-
Notifications
You must be signed in to change notification settings - Fork 1
/
core_model_initializer.py
298 lines (232 loc) · 9.21 KB
/
core_model_initializer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
# encoding=utf-8
import sys
from hyper_and_conf import hyper_param as hyperParam
from hyper_and_conf import hyper_train
import core_lip_main
import core_data_SRCandTGT
from tensorflow.python.client import device_lib
import tensorflow as tf
DATA_PATH = sys.path[0]
SYS_PATH = sys.path[1]
src_data_path = [DATA_PATH + "/corpus/europarl-v7.fr-en.en"]
tgt_data_path = [DATA_PATH + "/corpus/europarl-v7.fr-en.en"]
# TFRECORD = '/home/vivalavida/massive_data/lip_reading_TFRecord/tfrecord_word'
TFRECORD = '/home/vivalavida/massive_data/lip_reading_TFRecord/sentence_TFRECORD'
# TFRECORD = '/Users/barid/Documents/workspace/batch_data/lip_data_TFRecord'
def get_available_cpus():
local_device_protos = device_lib.list_local_devices()
return len([x.name for x in local_device_protos if x.device_type == 'CPU'])
def get_available_gpus():
local_device_protos = device_lib.list_local_devices()
return len([x.name for x in local_device_protos if x.device_type == 'GPU'])
gpu = get_available_gpus()
TRAIN_MODE = 'large' if gpu > 0 else 'test'
hp = hyperParam.HyperParam(TRAIN_MODE, gpu=get_available_gpus())
PAD_ID = tf.cast(hp.PAD_ID, tf.int64)
with tf.device("/cpu:0"):
daedalus = core_lip_main.Daedalus(hp)
# if tf.gfile.Exists('pre_train/vgg16_pre_all'):
# vgg16 = tf.keras.models.load_model('pre_train/vgg16_pre_all')
# else:
# vgg16 = tf.keras.applications.vgg16.VGG16(
# include_top=True, weights='imagenet')
data_manager = core_data_SRCandTGT.DatasetManager(
src_data_path,
tgt_data_path,
batch_size=hp.batch_size,
PAD_ID=hp.PAD_ID,
EOS_ID=hp.EOS_ID,
# shuffle=hp.data_shuffle,
shuffle=hp.data_shuffle,
max_length=hp.max_sequence_length,
tfrecord_path=TFRECORD)
# train_dataset, val_dataset, test_dataset = data_manager.prepare_data()
def get_hp():
return hp
def backend_config():
config = tf.ConfigProto()
# config.graph_options.optimizer_options.global_jit_level = tf.OptimizerOptions.ON_1
config.intra_op_parallelism_threads = 4
config.inter_op_parallelism_threads = 4
# # Don't pre-allocate memory; allocate as-needed
config.gpu_options.allow_growth = True
# Only allow a total of half the GPU memory to be allocated
# config.gpu_options.per_process_gpu_memory_fraction = 0.999
config.allow_soft_placement = True
return config
def input_fn(flag="TRAIN"):
with tf.device('/cpu:0'):
if flag == "VAL":
dataset = data_manager.get_raw_val_dataset()
if flag == "TEST":
dataset = data_manager.get_raw_test_dataset()
if flag == "TRAIN":
dataset = data_manager.get_raw_train_dataset()
else:
assert ("data error")
# repeat once in case tf.keras.fit out range error
dataset = dataset.apply(
tf.data.experimental.shuffle_and_repeat(30000, 1))
return dataset
def pad_sample(dataset, seq2seq=False):
if seq2seq:
dataset = dataset.map(
dataset_prepross_fn,
num_parallel_calls=12 * get_available_gpus()
if get_available_gpus() > 0 else 1)
dataset = dataset.padded_batch(
hp.batch_size,
padded_shapes=(
(
tf.TensorShape([None,
None]), # source vectors of unknown size
tf.TensorShape([None]), # target vectors of unknown size
),
tf.TensorShape([None])),
padding_values=(
(
tf.cast(
hp.PAD_ID, tf.float32
), # source vectors padded on the right with src_eos_id
PAD_ID
# target vectors padded on the right with tgt_eos_id
),
PAD_ID),
drop_remainder=True)
else:
dataset = dataset.padded_batch(
hp.batch_size,
padded_shapes=(
tf.TensorShape([None, None]), # source vectors of unknown size
tf.TensorShape([None]), # target vectors of unknown size
),
padding_values=(
tf.cast(
hp.PAD_ID, tf.float64
), # source vectors padded on the right with src_eos_id
PAD_ID
# target vectors padded on the right with tgt_eos_id
),
drop_remainder=True)
if gpu > 0:
for i in range(gpu):
dataset = dataset.apply(
tf.data.experimental.prefetch_to_device("/GPU:" + str(i)))
else:
dataset = dataset.prefetch(gpu * 8)
return dataset
def get_train_step():
return data_manager.get_train_size() // hp.batch_size
def get_val_step():
return data_manager.get_val_size() // hp.batch_size
def get_test_step():
return data_manager.get_test_size() // hp.batch_size
def dataset_prepross_fn(src, tgt):
return (src, tgt), tgt
def train_input(debug=False):
with tf.device('/cpu:0'):
dataset = input_fn('TRAIN')
dataset = pad_sample(dataset, seq2seq=True)
if debug:
return dataset
iterator = dataset.make_one_shot_iterator()
x, y = iterator.get_next()
return x, y
def val_input():
with tf.device('/cpu:0'):
dataset = input_fn("VAL")
dataset = pad_sample(dataset, seq2seq=True)
iterator = dataset.make_one_shot_iterator()
x, y = iterator.get_next()
return x, y
def model_structure(training=False):
with tf.device('/cpu:0'):
img_input = tf.keras.layers.Input(
shape=[None, 25088], dtype=tf.float32, name='VGG_features')
tgt_input = tf.keras.layers.Input(
shape=[None], dtype=tf.int64, name='tgt_input')
output = daedalus((img_input, tgt_input), training=training)
model = tf.keras.models.Model(
inputs=(img_input, tgt_input), outputs=output)
# if multi_gpu and gpu > 0:
# model = tf.keras.utils.multi_gpu_model(model, gpus=gpu)
return model
def train_model():
return model_structure(True)
def test_model():
return model_structure(False)
def get_metrics():
# evaluation metrics
bleu = hyper_train.Approx_BLEU_Metrics(eos_id=hp.EOS_ID)
accuracy = hyper_train.Padded_Accuracy(hp.PAD_ID)
accuracy_topk = hyper_train.Padded_Accuracy_topk(k=10, pad_id=hp.PAD_ID)
return [bleu, accuracy, accuracy_topk]
def get_optimizer():
return tf.keras.optimizers.Adam()
def get_loss():
return hyper_train.Onehot_CrossEntropy(hp.vocabulary_size)
def get_callbacks():
LRschedule = hyper_train.Dynamic_LearningRate(hp.lr, hp.num_units,
hp.learning_warmup)
TFboard = tf.keras.callbacks.TensorBoard(
log_dir=hp.model_summary_dir,
# histogram_freq=10,
write_images=True,
update_freq=10)
TFchechpoint = tf.keras.callbacks.ModelCheckpoint(
hp.model_checkpoint_dir + '/cp.ckpt', save_weights_only=True)
# BatchTime = hyper_train.BatchTiming()
# SamplesPerSec = hyper_train.SamplesPerSec(hp.batch_size)
# if get_available_gpus() > 0:
# CudaProfile = hyper_train.CudaProfile()
#
# return [
# LRschedule, TFboard, TFchechpoint, BatchTime, SamplesPerSec,
# CudaProfile
# ]
# else:
return [LRschedule, TFboard, TFchechpoint]
def make_parallel(model, gpu_count, ps_device=None, training=True):
if gpu_count <= 1:
return model
if ps_device is None:
ps_device = '/gpu:0'
def get_slice(data, idx, parts):
shape = tf.shape(data)
size = tf.concat([shape[:1] // parts, shape[1:]], axis=0)
stride = tf.concat([shape[:1] // parts, shape[1:] * 0], axis=0)
start = stride * idx
return tf.slice(data, start, size)
outputs_all = []
for i in range(len(model.outputs)):
outputs_all.append([])
# Place a copy of the model on each GPU, each getting a slice of the batch
for i in range(gpu_count):
with tf.device('/gpu:%d' % i):
with tf.name_scope('tower_%d' % i):
inputs = []
# Slice each input into a piece for processing on this GPU
for x in model.inputs:
input_shape = tuple(x.get_shape().as_list())[1:]
slice_n = tf.keras.layers.Lambda(
get_slice,
output_shape=input_shape,
arguments={
'idx': i,
'parts': gpu_count
})(x)
inputs.append(slice_n)
outputs = model(inputs)
if not isinstance(outputs, list):
outputs = [outputs]
# Save all the outputs for merging back together later
for l in range(len(outputs)):
outputs_all[l].append(outputs[l])
# merge outputs on parameter server
with tf.device(ps_device):
merged = []
for outputs in outputs_all:
merged.append(tf.keras.layers.concatenate(outputs, axis=0))
return tf.keras.Model(inputs=model.inputs, outputs=merged)
# model = train_model()
# model.summary()