Skip to content

Latest commit

 

History

History
92 lines (60 loc) · 4.01 KB

commands.md

File metadata and controls

92 lines (60 loc) · 4.01 KB

Commands

Inference

You can modify corresponding config files to change the inference settings. See more details here.

Inference with DiT pretrained on ImageNet

The following command automatically downloads the pretrained weights on ImageNet and runs inference.

python scripts/inference.py configs/dit/inference/1x256x256-class.py --ckpt-path DiT-XL-2-256x256.pt

Inference with Latte pretrained on UCF101

The following command automatically downloads the pretrained weights on UCF101 and runs inference.

python scripts/inference.py configs/latte/inference/16x256x256-class.py --ckpt-path Latte-XL-2-256x256-ucf101.pt

Inference with PixArt-α pretrained weights

Download T5 into ./pretrained_models and run the following command.

# 256x256
torchrun --standalone --nproc_per_node 1 scripts/inference.py configs/pixart/inference/1x256x256.py --ckpt-path PixArt-XL-2-256x256.pth

# 512x512
torchrun --standalone --nproc_per_node 1 scripts/inference.py configs/pixart/inference/1x512x512.py --ckpt-path PixArt-XL-2-512x512.pth

# 1024 multi-scale
torchrun --standalone --nproc_per_node 1 scripts/inference.py configs/pixart/inference/1x1024MS.py --ckpt-path PixArt-XL-2-1024MS.pth

Inference with checkpoints saved during training

During training, an experiment logging folder is created in outputs directory. Under each checkpoint folder, e.g. epoch12-global_step2000, there is a ema.pt and the shared model folder. Run the following command to perform inference.

# inference with ema model
torchrun --standalone --nproc_per_node 1 scripts/inference.py configs/opensora/inference/16x256x256.py --ckpt-path outputs/001-STDiT-XL-2/epoch12-global_step2000/ema.pt

# inference with model
torchrun --standalone --nproc_per_node 1 scripts/inference.py configs/opensora/inference/16x256x256.py --ckpt-path outputs/001-STDiT-XL-2/epoch12-global_step2000

# inference with sequence parallelism
# sequence parallelism is enabled automatically when nproc_per_node is larger than 1
torchrun --standalone --nproc_per_node 2 scripts/inference.py configs/opensora/inference/16x256x256.py --ckpt-path outputs/001-STDiT-XL-2/epoch12-global_step2000

The second command will automatically generate a model_ckpt.pt file in the checkpoint folder.

Inference Hyperparameters

  1. DPM-solver is good at fast inference for images. However, the video result is not satisfactory. You can use it for fast demo purpose.
type="dmp-solver"
num_sampling_steps=20
  1. You can use SVD's finetuned VAE decoder on videos for inference (consumes more memory). However, we do not see significant improvement in the video result. To use it, download the pretrained weights into ./pretrained_models/vae_temporal_decoder and modify the config file as follows.
vae = dict(
    type="VideoAutoencoderKLTemporalDecoder",
    from_pretrained="pretrained_models/vae_temporal_decoder",
)

Training

To resume training, run the following command. --load different from --ckpt-path as it loads the optimizer and dataloader states.

torchrun --nnodes=1 --nproc_per_node=8 scripts/train.py configs/opensora/train/64x512x512.py --data-path YOUR_CSV_PATH --load YOUR_PRETRAINED_CKPT

To enable wandb logging, add --wandb to the command.

WANDB_API_KEY=YOUR_WANDB_API_KEY torchrun --nnodes=1 --nproc_per_node=8 scripts/train.py configs/opensora/train/64x512x512.py --data-path YOUR_CSV_PATH --wandb True

You can modify corresponding config files to change the training settings. See more details here.

Training Hyperparameters

  1. dtype is the data type for training. Only fp16 and bf16 are supported. ColossalAI automatically enables the mixed precision training for fp16 and bf16. During training, we find bf16 more stable.