-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhappyfaces.py
39 lines (30 loc) · 1.35 KB
/
happyfaces.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import pandas as pd
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
## below from http://t-redactyl.io/blog/2017/04/applying-sentiment-analysis-with-vader-and-the-twitter-api.html
def happyfacer(df):
analyzer = SentimentIntensityAnalyzer()
vs_comment = []
vs_compound = []
vs_pos = []
vs_neu = []
vs_neg = []
vs_repo = []
vs_user = []
for i in range(0, len(df.comments)):
vs_user.append(df.user[i])
vs_repo.append(df.repo[i])
vs_comment.append(df.comments[i])
vs_compound.append(analyzer.polarity_scores(df.comments[i])['compound'])
vs_pos.append(analyzer.polarity_scores(df.comments[i])['pos'])
vs_neu.append(analyzer.polarity_scores(df.comments[i])['neu'])
vs_neg.append(analyzer.polarity_scores(df.comments[i])['neg'])
sentiment_df = pd.DataFrame({
'User': vs_user,
'Repo': vs_repo,
'Comment': vs_comment,
'Compound': vs_compound,
'Positive': vs_pos,
'Neutral': vs_neu,
'Negative': vs_neg})
sentiment_df = sentiment_df[['User','Repo','Comment', 'Compound', 'Positive', 'Neutral', 'Negative']]
return sentiment_df.groupby('Repo')[['Compound']].mean()