-
Notifications
You must be signed in to change notification settings - Fork 0
/
auto_tinder.py
184 lines (139 loc) · 6.75 KB
/
auto_tinder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import requests
import datetime
from geopy.geocoders import Nominatim
from time import sleep
from random import random
from likeliness_classifier import Classifier
import person_detector
import tensorflow as tf
from time import time
TINDER_URL = "https://api.gotinder.com"
geolocator = Nominatim(user_agent="auto-tinder")
PROF_FILE = "./images/unclassified/profiles.txt"
class tinderAPI():
def __init__(self, token):
self._token = token
def profile(self):
data = requests.get(TINDER_URL + "/v2/profile?include=account%2Cuser", headers={"X-Auth-Token": self._token}).json()
return Profile(data["data"], self)
def matches(self, limit=10):
data = requests.get(TINDER_URL + f"/v2/matches?count={limit}", headers={"X-Auth-Token": self._token}).json()
return list(map(lambda match: Person(match["person"], self), data["data"]["matches"]))
def like(self, user_id):
data = requests.get(TINDER_URL + f"/like/{user_id}", headers={"X-Auth-Token": self._token}).json()
return {
"is_match": data["match"],
"liked_remaining": data["likes_remaining"]
}
def dislike(self, user_id):
requests.get(TINDER_URL + f"/pass/{user_id}", headers={"X-Auth-Token": self._token}).json()
return True
def nearby_persons(self):
data = requests.get(TINDER_URL + "/v2/recs/core?locale=en-GB", headers={"X-Auth-Token": self._token}).json()
return list(map(lambda user: Person(user["user"], self), data["data"]["results"]))
class Person(object):
def __init__(self, data, api):
self._api = api
self.id = data["_id"]
self.name = data.get("name", "Unknown")
self.bio = data.get("bio", "")
self.distance = data.get("distance_mi", 0) / 1.60934
self.birth_date = datetime.datetime.strptime(data["birth_date"], '%Y-%m-%dT%H:%M:%S.%fZ') if data.get(
"birth_date", False) else None
self.gender = ["Male", "Female", "Unknown"][data.get("gender", 2)]
self.images = list(map(lambda photo: photo["url"], data.get("photos", [])))
self.jobs = list(
map(lambda job: {"title": job.get("title", {}).get("name"), "company": job.get("company", {}).get("name")}, data.get("jobs", [])))
self.schools = list(map(lambda school: school["name"], data.get("schools", [])))
if data.get("pos", False):
self.location = geolocator.reverse(f'{data["pos"]["lat"]}, {data["pos"]["lon"]}')
def __repr__(self):
return f"{self.id} - {self.name} ({self.birth_date.strftime('%d.%m.%Y')})"
def like(self):
return self._api.like(self.id)
def dislike(self):
return self._api.dislike(self.id)
def download_images(self, folder=".", sleep_max_for=0):
with open(PROF_FILE, "r") as f:
lines = f.readlines()
if self.id in lines:
return
with open(PROF_FILE, "a") as f:
f.write(self.id+"\r\n")
index = -1
for image_url in self.images:
index += 1
req = requests.get(image_url, stream=True)
if req.status_code == 200:
with open(f"{folder}/{self.id}_{self.name}_{index}.jpeg", "wb") as f:
f.write(req.content)
sleep(random()*sleep_max_for)
def predict_likeliness(self, classifier, sess):
ratings = []
for image in self.images:
req = requests.get(image, stream=True)
tmp_filename = f"./images/tmp/run.jpg"
if req.status_code == 200:
with open(tmp_filename, "wb") as f:
f.write(req.content)
img = person_detector.get_person(tmp_filename, sess)
if img:
img = img.convert('L')
img.save(tmp_filename, "jpeg")
certainty = classifier.classify(tmp_filename)
pos = certainty["positive"]
ratings.append(pos)
ratings.sort(reverse=True)
ratings = ratings[:5]
if len(ratings) == 0:
return 0.001
return ratings[0]*0.6 + sum(ratings[1:])/len(ratings[1:])*0.4
class Profile(Person):
def __init__(self, data, api):
super().__init__(data["user"], api)
self.email = data["account"].get("email")
self.phone_number = data["account"].get("account_phone_number")
self.age_min = data["user"]["age_filter_min"]
self.age_max = data["user"]["age_filter_max"]
self.max_distance = data["user"]["distance_filter"]
self.gender_filter = ["Male", "Female"][data["user"]["gender_filter"]]
if __name__ == "__main__":
token = "75b59b6b-4cbb-4afc-bbd6-8dfea7e87c47"
api = tinderAPI(token)
detection_graph = person_detector.open_graph()
with detection_graph.as_default():
with tf.compat.v1.Session() as sess:
classifier = Classifier(graph="./tf/training_output/retrained_graph.pb",
labels="./tf/training_output/retrained_labels.txt")
end_time = time() + 60*60*1.5
while time() < end_time:
try:
print(f"------ TIME LEFT: {(end_time - time())/60} min -----")
persons = api.nearby_persons()
pos_schools = ["Universität Zürich", "University of Zurich", "UZH", "HWZ Hochschule für Wirtschaft Zürich",
"ETH Zürich", "ETH Zurich", "ETH", "ETHZ", "Hochschule Luzern", "HSLU", "ZHAW",
"Zürcher Hochschule für Angewandte Wissenschaften", "Universität Bern", "Uni Bern",
"PHLU", "PH Luzern", "Fachhochschule Luzern", "Eidgenössische Technische Hochschule Zürich"]
for person in persons:
score = person.predict_likeliness(classifier, sess)
for school in pos_schools:
if school in person.schools:
print()
score *= 1.2
print("-------------------------")
print("ID: ", person.id)
print("Name: ", person.name)
print("Schools: ", person.schools)
print("Images: ", person.images)
print(score)
if score > 0.8:
res = person.like()
print("LIKE")
print("Response: ", res)
else:
res = person.dislike()
print("DISLIKE")
print("Response: ", res)
except Exception:
pass
classifier.close()