-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
78 lines (66 loc) · 2.79 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import os
from PIL import Image
from torch.utils.data import Dataset
# You must change your own Kitti dataset path before training
class Kittiset(Dataset):
def __init__(self, data_root, mode, transform = None):
super(Kittiset, self).__init__()
self.root = data_root
self.mode = mode
self.transform = transform
self.datalist = []
if mode == 'train':
with open('./eigen_full/train_files.txt', 'r') as trainlist:
for line in trainlist.readlines():
_, _ , side =line.split(' ')
if side == 'l\n':
self.datalist.append(line)
trainlist.close()
if mode == 'val':
with open('./eigen_full/val_files.txt', 'r') as vallist:
for line in vallist.readlines():
_, _ , side =line.split(' ')
if side == 'l\n':
self.datalist.append(line)
vallist.close()
if mode == 'test':
with open('./eigen_full/test_files.txt', 'r') as testlist:
for line in testlist.readlines():
self.datalist.append(line)
testlist.close()
def __len__(self):
return self.datalist.__len__()
def __getitem__(self, index):
filedict, imagename, side = self.datalist[index].split(' ')
leftroot = os.path.join(self.root, filedict, "image_02/data/{:010d}.png".format(int(imagename)))
limg = Image.open(leftroot).convert('RGB')
if self.mode != 'test': # train or val
rightroot = os.path.join(self.root, filedict, "image_03/data/{:010d}.png".format(int(imagename)))
rimg = Image.open(rightroot).convert('RGB')
stereos = {'limg': limg, 'rimg': rimg}
if self.transform:
stereos = self.transform(stereos)
return stereos
else:
return stereos
if self.mode == 'test':
if self.transform:
limg = self.transform(limg)
return limg
else:
return limg
if __name__ == '__main__':
data_root = 'E:/dataset/KITTI/raw'
trainloader = Kittiset(data_root, mode = 'train')
valloader = Kittiset(data_root, mode= 'val')
import matplotlib.pyplot as plt
from transforms import image_transforms
img = trainloader.__getitem__(0)
#print(trainloader.__len__())
#testloader = Kittiset(data_root, mode= 'test', transform= image_transforms(mode= 'test'))
plt.imshow(trainloader.__getitem__(1)['limg'])
#img = testloader.__getitem__(1)
#print(img.size())
#left = img[0,:,:,:]
#plt.imshow(img)
plt.show()