forked from google/prompt-to-prompt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ptp_utils.py
365 lines (298 loc) · 13.8 KB
/
ptp_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import torch
from PIL import Image, ImageDraw, ImageFont
import cv2
from typing import Optional, Union, Tuple, List, Callable, Dict
from IPython.display import display
from tqdm.notebook import tqdm
def text_under_image(image: np.ndarray, text: str, text_color: Tuple[int, int, int] = (0, 0, 0)):
h, w, c = image.shape
offset = int(h * .2)
img = np.ones((h + offset, w, c), dtype=np.uint8) * 255
font = cv2.FONT_HERSHEY_SIMPLEX
# font = ImageFont.truetype("/usr/share/fonts/truetype/noto/NotoMono-Regular.ttf", font_size)
img[:h] = image
textsize = cv2.getTextSize(text, font, 1, 2)[0]
text_x, text_y = (w - textsize[0]) // 2, h + offset - textsize[1] // 2
cv2.putText(img, text, (text_x, text_y ), font, 1, text_color, 2)
return img
def view_images(images, num_rows=1, offset_ratio=0.02):
if type(images) is list:
num_empty = len(images) % num_rows
elif images.ndim == 4:
num_empty = images.shape[0] % num_rows
else:
images = [images]
num_empty = 0
empty_images = np.ones(images[0].shape, dtype=np.uint8) * 255
images = [image.astype(np.uint8) for image in images] + [empty_images] * num_empty
num_items = len(images)
h, w, c = images[0].shape
offset = int(h * offset_ratio)
num_cols = num_items // num_rows
image_ = np.ones((h * num_rows + offset * (num_rows - 1),
w * num_cols + offset * (num_cols - 1), 3), dtype=np.uint8) * 255
for i in range(num_rows):
for j in range(num_cols):
image_[i * (h + offset): i * (h + offset) + h:, j * (w + offset): j * (w + offset) + w] = images[
i * num_cols + j]
pil_img = Image.fromarray(image_)
display(pil_img)
def diffusion_step(model, controller, latents, context, t, guidance_scale, low_resource=False):
if low_resource:
noise_pred_uncond = model.unet(latents, t, encoder_hidden_states=context[0])["sample"]
noise_prediction_text = model.unet(latents, t, encoder_hidden_states=context[1])["sample"]
else:
latents_input = torch.cat([latents] * 2)
noise_pred = model.unet(latents_input, t, encoder_hidden_states=context)["sample"]
noise_pred_uncond, noise_prediction_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond)
latents = model.scheduler.step(noise_pred, t, latents)["prev_sample"]
latents = controller.step_callback(latents)
return latents
def latent2image(vae, latents):
latents = 1 / 0.18215 * latents
image = vae.decode(latents)['sample']
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
image = (image * 255).astype(np.uint8)
return image
def init_latent(latent, model, height, width, generator, batch_size):
if latent is None:
latent = torch.randn(
(1, model.unet.in_channels, height // 8, width // 8),
generator=generator,
)
latents = latent.expand(batch_size, model.unet.in_channels, height // 8, width // 8).to(model.device)
return latent, latents
@torch.no_grad()
def text2image_ldm(
model,
prompt: List[str],
controller,
num_inference_steps: int = 50,
guidance_scale: Optional[float] = 7.,
generator: Optional[torch.Generator] = None,
latent: Optional[torch.FloatTensor] = None,
):
register_attention_control(model, controller)
height = width = 256
batch_size = len(prompt)
uncond_input = model.tokenizer([""] * batch_size, padding="max_length", max_length=77, return_tensors="pt")
uncond_embeddings = model.bert(uncond_input.input_ids.to(model.device))[0]
text_input = model.tokenizer(prompt, padding="max_length", max_length=77, return_tensors="pt")
text_embeddings = model.bert(text_input.input_ids.to(model.device))[0]
latent, latents = init_latent(latent, model, height, width, generator, batch_size)
context = torch.cat([uncond_embeddings, text_embeddings])
model.scheduler.set_timesteps(num_inference_steps)
for t in tqdm(model.scheduler.timesteps):
latents = diffusion_step(model, controller, latents, context, t, guidance_scale)
image = latent2image(model.vqvae, latents)
return image, latent
@torch.no_grad()
def text2image_ldm_stable(
model,
prompt: List[str],
controller,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
generator: Optional[torch.Generator] = None,
latent: Optional[torch.FloatTensor] = None,
low_resource: bool = False,
):
# print("into idm_stable")
register_attention_control(model, controller)
height = width = 512
batch_size = len(prompt)
text_input = model.tokenizer(
prompt,
padding="max_length",
max_length=model.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
# print(text_input)
# print(f"text_input {text_input.input_ids.shape}")
text_embeddings = model.text_encoder(text_input.input_ids.to(model.device))[0]
# print(f"text_embedding {text_embeddings.shape}")
max_length = text_input.input_ids.shape[-1]
uncond_input = model.tokenizer(
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
)
# print(uncond_input)
# print(f"uncond_input {uncond_input.input_ids.shape}")
uncond_embeddings = model.text_encoder(uncond_input.input_ids.to(model.device))[0]
# print(f"uncond_embeddings {uncond_embeddings.shape}")
context = [uncond_embeddings, text_embeddings]
if not low_resource:
context = torch.cat(context)
# print(f"context {context.shape}")
latent, latents = init_latent(latent, model, height, width, generator, batch_size)
# set timesteps
extra_set_kwargs = {"offset": 1}
model.scheduler.set_timesteps(num_inference_steps)
for t in tqdm(model.scheduler.timesteps):
latents = diffusion_step(model, controller, latents, context, t, guidance_scale, low_resource)
image = latent2image(model.vae, latents)
return image, latent
def register_attention_control(model, controller):
# def ca_forward(self, place_in_unet):
# to_out = self.to_out
# if type(to_out) is torch.nn.modules.container.ModuleList:
# to_out = self.to_out[0]
# else:
# to_out = self.to_out
# def forward(x, context=None, mask=None):
# batch_size, sequence_length, dim = x.shape
# h = self.heads
# q = self.to_q(x)
# is_cross = context is not None
# context = context if is_cross else x
# k = self.to_k(context)
# v = self.to_v(context)
# q = self.reshape_heads_to_batch_dim(q)
# k = self.reshape_heads_to_batch_dim(k)
# v = self.reshape_heads_to_batch_dim(v)
# sim = torch.einsum("b i d, b j d -> b i j", q, k) * self.scale
# if mask is not None:
# mask = mask.reshape(batch_size, -1)
# max_neg_value = -torch.finfo(sim.dtype).max
# mask = mask[:, None, :].repeat(h, 1, 1)
# sim.masked_fill_(~mask, max_neg_value)
# # attention, what we cannot get enough of
# attn = sim.softmax(dim=-1)
# attn = controller(attn, is_cross, place_in_unet)
# out = torch.einsum("b i j, b j d -> b i d", attn, v)
# out = self.reshape_batch_dim_to_heads(out)
# return to_out(out)
# return forward
def ca_forward(self, place_in_unet):
to_out = self.to_out
if type(to_out) is torch.nn.modules.container.ModuleList:
to_out = self.to_out[0]
else:
to_out = self.to_out
def forward(hidden_states, encoder_hidden_states=None, attention_mask=None,temb=None,):
is_cross = encoder_hidden_states is not None
residual = hidden_states
if self.spatial_norm is not None:
hidden_states = self.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
attention_mask = self.prepare_attention_mask(attention_mask, sequence_length, batch_size)
if self.group_norm is not None:
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = self.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif self.norm_cross:
encoder_hidden_states = self.norm_encoder_hidden_states(encoder_hidden_states)
key = self.to_k(encoder_hidden_states)
value = self.to_v(encoder_hidden_states)
query = self.head_to_batch_dim(query)
key = self.head_to_batch_dim(key)
value = self.head_to_batch_dim(value)
attention_probs = self.get_attention_scores(query, key, attention_mask)
attention_probs = controller(attention_probs, is_cross, place_in_unet)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = self.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = to_out(hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if self.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / self.rescale_output_factor
return hidden_states
return forward
class DummyController:
def __call__(self, *args):
return args[0]
def __init__(self):
self.num_att_layers = 0
if controller is None:
controller = DummyController()
def register_recr(net_, count, place_in_unet):
if net_.__class__.__name__ == 'Attention':
net_.forward = ca_forward(net_, place_in_unet)
return count + 1
elif hasattr(net_, 'children'):
for net__ in net_.children():
count = register_recr(net__, count, place_in_unet)
return count
cross_att_count = 0
sub_nets = model.unet.named_children()
for net in sub_nets:
if "down" in net[0]:
cross_att_count += register_recr(net[1], 0, "down")
elif "up" in net[0]:
cross_att_count += register_recr(net[1], 0, "up")
elif "mid" in net[0]:
cross_att_count += register_recr(net[1], 0, "mid")
controller.num_att_layers = cross_att_count
def get_word_inds(text: str, word_place: int, tokenizer):
split_text = text.split(" ")
if type(word_place) is str:
word_place = [i for i, word in enumerate(split_text) if word_place == word]
elif type(word_place) is int:
word_place = [word_place]
out = []
if len(word_place) > 0:
words_encode = [tokenizer.decode([item]).strip("#") for item in tokenizer.encode(text)][1:-1]
cur_len, ptr = 0, 0
for i in range(len(words_encode)):
cur_len += len(words_encode[i])
if ptr in word_place:
out.append(i + 1)
if cur_len >= len(split_text[ptr]):
ptr += 1
cur_len = 0
return np.array(out)
def update_alpha_time_word(alpha, bounds: Union[float, Tuple[float, float]], prompt_ind: int,
word_inds: Optional[torch.Tensor]=None):
if type(bounds) is float:
bounds = 0, bounds
start, end = int(bounds[0] * alpha.shape[0]), int(bounds[1] * alpha.shape[0])
if word_inds is None:
word_inds = torch.arange(alpha.shape[2])
alpha[: start, prompt_ind, word_inds] = 0
alpha[start: end, prompt_ind, word_inds] = 1
alpha[end:, prompt_ind, word_inds] = 0
return alpha
def get_time_words_attention_alpha(prompts, num_steps,
cross_replace_steps: Union[float, Dict[str, Tuple[float, float]]],
tokenizer, max_num_words=77):
if type(cross_replace_steps) is not dict:
cross_replace_steps = {"default_": cross_replace_steps}
if "default_" not in cross_replace_steps:
cross_replace_steps["default_"] = (0., 1.)
alpha_time_words = torch.zeros(num_steps + 1, len(prompts) - 1, max_num_words)
for i in range(len(prompts) - 1):
alpha_time_words = update_alpha_time_word(alpha_time_words, cross_replace_steps["default_"],
i)
for key, item in cross_replace_steps.items():
if key != "default_":
inds = [get_word_inds(prompts[i], key, tokenizer) for i in range(1, len(prompts))]
for i, ind in enumerate(inds):
if len(ind) > 0:
alpha_time_words = update_alpha_time_word(alpha_time_words, item, i, ind)
alpha_time_words = alpha_time_words.reshape(num_steps + 1, len(prompts) - 1, 1, 1, max_num_words)
return alpha_time_words