "468": 46, "2127666328263005e": 46, "469": 46, "168625673411682e": 46, "470": 46, "125091180878627e": 46, "471": 46, "082154822634119e": 46, "472": 46, "0398083805786505e": 46, "473": 46, "998043749532844e": 46, "474": 46, "9568529356807312e": 46, "475": 46, "916228055046904e": 46, "476": 46, "8761613319769555e": 46, "477": 46, "8366450976608554e": 46, "478": 46, "7976717886559725e": 46, "479": 46, "7592339454418208e": 46, "480": 46, "7213242109925206e": 46, "481": 46, "6839353293700188e": 46, "482": 46, "6470601443285914e": 46, "483": 46, "6106915979525028e": 46, "484": 46, "5748227292996332e": 46, "485": 46, "539446673074001e": 46, "486": 46, "504556658304414e": 46, "487": 46, "4701460070543832e": 46, "488": [46, 105], "4362081331413285e": 46, "489": 46, "402736540876462e": 46, "490": 46, "3697248238186124e": 46, "491": 46, "337166663552109e": 46, "492": 46, "30505582847543e": 46, "493": 46, "2733861726088263e": 46, "494": 46, "2421516344125203e": 46, "495": 46, "2113462356347832e": 46, "496": 46, "1809640801639115e": 46, "497": 46, "1509993528977585e": 46, "498": 46, "1214463186327964e": 46, "499": 46, "0922993209640892e": 46, "0635527812072218e": 46, "501": [46, 100], "0352011973243236e": 46, "502": 46, "0072391428746526e": 46, "503": 46, "9796612659768636e": 46, "504": 46, "952462288277464e": 46, "505": 46, "9256370039507276e": 46, "506": 46, "8991802786965872e": 46, "507": 46, "8730870487562395e": 46, "508": 46, "8473523199457097e": 46, "509": 46, "8219711666983736e": 46, "510": 46, "7969387311232552e": 46, "511": 46, "7722502220772948e": 46, "512": 46, "747900914242783e": 46, "513": 46, "723886147227309e": 46, "514": 46, "7002013246680412e": 46, "515": 46, "676841913354895e": 46, "516": 46, "6538034423658578e": 46, "517": 46, "6310815021997474e": 46, "518": 46, "608671743947409e": 46, "519": 46, "5865698784456028e": 46, "520": 46, "564771675466398e": 46, "521": 46, "5432729629011974e": 46, "522": 46, "5220696259625265e": 46, "523": 46, "5011576064000944e": 46, "524": 46, "4805329017218728e": 46, "525": 46, "4601915644276485e": 46, "526": 46, "4401297012520998e": 46, "527": 46, "4203434724225752e": 46, "528": 46, "4008290909238202e": 46, "529": 46, "3815828217680814e": 46, "530": 46, "3626009812903334e": 46, "531": 46, "3438799364311088e": 46, "532": 46, "3254161040503283e": 46, "533": 46, "3072059502377703e": 46, "534": 46, "2892459896362076e": 46, "535": 46, "2715327847755757e": 46, "536": 46, "2540629454140222e": 46, "537": 46, "236833127892583e": 46, "538": 46, "2198400344857686e": 46, "539": 46, "2030804127834024e": 46, "540": 46, "1865510550568645e": 46, "541": 46, "1702487976526392e": 46, "542": 46, "1541705203835396e": 46, "543": 46, "1383131459279391e": 46, "544": 46, "1226736392497831e": 46, "545": 46, "1072490070102246e": 46, "546": 46, "0920362969957407e": 46, "547": 46, "0770325975566385e": 46, "548": 46, "0622350370452333e": 46, "549": 46, "0476407832691725e": 46, "550": 46, "0332470429487766e": 46, "551": 46, "0190510611836723e": 46, "552": 46, "005050120921221e": 46, "553": 46, "91241542438913e": 46, "554": 46, "776226828362013e": 46, "555": 46, "641909355189532e": 46, "556": 46, "509437297093308e": 46, "557": 46, "378785299480245e": 46, "558": 46, "249928356147489e": 46, "559": 46, "122841804400887e": 46, "560": 46, "997501320449961e": 46, "561": 46, "8738829146687e": 46, "562": 46, "751962927012061e": 46, "563": 46, "631718022580567e": 46, "564": 46, "513125186992284e": 46, "565": 46, "396161722131952e": 46, "566": 46, "280805241684333e": 46, "567": 46, "16703366696607e": 46, "568": 46, "054825222580238e": 46, "569": 46, "94415843236444e": 46, "570": 46, "8350121151719e": 46, "571": 46, "727365380912911e": 46, "572": 46, "621197626469506e": 46, "573": 46, "516488531819619e": 46, "574": 46, "413218056147077e": 46, "575": 46, "311366433940005e": 46, "576": 46, "210914171261402e": 46, "577": 46, "111842042028687e": 46, "578": 46, "01413108426448e": 46, "579": 46, "917762596575794e": 46, "580": 46, "822718134465209e": 46, "581": [46, 63, 102], "728979506876731e": 46, "582": 46, "6365287726637194e": 46, "583": 46, "545348237201027e": 46, "584": 46, "455420448937443e": 46, "585": 46, "366728196158377e": 46, "586": 46, "279254503545001e": 46, "587": 46, "192982629062653e": 46, "588": 46, "107896060669359e": 46, "589": 46, "023978513225437e": 46, "590": 46, "941213925298137e": 46, "591": 46, "8595864561205e": 46, "592": 46, "779080482626883e": 46, "593": 46, "699680596318089e": 46, "594": 46, "621371600445931e": 46, "595": 46, "544138507039576e": 46, "596": 46, "467966534081841e": 46, "597": 46, "392841102594967e": 46, "598": 46, "318747833945106e": 46, "599": 46, "245672547037219e": 46, "600": 46, "1736012556074996e": 46, "601": 46, "102520165565222e": 46, "602": [46, 49], "032415672332935e": 46, "603": 46, "9632743582485296e": 46, "604": 46, "895082990001085e": 46, "605": 46, "827828516101396e": 46, "606": 46, "761498064357539e": 46, "607": 46, "696078939451168e": 46, "608": 46, "631558620476784e": 46, "609": 46, "567924758563753e": 46, "610": 46, "505165174500594e": 46, "611": 46, "443267856418581e": 46, "612": 46, "382220957458106e": 46, "613": [46, 63, 102], "32201279355107e": 46, "614": 46, "262631841144873e": 46, "615": 46, "20406673503597e": 46, "616": 46, "14630626612767e": 46, "617": 46, "089339379343828e": 46, "618": [46, 81], "033155171543706e": 46, "619": 46, "977742889310151e": 46, "620": 46, "923091927017895e": 46, "621": 46, "86919182473513e": 46, "622": 46, "816032266267512e": 46, "623": 46, "7636030771172796e": 46, "624": 46, "71189422260038e": 46, "625": 46, "660895805916253e": 46, "626": 46, "6105980661982686e": 46, "627": 46, "560991376723551e": 46, "628": 46, "5120662430136316e": 46, "629": 46, "463813301050634e": 46, "630": 46, "4162233154336305e": 46, "631": 46, "3692871776920687e": 46, "632": 46, "3229959045015813e": 46, "633": 46, "2773406359217477e": 46, "634": 46, "2323126337494496e": 46, "635": 46, "1879032798831167e": 46, "636": 46, "1441040745721575e": 46, "637": 46, "1009066348664202e": 46, "638": 46, "0583026929967562e": 46, "639": 46, "0162840947818825e": 46, "640": 46, "9748427980784953e": 46, "641": 46, "9339708712085968e": 46, "642": 46, "89366049152692e": 46, "643": 46, "853903943783089e": 46, "644": 46, "814693618811081e": 46, "645": 46, "7760220119243286e": 46, "646": 46, "7378817215805044e": 46, "647": 46, "7002654479423812e": 46, "648": 46, "6631659914077622e": 46, "649": 46, "626576251343839e": 46, "650": 46, "5904892246529526e": 46, "554898004471734e": 46, "652": 46, "519795778795417e": 46, "653": [46, 100], "485175829259252e": 46, "654": 46, "4510315297654936e": 46, "655": 46, "417356345279921e": 46, "656": 46, "3841438305254625e": 46, "657": 46, "3513876287934866e": 46, "658": 46, "3190814707331234e": 46, "659": 46, "287219173082758e": 46, "660": 46, "255794637574766e": 46, "661": 46, "2248018497117877e": 46, "662": 46, "194234877618424e": 46, "663": 46, "164087870949272e": 46, "664": 46, "134355059697924e": 46, "665": 46, "105030753170029e": 46, "666": 46, "0761093388261588e": 46, "667": 46, "047585281273978e": 46, "668": 46, "0194531211449646e": 46, "669": 46, "991707474082117e": 46, "670": 46, "964343029696402e": 46, "671": 46, "937354550595616e": 46, "910736871305874e": 46, "673": 46, "8844848973340027e": 46, "674": 46, "8585936041936275e": 46, "675": 46, "833058036442482e": 46, "807873306659926e": 46, "677": [46, 48], "7830345946531105e": 46, "678": 46, "7585371463963765e": 46, "679": 46, "7343762731976364e": 46, "680": 46, "710547350811855e": 46, "681": 46, "6870458184868213e": 46, "682": 46, "6638671781442963e": 46, "683": 46, "6410069935234305e": 46, "684": 46, "6184608892926782e": 46, "685": 46, "596224550241645e": 46, "686": 46, "5742937204616135e": 46, "687": 46, "5526642024859626e": 46, "688": 46, "531331856542912e": 46, "689": 46, "5102925997151507e": 46, "690": 46, "4895424052178241e": 46, "691": 46, "4690773015519533e": 46, "4488933718100165e": 46, "693": 46, "4289867528748286e": 46, "694": 46, "4093536347508964e": 46, "695": 46, "3899902597436885e": 46, "696": 46, "3708929217814924e": 46, "697": 46, "352057965747212e": 46, "698": 46, "3334817867318555e": 46, "699": 46, "3151608293416554e": 46, "700": 46, "2970915870460925e": 46, "701": 46, "2792706014737654e": 46, "2616944617779757e": 46, "703": 46, "2443598039825515e": 46, "2272633103295307e": 46, "705": 46, "2104017086174213e": 46, "706": 46, "1937717716297164e": 46, "707": 46, "1773703164820084e": 46, "708": 46, "161194204007716e": 46, "709": 46, "145240338203072e": 46, "710": 46, "1295056655675621e": 46, "711": 46, "1139871745692467e": 46, "712": 46, "0986818950368167e": 46, "713": 46, "0835868976279029e": 46, "714": 46, "0686992932246637e": 46, "715": 46, "0540162324290298e": 46, "716": 46, "0395349049971244e": 46, "717": 46, "0252525392177282e": 46, "718": 46, "011166401565346e": 46, "719": 46, "972737960055163e": 46, "720": 46, "835720635727922e": 46, "700585818353643e": 46, "567307643680844e": 46, "723": 46, "435860602860818e": 46, "30621953771071e": 46, "725": 46, "178359635677189e": 46, "726": 46, "05225642481371e": 46, "727": 46, "927885769755884e": 46, "728": 46, "805223866626383e": 46, "729": 46, "684247238336984e": 46, "730": 46, "56493273089252e": 46, "731": [46, 105], "447257507807357e": 46, "331199046890856e": 46, "216735134902866e": 46, "103843864311542e": 46, "735": 46, "992503628103648e": 46, "736": 46, "882693116313131e": 46, "737": 46, "774391311803948e": 46, "738": 46, "667577486274225e": 46, "739": 46, "562231195951519e": 46, "740": 46, "458332278094533e": 46, "741": 46, "355860847201666e": 46, "742": 46, "254797290530035e": 46, "743": 46, "155122265013862e": 46, "744": 46, "056816693425752e": 46, "745": 46, "959861760711115e": 46, "746": 46, "864238910083353e": 46, "747": 46, "769929839694957e": 46, "748": 46, "676916499495534e": 46, "749": 46, "585181086951244e": 46, "750": 46, "494706044701668e": 46, "751": 46, "405474055921332e": 46, "752": 46, "31746804233173e": 46, "753": 46, "230671159880186e": 46, "754": 46, "145066796269033e": 46, "755": 46, "060638566853438e": 46, "756": 46, "977370313033323e": 46, "757": 46, "895246097319718e": 46, "758": 46, "814250201672253e": 46, "759": 46, "734367123883148e": 46, "760": 46, "655581574754693e": 46, "761": 46, "57787847517935e": 46, "762": 46, "501242952996463e": 46, "763": 46, "425660340878632e": 46, "764": 46, "351116172274719e": 46, "765": 46, "277596180054449e": 46, "766": 46, "205086292997377e": 46, "767": 46, "133572632812229e": 46, "768": 46, "063041512342942e": 46, "769": 46, "993479432078307e": 46, "770": 46, "924873078433326e": 46, "771": 46, "857209320503717e": 46, "772": 46, "790475207480968e": 46, "773": 46, "7246579670980434e": 46, "774": 46, "65974500215008e": 46, "775": 46, "5957238886105585e": 46, "776": 46, "532582373313546e": 46, "777": 46, "4703083710549495e": 46, "778": 46, "40888996300808e": 46, "779": 46, "348315394185244e": 46, "780": 46, "2885730706727105e": 46, "2296515582177255e": 46, "171539579468978e": 46, "783": 46, "114226012216223e": 46, "784": 46, "057699886783593e": 46, "00195038440947e": 46, "946966834883386e": 46, "892738714831724e": 46, "839255645128162e": 46, "789": 46, "7865073893161035e": 46, "7344838517945644e": 46, "791": 46, "6831750753998855e": 46, "632571239832806e": 46, "793": 46, "582662659968393e": 46, "533439783514639e": 46, "484893189401684e": 46, "4370135861158414e": 46, "797": 46, "389791809557051e": 46, "798": 46, "343218821995261e": 46, "799": 46, "297285709626039e": 46, "800": 46, "2519836807584633e": 46, "801": 46, "207304064918974e": 46, "802": 46, "1632383109280923e": 46, "803": 46, "119777984490796e": 46, "804": 46, "0769147677204536e": 46, "805": 46, "0346404566701807e": 46, "806": 46, "992946960452109e": 46, "807": 46, "9518262989727527e": 46, "808": 46, "91127060197297e": 46, "809": 46, "8712721072740293e": 46, "810": 46, "831823159500368e": 46, "811": 46, "79291620834115e": 46, "812": 46, "7545438069154676e": 46, "813": 46, "7166986112072625e": 46, "814": 46, "679373377825878e": 46, "815": 46, "6425609626973794e": 46, "816": 46, "60625432046131e": 46, "5704465018664383e": 46, "818": 46, "535130653762732e": 46, "819": 46, "500300016615044e": 46, "820": 46, "4659479241412505e": 46, "821": 46, "4320678016306087e": 46, "822": 46, "3986531644012435e": 46, "823": 46, "3656976172150075e": 46, "824": 46, "3331948524618315e": 46, "825": 46, "3011386494338866e": 46, "826": 46, "2695228725235466e": 46, "827": 46, "238341470639586e": 46, "828": 46, "2075884760544393e": 46, "829": 46, "1772580024815873e": 46, "830": 46, "1473442451657755e": 46, "117841478485599e": 46, "088744055878357e": 46, "833": 46, "060046408245776e": 46, "834": 46, "0317430429749966e": 46, "835": 46, "003828543006036e": 46, "836": 46, "976297565594483e": 46, "837": 46, "949144841480855e": 46, "838": 46, "9223651737713088e": 46, "839": 46, "8959534368152337e": 46, "840": 46, "8699045759210372e": 46, "8442136050473178e": 46, "818875607297657e": 46, "793885733041347e": 46, "844": 46, "769239199303403e": 46, "845": 46, "7449312891786651e": 46, "846": 46, "7209573497964506e": 46, "6973127929579093e": 46, "848": 46, "6739930930784257e": 46, "650993786938887e": 46, "850": 46, "6283104727068234e": 46, "605938808689276e": 46, "5838745132739276e": 46, "853": 46, "5621133631968823e": 46, "854": 46, "5406511938359275e": 46, "5194838971425951e": 46, "498607421968768e": 46, "4780177726832662e": 46, "858": 46, "4577110083756291e": 46, "859": 46, "437683242447562e": 46, "4179306418471782e": 46, "861": 46, "3984494259649153e": 46, "862": 46, "3792358662036097e": 46, "863": 46, "3602862850662532e": 46, "864": 46, "341597055866288e": 46, "865": 46, "3231646014039378e": 46, "866": 46, "3049853940133655e": 46, "867": 46, "2870559541431299e": 46, "269372850183054e": 46, "2519326977123633e": 46, "2347321588196066e": 46, "871": 46, "217767941323583e": 46, "872": 46, "201036798469105e": 46, "1845355279110761e": 46, "1682609714160612e": 46, "875": 46, "152210014075458e": 46, "876": 46, "136379583878647e": 46, "877": 46, "1207666510181047e": 46, "878": 46, "1053682271319834e": 46, "879": 46, "090181364978928e": 46, "880": 46, "0752031579870268e": 46, "881": 46, "0604307395852179e": 46, "882": 46, "0458612819916141e": 46, "0314919971368875e": 46, "0173201345490836e": 46, "885": 46, "0033429816790807e": 46, "886": 46, "895578637246975e": 46, "887": 46, "759621420205265e": 46, "625532145380201e": 46, "493285147546725e": 46, "890": 46, "3628551164479e": 46, "891": 46, "234217088721998e": 46, "107346442453208e": 46, "982218896602567e": 46, "894": 46, "858810500619308e": 46, "737097636041496e": 46, "617057007632026e": 46, "498665639019465e": 46, "898": 46, "381900873406225e": 46, "266740360996993e": 46, "153162058902952e": 46, "901": 46, "04114423163307e": 46, "902": 46, "930665437036461e": 46, "821704532877173e": 46, "71424066226727e": 46, "608253257484617e": 46, "906": [46, 60], "503722035383636e": 46, "400626986584763e": 46, "298948379400162e": 46, "909": 46, "198666754833949e": 46, "09976291818609e": 46, "002217939823003e": 46, "906013148755061e": 46, "913": 46, "811130133982537e": 46, "717550736731428e": 46, "625257042884367e": 46, "534231389431823e": 46, "917": 46, "444456354642378e": 46, "918": 46, "35591475658727e": 46, "268589647581184e": 46, "182464315033788e": 46, "921": 46, "097522274092465e": 46, "922": 46, "013747268116727e": 46, "931123263847961e": 46, "849634445174112e": 46, "769265216173688e": 46, "690000195677042e": 46, "6118242125742767e": 46, "534722304045493e": 46, "929": 46, "4586797121211655e": 46, "383681884834191e": 46, "309714466727463e": 46, "236763300738726e": 46, "164814423789034e": 46, "093854065721601e": 46, "0238686459851815e": 46, "9548447702941143e": 46, "886769225627127e": 46, "819628984093517e": 46, "753411194334228e": 46, "688103183630812e": 46, "941": 46, "623692451270183e": 46, "942": 46, "560166670756158e": 46, "497513684323499e": 46, "4357214966138604e": 46, "945": 46, "374778284382607e": 46, "946": 46, "3146723828127433e": 46, "947": 46, "255392285937742e": 46, "948": 46, "196926650939042e": 46, "949": 46, "139264286603403e": 46, "950": 46, "082394154349409e": 46, "951": 46, "026305373010949e": 46, "952": 46, "970987207121857e": 46, "916429066888301e": 46, "862620510921282e": 46, "955": 46, "809551240211115e": 46, "956": 46, "7572110993411804e": 46, "705590068837061e": 46, "6546782690498294e": 46, "959": 46, "6044659570055255e": 46, "960": 46, "5549435215560785e": 46, "506101484240894e": 46, "457930495020287e": 46, "963": 46, "410421337747203e": 46, "964": 46, "363564916457091e": 46, "3173522661039894e": 46, "27177453839846e": 46, "967": 46, "226823012568907e": 46, "968": 46, "18248908455579e": 46, "138764267205407e": 46, "0956401951870296e": 46, "971": 46, "053108611128666e": 46, "972": 46, "011161378149839e": 46, "9697904651577707e": 46, "928987954782195e": 46, "975": 46, "8887460381335765e": 46, "976": 46, "8490570129782678e": 46, "809913282837525e": 46, "7713073556456228e": 46, "979": 46, "733231842002208e": 46, "980": 46, "6956794549358718e": 46, "981": 46, "6586430081313818e": 46, "982": 46, "6221154116416602e": 46, "983": 46, "5860896744937203e": 46, "984": 46, "5505589020810506e": 46, "985": 46, "5155162937637426e": 46, "986": 46, "480955141420751e": 46, "987": 46, "4468688322695497e": 46, "988": 46, "413250840996505e": 46, "989": 46, "380094733222787e": 46, "990": 46, "3473941636760532e": 46, "991": 46, "3151428740681202e": 46, "992": 46, "2833346908563155e": 46, "993": 46, "2519635254418385e": 46, "994": 46, "2210233759685583e": 46, "995": 46, "1905083170126303e": 46, "996": 46, "1604125116859914e": 46, "997": 46, "1307301970457093e": 46, "998": 46, "1014556933272555e": 46, "999": 46, "072583399247498e": 46, "0441077852041042e": 46, "1001": 46, "016023404407948e": 46, "1002": 46, "988324878740525e": 46, "1003": 46, "9610069089538715e": 46, "1004": 46, "934064265915551e": 46, "1005": 46, "9074917935399035e": 46, "1006": 46, "881284405121477e": 46, "1007": 46, "8554370838921893e": 46, "1008": 46, "8299448851004696e": 46, "1009": 46, "804802927823209e": 46, "1010": 46, "780006401287035e": 46, "1011": 46, "755550557607619e": 46, "1012": 46, "7314307180782044e": 46, "1013": 46, "70764226689353e": 46, "1014": 46, "684180647878445e": 46, "1015": 46, "661041373862165e": 46, "1016": 46, "6382200125324833e": 46, "1017": 46, "6157121995544838e": 46, "1018": 46, "593513625303192e": 46, "1019": 46, "5716200429890295e": 46, "1020": 46, "5500272589058757e": 46, "1021": 46, "5287311423528937e": 46, "1022": 46, "5077276185552118e": 46, "1023": 46, "4870126649549754e": 46, "1024": 46, "4665823171826354e": 46, "1025": 46, "4464326683285988e": 46, "1026": 46, "4265598564692116e": 46, "1027": 46, "4069600824566074e": 46, "1028": 46, "3876295931521244e": 46, "1029": 46, "3685646891753328e": 46, "1030": 46, "3497617218728434e": 46, "1031": 46, "3312170911824881e": 46, "1032": 46, "3129272483674086e": 46, "1033": 46, "2948886942405e": 46, "1034": 46, "277097975239419e": 46, "1035": 46, "2595516847568828e": 46, "1036": 46, "2422464676774915e": 46, "1037": 46, "2251790106502366e": 46, "1038": 46, "2083460448557326e": 46, "1039": 46, "1917443509672249e": 46, "1040": 46, "175370751686568e": 46, "1041": 46, "1592221117566454e": 46, "1042": 46, "1432953401769533e": 46, "1043": 46, "1275873912643786e": 46, "1044": 46, "1120952556356904e": 46, "1045": 46, "0968159694944652e": 46, "1046": 46, "0817466086216224e": 46, "1047": 46, "0668842887956969e": 46, "1048": 46, "0522261642833315e": 46, "1049": 46, "0377694309296993e": 46, "1050": 46, "0235113218041585e": 46, "1051": 46, "0094491081610007e": 46, "1052": 46, "955800959468116e": 46, "1053": 46, "819016339413737e": 46, "1054": 46, "684111020480524e": 46, "1055": 46, "551059202512336e": 46, "1056": 46, "41983539667056e": 46, "1057": 46, "290414512693373e": 46, "1058": 46, "162771755192398e": 46, "1059": 46, "036882711834327e": 46, "1060": 46, "912723274012169e": 46, "1061": 46, "790269700494604e": 46, "1062": 46, "669498526513673e": 46, "1063": 46, "550386658345834e": 46, "1064": 46, "4329112850224e": 46, "1065": 46, "317049926499982e": 46, "1066": 46, "20278040915028e": 46, "1067": 46, "090080875328715e": 46, "1068": 46, "978929725877198e": 46, "1069": 46, "869305704937035e": 46, "1070": 46, "761187835174138e": 46, "1071": 46, "654555424792147e": 46, "1072": 46, "54938804180488e": 46, "1073": 46, "445665566833718e": 46, "1074": 46, "343368177647046e": 46, "1075": 46, "2424762666737146e": 46, "1076": 46, "142970521525175e": 46, "1077": 46, "0448318988346594e": 46, "1078": 46, "948041627199521e": 46, "1079": 46, "852581180555624e": 46, "1080": 46, "7584322804740845e": 46, "1081": 46, "665576913766078e": 46, "1082": 46, "573997293731076e": 46, "1083": 46, "483675900724828e": 46, "1084": 46, "394595459241093e": 46, "1085": 46, "3067389091504954e": 46, "1086": 46, "220089440885009e": 46, "1087": 46, "134630462323265e": 46, "1088": 46, "050345607732123e": 46, "1089": 46, "967218775966888e": 46, "1090": 46, "885234043123831e": 46, "1091": 46, "804375697464095e": 46, "1092": 46, "724628290895526e": 46, "1093": 46, "645976545818384e": 46, "1094": 46, "568405424836091e": 46, "1095": 46, "491900037077236e": 46, "1096": [46, 65], "416445795958666e": 46, "1097": 46, "3420282227507415e": 46, "1098": 46, "268633095463936e": 46, "1099": 46, "1962463458313255e": 46, "1100": 46, "124854140373132e": 46, "1101": 46, "054442809432531e": 46, "1102": 46, "984998868844853e": 46, "1103": 46, "916509026727359e": 46, "1104": 46, "848960189067868e": 46, "1105": 46, "782339415582198e": 46, "1106": 46, "7166339448727095e": 46, "1107": 46, "6518312303347455e": 46, "1108": 46, "587918844820352e": 46, "1109": 46, "5248845689998295e": 46, "462716319985976e": 46, "1111": 46, "401402217647644e": 46, "1112": 46, "340930532910021e": 46, "1113": 46, "281289667448394e": 46, "1114": 46, "222468225080945e": 46, "164454944361612e": 46, "1072387109440784e": 46, "1117": 46, "050808588781358e": 46, "1118": 46, "995153767474519e": 46, "1119": 46, "940263595804976e": 46, "1120": 46, "886127569791755e": 46, "1121": 46, "83273533446297e": 46, "1122": 46, "780076662289142e": 46, "1123": 46, "728141472198836e": 46, "1124": 46, "6769198434232496e": 46, "6264019576717673e": 46, "5765781335362466e": 46, "1127": 46, "5274388649262574e": 46, "1128": 46, "4789746989912544e": 46, "1129": 46, "431176412435023e": 46, "1130": 46, "3840348380620775e": 46, "1131": 46, "3375409442559155e": 46, "1132": 46, "2916858366707634e": 46, "1133": 46, "2464607544411714e": 46, "1134": 46, "20185701640442e": 46, "1135": 46, "1578660947274213e": 46, "1136": 46, "1144795853898352e": 46, "1137": [46, 63, 102], "071689163842817e": 46, "1138": 46, "0294866473975043e": 46, "1139": 46, "98786396035351e": 46, "1140": 46, "946813128879899e": 46, "1141": 46, "906326312921551e": 46, "1142": 46, "86639575404848e": 46, "1143": 46, "8270138008684686e": 46, "1144": 46, "7881729236898696e": 46, "749865690221446e": 46, "712084773076043e": 46, "1147": 46, "67482292575374e": 46, "1148": 46, "638073035428225e": 46, "1149": 46, "601828051333945e": 46, "1150": 46, "56608104233486e": 46, "1151": 46, "5308251803984455e": 46, "1152": 46, "4960536837939773e": 46, "1153": 46, "461759935102699e": 46, "1154": 46, "427937357377234e": 46, "1155": 46, "3945794772264324e": 46, "1156": 46, "3616798896013715e": 46, "1157": 46, "3292323296073995e": 46, "1158": 46, "297230564528598e": 46, "1159": 46, "265668479439641e": 46, "1160": 46, "2345400347809227e": 46, "1161": 46, "2038392742993523e": 46, "1162": 46, "173560312218078e": 46, "1163": 46, "1436973564022294e": 46, "1164": 46, "1142446998583604e": 46, "1165": 46, "0851966894625983e": 46, "1166": 46, "0565477676177174e": 46, "1167": 46, "0282924756612993e": 46, "1168": 46, "0004253862507363e": 46, "1169": 46, "9729411628519188e": 46, "1170": 46, "9458345541265103e": 46, "1171": 46, "9191003622777862e": 46, "1172": 46, "8927334941616805e": 46, "1173": 46, "8667288714541835e": 46, "1174": 46, "8410815328296521e": 46, "1175": 46, "8157865664294941e": 46, "1176": 46, "7908391227508154e": 46, "1177": 46, "766234453974245e": 46, "1178": 46, "7419678304298498e": 46, "1179": 46, "7180346107522614e": 46, "1180": 46, "6944302008399361e": 46, "1181": 46, "6711501048505505e": 46, "1182": 46, "6481898622687437e": 46, "1183": 46, "6255450647095954e": 46, "6032113977710588e": 46, "1185": 46, "5811845708510086e": 46, "1186": 46, "5594603828450653e": 46, "1187": 46, "5380346646190164e": 46, "1188": 46, "5169033203791969e": 46, "496062301292538e": 46, "1190": 46, "4755076200566074e": 46, "1191": 46, "4552353471039174e": 46, "1192": 46, "4352415865436047e": 46, "1193": 46, "4155225382861335e": 46, "1194": 46, "3960743990071075e": 46, "1195": 46, "376893472830978e": 46, "1196": 46, "3579760806659418e": 46, "3393185901943043e": 46, "1198": 46, "3209174368972213e": 46, "1199": 46, "3027690999003073e": 46, "1200": 46, "2848701103604469e": 46, "1201": 46, "2672170441103305e": 46, "1202": 46, "2498065056018573e": 46, "1203": 46, "2326351878065917e": 46, "1204": 46, "2156997683938283e": 46, "1205": 46, "1989970409922486e": 46, "1206": 46, "1825238009470132e": 46, "1207": 46, "1662768813921747e": 46, "1208": 46, "1502531949919336e": 46, "1209": 46, "1344496302303633e": 46, "1210": 46, "1188632171403412e": 46, "1211": 46, "1034909470615006e": 46, "1212": 46, "088329890520765e": 46, "1213": 46, "0733771059172907e": 46, "1214": 46, "058629781795617e": 46, "1215": 46, "0440850635700838e": 46, "1216": 46, "0297401890608049e": 46, "1217": 46, "0155923933842377e": 46, "1218": 46, "0016389793743943e": 46, "1219": 46, "878772652942522e": 46, "1220": 46, "743046389129484e": 46, "1221": 46, "609184832867373e": 46, "1222": 46, "477162405364844e": 46, "1223": 46, "346953929262571e": 46, "1224": 46, "218534373172311e": 46, "1225": 46, "091879177514704e": 46, "1226": 46, "966964255127543e": 46, "1227": 46, "843765347749792e": 46, "1228": 46, "72225926431386e": 46, "1229": 46, "602422442088333e": 46, "1230": 46, "484232104216341e": 46, "1231": 46, "367665665217973e": 46, "1232": 46, "252700643269565e": 46, "1233": 46, "139315271444288e": 46, "1234": [46, 49], "027487700817419e": 46, "1235": 46, "917196533515586e": 46, "1236": 46, "808420681895741e": 46, "1237": 46, "70113937456317e": 46, "1238": 46, "595331929789697e": 46, "1239": 46, "490978217279541e": 46, "1240": 46, "38805825978633e": 46, "1241": 46, "286552374709478e": 46, "1242": 46, "186441139990981e": 46, "1243": 46, "087705232362404e": 46, "1244": 46, "990325906208014e": 46, "1245": 46, "894284530766281e": 46, "1246": 46, "799562528394244e": 46, "1247": 46, "706142233350342e": 46, "614005175441214e": 46, "1249": 46, "523134156230471e": 46, "1250": 46, "433511536023269e": 46, "1251": 46, "345120350599629e": 46, "1252": 46, "257943509407669e": 46, "1253": 46, "171964483263876e": 46, "1254": 46, "087166664294984e": 46, "1255": 46, "003533916534866e": 46, "1256": 46, "921050242517416e": 46, "1257": 46, "839699790942513e": 46, "1258": 46, "759467113806551e": 46, "1259": 46, "68033669500627e": 46, "1260": 46, "60229352735577e": 46, "1261": 46, "525322494411694e": 46, "1262": 46, "449409064134838e": 46, "1263": 46, "374538642017021e": 46, "1264": 46, "300696790397088e": 46, "1265": 46, "227869591181543e": 46, "1266": 46, "156042934268715e": 46, "1267": 46, "085203085594984e": 46, "1268": 46, "015336450193677e": 46, "1269": 46, "946429851535188e": 46, "1270": 46, "878469863474089e": 46, "1271": 46, "811443703268355e": 46, "1272": 46, "745338379740247e": 46, "1273": 46, "680141277151451e": 46, "1274": 46, "6158399286683607e": 46, "1275": 46, "5524220444695906e": 46, "1276": 46, "489875390949823e": 46, "1277": 46, "428188197729902e": 46, "1278": 46, "3673484810309763e": 46, "1279": 46, "307344765907323e": 46, "2481652589569217e": 46, "1281": 46, "1897989532745137e": 46, "1282": 46, "132234434912973e": 46, "1283": 46, "0754609239472857e": 46, "1284": 46, "0194674123506714e": 46, "1285": 46, "9642431866822456e": 46, "1286": 46, "909777725564041e": 46, "1287": 46, "856060475024522e": 46, "1288": 46, "803081364117639e": 46, "1289": 46, "7508301157973897e": 46, "1290": 46, "699296772001884e": 46, "1291": 46, "648471378408556e": 46, "1292": 46, "598344404734277e": 46, "1293": 46, "548906053040536e": 46, "1294": 46, "500146983254948e": 46, "1295": 46, "452057792644223e": 46, "1296": 46, "404629236349358e": 46, "1297": 46, "3578525479156935e": 46, "1298": 46, "3117181936101093e": 46, "1299": 46, "2662179809977506e": 46, "1300": 46, "221342747583671e": 46, "1301": 46, "177084140486483e": 46, "1302": 46, "133433727673969e": 46, "090382846710801e": 46, "0479234984947036e": 46, "1305": 46, "006047521099574e": 46, "1306": 46, "9647467894946307e": 46, "yscale": [46, 47, 48, 49, 112], "proport": 46, "excercis": [46, 49], "halv": 46, "front": 46, "ritz": 47, "produc": [47, 77], "p_1": [47, 74, 77, 102, 110], "p_n": [47, 74, 77, 110], "column": [47, 103, 109, 112], "rewritten": [47, 74], "p_i": [47, 74, 77, 102, 110], "p_j": [47, 74, 77, 110], "cheapli": [47, 80, 81, 88, 118], "x_n": [47, 95], "r_n": 47, "bot_": [47, 77], "bot_c": 47, "gram": [47, 112], "schmidt": [47, 112], "miracl": 47, "pop": 47, "remain": 47, "roundoff": 47, "x_0": 47, "r_0": 47, "alpha_j": 47, "r_k": 47, "w_k": [47, 64], "p_k": [47, 77, 83], "x_k": 47, "r_": 47, "w_": [47, 80, 96], "beta_k": 47, "ap": [47, 78, 115], "wrn": [47, 78], "pap": [47, 78], "wr": [47, 78], "hist": 47, "err2": [48, 49], "relax": 48, "comparison": [48, 118], "rich": [48, 51, 56], "extrem": [49, 107], "qualiti": 49, "rayleigh": [49, 100, 102], "quotient": [49, 98, 100, 102, 109, 110], "residuum": [49, 71], "ideal": [49, 102], "ac": 49, "computation": [49, 50], "diag": [49, 61, 102, 109], "preform": [49, 62], "hv3": 49, "5628463859901822": 49, "3004844587339315": 49, "3642450612653385": 49, "4017278282832695": 49, "428927912054942": 49, "451197927296262": 49, "4709697187344926": 49, "489456390475471": 49, "5072557909082451": 49, "5246072026789994": 49, "5415208146951107": 49, "5578609944298918": 49, "5734139487420609": 49, "587947333438726": 49, "6012589050513686": 49, "613209024712011": 49, "6237346368041081": 49, "632846787976177": 49, "6406169867162068": 49, "6471585575973842": 49, "situat": [49, 50], "consider": 49, "captur": 49, "soon": 49, "quantiti": 49, "w_i": [49, 80, 102, 106], "date": 49, "b_i": [49, 108], "backward": [49, 50, 61, 74, 109, 110], "strictli": [49, 108], "forward": [49, 50, 61, 88, 109], "rewrit": [49, 51, 55, 59, 74, 97, 100], "fbg": 49, "guarante": [49, 51], "fb": 49, "m_": [49, 62, 102], "bg": 49, "fg": 49, "convergenct": 49, "o": [50, 61, 77, 80, 81, 98, 102, 103, 105], "format": 50, "de": [50, 113], "wikipedia": [50, 108], "org": [50, 63, 70, 73, 102, 108, 115, 116, 117], "wiki": [50, 108], "compressed_row_storag": 50, "doc": 50, "rll": 51, "ccccl": [51, 55, 56, 58, 81], "too": [51, 56, 118], "rephras": [51, 52], "lbb": [51, 59, 81, 84], "_q": [51, 52, 81], "null": [51, 79, 80, 96, 103], "otim": 51, "accordingli": [51, 71], "f_0": 51, "third": [51, 83, 88, 95, 96, 108], "00": [51, 74], "bv": 51, "partial_v": 51, "partial_q": 51, "karush": [51, 81], "kuhn": [51, 81], "tucker": [51, 81], "kkt": [51, 81], "whole": [51, 53, 71, 87, 97, 101, 102], "clear": [51, 87, 105, 106], "succ": 51, "prec": [51, 52, 60, 83, 87, 105, 106], "2_": [51, 63, 77, 99, 100, 109], "q_h": [52, 83], "wrt": 52, "pair": [52, 53, 56, 97, 109], "clement": 52, "enough": [52, 59, 67, 74, 80, 103], "bubbl": [52, 56, 59, 74, 115], "cubic": [52, 56], "strong": [53, 62, 74, 85, 95, 97], "integ": [53, 96], "eas": 53, "fv": 53, "live": [53, 74], "csg": [53, 55, 68, 75, 80, 118], "basewebguiscen": [53, 55, 56, 71, 83, 85, 88, 93], "orderfac": 53, "surfacel2": 53, "definedonbound": 53, "undocu": [53, 56, 80], "mayb": [53, 56, 80], "typo": [53, 56, 80], "setheaps": 53, "10000000": 53, "sol_u": [53, 83], "sol_lam": 53, "total": [53, 55, 116, 117], "999999999999997": 53, "bndpart": 53, "region_wis": 53, "24998": 53, "88934": 53, "250025": 53, "610659": 53, "999999999999998": 53, "renam": 54, "off": [54, 97], "gg": 54, "secon": 55, "9999999999999974": 55, "advanc": [56, 63, 77], "difficulti": 56, "momentum": 56, "diverg": [56, 58, 59, 80, 85, 87, 118], "anywai": [56, 118], "beauti": 56, "dc": [56, 83, 88], "taylor": [56, 108, 109], "hood": 56, "bad": [56, 67, 69, 80, 103], "michael": 57, "neunteufel": [57, 68], "displac": [57, 58, 68, 72, 79], "bodi": [57, 60, 72], "frame": 57, "rigid": [57, 60], "stress": [58, 59, 68, 72], "tensor": [58, 60, 72, 74, 77], "sym": [58, 60, 65, 72, 79, 100], "cccll": 58, "ot": 58, "scalar": [58, 79, 109], "elast": [58, 79], "challeng": 58, "progress": [58, 60], "arnold": [58, 59, 65, 80], "falk": [58, 80], "winther": [58, 80], "2005": [58, 80], "skew": 59, "x_2": 59, "x_1": [59, 95], "rearrang": 59, "ccccccll": 59, "electromagnet": 59, "tangenti": [59, 66, 68], "stenberg": 59, "mode": [60, 74], "six": 60, "tet": 60, "decoupl": [60, 83, 108], "stretch": 60, "bend": [60, 65, 67, 68], "nt": [60, 65], "opdiv_t": 60, "f_e": 60, "resp": 60, "nedelec": [60, 66, 67, 80], "nabla_t": [60, 65], "g_t": 60, "g_e": 60, "g_v": 60, "nearli": [60, 109], "motiv": [60, 97, 109], "slightli": [60, 109], "sigma_h": [60, 65, 66, 69, 83, 84, 88], "tau_h": [60, 65, 83, 88], "astrid": 60, "sinwel": 60, "pechstein": [60, 65, 69], "tk": 60, "hdivdiv": [60, 65, 67], "type1": 60, "disp": [60, 65, 67, 68], "s11": 60, "1466": 60, "ulrich": 61, "trottenberg": [61, 62], "corneliu": 61, "oosterle": 61, "anton": 61, "schuller": 61, "academ": 61, "2001": 61, "wolfgang": 61, "hackbusch": [61, 62], "springer": 61, "1985": [61, 115], "hierarchi": 61, "present": [61, 62, 79, 98], "hierarch": [61, 74], "nest": [61, 62, 63, 64, 80, 105, 106], "v_l": [61, 62, 63, 64, 118], "n_l": [61, 64, 118], "h_l": [61, 62, 63, 64], "dl": 61, "spatial": [61, 110, 111], "p_l": [61, 62, 63, 64, 77], "a_l": [61, 62, 63], "d_l": [61, 62, 63], "2l": [61, 80, 106], "expens": [61, 106, 109], "a_0": [61, 62, 63], "mlprecondition": 61, "coarsepr": 61, "localpr": 61, "hx": 61, "cdof": 61, "leveldof": 61, "mlpreconditioner2": 61, "prol": [61, 64], "lammin": [61, 78, 80, 82, 100, 103, 106, 107], "lammax": [61, 78, 80, 82, 103, 106, 107], "5225660928343492": 61, "9634170326035583": 61, "7572606786524734": 61, "4164879047972151": 61, "2550708572760314": 61, "815523139527669": 61, "37989344758183696": 61, "308450122441681": 61, "341206724850267": 61, "3169": 61, "3560043386452667": 61, "150172892273618": 61, "466601479835905": 61, "12481": 61, "319937819401064": 61, "825268149129328": 61, "207500945135074": 61, "49537": 61, "31667701963457284": 61, "370873187419749": 61, "117889181764347": 61, "197377": 61, "3182030348089053": 61, "816107452862656": 61, "420623649790215": 61, "787969": 61, "3219928450516111": 61, "183205809357812": 61, "30858827998629": 61, "action": [61, 79, 102, 106], "presmooth": 61, "m_l": [61, 62, 64], "d_": 61, "coasr": [61, 62], "postsmooth": 61, "post": 61, "transpos": [61, 81, 106], "overal": 61, "seidel": [61, 62, 102, 107], "mgprecondition": 61, "smoothback": 61, "7651544666507633": 61, "9987999466057931": 61, "3053572711634862": 61, "5892049430232538": 61, "9967208414315467": 61, "6916369308059416": 61, "5497371221971641": 61, "9970667770354094": 61, "8137155683617994": 61, "4814120552195498": 61, "996951398840777": 61, "0708899746727645": 61, "45725397386741407": 61, "9961888045847009": 61, "1786334543121044": 61, "17521646837299754": 61, "00941187124058379": 61, "0010818082293433016": 61, "0001774124343507029": 61, "146247392809796e": 61, "2014276423085216e": 61, "973354406340976e": 61, "6349639615833913e": 61, "6495382905210624e": 61, "608662509689858e": 61, "2577596081448574e": 61, "468997807675418e": 61, "94941910837591e": 61, "056463652129439e": 61, "7024528929213845e": 61, "143292625079821e": 61, "494419632350608e": 61, "20000": 61, "2021": 61, "projectedmg": 61, "createtranspos": [61, 64], "coarsemat": 61, "46135753154810366": 61, "9962490853348933": 61, "159386196627027": 61, "17521646837299884": 61, "009411871240584515": 61, "0010818082293433783": 61, "00017741243435071894": 61, "146247392809993e": 61, "20142764230892e": 61, "973354406342218e": 61, "6349639615837404e": 61, "6495382905217427e": 61, "608662509690732e": 61, "2577596081450706e": 61, "46899780767589e": 61, "9494191083769515e": 61, "056463652131211e": 61, "7024528929217936e": 61, "143292625081005e": 61, "494419632355397e": 61, "interplai": 62, "smoother": 62, "suit": 62, "low": [62, 80, 112], "twice": [62, 79, 101], "al": 62, "c_l": [62, 108], "link": 62, "c_0": [62, 87, 95, 97], "s_l": [62, 85], "e_l": [62, 63, 64], "thank": [62, 83, 105, 106, 118], "varphi_l": 62, "psi_l": 62, "domin": [62, 80, 98], "bare": 62, "dinv": 62, "rough": 62, "random": 62, "quantifi": 62, "stronger": [62, 97], "2m": 62, "inlin": [62, 112], "xi": [62, 77, 97], "m_0": 62, "carefulli": 62, "perturb": 62, "condition": 63, "outlin": [63, 106], "w_l": [63, 64], "finest": 63, "e_0": [63, 97, 103], "pi_l": [63, 64], "cl\u00e9ment": [63, 106], "pi_0": [63, 64], "telescop": 63, "sum_l": [63, 97], "sum_k": [63, 97], "v_k": 63, "h_k": [63, 64], "put": [63, 112], "t_l": 63, "coarsest": 63, "underli": 63, "jinchao": [63, 102], "rev": [63, 102], "1992": [63, 102], "epub": [63, 102], "doi": [63, 102], "1034116": [63, 102], "reproduc": 64, "quickli": 64, "steeper": 64, "349233583359464": 64, "e_": [64, 102], "mlextens": 64, "bndmass": 64, "mone": 64, "coarsebndmass": 64, "coarsedof": 64, "coarseext": 64, "ext": 64, "extendrec": 64, "xc": 64, "pxc": 64, "uext": 64, "569199431018602": 64, "genuin": 65, "comodi": 65, "krendl": 65, "rafetsed": 65, "zulehn": 65, "hu": 65, "huang": 65, "possibli": 65, "newer": 65, "td": 65, "tightli": 65, "older": 65, "prager": 65, "syng": 65, "posteriori": 65, "deflect": [65, 67], "5em": 65, "partial_t": 65, "moment": 65, "3165": 65, "4261": 65, "methdo": 66, "stackrel": [66, 83], "longrightarrow": [66, 83], "8pt": [66, 83], "downarrow": [66, 83], "_k": 66, "3ex": [66, 83], "thick": [67, 68], "shear": [67, 68], "beta_h": 67, "lock": [67, 80], "joint": 68, "csgeometri": [68, 80, 118], "pnt": [68, 80, 118], "plane": 68, "finitecyl": 68, "addsurfac": 68, "hdivdivsurfac": 68, "fes3": 68, "u2": [68, 83], "u3": 68, "v3": 68, "gradv": 68, "gradu": 68, "nsurf": 68, "cross": [68, 113], "nel": 68, "ngradv": 68, "ngradu": 68, "sigman": 68, "taun": 68, "membran": 68, "tt": 68, "varepsilon_": 68, "compil": [68, 72], "symbolicenergi": 68, "nsurfmat": 68, "ptau": 68, "ftau": 68, "ctautau": 68, "etautau": 68, "uvec": 68, "sd": 68, "solsigma": 68, "newton": 68, "newtonsolv": 68, "newtonminim": 68, "loadstep": 68, "385554547969789e": 68, "uh": 68, "0464076953847663": 68, "04640769538476629": 68, "05969811055414346": 68, "060188892523224485": 68, "060197008583245344": 68, "060197013034633824": 68, "060197013034635836": 68, "16212877624059613": 68, "18047030359955413": 68, "1881411344828965": 68, "18829278797325397": 68, "18829323589939168": 68, "1882932359053115": 68, "3391246325802083": 68, "35472110553465824": 68, "35802220286281283": 68, "35820310983034076": 68, "35823429355522934": 68, "3582355218606291": 68, "35823552663766817": 68, "3582355266377316": 68, "545934144326212": 68, "5533557874560733": 68, "5598812394438284": 68, "5602257500879521": 68, "560256843307439": 68, "5602573408039925": 68, "5602573409856751": 68, "thin": [69, 118], "prismat": 69, "flat": 69, "anisotrop": 69, "h_x": 69, "partial_x": [69, 94, 101], "h_y": 69, "partial_i": [69, 101], "korn": 69, "introduct": 70, "interleav": 70, "latest": [70, 73], "offici": 70, "supplement": 70, "detail": [70, 77], "vectori": 70, "sabin": 70, "zaglmayr": 70, "phd": 70, "recommend": [70, 74], "textbook": [70, 98], "septemb": 70, "2017": 70, "gamma_n": [71, 72, 86, 88, 97, 101], "temperatur": [71, 74, 76, 110], "thermal": 71, "insul": 71, "transmiss": 71, "had": 71, "belong": [71, 97, 101, 105, 106], "adapt": 71, "u0": [71, 110, 111, 112, 115], "u_f": [71, 80, 103, 106], "dd": [71, 105], "df": 71, "fd": 71, "ff": 71, "f_d": 71, "f_f": 71, "condtion": 71, "maintain": 71, "pad": [71, 105], "worri": 71, "ud": 71, "boundarycf": [71, 74], "chamfer": 72, "cylboxedg": 72, "cylbox": 72, "makechamf": 72, "strain": 72, "hook": 72, "law": 72, "traction": 72, "fesstress": 72, "matrixvalu": 72, "gfstress": 72, "slider": [72, 74, 106], "5e4": 72, "1e4": 72, "draw_vol": [72, 75, 113, 118], "consult": [73, 107], "docu": 73, "verif": 73, "graviti": 73, "func": [73, 85], "how_to": 73, "howto_linalg": 73, "howto_numpi": 73, "xy": 73, "attain": 73, "phenomena": 74, "charg": 74, "electrostat": 74, "potenti": [74, 80], "select": 74, "script": [74, 95], "kink": 74, "formal": [74, 84, 97, 109], "infinit": [74, 84, 97, 98], "1_0": 74, "sum_i": [74, 97, 102, 103, 106, 108], "predefin": 74, "ne": 74, "funcf": 74, "cartesian": 74, "inspect": 74, "9999999999999964": 74, "499999999999999": 74, "4999999999999974": 74, "08333333333333291": 74, "662800535624399e": 74, "08333333333333307": 74, "1181654480683108e": 74, "16666666666666605": 74, "85722573273506e": 74, "204170427930421e": 74, "8287315681024927": 74, "1957737541722982": 74, "19794827628847217": 74, "4350095376417224": 74, "036081925033399936": 74, "2706849461530112e": 74, "036419664573553744": 74, "0793232627093197e": 74, "06562033841012835": 74, "478486166301863e": 74, "06871088406211634": 74, "734723475976807e": 74, "06941104395496575": 74, "949029909160572e": 74, "9081958235744878e": 74, "004044215842409425": 74, "00010949506857410921": 74, "005055833317030188": 74, "0004467008934476962": 74, "009656245121461408": 74, "2551405187698492e": 74, "724587470723463e": 74, "8163916471489756e": 74, "003295602986137172": 74, "00037798057948934126": 74, "006250616150810586": 74, "0006070238087351294": 74, "0051166744123425645": 74, "0009850043882244734": 74, "009775262366193539": 74, "0816681711721685e": 74, "632783294297951e": 74, "004200374856019856": 74, "0017754830163756964": 74, "0028410571431563554": 74, "0013223771120878588": 74, "008167506192283442": 74, "00045310590428783134": 74, "010139292127639758": 74, "66666667e": 74, "62349341e": 74, "00666667e": 74, "41938614e": 74, "58768986e": 74, "27043380e": 74, "18198359e": 74, "75906396e": 74, "61373488e": 74, "37816023e": 74, "59571120e": 74, "65080144e": 74, "90491892e": 74, "15375584e": 74, "72201759e": 74, "38794309e": 74, "46500883e": 74, "01059709e": 74, "22396274e": 74, "56496750e": 74, "66524538e": 74, "92210142e": 74, "90956415e": 74, "39617577e": 74, "06041231e": 74, "86702751e": 74, "06967160e": 74, "97947213e": 74, "91277642e": 74, "11175628e": 74, "15852596e": 74, "72752866e": 74, "95764202e": 74, "52020762e": 74, "33003422e": 74, "68347587e": 74, "23554864e": 74, "78842972e": 74, "04632471e": 74, "11111111e": 74, "58730159e": 74, "12517048e": 74, "65287341e": 74, "04844263e": 74, "80767289e": 74, "05785815e": 74, "57756990e": 74, "67777778e": 74, "39682540e": 74, "86914888e": 74, "63421433e": 74, "35674978e": 74, "81090441e": 74, "70825255e": 74, "12198974e": 74, "99252178e": 74, "37848562e": 74, "15456810e": 74, "48026033e": 74, "69786564e": 74, "22507913e": 74, "64996884e": 74, "46795278e": 74, "01918863e": 74, "25169512e": 74, "24131829e": 74, "88970269e": 74, "02538052e": 74, "09561861e": 74, "95165835e": 74, "89298369e": 74, "00668231e": 74, "56080516e": 74, "50759366e": 74, "62624400e": 74, "23170524e": 74, "38776040e": 74, "14247326e": 74, "05147539e": 74, "20161982e": 74, "17104988e": 74, "68410527e": 74, "96251115e": 74, "63058946e": 74, "33316884e": 74, "54836020e": 74, "99673786e": 74, "04333400e": 74, "28614435e": 74, "28786796e": 74, "36373064e": 74, "42984684e": 74, "67975607e": 74, "05017114e": 74, "21422613e": 74, "22749714e": 74, "01231228e": 74, "80040475e": 74, "03235807e": 74, "36233754e": 74, "56415614e": 74, "19613792e": 74, "11052790e": 74, "97669399e": 74, "13946661e": 74, "16227787e": 74, "83208976e": 74, "16902662e": 74, "47682560e": 74, "98236278e": 74, "10835203e": 74, "00587075e": 74, "54285092e": 74, "56260820e": 74, "85855089e": 74, "46723283e": 74, "19414012e": 74, "39435204e": 74, "63404990e": 74, "76492876e": 74, "99724319e": 74, "30871063e": 74, "91997734e": 74, "86300492e": 74, "89843315e": 74, "14967093e": 74, "20416263e": 74, "35262210e": 74, "40034946e": 74, "75317153e": 74, "20003175e": 74, "80161548e": 74, "77881017e": 74, "75704791e": 74, "28519735e": 74, "98506472e": 74, "24637796e": 74, "20246277e": 74, "86533680e": 74, "65603819e": 74, "17798587e": 74, "39661832e": 74, "42512937e": 74, "38610419e": 74, "41806640e": 74, "08513052e": 74, "15531330e": 74, "84374591e": 74, "03591803e": 74, "14717576e": 74, "97567491e": 74, "18746770e": 74, "11825842e": 74, "02642613e": 74, "82433803e": 74, "28400582e": 74, "89738810e": 74, "26215991e": 74, "78832306e": 74, "13978020e": 74, "94066240e": 74, "46507838e": 74, "45688875e": 74, "63499185e": 74, "47657413e": 74, "89614036e": 74, "81073187e": 74, "41063837e": 74, "04901124e": 74, "63998469e": 74, "67903582e": 74, "15873168e": 74, "26095800e": 74, "15866512e": 74, "03394806e": 74, "20360315e": 74, "84372631e": 74, "44292495e": 74, "22649519e": 74, "22214879e": 74, "30138177e": 74, "69926933e": 74, "68249759e": 74, "13317477e": 74, "38371554e": 74, "56081511e": 74, "01554149e": 74, "86452589e": 74, "65359773e": 74, "76577828e": 74, "32474227e": 74, "06852126e": 74, "29948886e": 74, "83915107e": 74, "29215552e": 74, "75494085e": 74, "93996993e": 74, "81598785e": 74, "70080819e": 74, "20710259e": 74, "14225686e": 74, "23298683e": 74, "26887948e": 74, "22447412e": 74, "65982942e": 74, "46644119e": 74, "43566373e": 74, "62363235e": 74, "92491430e": 74, "63463979e": 74, "55921383e": 74, "58003557e": 74, "97584791e": 74, "72386981e": 74, "69680035e": 74, "04304343e": 74, "88629681e": 74, "45816144e": 74, "74252409e": 74, "19168273e": 74, "23588458e": 74, "73491052e": 74, "46177993e": 74, "34920635e": 74, "56649872e": 74, "08916336e": 74, "18856044e": 74, "34503153e": 74, "07109762e": 74, "72977177e": 74, "24123503e": 74, "25322175e": 74, "50016337e": 74, "37266314e": 74, "43407504e": 74, "68927196e": 74, "99761394e": 74, "24523562e": 74, "45079365e": 74, "20278558e": 74, "39634548e": 74, "47646191e": 74, "91395496e": 74, "94214740e": 74, "17034605e": 74, "83371241e": 74, "22267988e": 74, "87581228e": 74, "27688891e": 74, "90189805e": 74, "02504840e": 74, "42063694e": 74, "08754364e": 74, "43069641e": 74, "04322115e": 74, "19502289e": 74, "05886485e": 74, "17266415e": 74, "52444753e": 74, "37948302e": 74, "38792594e": 74, "06372227e": 74, "03307384e": 74, "60426442e": 74, "68795971e": 74, "79711823e": 74, "46811512e": 74, "12007716e": 74, "15479975e": 74, "75456096e": 74, "23770460e": 74, "41373102e": 74, "32578507e": 74, "28331106e": 74, "12604564e": 74, "34032616e": 74, "83432663e": 74, "54285512e": 74, "03732654e": 74, "00000000e": 74, "02651352e": 74, "17444909e": 74, "71729962e": 74, "04295345e": 74, "53986083e": 74, "31340616e": 74, "73825402e": 74, "10673815e": 74, "42524628e": 74, "68063272e": 74, "86388258e": 74, "49944425e": 74, "12612009e": 74, "63003331e": 74, "05615795e": 74, "04452565e": 74, "52636441e": 74, "34678613e": 74, "89120579e": 74, "45788548e": 74, "14103409e": 74, "18773436e": 74, "28179168e": 74, "42879081e": 74, "06815699e": 74, "31053506e": 74, "77984470e": 74, "97926710e": 74, "30288929e": 74, "50442051e": 74, "21448524e": 74, "05261663e": 74, "13658800e": 74, "36909436e": 74, "30269301e": 74, "45569001e": 74, "52031126e": 74, "22889271e": 74, "06173136e": 74, "22902254e": 74, "12502359e": 74, "45261752e": 74, "05072273e": 74, "47899861e": 74, "95574753e": 74, "65063196e": 74, "78173444e": 74, "91358750e": 74, "93682062e": 74, "50358631e": 74, "90154230e": 74, "92176436e": 74, "42272101e": 74, "33243573e": 74, "39347185e": 74, "82286681e": 74, "99272270e": 74, "88735676e": 74, "33327795e": 74, "23052075e": 74, "59289558e": 74, "17484926e": 74, "38832225e": 74, "11274286e": 74, "02914557e": 74, "24856511e": 74, "46255587e": 74, "46730851e": 74, "39444956e": 74, "23493810e": 74, "09680027e": 74, "30408705e": 74, "18844850e": 74, "93070738e": 74, "73128488e": 74, "24729233e": 74, "64119171e": 74, "88135271e": 74, "67198008e": 74, "76652503e": 74, "14929094e": 74, "10455003e": 74, "42626166e": 74, "40022829e": 74, "75053646e": 74, "32202735e": 74, "64428432e": 74, "40405870e": 74, "83425690e": 74, "70940954e": 74, "89899776e": 74, "58213525e": 74, "13724910e": 74, "02840051e": 74, "56969874e": 74, "64893941e": 74, "17444576e": 74, "90065562e": 74, "76870051e": 74, "78117344e": 74, "60372397e": 74, "11519878e": 74, "09574110e": 74, "41019727e": 74, "91093951e": 74, "83757108e": 74, "19954481e": 74, "89402445e": 74, "30823297e": 74, "72535447e": 74, "07867885e": 74, "55036412e": 74, "63605128e": 74, "76999840e": 74, "47830128e": 74, "41001347e": 74, "89867542e": 74, "32947036e": 74, "43052514e": 74, "84225488e": 74, "27470834e": 74, "50682327e": 74, "04445533e": 74, "82746652e": 74, "23222011e": 74, "08658007e": 74, "93362996e": 74, "27068308e": 74, "82734566e": 74, "04378948e": 74, "76404167e": 74, "14677104e": 74, "25805960e": 74, "71933788e": 74, "70398951e": 74, "72312767e": 74, "55951239e": 74, "23468220e": 74, "17363736e": 74, "43405785e": 74, "43606881e": 74, "57030863e": 74, "14401498e": 74, "27373870e": 74, "67211217e": 74, "46279346e": 74, "12424681e": 74, "08686469e": 74, "31923341e": 74, "75245664e": 74, "18378034e": 74, "54910123e": 74, "48356595e": 74, "63609902e": 74, "71076796e": 74, "21921127e": 74, "70420964e": 74, "49706348e": 74, "91715363e": 74, "16192264e": 74, "31462394e": 74, "66339889e": 74, "07213824e": 74, "66713703e": 74, "90411155e": 74, "71013089e": 74, "06479309e": 74, "71428571e": 74, "11326140e": 74, "52915266e": 74, "09862199e": 74, "21240144e": 74, "81353155e": 74, "81662709e": 74, "85774805e": 74, "99280637e": 74, "06924526e": 74, "34826800e": 74, "93598132e": 74, "53171058e": 74, "10459024e": 74, "29849936e": 74, "30571429e": 74, "25121637e": 74, "58097206e": 74, "09384602e": 74, "10999455e": 74, "34576114e": 74, "34808772e": 74, "81873156e": 74, "58369941e": 74, "07623135e": 74, "48304492e": 74, "58390741e": 74, "99116470e": 74, "17018031e": 74, "05473882e": 74, "94354799e": 74, "68751578e": 74, "52761847e": 74, "34701629e": 74, "15674039e": 74, "91494610e": 74, "67167662e": 74, "43369229e": 74, "55632805e": 74, "84206913e": 74, "43752689e": 74, "62395745e": 74, "34223115e": 74, "40049428e": 74, "88721028e": 74, "65192015e": 74, "09425754e": 74, "30844242e": 74, "25440808e": 74, "64691905e": 74, "23352169e": 74, "19756385e": 74, "34050016e": 74, "30074832e": 74, "26447785e": 74, "47010385e": 74, "multidim": [74, 105, 106], "edgedof": 74, "edof": 74, "facedof": 74, "fdof": 74, "match": [74, 97, 108], "regex": 74, "overrid": 74, "earlier": 74, "elsewher": 74, "buildrefinementtre": 74, "array_y_": 74, "insid": [74, 97, 105, 106], "elementrang": 74, "geoparamcf": 74, "getbbboundari": 74, "getcurveord": 74, "gethpelementlevel": 74, "wip": 74, "codimens": 74, "getpmltrafo": 74, "pml": 74, "getparentel": 74, "parent": [74, 102], "getparentfac": 74, "fnum": 74, "getparentvertic": 74, "vnum": 74, "getperiodicnodepair": 74, "node_typ": 74, "master_nr": 74, "minion_nr": 74, "idnr": 74, "gettrafo": 74, "eid": 74, "elementtransform": 74, "localhcf": 74, "maptoallel": 74, "integrationrul": [74, 115], "union": 74, "ndarrai": 74, "meshpoint": 74, "steel_": 74, "2e6": 74, "mark_surface_el": 74, "onlyonc": 74, "refinefromtre": 74, "refinehp": 74, "toward": 74, "placement": 74, "vb": [74, 76], "regioncf": 74, "setelementord": 74, "compat": [74, 80], "setpml": 74, "pmltrafo": 74, "setrefinementflag": 74, "refinementflag": 74, "splitelements_alfeld": 74, "unsetpml": 74, "unset": 74, "__call__": 74, "float64": 74, "mappedintegrationpoint": 74, "aren": 74, "__getitem__": 74, "ngs_element": 74, "meshnod": 74, "libngpi": 74, "_mesh": 74, "filenam": 74, "mpi_comm": 74, "0x114ec85b0": [], "file": 74, "nnode": 74, "meshnoderang": 74, "nedg": 74, "nface": 74, "nfacet": 74, "modal": 74, "legendr": 74, "jaboci": 74, "simplici": [74, 77], "declar": 74, "wirebasket": 74, "wb_withedg": [74, 75], "wb_fulledg": 74, "far": 75, "profit": 75, "arithmet": 75, "cube": 75, "177430": 75, "024273223974312075": 75, "037204475895342": 75, "04829608173279241": 75, "047831452027208586": 75, "03503614777663428": 75, "029378085186036483": 75, "031006371846374843": 75, "02881189922538989": 75, "026991393488043674": 75, "025607813233479115": 75, "023059227507159427": 75, "020188714252706304": 75, "017677856690926363": 75, "01570390414750895": 75, "01450892008875497": 75, "013060236654630365": 75, "01148717272069801": 75, "010359419640115403": 75, "009639280718573347": 75, "008983784519869005": 75, "008250496171208304": 75, "007352872683189109": 75, "0064397891421690305": 75, "005596514201958335": 75, "004766219873666417": 75, "004022073286663706": 75, "0034196513449910823": 75, "0029400048222059856": 75, "0025083332705242": 75, "0021046499274098534": 75, "0017484379251981065": 75, "0014397425850613988": 75, "0011912144262735045": 75, "0009893154642094026": 75, "0008329679456139172": 75, "0007272861126943784": 75, "0006352763333349191": 75, "0005645223644237875": 75, "0004942564003676569": 75, "00042780257753367363": 75, "00036683687047396396": 75, "0003112297948991817": 75, "00026555485540291635": 75, "00023057965122062087": 75, "00020810720521774676": 75, "00019208909401800605": 75, "00017853792896837772": 75, "00016491550344460967": 75, "0001498362645389152": 75, "0001338648614332045": 75, "00011598796595447701": 75, "959344694700465e": 75, "519641137784833e": 75, "322459830883026e": 75, "417417797477789e": 75, "699684507733734e": 75, "166607912750655e": 75, "7110717192708665e": 75, "3231615399420306e": 75, "9523838011088034e": 75, "5483623051359466e": 75, "115776481808797e": 75, "6858896178966197e": 75, "2452143271619613e": 75, "8667683822022966e": 75, "5676517902103517e": 75, "3491991701423895e": 75, "1932267987396277e": 75, "1006946297625608e": 75, "0456629339641523e": 75, "883740543600398e": 75, "186544775446272e": 75, "152829147699458e": 75, "959623023960013e": 75, "777798497624973e": 75, "775007175940237e": 75, "979591970780287e": 75, "3697656755438388e": 75, "931468204779986e": 75, "6063431809725343e": 75, "339109257479704e": 75, "1073268104192383e": 75, "8783881773434057e": 75, "6729157958379345e": 75, "477359372021876e": 75, "2787374496223366e": 75, "1065178148932502e": 75, "440247699033299e": 75, "070630129019807e": 75, "801601436853941e": 75, "689323984540329e": 75, "779751500223053e": 75, "0322338191445864e": 75, "443176683566252e": 75, "983673740203993e": 75, "64890769583779e": 75, "3834677872461816e": 75, "1324039739542678e": 75, "9014339920530615e": 75, "6878351817818138e": 75, "4807078864792983e": 75, "3005077941994067e": 75, "1410181950377555e": 75, "815400446992752e": 75, "263818148215092e": 75, "984159946931181e": 75, "908274034770534e": 75, "0612004296881115e": 75, "384548734703711e": 75, "851545498892002e": 75, "4359368486597825e": 75, "100139362740519e": 75, "8136342454941936e": 75, "5808008395922967e": 75, "3538480472957442e": 75, "138838983489785e": 75, "8834840815121618e": 75, "6357941765358154e": 75, "4032958225323066e": 75, "1973176149489421e": 75, "0330722476742483e": 75, "060421857389568e": 75, "010205668737527e": 75, "1550389688295956e": 75, "394917627264948e": 75, "746988905891274e": 75, "180098524265756e": 75, "6298437650060975e": 75, "151239212626374e": 75, "7171682211344884e": 75, "28636674165708e": 75, "875922769123227e": 75, "4976441070032594e": 75, "1695613375814276e": 75, "868479538952061e": 75, "6186157638062868e": 75, "3965604941420359e": 75, "230062807166462e": 75, "0837253706493335e": 75, "728766308288062e": 75, "732708184104283e": 75, "863948847061986e": 75, "947907556144233e": 75, "079255401192082e": 75, "246753131763292e": 75, "5036598509313203e": 75, "883349334841279e": 75, "346108176246629e": 75, "922398248092175e": 75, "5494201485235853e": 75, "2453548564298967e": 75, "9788107295271953e": 75, "7312763680539798e": 75, "5149410265326552e": 75, "3206146501632598e": 75, "1601092281831917e": 75, "0257310986172217e": 75, "035057863467162e": 75, "012900680539926e": 75, "053091225238836e": 75, "177975481974726e": 75, "4105955877807516e": 75, "6972458570229063e": 75, "059962390744391e": 75, "48344467893236e": 75, "962748743407555e": 75, "5116661890005876e": 75, "1313848999463623e": 75, "838939606568788e": 75, "5917993944175503e": 75, "3925445641690011e": 75, "222905569117103e": 75, "0798810040492257e": 75, "507026363501187e": 75, "35640106452074e": 75, "287100776090044e": 75, "446668911117099e": 75, "738961003585408e": 75, "955476591094188e": 75, "179276503633465e": 75, "51484360347095e": 75, "961192049799402e": 75, "506908218354334e": 75, "14706588838844e": 75, "8529520194379847e": 75, "5975760598785288e": 75, "3938574627111934e": 75, "2231484138440663e": 75, "0799504864837223e": 75, "576679382931486e": 75, "47711133461441e": 75, "410634905428783e": 75, "409720725027058e": 75, "482969009887021e": 75, "62576805756395e": 75, "8570338555821037e": 75, "2128164846413054e": 75, "7228777450440256e": 75, "363532192858452e": 75, "037214875409793e": 75, "743140248349613e": 75, "5116759654916236e": 75, "3371286004187721e": 75, "199662120862354e": 75, "0800838951175999e": 75, "724302716978304e": 75, "623330289029238e": 75, "573761126328625e": 75, "52514963956198e": 75, "550103983705584e": 75, "6103899203810424e": 75, "8099867233648296e": 75, "1789412583431215e": 75, "6741498611348335e": 75, "3329352056374313e": 75, "watch": 75, "usag": 75, "vari": [76, 109], "conduct": [76, 80, 106], "leav": 76, "lambda_l": 76, "lambda_r": 76, "circ1": 76, "circ2": 76, "air": [76, 80, 86], "glue": [76, 105, 115], "reg": 76, "bitmask": 76, "0101": 76, "approxiamt": 77, "pi_n": 77, "appear": 77, "rodrigu": 77, "p_2": [77, 102], "odd": 77, "equ_leadingcoef": 77, "equ_ortho": 77, "p_m": [77, 102], "equ_threeterm": 77, "lemma_ortho": 77, "sturm": 77, "liouvil": 77, "a_n": 77, "lh": 77, "rh": [77, 81, 88], "lemma_sturmliouvil": 77, "pi_p": 77, "setn": 77, "lemma_l2est": 77, "_n": 77, "dubin": 77, "2i": 77, "2y": 77, "kl": [77, 101], "2k": 77, "dy": [77, 94, 99], "simplic": 77, "schwab": 77, "2000": [77, 80, 115], "i_p": 77, "equ_projbased1": 77, "equ_projbased2": 77, "mixtur": 77, "demkowicz": 77, "been": [77, 97], "commut": [77, 80, 83, 87, 99], "diagram": [77, 83], "_1": 77, "partial_": 77, "lemma_polext": 77, "major": 77, "u_p": 77, "bp": 78, "transfrom": 78, "trig": [78, 115], "bfa": 78, "blockvector": [78, 81], "pru": 78, "papu": 78, "9999999999999993": [78, 93], "2767086131940664": 78, "4581124500620444": 78, "5609747825506695": 78, "8265269617122366": 78, "6554150775649203": 78, "1394475982666885": 78, "5322956420524558": 78, "5553195508570907": 78, "3537925843263867": 78, "6212944266166138": 78, "188825753642556": 78, "3039156633342224": 78, "8189245277010125": 78, "7193044232234074": 78, "3399977719072915": 78, "23579818503123626": 78, "10413037941302165": 78, "07040550708946706": 78, "037804053507087466": 78, "016156585638137988": 78, "012593342528373389": 78, "006189980987403972": 78, "005902541516360615": 78, "0028055888297778067": 78, "002337664016570221": 78, "0012247331428186258": 78, "0006326345289847728": 78, "0003932290411182632": 78, "00017806460385637164": 78, "00011591557965286251": 78, "363795123305388e": 78, "2438720043138195e": 78, "4154057869546288e": 78, "842020482095398e": 78, "918088260700753e": 78, "0779340720189697e": 78, "368838315548264e": 78, "395473964859314e": 78, "1178478574773807e": 78, "6523579663332994e": 78, "78527647500959e": 78, "9786828275515905e": 78, "2922568833716852e": 78, "513821514284221e": 78, "phase": 79, "voltag": 79, "coil": 79, "u_x": 79, "b_x": 79, "b_y": 79, "bx": 79, "6441": 79, "0189391": 79, "2676": 79, "uxi": 79, "150513": 79, "00112175": 79, "reconstruct": [79, 83], "fvec": 79, "linerar": 79, "unconstrain": 79, "shat": 79, "190039": 79, "203514": 79, "gfu0": [79, 105], "proj": [79, 105], "bmat": 79, "projpr": 79, "projinv": 79, "gfu1": 79, "unless": [80, 95], "degener": 80, "h_": [80, 100], "magnet": 80, "permeabl": 80, "coloumb": 80, "gaug": 80, "equip": [80, 87], "effect": 80, "detour": 80, "r_h": 80, "d_h": 80, "psi_h": 80, "afw": 80, "numerisch": 80, "mathematik": 80, "orthobrick": [80, 118], "4635327629266928": 80, "42789858702521705": 80, "3232297657475674": 80, "25464403586309087": 80, "18615733922752714": 80, "14800181052391703": 80, "11949520952077154": 80, "09282291331667633": 80, "07679038814089593": 80, "06389531595609149": 80, "05056242146491291": 80, "04060539621517081": 80, "03430579733377514": 80, "030065910434030483": 80, "025774846052082172": 80, "01983965339095311": 80, "013867502737470573": 80, "009567470112709246": 80, "006601850082293865": 80, "004463903340199571": 80, "002938211266571423": 80, "002000033787596275": 80, "0013982543263219135": 80, "0009922984038274098": 80, "0007815351507657772": 80, "000683642014896617": 80, "0006042081173435654": 80, "0004933831969703863": 80, "0003658814417513913": 80, "00027461820027847346": 80, "00021606301815433576": 80, "0001852656638868365": 80, "00016757613019838458": 80, "00015014932580892883": 80, "00012635246751698076": 80, "00010095216118821378": 80, "677150772435917e": 80, "705147728680346e": 80, "400991083489937e": 80, "6417376943526984e": 80, "212176823477045e": 80, "7186175188828105e": 80, "323767518440678e": 80, "069312434365388e": 80, "911627307675492e": 80, "8718180412834895e": 80, "842446272464718e": 80, "7710075176906277e": 80, "649936644773816e": 80, "5042919233686429e": 80, "4060059508048765e": 80, "3294831066099182e": 80, "2250262778494888e": 80, "0757704058947594e": 80, "740608113448077e": 80, "838580733733294e": 80, "401844236565597e": 80, "329876676381426e": 80, "392817659702821e": 80, "5330312963314107e": 80, "8791455960178543e": 80, "512762255199913e": 80, "400764857435027e": 80, "4201528772553445e": 80, "484543077553714e": 80, "506645750744541e": 80, "5221995110452216e": 80, "4801364239010767e": 80, "4110760181683581e": 80, "2533077908298905e": 80, "0275036694747827e": 80, "43762385593524e": 80, "11756578349743e": 80, "085538139091289e": 80, "140103064211771e": 80, "020347788031209e": 80, "092098918926114e": 80, "4553367053311626e": 80, "009547208619791e": 80, "655442290755333e": 80, "3974281500533848e": 80, "20185210357764e": 80, "015471598348598e": 80, "26051191101564e": 80, "635817941556107e": 80, "120263469848235e": 80, "142946942564037e": 80, "4856977656683026e": 80, "9171532625864503e": 80, "4620885627225223e": 80, "1143891383548138e": 80, "8993136308760616e": 80, "7017039819867693e": 80, "4333454712960677e": 80, "1557028423569548e": 80, "95521894798872e": 80, "947450640234518e": 80, "438531508912747e": 80, "346737344250734e": 80, "6087661839121814e": 80, "1829807261609314e": 80, "7843641797264262e": 80, "349635933929682e": 80, "0666980034078006e": 80, "8682450158839147e": 80, "6702589191564442e": 80, "5608872971611618e": 80, "4141783443506158e": 80, "1801844070219922e": 80, "680627093063401e": 80, "362346931360255e": 80, "562143501253274e": 80, "519927604494129e": 80, "603811278315021e": 80, "069583126200502e": 80, "926136120458067e": 80, "022852060313368e": 80, "873362458040147e": 80, "179038940459572e": 80, "3427726344761957e": 80, "6056347314808085e": 80, "0391573266438795e": 80, "6060002408897057e": 80, "290854582112953e": 80, "0736797747190897e": 80, "326212478264851e": 80, "434050375655718e": 80, "529219410275793e": 80, "445632525789044e": 80, "515875985552747e": 80, "642173216119092e": 80, "969780154913643e": 80, "510174891172396e": 80, "133217721853538e": 80, "7576109259346328e": 80, "3543762860934322e": 80, "8993384818526183e": 80, "4438616067029353e": 80, "1284839854964043e": 80, "820233339776046e": 80, "007363468914282e": 80, "633510002398147e": 80, "440755426206628e": 80, "829576433200149e": 80, "897243155937746e": 80, "9525636053155235e": 80, "264312876504194e": 80, "8402817281136264e": 80, "492327674466352e": 80, "08848867205207e": 80, "5505614653778326e": 80, "8329546473066384e": 80, "175796464246952e": 80, "663515736510115e": 80, "2634537302230126e": 80, "361744949075666e": 80, "973280254961185e": 80, "230426840079289e": 80, "1134450354834574e": 80, "draw_surf": [80, 113], "02952541052556933": 80, "916054099105543": 80, "37161190298016": 80, "fine": [80, 106], "technic": [80, 85, 106], "phi": [80, 85, 94, 99, 101, 103, 109], "zhao": 80, "polyhedr": 80, "2002": [80, 116, 117], "multiscal": 80, "emg": 80, "ch": [80, 106, 109], "_d": 80, "8800": 80, "77372": 80, "6907017058419115": [], "01614225372601486": [], "0004606080177779278": [], "0543115072734211e": [], "8277013573557717e": [], "371148839371415e": [], "4772398928330267e": [], "0905496471464366e": [], "1153690820532784e": [], "439845264878815e": [], "min_u": 81, "among": 81, "critic": [81, 100], "1_": [81, 106], "uzawa": 81, "variant": [81, 102, 118], "Of": 81, "understand": [81, 87], "recast": 81, "famou": [81, 83], "fesu": 81, "gtild": 81, "sinv": 81, "gflam": 81, "703743410155205": 81, "3225265331211531": 81, "08319858163652133": 81, "011164430253673224": 81, "004908344302198841": 81, "0037297526149230515": 81, "004084493303524705": 81, "0039564363704141705": 81, "003887881371824783": 81, "0012220936083446857": 81, "0048117028501103625": 81, "001119893199509765": 81, "001091990754645669": 81, "0004286672278231922": 81, "0002774621847545223": 81, "00024363444237340782": 81, "0003106485695833687": 81, "121981264833085e": 81, "00010239582278435417": 81, "0003676605804261631": 81, "9310833633668124e": 81, "7508838982218637e": 81, "3465320163714765e": 81, "0140399025034617e": 81, "3565598727971024e": 81, "9391378833519324e": 81, "41219703568913e": 81, "169377982668791e": 81, "666394876987844e": 81, "2759200329443015e": 81, "0062559923710714e": 81, "847639150203589e": 81, "679881932018409e": 81, "691426682666645e": 81, "2483483518660437e": 81, "903124515027671e": 81, "6512098719669792e": 81, "1450732120796066e": 81, "9003103940717294e": 81, "4393364295270112e": 81, "274042939289355e": 81, "4096354981790524e": 81, "863231069066677e": 81, "200585510453696e": 81, "2663206605847748e": 81, "6548401927103137e": 81, "717237975378517e": 81, "680123317031415e": 81, "8459548801315727e": 81, "3510335949228405e": 81, "475412640277428e": 81, "596072483706002e": 81, "0493100331886202e": 81, "pm": 81, "minr": 81, "gmre": 81, "blockmatrix": 81, "prelam": 81, "invk": 81, "maxstep": [81, 88], "2klinearsolv": 81, "026599068921026": 81, "670656458376696": 81, "8942223632946207": 81, "331220850212279": 81, "21210334827420216": 81, "08041676507609673": 81, "07555302264134667": 81, "01111098776001083": 81, "011079512345275792": 81, "004420322769338356": 81, "004402626310257936": 81, "0030515645344240377": 81, "0030477871355662632": 81, "0023020803578562453": 81, "0022722008472360698": 81, "002051286439828685": 81, "001976642633411403": 81, "0016545061633674307": 81, "0016298296965029826": 81, "0011540473831746607": 81, "0009532475079662616": 81, "0009096390840312319": 81, "0009087979890387037": 81, "0006392790085624193": 81, "0006367061161793228": 81, "0005426806983504564": 81, "0005386945761424414": 81, "0003025870322957196": 81, "00030221897251729243": 81, "0001627245181712355": 81, "00016253323735641908": 81, "0001314039071922258": 81, "0001311906600423513": 81, "00011191614403906308": 81, "0001115805257393666": 81, "488780443126758e": 81, "339498173721879e": 81, "844091210048576e": 81, "814655457963396e": 81, "254954253150321e": 81, "1840551261819056e": 81, "2033153880269234e": 81, "527992296989246e": 81, "238169762360775e": 81, "2276268741351758e": 81, "2749177600714037e": 81, "2708722287817419e": 81, "281304347500229e": 81, "228068276285971e": 81, "417040471280639e": 81, "3523838094911906e": 81, "411062793176153e": 81, "163363108159107e": 81, "161908443302e": 81, "8100435097304153e": 81, "6762281791262442e": 81, "3190121867396265e": 81, "3264446751512045e": 81, "322275284548528e": 81, "151174912451708e": 81, "drawgeo": [82, 118], "h1amg": 82, "4808": 82, "2404": 82, "7212": 82, "41126275116341915": [], "9997000069488873": [], "708265793347658": [], "518614851058216": [], "12122255023163": 82, "9048885559917332": [], "4917394522507745": [], "493118616513672": [], "000678570975291": [], "547495742671513": 82, "284907146159062": [], "4708842708052208": [], "1709827044069105": [], "333179134466149": 82, "55492332618035": [], "55684616149044": [], "8349109479366956": [], "9896518436225312": [], "2653356627565175": [], "0671698225418824": [], "8986641193333975": [], "0164272097507228": [], "6933847600804386": [], "5821228060238792": 82, "5154823734323597": [], "3969918947407196": [], "4218273346654056": [], "2302931869125273": [], "753047859622945": [], "396798206786912": [], "1320892898867807": [], "9379934196258192": [], "791575326590573": [], "653688963907376": [], "4950052624467906": [], "37924142383433823": [], "26383160494968916": [], "19637059924697317": [], "12785237182947506": [], "08256723985001498": [], "06272640281322496": [], "041147383075796885": [], "030342235877553518": [], "02221876513803312": [], "016611695048539613": [], "010799090847257489": [], "007832024578957035": [], "005806718322528601": [], "004554579604230051": [], "0036181815711946587": [], "003118606579872757": [], "0023249659677882202": [], "0019700393080777324": [], "001572081369426179": [], "0012782128943740678": [], "0009321416200745111": [], "000640209585863162": [], "000442201353893672": [], "00029436328549711213": [], "00020039254939595297": [], "0001390498139439942": [], "55207156234048e": [], "70573261445275e": [], "877037269533597e": [], "4985261330516704e": [], "7039506182589195e": [], "099622240249225e": [], "373956774281435e": [], "415372454192049e": [], "0016786125722715e": [], "909112488028385e": [], "2374236385832936e": [], "586113617201631e": [], "129607106322828e": [], "3254862647512544e": [], "1897619356873755e": [], "3876816899103735e": [], "lucki": 83, "accid": 83, "happen": [83, 102], "plai": [83, 84, 100], "rt_k": [83, 84, 85, 88], "filter": 83, "sol_sigma": 83, "q2": 83, "x2": 83, "p2": 83, "a2": 83, "f2": 83, "gfu2": 83, "upost": 83, "game": 84, "mimic": 84, "compens": 84, "analyi": 84, "rt_0": 85, "bdm_1": 85, "bdm_k": 85, "r_j": 85, "s_j": [85, 97], "jacobian": [85, 109, 118], "algebra": [85, 102], "rt0": 85, "bdm2": 85, "scenediv": 85, "695004544305167e": 85, "plug": [86, 88], "role": [86, 100], "0x10f2bc0b0": [], "stdtemp": 86, "stdflux": 86, "mixedflux": 86, "mixedtemp": 86, "arcross": 86, "iff": [87, 106, 109], "mollifi": 87, "omega_n": 87, "d_i": 87, "opdiv_": 87, "n_j": [87, 97], "disadvantag": 88, "overcom": 88, "reinforc": 88, "ccccccl": 88, "paramt": 88, "b_1": [88, 99, 108], "b_2": 88, "submatrix": 88, "behav": [88, 95], "eliminate_intern": 88, "harmonic_extension_tran": 88, "harmonic_extens": 88, "inner_solv": 88, "3766313310061909": [], "10608193520813963": [], "02537449045713497": [], "009211818637816959": [], "0027698298339901705": [], "0007513083315122621": [], "0003100098687187837": [], "544144155753244e": [], "417241324804766e": [], "963174584217277e": [], "4749995026727172e": [], "027416791776354e": [], "3480564361458936e": [], "379824934894357e": [], "116560856633816e": [], "0690433729174107e": [], "8795972827131724e": [], "274291627498353e": [], "43946644737781e": [], "727593166439194e": [], "0547439650095032e": [], "466548278031449e": [], "5745792118592407e": [], "476348446627756e": [], "0843950152734397e": [], "c_f": [89, 99, 100], "makestructured2dmesh": [89, 93, 94], "nx": [89, 93, 94], "ny": [89, 93, 94], "h1seminorm": [89, 93, 100], "l2norm": [89, 93, 100], "lobpcg": [89, 100], "lam1": 89, "h1norm": [93, 94, 100], "meanvalu": 93, "meanvalmat": 93, "0000000000000007": 93, "869604494897487": 93, "869604494897613": 93, "739208989947937": 93, "478769914585975": 93, "evp": 94, "tracenorm": 94, "investig": 94, "plan": 94, "fubini": [94, 97], "alpha_d": 95, "_0": [95, 96], "alpha_i": 95, "supp": 95, "neighbourhood": [95, 97], "equ_intbypart": [], "valid": 95, "demand": 95, "d_g": 95, "l_1": [95, 96], "loc": [95, 96], "badli": 95, "l_": [95, 96, 97, 98, 101, 106], "unbound": [95, 96, 116, 117], "d_w": 95, "1_g": 95, "focu": 95, "w_p": 96, "l_p": 96, "lim_": [96, 109], "moder": 96, "o_i": 96, "ball": [96, 99], "w_2": 96, "clearli": [97, 100], "whose": 97, "cover": 97, "s_i": 97, "parameter": 97, "nabla_x": 97, "nabla_": 97, "int_q": [], "sharp": [97, 100, 103], "g_i": 97, "elementari": [97, 99], "ds_i": 97, "outsid": [97, 106, 109], "flip": 97, "composit": [97, 98, 115], "s_1": 97, "s_m": 97, "rcll": 97, "eu": 97, "theo_subdomainh1": 97, "sec_traceh1": [], "g_n": 97, "equ_tracenorm": [], "z_l": 97, "everyth": 97, "lambda_0": 97, "sqrt2": 97, "w_e": 97, "u_g": 97, "cosin": 97, "sum_n": [], "intent": 98, "nd": 98, "thm": 98, "naiver": 98, "girault": 98, "equ_factor": [], "equ_tartar_cond": [], "c_3": 98, "c_4": 98, "z_": 98, "theo_tartar": [], "lemma_bh": [], "_u": 98, "a_2": 98, "lv": 98, "lu": 98, "869652441595159": [], "7392330948581": [], "47845542715927": [], "34810630900802": [], "34813860755308": [], "141600299464456": [], "3183091114966053": [], "abl": 101, "manifold": 101, "vice": [101, 118], "versa": [101, 118], "ly": 101, "_x": 101, "disc": 101, "polygon": 101, "beta_i": 101, "prod_": 101, "tini": [], "hermann": 102, "who": 102, "jac": [102, 103], "bjac": 102, "cccc": 102, "ddot": [102, 109, 111], "vdot": [102, 108], "mm": 102, "tall": 102, "isomorphismu": 102, "kappa_a": 102, "msm": 102, "reproven": 102, "lion": 102, "nepomnyashchikh": 102, "preconditiong": 102, "strengthen": 102, "z_i": 102, "_2": 102, "_m": 103, "phi_t": 103, "02082965485133204": [], "762471943377774": [], "6390234196904": [], "deterior": [103, 106], "04897732520659094": [], "500747231467046": [], "641673981516014": [], "summand": 103, "lam2": 103, "4457610878408913e": [], "021712747056103647": [], "6917198310303028": [], "69169": [], "4638303264": [], "cjac": 103, "gfconst": 103, "e0": [103, 105], "a0": [103, 105], "010000000000000484": [], "025544381033002772": [], "04491872161403106": [], "691719830172751": [], "22669102794413": [], "bottomo": 104, "dissect": 105, "m_x": 105, "m_y": 105, "precontion": 105, "logic": 105, "dirichet": 105, "domaindof": 105, "numset": [105, 115], "invi": [105, 106], "lami": 105, "02753241632854": 105, "subdomain": 105, "h_1": 105, "hh": 105, "gfi": 105, "domi": 105, "gfcoars": 105, "mv": 105, "consti": 105, "inva0": 105, "coarsegrid": 105, "7946": 105, "2975": 105, "337032": 105, "9739": 105, "324899": 105, "333629": 105, "6868": 105, "35572": 105, "1655": 105, "31221": 105, "39022": 105, "365027": 105, "386817": 105, "7111": 105, "307914": 105, "5794": 105, "2131": 105, "pre2": 105, "13234921846973": 105, "idiag": 105, "pre3": 105, "724988999951798": 105, "expert": 105, "nice": 105, "nbel": 105, "nb": 105, "pymeti": 105, "ndom": 105, "n_cut": 105, "membership": 105, "part_graph": 105, "gfdom": [105, 106], "sine": [97, 105], "domdof": 105, "00110000000001111111111111111111111111111111111111": 105, "11111111111111111111111111111111111111111111111111": 105, "1111111111111111111111111111111111111": 105, "10163889987329": 105, "mdcomp": 105, "94990000871906": 105, "bigcup": 106, "h_i": 106, "enlarg": 106, "slide": 106, "fesdom": 106, "06687894741407885": [], "99999999999935": [], "857165311304115": [], "behaviour": 106, "uniti": 106, "ch_i": 106, "bounded": 106, "paid": 106, "a0inv": 106, "place": 106, "prolongationop": 106, "multtran": 106, "hy": 106, "c2l": 106, "0427258429588369": [], "692782966558739": 106, "5414706478167886": [], "pai": 106, "entiti": 107, "defineproblem": 107, "ed": 107, "fa": 107, "createblocksmooth": 107, "03616817538237669": 107, "038578886687444205": 107, "028786277945169303": 107, "02717043861464373": 107, "017929160922748995": 107, "011843671131637522": 107, "008858810330184645": 107, "005512321246644729": 107, "0035742193069537506": 107, "0022787217503585614": 107, "0018222848385735526": 107, "0011428466557880732": 107, "0005434954855783924": 107, "0003437652718687495": 107, "00017718883102318885": 107, "00011375493321065046": 107, "490762189941222e": 107, "84032156624639e": 107, "3546130827285455e": 107, "3136911569268165e": 107, "402546355528151e": 107, "554507451136723e": 107, "801171468526849e": 107, "1678144767741274e": 107, "5293620323637416e": 107, "902098365795283e": 107, "076773468362999e": 107, "9335995335618345e": 107, "0838424427178355e": 107, "1715084968823221e": 107, "653829414967276e": 107, "229139870798433e": 107, "188084777154004e": 107, "2931264312198394e": 107, "452500262063084e": 107, "420344679804673e": 107, "6351941581130006e": 107, "2285806360324746e": 107, "734731997623074e": 107, "564004473485101e": 107, "8274090136404232e": 107, "808562920476457e": 107, "7976737044634345e": 107, "367143553464296e": 107, "2073949988316887e": 107, "33643118654821e": 107, "592476359799728e": 107, "2561165106050925e": 107, "542308870311771e": 107, "7131383862528984e": 107, "1614959668268976e": 107, "841635350994417e": 107, "027036794325895e": 107, "06934594552348519": 107, "7187250629149218": 107, "explor": 107, "topologi": 107, "program": 107, "promin": 108, "c_i": 108, "y_": [108, 109], "y_j": [108, 109], "b_l": 108, "c_j": 108, "adjust": 108, "stage": 108, "il": 108, "ss": 108, "hline": 108, "trapezoid": [108, 111], "deuflhard": 108, "bornemann": 108, "ordinari": [108, 109, 110], "lm": 108, "c_m": 108, "za": 108, "en": 108, "list_of_rung": 108, "kutta_method": 108, "heun": 108, "rk": 108, "dirk": 108, "rk2": 108, "rk3": [108, 109], "rk4": 108, "od": [109, 110, 111, 112, 118], "y_0": [109, 112], "histori": 109, "y_k": 109, "tau_j": 109, "int_a": 109, "concept": 109, "fall": 109, "imaginari": 109, "amplitud": 109, "behavior": 109, "deliv": 109, "stab_e": 109, "ab": [109, 116, 117], "stab_i": 109, "stab_trapez": 109, "stab_improvede": 109, "stab_rk3": 109, "meshgrid": 109, "figur": 109, "contourf": 109, "blue": 109, "extent": 109, "stiff": [109, 110], "pull": [97, 99, 109], "corollari": [98, 109], "courant": 109, "lewi": 109, "cfl": 109, "axi": 109, "mform": [110, 111, 112, 115], "aform": [110, 111, 112, 115], "mstarinv": [110, 111, 112], "v0": [111, 115], "gfv": 111, "hochbruck": 112, "ostermann": 112, "acta": 112, "p209": 112, "sampl": 112, "ill": 112, "qr": 112, "linalg": 112, "eigh": 112, "exponentialpropag": 112, "un": 112, "asmal": [112, 115], "msmall": 112, "mu0": 112, "feb": 112, "2022": 112, "ut": 112, "mmax": 112, "gfuref": 112, "20600328199376758": 112, "06978025266715498": 112, "03049776255121646": 112, "011407488793323194": 112, "0035849111823151934": 112, "0007281408027218528": 112, "00016400656081982313": 112, "0002207732294693555": 112, "00010127534375465337": 112, "2105692323236415e": 112, "378919613280206e": 112, "240522273706592e": 112, "612651755831167e": 112, "143020583810261e": 112, "8219274917452472e": 112, "968077666128608e": 112, "11208822466509e": 112, "34534586041024e": 112, "4499449472635008e": 112, "xlabel": [100, 112], "ylabel": 112, "fesc": 113, "covari": 113, "festr": 113, "gfe": 113, "gfh": 113, "peak": [113, 118], "traceop": [113, 118], "geom_fre": [113, 118], "gfetr": 113, "dh": 113, "ehat": 113, "dehat": 113, "bel": [113, 118], "btr": [113, 118], "invmass": 113, "gfhtr": 113, "cohen": 115, "joli": 115, "robert": 115, "tordman": 115, "sinum": 115, "pp": 115, "2047": 115, "2078": 115, "geever": 115, "mulder": 115, "van": 115, "der": 115, "vegt": 115, "ner": 115, "arxiv": [115, 116, 117], "pdf": 115, "1803": 115, "10065": 115, "h1lumpingfespac": 115, "intrul": 115, "getintegrationrul": 115, "minv": 115, "unew": 115, "uold": 115, "finer": 115, "diaz": 115, "grote": 115, "sisc": 115, "2014": 115, "hole": [115, 118], "grade": 115, "substep": 115, "localdof": 115, "pl": 115, "mmat": 115, "amat": 115, "minva": 115, "createsparsematrix": 115, "deletezeroel": 115, "apl": 115, "znew": 115, "zold": 115, "pajetrac": 115, "ring_resonator_import": [116, 117], "fullb": [116, 117], "envelop": [116, 117], "tpeak": 116, "t_envelop": 116, "fcen": 116, "lsrc": [116, 117], "dampingp": [116, 117], "emb_p": [116, 117], "bstab": [116, 117], "gfstab": [116, 117], "invp": [116, 117, 118], "hvstab": 116, "dampingu": [116, 117], "invu": [116, 117, 118], "mstabinv": [116, 117], "kapidani": [116, 117], "08733": [116, 117], "nameerror": 117, "getoperatorinfo": [117, 118], "createdevicematrix": 117, "m_p": 118, "m_u": 118, "symplect": 118, "n_r": 118, "hesthaven": 118, "warbuton": 118, "fes_pt": 118, "all_dofs_togeth": 118, "fes_pf": 118, "fes_p": 118, "fes_u": 118, "piola": 118, "pf": 118, "qf": 118, "gfpt": 118, "gfpf": 118, "mp": 118, "anymor": 118, "huge": 118, "sphere": 118, "fes_tr": 118, "ndof_p": 118, "ndof_u": 118, "gftr": 118, "650405": 118, "585960": 118, "1951215": 118, "phat": 118, "summatrix": 118, "constantebematrix": 118, "105x35": 118, "invmassp": 118, "invmassu": 118, "delta_h": 118, "50000": 118, "rais": 118, "bfpre": 118, "eigensi": 118, "strip": 118, "refract": 118, "travel": 118, "4214848016971962e": 0, "985783": 0, "987115": 0, "990019": 0, "991396": 0, "995728": 0, "0x10f9c3cb0": 3, "0x104b4eab0": 5, "0x108426570": 7, "7695164087369285e": 20, "7193429256716374e": 20, "268299050241808e": 20, "860373752689047e": 20, "583071243121154e": 20, "336225652920629e": 20, "911054003166856e": 20, "7284332019465428e": 20, "5632647714169753e": 20, "4138806122733448e": 20, "2787721169956141e": 20, "156574908062523e": 20, "0460550393450818e": 20, "460965197737416e": 20, "556900320854911e": 20, "739227318013271e": 20, "999690227069886e": 20, "330822151353692e": 20, "725869823910824e": 20, "1787253881538545e": 20, "683864703529036e": 20, "236291551289977e": 20, "831487175498005e": 20, "4653646485897784e": 20, "13422759984395e": 20, "834732889335216e": 20, "5638568499710417e": 20, "3188647563516927e": 20, "097283211876793e": 20, "8968751750592807e": 20, "7156173727118616e": 20, "5516798718170072e": 20, "4034076037199853e": 20, "2693036540219108e": 20, "1480141493998299e": 20, "038314588716573e": 20, "390974803808211e": 20, "493611611120708e": 20, "68199683202877e": 20, "947936681618655e": 20, "284020343838074e": 20, "683545153190244e": 20, "140448925990281e": 20, "6492487579455906e": 20, "204985670127121e": 20, "803174544451103e": 20, "4397588432028527e": 20, "1110696554423215e": 20, "813788656814363e": 20, "5449146088074634e": 20, "3017330592352852e": 20, "081788938037014e": 20, "8828617717300045e": 20, "7029432662799763e": 20, "5402170320713702e": 20, "393040246283478e": 20, "259927067541286e": 20, "1395336353993288e": 20, "0306445032160072e": 20, "321603674500034e": 20, "430869694970826e": 20, "625250580230097e": 20, "0014958478667025685": 20, "0007978295322313949": 20, "00038943081125074753": 20, "00020285820875469044": 20, "00010870660188901054": 20, "770924855637092e": 20, "4406636395646876e": 20, "3387850598294938e": 20, "2616147425749304e": 20, "7789183584086063e": 20, "712122195637219e": 20, "944919015348182e": 20, "720041089537677e": 20, "1583250244859396e": 20, "96610009288972e": 20, "690711212037661e": 20, "226654284810232e": 20, "3834878734993238e": 20, "759857607292753e": 20, "4857074071786705e": 20, "1436471199431326e": 20, "800144211961727e": 20, "2081699356439377e": 20, "0825055599990776e": 20, "4996245094746733e": 20, "5035529140291798e": 20, "315483334952038e": 20, "5661479455200574e": 20, "460411787704436e": 20, "256368936213191e": 20, "046557116957373e": 20, "471853134470111e": 20, "0x1100f19b0": 36, "08403599336703081": 36, "039719199172007266": 36, "012295554254862232": 36, "002090155434740104": 36, "0015921163492495977": 36, "00032163144522053027": 36, "0014866501749880513": 36, "00021211111709580662": 36, "0008992713272898125": 36, "978704242733474e": 36, "0001098955691027568": 36, "807312175347717e": 36, "489313462296583e": 36, "221169479606888e": 36, "781348531117141e": 36, "0003300855718339687": 36, "00024191378324455717": 36, "020987188299733e": 36, "826321378295108e": 36, "00015062641088966434": 36, "8389135607894873e": 36, "6630927894245534e": 36, "2402517040290023e": 36, "3571857067357736e": 36, "4810668192195197e": 36, "262984886244836e": 36, "3851381731396843e": 36, "743376650868103e": 36, "285413755416545e": 36, "3523659696551574e": 36, "244585587637658e": 36, "263814523480582e": 36, "853889992406012e": 36, "9674478544352723e": 36, "058549690852318e": 36, "4600208647899614e": 36, "741238228358143e": 36, "2862121680725187e": 36, "5150643407144097e": 36, "013274444294837e": 36, "012327202784362e": 36, "71536513584648e": 36, "97114114043464e": 36, "086794866188334e": 36, "929757400965807e": 36, "899874795420475e": 36, "856943890798022e": 36, "084407398310177e": 36, "267265829481618e": 36, "2658594225046567e": 36, "036435535904501e": 36, "0732668295063278e": 36, "60705867906093e": 36, "0901725214091162e": 36, "2794250500362985e": 36, "939530542711083e": 36, "4768529746514433e": 36, "788020236213966e": 36, "2881162717038755e": 36, "071906426860242e": 36, "028766789993286e": 36, "524195061557538e": 36, "8946700877593e": 36, "4910579564156747e": 36, "393627933708715e": 36, "1968827941112676e": 36, "0584476646892676e": 36, "029983189623052e": 36, "036949286914897e": 36, "484920847364358e": 36, "1977269578435969e": 36, "272087064206138e": 36, "466487920950049e": 36, "03928317996476e": 36, "362222379104745e": 36, "0615545064832078e": 36, "693037054349978e": 36, "4350027616028076e": 36, "641283314925269e": 36, "230074255155068e": 36, "2748610643302937e": 36, "550488070945601e": 36, "1216623254775887e": 36, "2207835620859474e": 36, "0725269490829812e": 36, "1034039308779896e": 36, "1613882360278316e": 36, "572543852143892e": 36, "3150970214747e": 36, "123319117412042e": 36, "440244826617772e": 36, "5829511466357765e": 36, "7340814037899676e": 36, "1639881961709998e": 36, "231930225188199e": 36, "502853187740042e": 36, "1466717238681095e": 36, "5975082991153628e": 36, "989415389923594e": 36, "275169977516033e": 36, "97660013436803e": 36, "484872942271117e": 36, "138996459047197e": 36, "614169950038918e": 36, "058129564559538e": 36, "7417895718620437e": 36, "4104078421382945e": 36, "9757317672963435e": 36, "1736771525528759e": 36, "1205851718345907e": 36, "1265370992704002e": 36, "682826719257287e": 36, "199770496047123e": 36, "1305318401099017e": 36, "676839191571237e": 36, "5082420696695675e": 36, "4603616161693418e": 36, "8806201273777965e": 36, "0890342427952224e": 36, "238859731975605e": 36, "5611793604062375e": 36, "0737743488158924e": 36, "231681816035939e": 36, "282640046313574e": 36, "615814435963506e": 36, "931107269633639e": 36, "1076008787337947e": 36, "95943034503172e": 36, "3973228926363824e": 36, "39672841563637e": 36, "4658109434063316e": 36, "1512768904418793e": 36, "448694370441934e": 36, "5359349747107148e": 36, "1534353295992376e": 36, "9535021844261957e": 36, "0949677410279221e": 36, "711362847113301e": 36, "249269886604353e": 36, "0054451002189233": 36, "8601107411343798": 36, "26070192253320407": 36, "07092390115693369": 36, "18854148259681972": 36, "04148923094502458": 36, "02005492668176014": 36, "004938527407413817": 36, "00506578630825297": 36, "0027497652637540134": 36, "0007957605690849747": 36, "0001984910326123418": 36, "365734582921594e": 36, "470109812434369e": 36, "0399520711869953e": 36, "03803538893713e": 36, "2971600959391046e": 36, "891915274509856e": 36, "1322924763160186e": 36, "289165694895563e": 36, "366572297205431e": 36, "015297213263261e": 36, "143791373427488e": 36, "0003865097990257e": 36, "8604797053614292e": 36, "5321585933379075e": 36, "066717212960867e": 36, "0658429619877678e": 36, "79436621500629e": 36, "9930310566480447e": 36, "578802189496742e": 36, "4206891706730323e": 36, "4005662627630184e": 36, "0859773145073165e": 36, "409441258426675e": 36, "8648535638150565e": 36, "2427741208251113e": 36, "903331555357855e": 36, "0x11689ad70": 37, "02435467077416054": 37, "0010069624297833427": 37, "00072575275270304": 37, "0007372917166614866": 37, "000485759008986729": 37, "00013426732431939142": 37, "0001311934975161032": 37, "751979957694994e": 37, "00015055318197153592": 37, "97741566044456e": 37, "5404009953667064e": 37, "1325741386167397e": 37, "0260991543091472e": 37, "181919482266692e": 37, "1302939542824453e": 37, "7112644172060512e": 37, "984965667491204e": 37, "938071596869605e": 37, "285198734363106e": 37, "687990678239058e": 37, "668782245353977e": 37, "0305159271698057e": 37, "116660981436105e": 37, "0399176824490903e": 37, "6122116192215167e": 37, "121259452703569e": 37, "2919423179987626e": 37, "023337332538642e": 37, "822066806547833e": 37, "6881209340761316e": 37, "600989474182239e": 37, "4868172975861718e": 37, "135581156529742e": 37, "2265448661893766e": 37, "435765802839064e": 37, "100904956269387e": 37, "188768704102683e": 37, "677423484961529e": 37, "658279508628814e": 37, "186426258692621e": 37, "0483366158224835e": 37, "3578200401047469e": 37, "8432956854680502e": 37, "8050317764783965e": 37, "083104315060971e": 37, "856061714579069e": 37, "0314375528516302e": 37, "8591763684147068e": 37, "343548913704862e": 37, "408205631841212e": 37, "7239379264572693e": 37, "8746140007234795e": 37, "463937846504967e": 37, "344401460864077e": 37, "1099764585506533e": 37, "8609049249625636e": 37, "512240581712697e": 37, "1703921368069058e": 37, "8988147067161234e": 37, "8693467253881563e": 37, "953099543202327e": 37, "148493900910183e": 37, "6874567762247306e": 37, "368672723407919e": 37, "906101025063608e": 37, "5241925996941638e": 37, "455447632887452e": 37, "184164248145967e": 37, "5790154543317293e": 37, "978091286016452e": 37, "0227289168542456e": 37, "7816133003389567e": 37, "1670556074469393e": 37, "1966471281399916e": 37, "247405221084545e": 37, "3632578880499895e": 37, "1702896786837807e": 37, "939783135295073e": 37, "2013805684441344e": 37, "273850331925116e": 37, "65732270732313e": 37, "203835528633597e": 37, "0336808824407275e": 37, "8332407245527504e": 37, "802324198473617e": 37, "38208537270351e": 37, "427844652861404e": 37, "8028984307223542e": 37, "7223643267070172e": 37, "031239517074223e": 37, "222410990264675e": 37, "810163080708926e": 37, "545594720120551e": 37, "9727663852554436e": 37, "216641503105924e": 37, "075986210059934e": 37, "998656293142337e": 37, "947344744993265e": 37, "4091598173624993e": 37, "772113120764983e": 37, "063808784129008e": 37, "008878082947587e": 37, "1882851382662877e": 37, "1562752023672363e": 37, "1841828144011415e": 37, "1535764366809262e": 37, "958647592720708e": 37, "5797080742980353e": 37, "2233339222843006e": 37, "92715773612873e": 37, "3196800353064734e": 37, "5225189901793799": 37, "019190121909900614": 37, "007175095267110477": 37, "0007041293195291046": 37, "00014885168670717742": 37, "7978921520476553e": 37, "323436588989013e": 37, "782735899466158e": 37, "253381724877694e": 37, "042700556217399e": 37, "8920270277895326e": 37, "1315250560019168e": 37, "756363093681179e": 37, "434177837437274e": 37, "834859785388983e": 37, "75278037344685e": 37, "7683328181717154e": 37, "0x10e62b370": 74, "6907017058419188": 80, "016142253726003288": 80, "00046060801777785996": 80, "0543115072725482e": 80, "827701356859736e": 80, "371148837710201e": 80, "4772398927159935e": 80, "0905496456047593e": 80, "1153690810008113e": 80, "439845269878378e": 80, "4112627511634189": 82, "9997000069488868": 82, "7082657933476595": 82, "518614851058217": 82, "9048885559917323": 82, "491739452250771": 82, "4931186165136685": 82, "000678570975289": 82, "28490714615906": 82, "470884270805224": 82, "1709827044069097": 82, "554923326180351": 82, "5568461614904385": 82, "834910947936696": 82, "9896518436225294": 82, "2653356627565184": 82, "0671698225418793": 82, "8986641193333993": 82, "0164272097507205": 82, "6933847600804413": 82, "515482373432361": 82, "396991894740717": 82, "421827334665405": 82, "2302931869125247": 82, "7530478596229406": 82, "396798206786888": 82, "1320892898866788": 82, "9379934196252216": 82, "7915753265894718": 82, "6536889639070059": 82, "49500526244711335": 82, "3792414238344053": 82, "26383160494969576": 82, "19637059924697148": 82, "12785237182946413": 82, "08256723984998703": 82, "062726402813143": 82, "04114738307546007": 82, "030342235876079864": 82, "02221876513070121": 82, "016611695018770196": 82, "010799090730549585": 82, "00783202396117536": 82, "005806715173611227": 82, "00455456388222293": 82, "003618124376564341": 82, "003118324144784658": 82, "0023233598679969283": 82, "0019630787003360574": 82, "0015468505894658086": 82, "0012554566353486874": 82, "000939137931332681": 82, "0006417347703526879": 82, "00044087458850293774": 82, "0002896780138800494": 82, "00019118678476234282": 82, "00012863037195565613": 82, "342158091018633e": 82, "765769436445624e": 82, "8939261174304786e": 82, "499758246185846e": 82, "7042474835943714e": 82, "0996949003811196e": 82, "374027799317532e": 82, "4153782699900764e": 82, "0016791348512434e": 82, "9091125247936137e": 82, "2374234348779396e": 82, "58610199600768e": 82, "129538011639655e": 82, "325129256404813e": 82, "1881774164484624e": 82, "3802840698086986e": 82, "0x10e0800b0": 86, "37663133100619084": 88, "1060819352081399": 88, "025374490457135055": 88, "009211818637816995": 88, "0027698298339901796": 88, "0007513083315122667": 88, "00031000986871878634": 88, "544144155753355e": 88, "417241324804803e": 88, "963174584217338e": 88, "4749995026727443e": 88, "0274167917763645e": 88, "348056436145933e": 88, "379824934894444e": 88, "1165608566338454e": 88, "0690433729174223e": 88, "879597282713204e": 88, "274291627498475e": 88, "439466447377861e": 88, "727593166439319e": 88, "0547439650094062e": 88, "4665482780186696e": 88, "5745792117678356e": 88, "476348440103906e": 88, "0843949800157813e": 88, "869643540605704": [], "739241272429613": [], "47844064377136": [], "34809472590798": [], "348124745557854": [], "141598882831114": [], "3183092550309383": [], "020831301863592395": 103, "762472029308668": 103, "6209503608706": 103, "04897732520653299": 103, "4967019608058028": 103, "559079216644538": 103, "4456256298405192e": 103, "024384741600227022": 103, "6917198310276222": 103, "69173": 103, "29497965478": 103, "010000000000006035": 103, "024547976218031113": 103, "042529997182085555": 103, "6917198260952784": 103, "9148388881307": 103, "06687894741407857": 106, "9999999999993507": 106, "857165311304314": 106, "042725842958836": 106, "5414706478167917": 106, "seem": 100, "NOT": 100, "decid": 100, "worth": 100, "spend": 100, "eigenpair": 100, "2024": 100, "prior": 100, "setupproblem": 100, "869628309307659": [], "7392150117493": [], "478424110777446": [], "34802724573098": [], "34803204941966": [], "141596458698612": [], "31830950064612823": [], "0012635768719629055": [], "0015431016565831178": [], "002160439889586695": [], "0026337255877426262": [], "016779901557172523": [], "0044372096042167445": [], "006235301874375921": [], "007799129966774403": [], "011838792808594279": [], "026683793983073464": [], "008035424153974569": [], "011579771235533573": [], "014670660247574846": [], "01905227999332052": [], "044323026822480675": [], "011194121594796533": [], "01513686562383098": [], "019656123572507612": [], "02665685581702428": [], "06424488510453069": [], "013724476574388139": [], "017509029156754848": [], "022014491267939137": [], "0346527848985903": [], "08032973098010252": [], "01593769774785921": [], "018609008627307074": [], "0234333081105748": [], "0414100209593258": [], "087222838471436": [], "017647743857678644": [], "019084434780015255": [], "024110305413209063": [], "044111965831562336": [], "09131281374248629": [], "018935946363274177": [], "019430278654624416": [], "024465988109196042": [], "0458524513236905": [], "09298674245807584": [], "01948320906258061": [], "01961257643966117": [], "024599387860621387": [], "046782250958777395": [], "0940943786465612": [], "01967307598732575": [], "01979858820539404": [], "024729444766245903": [], "04753975460157749": [], "09499756575610192": [], "019789012320256313": [], "019893971261205415": [], "024882676385190275": [], "048095144263524375": [], "0962363856532873": [], "019884355077440623": [], "019949498424846772": [], "02502363603839887": [], "04864531638944237": [], "097575476094044": [], "019964447412095916": [], "020008115385938167": [], "02510415518478326": [], "049249022535257245": [], "09835713030432568": [], "02005947562613552": [], "020074220038705067": [], "025137777951692607": [], "04958294542734793": [], "09875539352816443": [], "020105841107583945": [], "020129840002911983": [], "025162103976793453": [], "049734314985161406": [], "09901921082574323": [], "02012481935442808": [], "020161266232497182": [], "025185013938652703": [], "04982542764153873": [], "09917222222655063": [], "020136792170430923": [], "020174699295529935": [], "025205679193165634": [], "049913621306600243": [], "09938598591811257": [], "020151768753707514": [], "020184193018727137": [], "025219232691640083": [], "05001051222581272": [], "09961475934322361": [], "020172949620638127": [], "020193339012928663": [], "025229657526617485": [], "05012209667772819": [], "09986509867095594": [], "020189697643675463": [], "0202054266401894": [], "025247490879078398": [], "050220233815150304": [], "10010020486772027": [], "020200293921186146": [], "020216918586713102": [], "025266174217356892": [], "05029740874954706": [], "1002947472714904": [], "020210484972975607": [], "02022542934216563": [], "02527762460037911": [], "050348393463227295": [], "10041409593194814": [], "02021892149639123": [], "020234929876054845": [], "025283988782146168": [], "050383398457115466": [], "10047915860071926": [], "020225090087822275": [], "020241103054927205": [], "02528737936477818": [], "0504034443245379": [], "10053878926816107": [], "020229048232239005": [], "02024407879208344": [], "025291020329172267": [], "0504184843828775": [], "10060245103898284": [], "020233373308917262": [], "020246064931821527": [], "02529499027692929": [], "05044448036700551": [], "10068045623689988": [], "020235834710061112": [], "020247325190959814": [], "025299514842624254": [], "05048074697435256": [], "1007521833497727": [], "02023767423038611": [], "020248770890531422": [], "025302949252495065": [], "05050983988857252": [], "10081150859624197": [], "020239022496296197": [], "020250240773562283": [], "02530527188405281": [], "050525874454102636": [], "10085163227251612": [], "020240699829329602": [], "020251531270210704": [], "025307003279442915": [], "050534674430928676": [], "10088583653279268": [], "020243648865348532": [], "020252952537570697": [], "02530894184359456": [], "050542343866030674": [], "10091573843615315": [], "020246012434213916": [], "0202539291763848": [], "025310933968090803": [], "05055261533843816": [], "10095169693539005": [], "020247230258532745": [], "020254511082542583": [], "02531265621775951": [], "05056663014127183": [], "1009811446274588": [], "020248096665725603": [], "020254991967787715": [], "025314071468940883": [], "05058126542674991": [], "10100395461926376": [], "02024912994576699": [], "02025546858962521": [], "025315620820705653": [], "050590042227438035": [], "10102605837248835": [], "020250434661867756": [], "020255956300457234": [], "025317698391340307": [], "0505959700291319": [], "10105466985802965": [], "020251775687285808": [], "020256552718952485": [], "025319108427207804": [], "05059988308072507": [], "10108510110985544": [], "020253226373096723": [], "020257383043519435": [], "02531992836579781": [], "05060476808889458": [], "1011032574411552": [], "020254379521631876": [], "02025829159398878": [], "025320503217097567": [], "05061039033355456": [], "10111668507202594": [], "02025506947649731": [], "020258820471803468": [], "025321147138425357": [], "05061491189197765": [], "10112578133951669": [], "020255534523064108": [], "020259208182993947": [], "02532181027052458": [], "05061883425258704": [], "10113599075576155": [], "0202560820638151": [], "020259496053270414": [], "025322681896367837": [], "05062307757556287": [], "10114779272924326": [], "020256681535182498": [], "020259822122084235": [], "025323457166890828": [], "05062681768983571": [], "10116253504379875": [], "020257123078882198": [], "02026009258232687": [], "02532401487462275": [], "05062981794771001": [], "10117391691153466": [], "020257562067849667": [], "020260363979295815": [], "025324385112965173": [], "050631600847737476": [], "10117983272473739": [], "020258120133494074": [], "020260609594117386": [], "02532469505560991": [], "05063300256810361": [], "10118535264540406": [], "020258695478232273": [], "02026090926885565": [], "025324992906763263": [], "05063470180513135": [], "10119208826220466": [], "020259077897562202": [], "020261239646758952": [], "025325391359324323": [], "050637109906803944": [], "10119944178146419": [], "020259295621395137": [], "02026146795381236": [], "025325798201875426": [], "05063985810021853": [], "10120496984205096": [], "020259551137001827": [], "020261604056381187": [], "025326188294111412": [], "05064179588081378": [], "1012099613748096": [], "02025976305892916": [], "020261694379941225": [], "025326501662463807": [], "05064275178405737": [], "10121575078220442": [], "02026007228210075": [], "02026179747044315": [], "02532675957257084": [], "050643602508946395": [], "101222282069653": [], "02026045575436321": [], "02026195950758276": [], "02532704178408242": [], "0506444968294112": [], "10122824899758727": [], "020260741039029334": [], "020262149599619077": [], "02532725986930254": [], "05064547450179345": [], "10123252977345149": [], "02026093154953008": [], "02026231390604444": [], "025327440224874997": [], "05064684403176447": [], "10123606820193504": [], "020261060217821213": [], "020262407506987743": [], "025327574567339164": [], "050648126227180804": [], "10123920345797212": [], "020261164000351935": [], "02026249938435706": [], "025327750461126394": [], "0506490538058756": [], "10124245750954464": [], "020261276359761726": [], "02026258660634833": [], "025327975407140078": [], "05064987304726801": [], "10124619331676998": [], "020261419380747457": [], "020262674595840968": [], "025328207825522447": [], "0506504693117123": [], "1012502360292436": [], "020261543146186282": [], "020262751572672894": [], "025328321813835725": [], "05065096690862751": [], "10125335599326896": [], "020261650704290125": [], "020262832327029308": [], "025328424291704146": [], "05065145107294275": [], "10125590838635698": [], "02026173540895992": [], "020262946927301035": [], "025328520320564585": [], "050651942256287504": [], "10125848288419885": [], "02026183600252659": [], "0202630250418244": [], "025328621081281037": [], "05065262091534791": [], "10126098055279592": [], "02026194087442255": [], "0202630985838787": [], "02532872583286071": [], "05065322279364227": [], "10126320015555233": [], "02026203039939586": [], "02026318018515885": [], "02532881652890877": [], "050653662965427296": [], "10126571488852738": [], "020262103610438075": [], "020263231467218746": [], "02532890907160921": [], "050654043310977837": [], "10126826612076671": [], "020262169915512825": [], "020263272442133343": [], "0253289844091876": [], "05065435061478128": [], "10127053096469098": [], "020262229473933663": [], "02026331306174319": [], "025329063174662984": [], "05065453833863135": [], "10127216225635921": [], "020262310564161005": [], "020263363643360156": [], "025329145713958744": [], "0506547700735776": [], "10127357981730863": [], "020262414319645972": [], "020263414687479716": [], "025329206217628276": [], "050655109473086386": [], "10127516989902416": [], "02026252780389921": [], "020263476123158236": [], "025329257454653777": [], "05065550129417997": [], "10127742137221903": [], "020262627856852077": [], "02026353278246328": [], "0253293112597379": [], "050655754959635174": [], "10128010522665407": [], "020262686504246962": [], "020263566590311713": [], "02532935788590044": [], "050655958049846246": [], "10128197125876996": [], "020262738228858143": [], "020263596125381516": [], "025329412590453456": [], "05065615923854833": [], "10128346355300917": [], "02026279399280463": [], "020263620520531756": [], "025329469536980655": [], "050656387359654234": [], "10128472265368113": [], "020262862580648935": [], "020263659463539405": [], "02532952985181092": [], "05065658862681304": [], "10128601948448229": [], "020262930398904404": [], "020263709104489314": [], "02532957396112654": [], "0506567819573558": [], "1012873812863375": [], "020262993412628664": [], "020263745191704926": [], "02532960340039471": [], "05065697309649189": [], "10128881517231514": [], "02026303614811907": [], "020263764621606825": [], "025329631217384733": [], "05065716900391105": [], "10129031232692362": [], "020263080418345854": [], "020263784298822817": [], "025329661867618706": [], "050657379228634045": [], "10129177913480947": [], "02026312831961571": [], "020263801881842496": [], "025329697712532552": [], "050657590368884925": [], "10129292859150064": [], "020263169188841242": [], "02026382013302836": [], "025329735546441315": [], "05065780596508206": [], "10129417090361359": [], "020263201737283038": [], "020263840100242174": [], "025329765643662988": [], "050657935897120684": [], "10129529645684575": [], "02026323398643456": [], "020263866302983276": [], "025329794389496188": [], "05065803228916753": [], "10129607726186901": [], "0202632741404568": [], "020263889352574078": [], "025329827066816208": [], "050658140147735835": [], "10129694559664247": [], "020263306965314535": [], "02026390358257203": [], "025329853993653367": [], "05065827804697147": [], "10129779611767945": [], "020263336626834695": [], "020263913636751417": [], "025329872311139277": [], "05065839487711033": [], "10129872046886589": [], "020263361770624093": [], "020263922242558442": [], "02532988698526253": [], "050658522595126446": [], "10129947473768121": [], "020263386524513097": [], "020263935017014685": [], "02532990086089205": [], "05065863468988592": [], "10130052827840487": [], "020263411404948882": [], "020263950163861094": [], "025329919369835457": [], "0506587337642407": [], "10130157949291106": [], "02026344065522071": [], "02026396743313646": [], "02532994702466543": [], "05065880568555839": [], "10130235636697257": [], "02026347112825": [], "0202639817160777": [], "025329967476529835": [], "05065888890514608": [], "10130292001031707": [], "020263498537169345": [], "0202639895834853": [], "02532997807905016": [], "05065897776727898": [], "1013034486016576": [], "020263523950062083": [], "020263995113973463": [], "025329988042572443": [], "050659038967339476": [], "10130422065276407": [], "020263547106830624": [], "020264002913330158": [], "025329999013605647": [], "050659094206375606": [], "10130496737727389": [], "02026356834104288": [], "020264012658412555": [], "025330010885450942": [], "05065916129541428": [], "10130578067332599": [], "020263587259165567": [], "020264022492359396": [], "025330018141571684": [], "05065921880573287": [], "10130644027329672": [], "02026360500882366": [], "02026403006781422": [], "025330026944975933": [], "05065927625372328": [], "10130701710894308": [], "020263630048952465": [], "020264038038751424": [], "025330038983538538": [], "05065931344840186": [], "10130767065583518": [], "020263657533359906": [], "020264043887837126": [], "02533005207965049": [], "05065935487694154": [], "10130830649312048": [], "0202636786924161": [], "020264048635593387": [], "02533006263588609": [], "05065939544463593": [], "10130889875416915": [], "020263692275336344": [], "020264055242938863": [], "025330069455099222": [], "05065944496754275": [], "10130941922311404": [], "020263704261571844": [], "020264062032324046": [], "025330074852165527": [], "0506594923192354": [], "10130988947348606": [], "020263720766986203": [], "020264067230426834": [], "02533007971496116": [], "05065952958170294": [], "10131039576460005": [], "020263737811614176": [], "02026407169561139": [], "025330086901818802": [], "050659560983865995": [], "10131095188723432": [], "020263755969856637": [], "020264077289851325": [], "025330098569866732": [], "0506595950651862": [], "10131161851190656": [], "020263775027741432": [], "020264082778679166": [], "025330109298374884": [], "05065963815566523": [], "10131225993512519": [], "020263789324262517": [], "020264087257881716": [], "025330116752047105": [], "05065969060273149": [], "10131275819325734": [], "020263802152418423": [], "020264091720552886": [], "025330123312691147": [], "050659723640196955": [], "10131315378317828": [], "020263817283557833": [], "020264096042136918": [], "025330128107438694": [], "05065974941564368": [], "10131356846584368": [], "020263831430726836": [], "020264099939891148": [], "02533013280362941": [], "05065977569694484": [], "1013139830748731": [], "020263846384559674": [], "02026410476924414": [], "025330137758017776": [], "05065980985552569": [], "1013144545583659": [], "020263861139618096": [], "020264109360660084": [], "02533014414192507": [], "050659850381163836": [], "10131484147731343": [], "020263871216010435": [], "02026411433873727": [], "025330151654892448": [], "050659885221385495": [], "10131524588079328": [], "02026388178360032": [], "020264118681840398": [], "025330159157539344": [], "05065991454406229": [], "10131565022299957": [], "02026389480464825": [], "020264123257272577": [], "025330166111792903": [], "050659943723555347": [], "10131601930197877": [], "020263907524554942": [], "020264127292281102": [], "025330171255548643": [], "050659968726987324": [], "10131631589177079": [], "020263918582227782": [], "02026413036437906": [], "025330174882763817": [], "05065999354123659": [], "1013165580302891": [], "02026392900368319": [], "020264133978833098": [], "02533017841934876": [], "0506600182313482": [], "1013168293260634": [], "020263940507103347": [], "02026413800540375": [], "025330182779048444": [], "05066004570126979": [], "10131712320564205": [], "02026395065493311": [], "020264142234089497": [], "025330188080649796": [], "050660075468487484": [], "1013173517898158": [], "020263958037958916": [], "020264146678171613": [], "025330193184287947": [], "05066009838932657": [], "10131752256857127": [], "02026396718151312": [], "020264151690861668": [], "02533019872700151": [], "05066011753745938": [], "10131765826317278": [], "0202639781206283": [], "02026415538615217": [], "02533020234421988": [], "050660132717888356": [], "10131780771962176": [], "02026398617265851": [], "02026415832734703": [], "025330205215292487": [], "050660148628735635": [], "10131798447614851": [], "020263993724271553": [], "02026416152470912": [], "025330208375503795": [], "05066016921072244": [], "10131816172830443": [], "020264000756026128": [], "020264164955090046": [], "025330211827126064": [], "05066019171043986": [], "10131829446227952": [], "020264006637148495": [], "020264167847468015": [], "025330215015247418": [], "050660207157066796": [], "101318398002165": [], "020264013863472163": [], "02026417065437526": [], "0253302172885952": [], "05066021714061092": [], "10131850677803438": [], "02026402106356359": [], "0202641733387163": [], "02533021941908903": [], "05066022798048256": [], "10131861060656461": [], "020264029147402912": [], "020264176488624122": [], "02533022165887258": [], "050660238301950086": [], "10131872657110261": [], "020264036844797502": [], "02026418008027615": [], "025330224224150048": [], "05066025393029214": [], "10131883930986971": [], "020264041276506665": [], "020264183347701113": [], "02533022704407508": [], "050660268807244065": [], "10131892295929439": [], "020264045982083853": [], "02026418591939065": [], "0253302297517991": [], "05066027897241426": [], "101318992504802": [], "020264051603578012": [], "02026418731853007": [], "025330231567386955": [], "05066028678583665": [], "1013190616978164": [], "020264058831578644": [], "020264188938969516": [], "025330233423574763": [], "0506602961852959": [], "10131914309350179": [], "020264065081811333": [], "020264190931860937": [], "025330235201335028": [], "05066030785452459": [], "10131923187176176": [], "020264069485632856": [], "02026419343223858": [], "02533023738497784": [], "05066031846732057": [], "10131930496322138": [], "020264073777483453": [], "020264196481441867": [], "025330239797702873": [], "05066033034502625": [], "10131936716953774": [], "02026407740908318": [], "02026419871068021": [], "02533024214676063": [], "05066033894055089": [], "10131942243311555": [], "02026408132651846": [], "020264200607108863": [], "02533024436008551": [], "050660345734860765": [], "1013194796747517": [], "02026408577836974": [], "020264201902099557": [], "025330246270646877": [], "05066035341561563": [], "10131953258318875": [], "020264090247304307": [], "020264203211558345": [], "02533024814678622": [], "05066036242455523": [], "10131958500918162": [], "020264094216417484": [], "020264204557221326": [], "02533024997654606": [], "05066037194844719": [], "10131963774277003": [], "020264097713343508": [], "02026420564521766": [], "025330251562546834": [], "050660381169861796": [], "10131968402509609": [], "020264101701651972": [], "02026420681335264": [], "025330253096182195": [], "05066039040040905": [], "10131972847482666": [], "020264106003417083": [], "020264208264071954": [], "025330254981165107": [], "05066039709360508": [], "10131977734125687": [], "02026410961062969": [], "020264209939735413": [], "025330257260480573": [], "05066040417166843": [], "10131981772138911": [], "020264112748328615": [], "020264211502437884": [], "025330259200261034": [], "05066041204307573": [], "10131985702859528": [], "02026411583431677": [], "020264212706887677": [], "02533026091486802": [], "050660420142886645": [], "10131990207063625": [], "020264118794142177": [], "020264213669474562": [], "025330262243343022": [], "05066042591051764": [], "10131994367321945": [], "020264122018970276": [], "020264214548451433": [], "025330263352558613": [], "050660432802104395": [], "10131998106712278": [], "020264126175664622": [], "020264215377761987": [], "025330264379722044": [], "05066044196351089": [], "10132002341239055": [], "020264129241790576": [], "020264216421038515": [], "025330265853931586": [], "05066044802255247": [], "10132006199367578": [], "020264131787926652": [], "02026421764535234": [], "025330267616587437": [], "05066045324152591": [], "10132008769260657": [], "020264134060223753": [], "020264218925041086": [], "02533026902904868": [], "05066045848329342": [], "1013201147278199": [], "020264136630325905": [], "020264219954687007": [], "025330270131061764": [], "050660465733349765": [], "1013201415284256": [], "020264138636623453": [], "02026422078425282": [], "025330271164133833": [], "05066047222144832": [], "10132017548163498": [], "020264141243545686": [], "02026422142245604": [], "025330272264780188": [], "050660477181545364": [], "10132020677261687": [], "020264144014103855": [], "020264222290982806": [], "025330273098115638": [], "050660482633039135": [], "10132023571676993": [], "02026414658488062": [], "0202642230197074": [], "02533027392965766": [], "05066048791680118": [], "10132026108620314": [], "020264148673461935": [], "020264223647286438": [], "025330274895686167": [], "0506604922417107": [], "10132028150937089": [], "020264150874613685": [], "02026422441180352": [], "025330275888993725": [], "05066049634323496": [], "10132030362742628": [], "020264153139036272": [], "020264225312679355": [], "02533027683597142": [], "05066049962328041": [], "10132032173471575": [], "02026415524987449": [], "020264225985845895": [], "02533027760733883": [], "05066050357314546": [], "10132033924092086": [], "020264157054998976": [], "02026422646021426": [], "025330278136344433": [], "05066050784172538": [], "10132035588876223": [], "020264158800229935": [], "020264226925157513": [], "02533027869425457": [], "050660511997875204": [], "10132037508385211": [], "020264160688066444": [], "020264227369555184": [], "02533027926862719": [], "05066051574231228": [], "10132039690708901": [], "02026416283335588": [], "020264227844721584": [], "02533027986187982": [], "050660519011383846": [], "1013204171393515": [], "020264164621312496": [], "020264228346440784": [], "02533028059218228": [], "050660521121880804": [], "10132043389512557": [], "020264166693813715": [], "020264228710374955": [], "02533028127191442": [], "05066052327223405": [], "10132044756357961": [], "020264168776997743": [], "020264229125656473": [], "02533028178280633": [], "05066052576421402": [], "10132046064619692": [], "020264170741430058": [], "020264229539333406": [], "02533028215371114": [], "05066052975429277": [], "10132047657193882": [], "020264172403658996": [], "02026422996032094": [], "02533028254389684": [], "05066053299179081": [], "1013204905311326": [], "02026417404756639": [], "02026423025120399": [], "02533028296198513": [], "050660535504503265": [], "10132050272485141": [], "020264176067348542": [], "020264230533827105": [], "025330283487552344": [], "05066053741301097": [], "10132051590685939": [], "020264178004387658": [], "02026423081492654": [], "025330284034132455": [], "0506605391977715": [], "10132052951919045": [], "020264179341714792": [], "020264231083600395": [], "025330284498515588": [], "050660541055875544": [], "101320542256974": [], "020264180556076858": [], "020264231346024605": [], "025330284834386492": [], "050660543455916834": [], "1013205575259011": [], "020264181889916664": [], "020264231610391762": [], "025330285197342952": [], "050660546475634824": [], "10132057288709805": [], "020264183372305317": [], "02026423187150305": [], "025330285541003278": [], "05066054957221371": [], "10132058412965995": [], "020264185274071835": [], "020264232104813464": [], "025330285900984042": [], "05066055164818641": [], "10132059364874729": [], "02026418719153764": [], "0202642323776019": [], "025330286298473538": [], "05066055286808217": [], "10132060144492015": [], "020264188771999755": [], "02026423262369785": [], "025330286768599698": [], "05066055426127287": [], "10132061109477106": [], "020264189773252964": [], "0202642328355811": [], "02533028708938372": [], "050660556251231954": [], "10132062631982891": [], "020264190756726173": [], "020264233006505043": [], "025330287314083287": [], "05066055823305505": [], "10132064215991282": [], "02026419182032499": [], "020264233163674594": [], "025330287626570445": [], "05066056023475652": [], "10132065582649241": [], "0202641929555655": [], "020264233304563735": [], "025330287957289633": [], "050660561790778734": [], "10132066362466899": [], "020264194122375987": [], "02026423343014223": [], "02533028824389837": [], "05066056307450642": [], "1013206693695857": [], "020264195177377115": [], "020264233579567865": [], "02533028854624576": [], "050660564327549916": [], "10132067631554072": [], "02026419638312774": [], "02026423374014791": [], "02533028880272067": [], "05066056543741892": [], "1013206875910459": [], "020264197528954773": [], "020264233898142643": [], "025330289022258527": [], "050660566415085616": [], "10132070118786513": [], "020264198648514937": [], "02026423403137632": [], "025330289243890077": [], "05066056742027291": [], "10132071118058694": [], "020264199494647528": [], "020264234131726237": [], "02533028944411341": [], "05066056854707564": [], "10132071831797519": [], "02026420025922982": [], "020264234244473715": [], "025330289655286595": [], "050660569638727906": [], "10132072424785281": [], "020264200978683675": [], "020264234335301872": [], "025330289858909852": [], "05066057065254703": [], "10132073126121677": [], "020264201659005818": [], "020264234445123316": [], "025330290085341194": [], "05066057144108374": [], "10132073992137267": [], "020264202408040815": [], "02026423454919856": [], "025330290305150504": [], "050660572172329034": [], "10132075011274165": [], "020264203328567293": [], "02026423467098331": [], "02533029045860147": [], "05066057296525833": [], "10132076023869371": [], "020264204344303195": [], "020264234773747832": [], "02533029062128869": [], "050660573809353": [], "1013207694925752": [], "10066207816841641": [], "1013203798362012": [], "10132118298175001": [], "10132113609639114": [], "10132108968329477": [], "3171": [], "030698072823": [], "16767": [], "501262764494": [], "37452": [], "24558061415": [], "71430": [], "35947953808": [], "113317": [], "50368739422": [], "setuptraceproblem": 100, "l2gammanorm": 100, "306377152389474": [], "3130323762459348": [], "3130352795103182": [], "3130352851589546": [], "3130352034332624": [], "setupkorn": 100, "epsseminorm": 100, "0040644919054533685": [], "004064491905451217": [], "c_p": 99, "b_r": 99, "upgrad": 100, "02026423260401859": 100, "020264234576601207": 100, "02533029173591055": 100, "05066057588433866": 100, "10132093820158766": 100, "31830950064612845": 100, "14159645869861": 100, "agreement": 100, "1006620781684165": 100, "10132037983620126": 100, "10132118307694851": 100, "10132118070154268": 100, "10132105302197744": 100, "790734649436": 100, "2135": 100, "5622834775527": 100, "7804": 100, "143924722659": 100, "34633": 100, "51884502968": 100, "133659": 100, "64804621154": 100, "1789330005993": 100, "3530": 100, "0518596989186": 100, "8675": 100, "114305718216": 100, "16992": 100, "87607717275": 100, "23725": 100, "09568036216": 100, "eigenspac": 100, "004064491905451973": [], "3063771523894732": 100, "3130323762459355": 100, "3130352795102438": 100, "3130352852984504": 100, "313035178821016": 100, "004064491905453039": [], "gamma_b": 97, "parsev": 97, "li": 97, "s_0": 97, "g_k": 97, "ignor": 97, "2_g": 95, "calculu": [97, 99], "opreatornam": [], "a_k": 99, "b_k": 99, "004064491905452003": [], "setuppoincareproblem": 100, "243526026376946": 100, "1427436944464913": 100, "141601541800638": 100, "1415927947831186": 100, "1415938335169886": 100, "004064491905450742": 100, "pythagora": 99, "someth": 99, "int_x": 99}, "objects": {}, "objtypes": {}, "objnames": {}, "titleterms": {"nitsch": 0, "": [0, 36, 39, 100], "method": [0, 2, 3, 5, 6, 9, 11, 20, 24, 36, 43, 44, 45, 48, 49, 50, 51, 52, 55, 58, 59, 61, 65, 74, 80, 102, 105, 106, 108, 109, 110, 111, 115], "boundari": [0, 8, 39, 51, 53, 54, 64, 71, 80], "interfac": [0, 13], "condit": [0, 8, 28, 51, 53, 54, 71, 80, 109], "hybrid": [0, 1, 3, 88], "dg": [1, 2], "ellipt": [1, 2], "equat": [1, 3, 4, 5, 6, 41, 43, 44, 51, 55, 56, 65, 74, 80, 101, 109, 110, 111, 112, 118], "problem": [2, 26, 27, 28, 29, 43, 44, 47, 51, 54, 80, 81], "fourth": 3, "order": [3, 8, 28, 43, 44, 51, 55, 107], "c": 3, "0": 3, "continu": [3, 60], "interior": 3, "penalti": [3, 54, 80], "instationari": 4, "transport": [4, 6], "split": 5, "time": [5, 43, 84, 110, 111, 115], "depend": [5, 43, 54, 80], "convect": 5, "diffus": 5, "stationari": 6, "discontinu": [6, 43, 44, 118], "galerkin": [6, 43, 44, 110, 118], "h": [7, 39, 66, 74, 84, 85, 87, 97, 98, 103], "div": [7, 58, 59, 85, 87], "conform": [7, 11], "stoke": [7, 21, 51, 52, 56, 80], "finit": [8, 9, 10, 11, 12, 14, 24, 43, 44, 52, 56, 60, 74, 77, 83, 85, 107], "element": [8, 9, 10, 11, 12, 14, 24, 43, 44, 52, 56, 60, 69, 74, 77, 83, 85, 107], "error": [8, 31, 32, 33, 34, 44, 52, 60, 77, 83, 84], "analysi": [8, 43, 62, 63, 80, 83, 84, 105, 106], "estim": [8, 31, 32, 33, 34, 44, 52, 60, 77, 100], "l_2": [8, 77, 84, 103], "norm": [8, 39, 73, 98, 100, 103], "approxim": [8, 26, 29, 62], "dirichlet": [8, 51, 54, 80], "high": [8, 44, 107], "grade": 8, "mesh": [8, 14, 105], "around": 8, "vertex": 8, "singular": 8, "implement": [10, 40, 118], "non": [11, 38, 43, 44, 57], "The": [11, 14, 19, 31, 34, 43, 44, 45, 46, 48, 49, 60, 62, 65, 74, 77, 78, 87, 93, 94, 97, 101, 102, 115], "first": [11, 28], "lemma": [11, 99, 102], "strang": 11, "second": [11, 28, 43, 44, 51, 55], "p": 11, "1": [11, 66, 74, 84, 97, 98, 103], "triangl": [11, 77], "system": [12, 28, 51], "assembl": 12, "ngsolv": [13, 44, 74], "petsc": [13, 22], "precondition": [13, 35, 36, 40, 49, 61, 63, 79, 102, 103, 104, 106, 107], "distribut": [14, 23], "space": [14, 39, 43, 44, 47, 56, 74, 87, 96, 97, 98, 99, 102, 105, 110], "paralleldof": 14, "class": 14, "introduct": [19, 24, 38, 43, 44], "mpi": 19, "mpi4pi": 19, "librari": 19, "iter": [20, 43, 44, 45, 46, 49, 50, 62, 75, 81], "parallel": [20, 21, 40, 43, 44], "richardson": [20, 46, 49], "solv": [21, 47, 74, 118], "us": 22, "consist": 23, "vector": 23, "matric": [23, 61], "inner": 23, "product": 23, "matrix": 23, "multipl": 23, "oper": [23, 52, 97, 118], "thi": 24, "repositori": 24, "contain": 24, "an": [24, 43, 44], "interact": [24, 43, 44], "basic": [25, 50], "properti": [25, 62], "coerciv": [26, 28], "variat": [26, 27, 29, 56, 60, 72, 110], "riesz": 27, "represent": 27, "theorem": [27, 97, 101], "symmetr": 27, "exercis": [28, 73, 99, 104, 108, 109, 118], "minim": [28, 47, 51, 81, 105, 106], "inf": [28, 29], "sup": [28, 29], "deriv": [28, 95], "bilinear": [28, 74], "form": [28, 74], "repeat": 28, "2d": 28, "build": 28, "from": [28, 61], "block": [28, 81, 102, 107], "exampl": [28, 52, 54, 81, 103, 108], "complex": 28, "valu": [28, 99], "real": 28, "One": 28, "i": 28, "enough": 28, "mean": [28, 99], "onto": [28, 30], "stabl": 29, "project": [30, 61, 77, 79], "subspac": 30, "A": [31, 43, 44, 79, 104, 116, 117], "posteriori": [31, 44], "zienkiewicz": 31, "zhu": 31, "equilibr": 32, "residu": [32, 34], "goal": 33, "driven": 33, "bddc": [35, 40], "feti": [36, 37], "dp": 37, "overlap": [38, 43, 44, 102, 105, 106, 107], "domain": [38, 39, 43, 44, 87, 97, 99, 105, 106], "decomposit": [38, 43, 44, 64, 105, 106], "lagrang": 38, "paramet": [38, 46, 54, 80], "trace": [39, 87, 94, 97, 100], "natur": [39, 71], "interpol": [39, 77, 97, 99], "bottom": 39, "edg": [39, 97], "sub": [39, 43, 44, 87, 97, 98, 102], "helmholtz": [41, 43], "grate": 42, "abstract": [43, 44, 51, 52, 86], "theori": [43, 44, 51, 52, 86], "mix": [43, 44, 51, 52, 55, 58, 86], "elast": [43, 69, 72], "plate": [43, 65, 67, 69], "shell": [43, 68], "solver": [43, 44, 75], "correct": [43, 44, 80], "multigrid": [43, 44, 61, 62], "saddl": [43, 44, 81], "point": [43, 44, 81, 99, 109], "practic": 43, "ordinari": 43, "differenti": [43, 118], "numer": [43, 94], "parabol": [43, 109, 112], "wave": [43, 111, 118], "addit": [43, 102], "appendix": 43, "some": [43, 103], "inequ": [43, 89, 92, 93, 94, 99, 100], "sobolev": [43, 44, 74, 96, 97, 99], "literatur": 44, "instal": 44, "chebyshev": 45, "polynomi": [45, 77], "optim": [46, 62, 63], "relax": 46, "alpha": 46, "experi": [46, 73, 100, 106], "conjug": 47, "gradient": [47, 48, 49], "expand": 47, "krylov": 47, "precondit": [49, 61, 81], "jacobi": [49, 102], "gauss": 49, "seidel": 49, "constrain": [51, 81], "within": 51, "prove": 52, "discret": [52, 118], "lbb": 52, "fortin": 52, "nearli": [54, 63], "incompress": 54, "materi": 54, "formul": [56, 58, 60, 72, 74, 80, 86, 101, 110], "linear": [57, 72, 73, 74, 109], "dynam": 57, "declaremathoper": [58, 59], "opdiv": [58, 59, 87], "helling": 58, "reissner": [58, 67, 69], "primal": [58, 86], "dual": [58, 73, 86], "opcurl": [59, 66], "curl": 59, "ep": 59, "varepsilon": 59, "reduc": 59, "symmetri": 59, "tangenti": 60, "displac": 60, "normal": [60, 87], "stress": 60, "diverg": 60, "nn": 60, "piec": 60, "wise": 60, "smooth": 60, "function": [60, 74, 87, 99, 109], "tdnn": [60, 66, 69], "multilevel": 61, "finest": 61, "level": [61, 63, 64, 80, 106], "algorithm": [62, 64], "smoth": 62, "converg": [62, 108], "v": 62, "cycl": 62, "multi": [63, 64], "ml": 63, "extens": [64, 97], "effici": [64, 118], "comput": [64, 73], "extend": 64, "data": 64, "hellan": 65, "herrmann": 65, "johnson": 65, "kirchhoff": 65, "relationship": 66, "between": 66, "hhj": 66, "commut": 66, "diagram": 66, "mindlin": [67, 69], "nonlinear": 68, "3d": [69, 72], "preambl": 70, "essenti": 71, "solid": 72, "mechan": 72, "get": 73, "start": 73, "netgen": 73, "opencascad": 73, "geometr": 73, "model": 73, "coefficientfunct": 73, "work": 73, "gridfunct": 73, "algebra": 73, "bilienarform": 73, "linearform": 73, "poisson": [74, 101], "weak": [74, 101], "visual": 74, "basi": 74, "variabl": 76, "coeffici": 76, "hp": 77, "legendr": 77, "orthogon": 77, "base": [77, 105, 109], "1d": [77, 99], "case": 77, "brambl": [78, 99], "pasciak": 78, "transform": [78, 85], "small": [79, 103], "number": 79, "constraint": 79, "flux": 80, "maxwel": 80, "robust": [80, 104], "two": 80, "smoother": 80, "coars": [80, 105, 106], "grid": [80, 105, 106], "structur": 81, "schur": 81, "complement": 81, "local": [83, 115], "post": 83, "process": 83, "operatornam": [85, 87], "piola": 85, "applic": [86, 97], "techniqu": 88, "friedrich": [89, 92, 99, 100], "poincar\u00e9": [93, 99, 100], "verif": 94, "proof": 94, "gener": [95, 97, 102], "integr": [97, 109, 112], "part": 97, "over": 97, "2": [97, 106], "equival": 98, "shift": 101, "schwarz": [102, 107], "mathbb": 102, "r": 102, "n": 102, "hilbert": [99, 102], "upper": 102, "bound": 102, "asm": 103, "diagon": [103, 108], "term": 103, "b": 104, "ad": 105, "graph": 105, "partit": 105, "dd": 106, "comparison": 106, "rung": 108, "kutta": 108, "butcher": 108, "tableau": 108, "simpl": [108, 109], "explicit": [108, 109], "implicit": [108, 109, 110], "singl": 109, "step": [99, 109, 110, 111, 115], "euler": [109, 110], "ee": 109, "ie": 109, "trapezoid": 109, "mid": 109, "rule": 109, "improv": 109, "rk2": 109, "stabil": 109, "classif": 109, "hyperbol": 109, "heat": 110, "newmark": 111, "exponenti": 112, "mass": 115, "lump": 115, "verlet": 115, "geometri": 115, "detail": 115, "nano": [116, 117], "optic": [116, 117], "ring": [116, 117], "reson": [116, 117], "test": 118, "eigenvalu": 118, "laplac": 118, "invers": 100, "korn": 100, "wip": [], "squar": [97, 99], "scale": 99, "fraction": 99, "evalu": 99, "definit": 97, "one": 97, "eqival": 99, "version": 99}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinx": 60}, "alltitles": {"Nitsche\u2019s Method for boundary and interface conditions": [[0, "nitsche-s-method-for-boundary-and-interface-conditions"]], "Nitsche\u2019s method:": [[0, "nitsche-s-method"]], "Interfaces": [[0, "interfaces"]], "Hybrid Interfaces": [[0, "hybrid-interfaces"]], "Hybrid DG for elliptic equations": [[1, "hybrid-dg-for-elliptic-equations"]], "DG - Methods for elliptic problems": [[2, "dg-methods-for-elliptic-problems"]], "Fourth Order Equation": [[3, "fourth-order-equation"]], "Hybridized C^0-continuous interior penalty method:": [[3, "hybridized-c-0-continuous-interior-penalty-method"]], "Instationary Transport Equation": [[4, "instationary-transport-equation"]], "Splitting Methods for the time-dependent convection diffusion equation": [[5, "splitting-methods-for-the-time-dependent-convection-diffusion-equation"]], "Stationary Transport Equation": [[6, "stationary-transport-equation"]], "Discontinuous Galerkin method": [[6, "discontinuous-galerkin-method"]], "H(div)-conforming Stokes": [[7, "h-div-conforming-stokes"]], "Finite element error analysis": [[8, "finite-element-error-analysis"]], "Error estimates in L_2-norm": [[8, "error-estimates-in-l-2-norm"]], "Approximation of Dirichlet boundary conditions": [[8, "approximation-of-dirichlet-boundary-conditions"]], "High order elements": [[8, "high-order-elements"]], "Graded meshes around vertex singularities": [[8, "graded-meshes-around-vertex-singularities"]], "Finite Element Method": [[9, "finite-element-method"], [44, null]], "Implementation of Finite Elements": [[10, "implementation-of-finite-elements"]], "Non-conforming Finite Element Methods": [[11, "non-conforming-finite-element-methods"]], "The First Lemma of Strang": [[11, "the-first-lemma-of-strang"]], "The Second Lemma of Strang": [[11, "the-second-lemma-of-strang"]], "The non-conforming P^1 triangle}": [[11, "the-non-conforming-p-1-triangle"]], "Finite element system assembling": [[12, "finite-element-system-assembling"]], "NGSolve - PETSc interface": [[13, "ngsolve-petsc-interface"]], "PETSc preconditioner for NGSolve": [[13, "petsc-preconditioner-for-ngsolve"]], "Distributed Meshes and Spaces": [[14, "distributed-meshes-and-spaces"]], "Distributed finite element spaces": [[14, "distributed-finite-element-spaces"]], "The ParallelDofs class": [[14, "the-paralleldofs-class"]], "Introduction to MPI with mpi4py": [[19, "introduction-to-mpi-with-mpi4py"]], "The MPI library": [[19, "the-mpi-library"]], "Iteration methods in parallel": [[20, "iteration-methods-in-parallel"]], "Richardson iteration": [[20, "richardson-iteration"]], "Solving Stokes in parallel": [[21, "solving-stokes-in-parallel"]], "Using PETSc": [[22, "using-petsc"]], "Consistent and Distributed Vectors": [[23, "consistent-and-distributed-vectors"]], "Consistent vectors:": [[23, "consistent-vectors"]], "Distributed vectors and matrices": [[23, "distributed-vectors-and-matrices"]], "Inner products:": [[23, "inner-products"]], "Matrix vector multiplication:": [[23, "matrix-vector-multiplication"]], "Vector operations:": [[23, "vector-operations"]], "This repository contains an interactive introduction to the Finite Element Method": [[24, "this-repository-contains-an-interactive-introduction-to-the-finite-element-method"]], "Basic properties": [[25, "basic-properties"]], "Coercive variational problems and their approximation": [[26, "coercive-variational-problems-and-their-approximation"]], "Approximation of coercive variational problems": [[26, "approximation-of-coercive-variational-problems"]], "Riesz representation theorem and symmetric variational problems": [[27, "riesz-representation-theorem-and-symmetric-variational-problems"]], "Symmetric variational problems": [[27, "symmetric-variational-problems"]], "Inf-sup stable variational problems": [[29, "inf-sup-stable-variational-problems"]], "Approximation of inf-sup stable variational problems": [[29, "approximation-of-inf-sup-stable-variational-problems"]], "Projection onto subspaces": [[30, "projection-onto-subspaces"]], "A posteriori error estimates": [[31, "a-posteriori-error-estimates"], [44, null]], "The Zienkiewicz Zhu error estimator": [[31, "the-zienkiewicz-zhu-error-estimator"]], "Equilibrated Residual Error Estimates": [[32, "equilibrated-residual-error-estimates"]], "Goal driven error estimates": [[33, "goal-driven-error-estimates"]], "The residual error estimator": [[34, "the-residual-error-estimator"]], "BDDC - Preconditioner": [[35, "bddc-preconditioner"]], "FETI methods": [[36, "feti-methods"]], "Preconditioner for S": [[36, "preconditioner-for-s"]], "FETI-DP": [[37, "feti-dp"]], "Introduction to Non-overlapping Domain Decomposition": [[38, "introduction-to-non-overlapping-domain-decomposition"]], "Domain Decomposition with Lagrange parameters": [[38, "domain-decomposition-with-lagrange-parameters"]], "Traces spaces": [[39, "traces-spaces"]], "Natural trace space": [[39, "natural-trace-space"]], "Interpolation space H^s": [[39, "interpolation-space-h-s"]], "Trace norm on bottom edge": [[39, "trace-norm-on-bottom-edge"]], "Trace norm on boundary sub-domains": [[39, "trace-norm-on-boundary-sub-domains"]], "Implement a parallel BDDC preconditioner": [[40, "implement-a-parallel-bddc-preconditioner"]], "Helmholtz Equation": [[41, "helmholtz-equation"]], "Grating": [[42, "grating"]], "An Interactive Introduction to the Finite Element Method": [[43, "an-interactive-introduction-to-the-finite-element-method"], [44, "an-interactive-introduction-to-the-finite-element-method"]], "The Galerkin Method": [[43, "the-galerkin-method"], [44, null]], "Abstract Theory": [[43, "abstract-theory"], [44, null], [51, "abstract-theory"]], "Mixed Finite Element Methods": [[43, "mixed-finite-element-methods"], [44, null]], "Discontinuous Galerkin Methods": [[43, "discontinuous-galerkin-methods"], [44, null]], "Mixed Methods for Second Order Equations": [[43, "mixed-methods-for-second-order-equations"], [44, null]], "Mixed Methods for Elasticity": [[43, "mixed-methods-for-elasticity"]], "Mixed Methods for Plates and Shells": [[43, "mixed-methods-for-plates-and-shells"]], "The Helmholtz equation": [[43, "the-helmholtz-equation"]], "Iterative Solvers": [[43, "iterative-solvers"], [75, "iterative-solvers"]], "Iteration Methods": [[43, "iteration-methods"], [44, null]], "Sub-space Correction Methods": [[43, "sub-space-correction-methods"], [44, null]], "Multigrid Methods": [[43, "multigrid-methods"], [44, null]], "Saddle-point Problems": [[43, "saddle-point-problems"], [44, null]], "Non-overlapping Domain Decomposition Methods": [[43, "non-overlapping-domain-decomposition-methods"], [44, null]], "Parallel Solvers": [[43, "parallel-solvers"], [44, null]], "Time-dependent Problems": [[43, "time-dependent-problems"]], "A practical introduction": [[43, "a-practical-introduction"]], "Ordinary differential equations": [[43, "ordinary-differential-equations"]], "Numerical analysis of Parabolic Equations": [[43, "numerical-analysis-of-parabolic-equations"]], "Numerical analysis of Wave Equations": [[43, "numerical-analysis-of-wave-equations"]], "Additional methods": [[43, "additional-methods"]], "Appendix": [[43, "appendix"]], "Some inequalities in Sobolev spaces": [[43, "some-inequalities-in-sobolev-spaces"]], "Literature": [[44, "literature"]], "Installing NGSolve": [[44, "installing-ngsolve"]], "Sobolev Spaces": [[44, null]], "High Order Finite Elements": [[44, null]], "The Chebyshev Method": [[45, "the-chebyshev-method"]], "Chebyshev polynomials": [[45, "chebyshev-polynomials"]], "The Chebyshev iteration": [[45, "the-chebyshev-iteration"]], "Conjugate Gradients": [[47, "conjugate-gradients"]], "Solving the minimization problem": [[47, "solving-the-minimization-problem"]], "Expanding the Krylov-space": [[47, "expanding-the-krylov-space"]], "Basic Iterative Methods": [[50, "basic-iterative-methods"]], "Constrained minimization problem": [[51, "constrained-minimization-problem"]], "Stokes equation within the abstract theory": [[51, "stokes-equation-within-the-abstract-theory"]], "Dirichlet boundary conditions as mixed system": [[51, "dirichlet-boundary-conditions-as-mixed-system"]], "Mixed method for second order equation": [[51, "mixed-method-for-second-order-equation"]], "Abstract theory for mixed finite element methods": [[52, "abstract-theory-for-mixed-finite-element-methods"]], "Finite element error estimates": [[52, "finite-element-error-estimates"]], "Proving discrete LBB by the Fortin operator": [[52, "proving-discrete-lbb-by-the-fortin-operator"]], "Example: Finite elements for Stokes": [[52, "example-finite-elements-for-stokes"]], "Boundary Conditions": [[53, "boundary-conditions"], [71, "boundary-conditions"]], "Parameter Dependent Problems": [[54, "parameter-dependent-problems"], [80, "parameter-dependent-problems"]], "Example: Dirichlet boundary condition by penalty": [[54, "example-dirichlet-boundary-condition-by-penalty"]], "Example: Nearly incompressible materials": [[54, "example-nearly-incompressible-materials"]], "Mixed Methods for second order equations": [[55, "mixed-methods-for-second-order-equations"]], "Stokes Equation": [[56, "stokes-equation"]], "Variational Formulation": [[56, "variational-formulation"]], "Finite Element Spaces": [[56, "finite-element-spaces"]], "\\DeclareMathOperator{\\opdiv}{div}\nHellinger Reissner mixed formulation": [[58, "declaremathoperator-opdiv-div-hellinger-reissner-mixed-formulation"]], "Primal mixed method:": [[58, "primal-mixed-method"]], "Dual mixed method": [[58, "dual-mixed-method"]], "\\DeclareMathOperator{\\opdiv}{div}\n\\DeclareMathOperator{\\opcurl}{curl}\n\\DeclareMathOperator{\\eps}{\\varepsilon}\nReduced symmetry methods": [[59, "declaremathoperator-opdiv-div-declaremathoperator-opcurl-curl-declaremathoperator-eps-varepsilon-reduced-symmetry-methods"]], "Tangential displacement normal normal stress continuous finite elements": [[60, "tangential-displacement-normal-normal-stress-continuous-finite-elements"]], "The divergence of nn-continuous piece-wise smooth functions:": [[60, "the-divergence-of-nn-continuous-piece-wise-smooth-functions"]], "TDNNS Variational formulation:": [[60, "tdnns-variational-formulation"]], "Error estimates:": [[60, "error-estimates"]], "Multigrid and Multilevel Methods": [[61, "multigrid-and-multilevel-methods"]], "Multilevel preconditioner": [[61, "multilevel-preconditioner"]], "Multigrid Preconditioning": [[61, "multigrid-preconditioning"]], "Projection matrices from the finest level": [[61, "projection-matrices-from-the-finest-level"]], "Analysis of the Multigrid Iteration": [[62, "analysis-of-the-multigrid-iteration"]], "The Algorithm": [[62, "the-algorithm"]], "The Approximation Property": [[62, "the-approximation-property"]], "The Smothing Property": [[62, "the-smothing-property"]], "Optimal convergence of the V-cycle": [[62, "optimal-convergence-of-the-v-cycle"]], "Analysis of the multi-level preconditioner": [[63, "analysis-of-the-multi-level-preconditioner"]], "Nearly optimal analysis of the ML - preconditioner": [[63, "nearly-optimal-analysis-of-the-ml-preconditioner"]], "Optimal analysis of the multi-level preconditioner": [[63, "optimal-analysis-of-the-multi-level-preconditioner"]], "Multi-level Extension": [[64, "multi-level-extension"]], "Efficiently computable multi-level decomposition": [[64, "efficiently-computable-multi-level-decomposition"]], "Algorithm": [[64, "algorithm"]], "Extending boundary data": [[64, "extending-boundary-data"]], "The Hellan Herrmann Johnson Method for Kirchhoff plates": [[65, "the-hellan-herrmann-johnson-method-for-kirchhoff-plates"]], "Kirchhoff Plate equation": [[65, "kirchhoff-plate-equation"]], "Hellan-Herrmann-Johnson method": [[65, "hellan-herrmann-johnson-method"]], "Relationship between HHJ and TDNNS": [[66, "relationship-between-hhj-and-tdnns"]], "Commuting diagram for H^1 - H(\\opcurl)": [[66, "commuting-diagram-for-h-1-h-opcurl"]], "Reissner Mindlin Plates": [[67, "reissner-mindlin-plates"]], "Nonlinear Shells": [[68, "nonlinear-shells"]], "Preamble": [[70, "preamble"]], "Natural boundary conditions": [[71, "natural-boundary-conditions"]], "Essential boundary conditions": [[71, "essential-boundary-conditions"]], "3D Solid Mechanics": [[72, "d-solid-mechanics"]], "Linear elasticity": [[72, "linear-elasticity"]], "Variational formulation:": [[72, "variational-formulation"]], "Exercises": [[73, "exercises"], [28, "exercises"], [99, "exercises"]], "Get started with Netgen-Opencascade geometric modeling": [[73, "get-started-with-netgen-opencascade-geometric-modeling"]], "Experiment with CoefficientFunctions": [[73, "experiment-with-coefficientfunctions"]], "Work with GridFunctions": [[73, "work-with-gridfunctions"]], "Linear Algebra": [[73, "linear-algebra"]], "Experiments with BilienarForms and LinearForms": [[73, "experiments-with-bilienarforms-and-linearforms"]], "Computing dual norms": [[73, "computing-dual-norms"]], "Solving the Poisson Equation": [[74, "solving-the-poisson-equation"]], "Weak formulation": [[74, "weak-formulation"]], "The Sobolev space H^1, linear and bilinear forms": [[74, "the-sobolev-space-h-1-linear-and-bilinear-forms"]], "The Finite Element Method": [[74, "the-finite-element-method"]], "Poisson equation in NGSolve:": [[74, "poisson-equation-in-ngsolve"]], "Visualizing the basis functions": [[74, "visualizing-the-basis-functions"]], "Variable Coefficients": [[76, "variable-coefficients"]], "hp - Finite Elements": [[77, "hp-finite-elements"]], "Legendre Polynomials": [[77, "legendre-polynomials"]], "Error estimate of the L_2 projection": [[77, "error-estimate-of-the-l-2-projection"]], "Orthogonal polynomials on triangles": [[77, "orthogonal-polynomials-on-triangles"]], "Projection based interpolation": [[77, "projection-based-interpolation"]], "The 1D case": [[77, "the-1d-case"]], "Projection based interpolation on triangles": [[77, "projection-based-interpolation-on-triangles"]], "The Bramble-Pasciak Transformation": [[78, "the-bramble-pasciak-transformation"]], "A Small Number of Constraints": [[79, "a-small-number-of-constraints"]], "Projected preconditioner": [[79, "projected-preconditioner"]], "Dirichlet boundary conditions by penalty:": [[80, "dirichlet-boundary-conditions-by-penalty"]], "Penalty formulation for the flux:": [[80, "penalty-formulation-for-the-flux"]], "Maxwell equations:": [[80, "maxwell-equations"]], "Penalty formulation for the Stokes equation:": [[80, "penalty-formulation-for-the-stokes-equation"]], "Robust two-level methods for parameter dependent problems": [[80, "robust-two-level-methods-for-parameter-dependent-problems"]], "Robust smoothers": [[80, "robust-smoothers"]], "Robust coarse-grid correction": [[80, "robust-coarse-grid-correction"]], "Two-level analysis for Maxwell equations": [[80, "two-level-analysis-for-maxwell-equations"]], "Structure of Saddle-point Problems": [[81, "structure-of-saddle-point-problems"]], "Constrained minimization problems": [[81, "constrained-minimization-problems"]], "Examples": [[81, "examples"], [108, "examples"]], "Schur complement iteration": [[81, "schur-complement-iteration"]], "Block-preconditioning": [[81, "block-preconditioning"]], "Finite Element Error Analysis": [[83, "finite-element-error-analysis"]], "Local post-processing": [[83, "local-post-processing"]], "Error Analysis in L_2 \\times H^1": [[84, "error-analysis-in-l-2-times-h-1"]], "Finite Elements in H(\\operatorname{div})": [[85, "finite-elements-in-h-operatorname-div"]], "Piola Transformation": [[85, "piola-transformation"]], "Application of the abstract theory": [[86, "application-of-the-abstract-theory"]], "Dual mixed formulation": [[86, "dual-mixed-formulation"]], "Primal mixed formulation": [[86, "primal-mixed-formulation"]], "The function space H(\\operatorname{div})": [[87, "the-function-space-h-operatorname-div"]], "Normal-trace of functions in H(\\opdiv)": [[87, "normal-trace-of-functions-in-h-opdiv"]], "H(\\opdiv) on sub-domains": [[87, "h-opdiv-on-sub-domains"]], "Hybridization Techniques": [[88, "hybridization-techniques"]], "Friedrichs\u2019 Inequality": [[89, "friedrichs-inequality"], [92, "friedrichs-inequality"]], "The Poincar\u00e9 inequality": [[93, "the-poincare-inequality"]], "The Trace Inequality": [[94, "the-trace-inequality"]], "Numerical verification": [[94, "numerical-verification"]], "Proof of the trace inequality:": [[94, "proof-of-the-trace-inequality"]], "Additive Schwarz Methods": [[102, "additive-schwarz-methods"]], "Block-Jacobi and general additive Schwarz preconditioners": [[102, "block-jacobi-and-general-additive-schwarz-preconditioners"]], "Sub-spaces of {\\mathbb R}^N and of Hilbert-spaces": [[102, "sub-spaces-of-mathbb-r-n-and-of-hilbert-spaces"]], "The Additive Schwarz Lemma": [[102, "the-additive-schwarz-lemma"]], "The upper-bound by the overlap": [[102, "the-upper-bound-by-the-overlap"]], "Some Examples of ASM preconditioners": [[103, "some-examples-of-asm-preconditioners"]], "Diagonal preconditioner for L_2-norm": [[103, "diagonal-preconditioner-for-l-2-norm"]], "Diagonal preconditioner for the H^1 norm": [[103, "diagonal-preconditioner-for-the-h-1-norm"]], "H^1-norm with small L_2-term": [[103, "h-1-norm-with-small-l-2-term"]], "Exercise: Robust preconditioners": [[104, "exercise-robust-preconditioners"]], "Exercise A:": [[104, "exercise-a"]], "Exercise B:": [[104, "exercise-b"]], "Domain Decomposition with minimal overlap": [[105, "domain-decomposition-with-minimal-overlap"]], "Analysis of the method": [[105, "analysis-of-the-method"]], "Adding a coarse grid space": [[105, "adding-a-coarse-grid-space"]], "Graph-based mesh partitioning": [[105, "graph-based-mesh-partitioning"]], "Overlapping Domain Decomposition Methods": [[106, "overlapping-domain-decomposition-methods"]], "Experiments with overlapping DD": [[106, "experiments-with-overlapping-dd"]], "Analysis of the DD preconditioner": [[106, "analysis-of-the-dd-preconditioner"]], "Overlapping DD Methods with coarse grid": [[106, "overlapping-dd-methods-with-coarse-grid"]], "Analysis of the 2-level method:": [[106, "analysis-of-the-2-level-method"]], "Comparison to DD with minimal overlap": [[106, "comparison-to-dd-with-minimal-overlap"]], "Schwarz preconditioners for high order finite elements": [[107, "schwarz-preconditioners-for-high-order-finite-elements"]], "Overlapping blocks": [[107, "overlapping-blocks"]], "Runge Kutta Methods": [[108, "runge-kutta-methods"]], "Butcher tableaus of simple methods": [[108, "butcher-tableaus-of-simple-methods"]], "Convergence of Runge Kutta methods": [[108, "convergence-of-runge-kutta-methods"]], "Explicit methods:": [[108, "explicit-methods"]], "Diagonally implicit Runge-Kutta methods:": [[108, "diagonally-implicit-runge-kutta-methods"]], "Exercise:": [[108, "exercise"], [118, "exercise"]], "Single-step methods": [[109, "single-step-methods"]], "Simple methods based on the integral equation": [[109, "simple-methods-based-on-the-integral-equation"]], "Explicit Euler method (EE)": [[109, "explicit-euler-method-ee"]], "Implicit Euler method (IE)": [[109, "implicit-euler-method-ie"]], "Trapezoidal method": [[109, "trapezoidal-method"]], "Explicit mid-point rule (=improved Euler method = RK2 method)": [[109, "explicit-mid-point-rule-improved-euler-method-rk2-method"]], "Linear stability classification": [[109, "linear-stability-classification"]], "Stability function": [[109, "stability-function"]], "Stability conditions": [[109, "stability-conditions"]], "Single step methods and parabolic equations": [[109, "single-step-methods-and-parabolic-equations"]], "Single step methods and hyperbolic equations": [[109, "single-step-methods-and-hyperbolic-equations"]], "Exercises:": [[109, "exercises"]], "Heat Equation": [[110, "heat-equation"]], "Variational formulation in space": [[110, "variational-formulation-in-space"]], "Galerkin method in space": [[110, "galerkin-method-in-space"]], "Implicit Euler time-stepping": [[110, "implicit-euler-time-stepping"]], "Wave Equation": [[111, "wave-equation"]], "Newmark time-stepping method": [[111, "newmark-time-stepping-method"]], "Exponential Integrators for Parabolic Equations": [[112, "exponential-integrators-for-parabolic-equations"]], "Mass-lumping and Local time-stepping": [[115, "mass-lumping-and-local-time-stepping"]], "The Verlet method:": [[115, "the-verlet-method"]], "Geometry with local details:": [[115, "geometry-with-local-details"]], "Nano-optics: A ring-resonator": [[116, "nano-optics-a-ring-resonator"], [117, "nano-optics-a-ring-resonator"]], "Discontinuous Galerkin for the Wave Equation": [[118, "discontinuous-galerkin-for-the-wave-equation"]], "Testing the differential operators": [[118, "testing-the-differential-operators"]], "Efficient implementation:": [[118, "efficient-implementation"]], "Solving the wave equation:": [[118, "solving-the-wave-equation"]], "Eigenvalues of the discretized Laplace-operator": [[118, "eigenvalues-of-the-discretized-laplace-operator"]], "Sobolev spaces": [[96, "sobolev-spaces"]], "The weak formulation of the Poisson equation": [[101, "the-weak-formulation-of-the-poisson-equation"]], "Shift theorems": [[101, "shift-theorems"]], "Friedrichs\u2019 inequality": [[100, "friedrichs-inequality"], [99, "friedrichs-inequality"]], "Poincar\u00e9 inequality": [[100, "poincare-inequality"], [99, "poincare-inequality"]], "Experiments with norms": [[100, "experiments-with-norms"]], "Inverse estimates": [[100, "inverse-estimates"]], "Trace inequality": [[100, "trace-inequality"]], "Korn\u2019s inequality": [[100, "korn-s-inequality"]], "Trace theorems and their applications": [[97, "trace-theorems-and-their-applications"]], "Integration by parts": [[97, "integration-by-parts"]], "Sobolev spaces over sub-domains": [[97, "sobolev-spaces-over-sub-domains"]], "Extension operators": [[97, "extension-operators"]], "The trace space H^{1/2}": [[97, "the-trace-space-h-1-2"]], "Interpolation spaces": [[97, "interpolation-spaces"]], "General definition:": [[97, "general-definition"]], "The trace space on one edge of the square": [[97, "the-trace-space-on-one-edge-of-the-square"]], "Generalized derivatives": [[95, "generalized-derivatives"]], "Equivalent norms on H^1 and on sub-spaces": [[98, "equivalent-norms-on-h-1-and-on-sub-spaces"]], "Minimization problem": [[28, "minimization-problem"]], "inf-sup condition of the first-order derivative bilinear-form": [[28, "inf-sup-condition-of-the-first-order-derivative-bilinear-form"]], "Repeat the exercise in 2D.": [[28, "repeat-the-exercise-in-2d"]], "Building systems from building-blocks": [[28, "building-systems-from-building-blocks"]], "Coercive examples": [[28, "coercive-examples"]], "inf-sup condition": [[28, "inf-sup-condition"]], "complex-valued problem as real system": [[28, "complex-valued-problem-as-real-system"]], "One sup is enough": [[28, "one-sup-is-enough"]], "Second inf-sup condition means onto": [[28, "second-inf-sup-condition-means-onto"]], "The Richardson Iteration": [[46, "the-richardson-iteration"]], "Optimizing the relaxation parameter \\alpha": [[46, "optimizing-the-relaxation-parameter-alpha"]], "Experiments with the Richardson iteration": [[46, "experiments-with-the-richardson-iteration"]], "Preconditioning": [[49, "preconditioning"]], "The preconditioned Richardson iteration": [[49, "the-preconditioned-richardson-iteration"]], "The preconditioned gradient method": [[49, "the-preconditioned-gradient-method"]], "Jacobi and Gauss Seidel Preconditioners": [[49, "jacobi-and-gauss-seidel-preconditioners"]], "The Gradient Method": [[48, "the-gradient-method"]], "Non-linear dynamics": [[57, "non-linear-dynamics"]], "3D-TDNNS Elasticity and Reissner Mindlin Plate elements": [[69, "d-tdnns-elasticity-and-reissner-mindlin-plate-elements"]], "Friedrichs\u2019 inequality in 1D": [[99, "friedrichs-inequality-in-1d"]], "Friedrichs\u2019 inequality on the square": [[99, "friedrichs-inequality-on-the-square"]], "Eqivalent versions of the Poincar\u00e9 inequality": [[99, "eqivalent-versions-of-the-poincare-inequality"]], "Poincar\u00e9 inequality in 1D": [[99, "poincare-inequality-in-1d"]], "Bramble-Hilbert Lemma": [[99, "bramble-hilbert-lemma"]], "Mean-value interpolation": [[99, "mean-value-interpolation"]], "Scaled domain": [[99, "scaled-domain"]], "Fractional Sobolev spaces": [[99, "fractional-sobolev-spaces"]], "Step function": [[99, "step-function"]], "Point evaluation functional": [[99, "point-evaluation-functional"]]}, "indexentries": {}}) \ No newline at end of file diff --git a/sobolevspaces/exercises.html b/sobolevspaces/exercises.html index dafc74c9..c91e6a3f 100644 --- a/sobolevspaces/exercises.html +++ b/sobolevspaces/exercises.html @@ -63,7 +63,7 @@ - + @@ -203,7 +203,7 @@