-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathutils.py
407 lines (331 loc) · 13.5 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
import torch
import time
import numpy as np
import torchvision.transforms as transforms
from thop import profile, clever_format
import torch.nn as nn
def prep_images(images):
"""
preprocess images
Args:
images: pytorch tensor
"""
images = images.div(255.0)
images = torch.sub(images,0.5)
images = torch.mul(images,2.0)
return images
# def prep_images(images):
# """
# preprocess images
# Args:
# images: pytorch tensor
# """
# # Reference: pytorch.org/docs/stable/torchvision/models.html
#
# images = images.div(255.0)
# normalizer = transforms.Normalize(
# mean = [0.485, 0.456, 0.406],
# std = [0.229, 0.224, 0.225]
# )
#
# for i in range(images.shape[0]):
# images[i] = normalizer(images[i])
# #images = torch.sub(images,0.5)
# #images = torch.mul(images,2.0)
#
# return images
def calc_pairwise_distance(X, Y):
"""
computes pairwise distance between each element
Args:
X: [N,D]
Y: [M,D]
Returns:
dist: [N,M] matrix of euclidean distances
"""
rx=X.pow(2).sum(dim=1).reshape((-1,1))
ry=Y.pow(2).sum(dim=1).reshape((-1,1))
dist=rx-2.0*X.matmul(Y.t())+ry.t()
return torch.sqrt(dist)
def calc_pairwise_distance_3d(X, Y):
"""
computes pairwise distance between each element
Args:
X: [B,N,D]
Y: [B,M,D]
Returns:
dist: [B,N,M] matrix of euclidean distances
"""
B=X.shape[0]
rx=X.pow(2).sum(dim=2).reshape((B,-1,1))
ry=Y.pow(2).sum(dim=2).reshape((B,-1,1))
dist=rx-2.0*X.matmul(Y.transpose(1,2))+ry.transpose(1,2)
return torch.sqrt(dist)
def sincos_encoding_2d(positions,d_emb):
"""
Args:
positions: [N,2]
Returns:
positions high-dimensional representation: [N,d_emb]
"""
N=positions.shape[0]
d=d_emb//2
idxs = [np.power(1000,2*(idx//2)/d) for idx in range(d)]
idxs = torch.FloatTensor(idxs).to(device=positions.device)
idxs = idxs.repeat(N,2) #N, d_emb
pos = torch.cat([ positions[:,0].reshape(-1,1).repeat(1,d),positions[:,1].reshape(-1,1).repeat(1,d) ],dim=1)
embeddings=pos/idxs
embeddings[:,0::2]=torch.sin(embeddings[:,0::2]) # dim 2i
embeddings[:,1::2]=torch.cos(embeddings[:,1::2]) # dim 2i+1
return embeddings
def print_log(file_path,*args):
print(*args)
if file_path is not None:
with open(file_path, 'a') as f:
print(*args,file=f)
def show_config(cfg):
print_log(cfg.log_path, '=====================Config=====================')
for k,v in cfg.__dict__.items():
print_log(cfg.log_path, k,': ',v)
print_log(cfg.log_path, '======================End=======================')
def show_epoch_info(phase, log_path, info):
print_log(log_path, '')
if phase=='Test':
print_log(log_path, '====> %s at epoch #%d'%(phase, info['epoch']))
else:
print_log(log_path, '%s at epoch #%d'%(phase, info['epoch']))
print_log(log_path, 'Group Activity Accuracy: %.2f%%, Loss: %.5f, Using %.1f seconds'%(
info['activities_acc'], info['loss'], info['time']))
if 'activities_conf' in info.keys():
print_log(log_path, info['activities_conf'])
if 'activities_MPCA' in info.keys():
print_log(log_path, 'Activities MPCA:{:.2f}%'.format(info['activities_MPCA']))
if 'MAD' in info.keys():
print_log(log_path, 'MAD:{:.4f}'.format(info['MAD']))
print_log(log_path, '\n')
def log_final_exp_result(log_path, data_path, exp_result):
no_display_cfg=['num_workers', 'use_gpu', 'use_multi_gpu', 'device_list',
'batch_size_test', 'test_interval_epoch', 'train_random_seed',
'result_path', 'log_path', 'device']
with open(log_path, 'a') as f:
print('', file=f)
print('', file=f)
print('', file=f)
print('=====================Config=====================', file=f)
for k,v in exp_result['cfg'].__dict__.items():
if k not in no_display_cfg:
print( k,': ',v, file=f)
print('=====================Result======================', file=f)
print('Best result:', file=f)
print(exp_result['best_result'], file=f)
print('Cost total %.4f hours.'%(exp_result['total_time']), file=f)
print('======================End=======================', file=f)
data_dict=pickle.load(open(data_path, 'rb'))
data_dict[exp_result['cfg'].exp_name]=exp_result
pickle.dump(data_dict, open(data_path, 'wb'))
class AverageMeter(object):
"""
Computes the average value
"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
class Timer(object):
"""
class to do timekeeping
"""
def __init__(self):
self.last_time=time.time()
def timeit(self):
old_time=self.last_time
self.last_time=time.time()
return self.last_time-old_time
class ConfusionMeter(object):
"""Maintains a confusion matrix for a given calssification problem.
The ConfusionMeter constructs a confusion matrix for a multi-class
classification problems. It does not support multi-label, multi-class problems:
for such problems, please use MultiLabelConfusionMeter.
Args:
k (int): number of classes in the classification problem
normalized (boolean): Determines whether or not the confusion matrix
is normalized or not
"""
def __init__(self, k, normalized=False):
super(ConfusionMeter, self).__init__()
self.conf = np.ndarray((k, k), dtype=np.int32)
self.normalized = normalized
self.k = k
self.reset()
def reset(self):
self.conf.fill(0)
def add(self, predicted, target):
"""Computes the confusion matrix of K x K size where K is no of classes
Args:
predicted (tensor): Can be an N x K tensor of predicted scores obtained from
the model for N examples and K classes or an N-tensor of
integer values between 0 and K-1.
target (tensor): Can be a N-tensor of integer values assumed to be integer
values between 0 and K-1 or N x K tensor, where targets are
assumed to be provided as one-hot vectors
"""
predicted = predicted.cpu().numpy()
target = target.cpu().numpy()
assert predicted.shape[0] == target.shape[0], \
'number of targets and predicted outputs do not match'
if np.ndim(predicted) != 1:
assert predicted.shape[1] == self.k, \
'number of predictions does not match size of confusion matrix'
predicted = np.argmax(predicted, 1)
else:
assert (predicted.max() < self.k) and (predicted.min() >= 0), \
'predicted values are not between 1 and k'
onehot_target = np.ndim(target) != 1
if onehot_target:
assert target.shape[1] == self.k, \
'Onehot target does not match size of confusion matrix'
assert (target >= 0).all() and (target <= 1).all(), \
'in one-hot encoding, target values should be 0 or 1'
assert (target.sum(1) == 1).all(), \
'multi-label setting is not supported'
target = np.argmax(target, 1)
else:
assert (predicted.max() < self.k) and (predicted.min() >= 0), \
'predicted values are not between 0 and k-1'
# hack for bincounting 2 arrays together
x = predicted + self.k * target
bincount_2d = np.bincount(x.astype(np.int32),
minlength=self.k ** 2)
assert bincount_2d.size == self.k ** 2
conf = bincount_2d.reshape((self.k, self.k))
self.conf += conf
def value(self):
"""
Returns:
Confustion matrix of K rows and K columns, where rows corresponds
to ground-truth targets and columns corresponds to predicted
targets.
"""
if self.normalized:
conf = self.conf.astype(np.float32)
return conf / conf.sum(1).clip(min=1e-12)[:, None]
else:
return self.conf
def MPCA(conf_mat):
'''
:param conf_mat: np.ndarray((k, k), dtype=np.int32)
:return:
'''
class_sum = np.sum(conf_mat, axis = 1, dtype = np.float32)
for i in range(len(class_sum)):
class_sum[i] = np.float32(conf_mat[i][i])/np.float32(class_sum[i])
mpca = np.mean(class_sum)*100
return mpca
def MAC2FLOP(macs, params, module_name = ''):
macs, params = clever_format([macs, params], "%.3f")
print('{} MACs: {} #Params: {}'.format(module_name, macs, params))
if 'M' in macs:
flops = float(macs.replace('M', '')) * 2
flops = str(flops/1000) + 'G'
elif 'G' in macs:
flops = str(float(macs.replace('G', '')) * 2) + 'G'
print('{} GFLOPs: {} #Params: {}'.format(module_name, flops, params))
class MADmeter(object):
def __init__(self, T, N):
super(MADmeter, self).__init__()
self.T = T
self.N = N
self.B = 0
self.MAD = 0.
def generate_mask(self, features, field, field_shape = 'rect'):
if field_shape == 'rect':
B, T, N, NFB = features.shape
TN = T*N
if len(field) == 1: # shape like [3, 3] [5, 5] [7, 7] [9, 9]...
assert field[0]%2 == 1
mask = torch.zeros((TN, TN), dtype = torch.bool, device = features.device)
for i in range(TN):
x, y = i//N, i%N
for j in range(field[0]):
jx = j - field[0] // 2
if jx + x >=0:
for k in range(field[0]):
ky = k - field[0]//2
if ky + y >=0:
mask[i][(jx + x)*T + (ky + y)] = True
elif len(field) == 2 and field[0] == T and field[1] == N: # fully-connected
mask = torch.ones((TN, TN), dtype = torch.bool, device = features.device)
elif field_shape == 'dynamic': # [B, TN, k2+1, NFB]
B, TN, k2, NFB = features.shape
mask = torch.zeros((TN*k2, TN*k2), dtype=torch.bool, device=features.device)
for i in range(TN):
for j in range(k2 - 1):
mask[i*k2, i*k2 + j + 1] = True
# if len(field) == 2 and field[0] == T and field[1] == N: # fully-connected
# mask = torch.ones((TN, TN), dtype=torch.bool, device=features.device)
# else: # shape like [3, 3] [5, 5] [7, 7] [9, 9]...
# assert field[0]%2 == 1 and field[1]%2 == 1
# mask = torch.zeros((TN, TN), dtype = torch.bool, device = features.device)
# for i in range(TN):
# x, y = i//N, i%N
# for j in range(field[0]):
# jx = j - field[0] // 2
# if jx + x >=0:
# for k in range(field[0]):
# ky = k - field[0]//2
# if ky + y >=0:
# mask[i][(jx + x)*T + (ky + y)] = True
return mask
def node_select(self, features, field_shape = 'dynamic'):
if field_shape == 'dynamic':
B, TN, k2, NFB = features.shape
node_selector = torch.zeros((TN*k2, ), dtype=torch.bool, device=features.device)
for i in range(TN):
node_selector[i*k2] = True
return node_selector
def cal_MAD(self, features, field, field_shape = 'rect'):
B, T, N, NFB = features.shape
mask = self.generate_mask(features = features,
field = field,
field_shape = field_shape)
features = features.view(B, T * N, NFB)
norm = torch.norm(features, dim = 2).unsqueeze(dim = 2)
divisor = torch.bmm(norm, norm.transpose(1, 2))
dist_array = 1. - torch.bmm(features, features.transpose(1, 2)) / (divisor + 1e-8)
dist_array = dist_array * mask.float()
# print(mask)
MAD = (torch.sum(dist_array, dim = 2) / (torch.sum(mask.float(), dim = 1) + 1e-8) ).detach() # B, TN
# print(MAD)
if field_shape == 'dynamic':
node_selector = self.node_select(features.view(B, T, N, NFB), field_shape = 'dynamic')
batch_MAD = MAD[node_selector[None,:].repeat((B, 1))].view(B, -1)
self.MAD += torch.sum(torch.mean(batch_MAD, dim = 1), dim = 0)
else:
self.MAD += torch.sum(torch.mean(MAD, dim = 1))
self.B += B
def output_MAD(self):
return self.MAD / self.B
if __name__=='__main__':
# Test MPCA
# x = np.ndarray((3,3), dtype = np.int32)
# x[0] = [1, 2, 3]
# x[1] = [1, 2, 3]
# x[2] = [2, 2, 3]
# print(MPCA(x))
# Test dynamic MAD
# Mad = MADmeter(10, 12)
# f = torch.randn((1, 120, 26, 1024))
# Mad.cal_MAD(f, [1, 25], field_shape = 'dynamic')
# print(Mad.output_MAD())
Mad = MADmeter(10, 12)
f = torch.randn((1, 10, 12, 1024))
Mad.cal_MAD(f, [10, 12], field_shape='rect')
print(Mad.output_MAD())