-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmy_track.py
197 lines (154 loc) · 6.2 KB
/
my_track.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
from loguru import logger
import sys
import cv2
import torch
from my_predictor import Predictor
import sys
import os
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from my_exp import Exp
from visualize import plot_tracking
from tracker.byte_tracker import BYTETracker
from detectors.yolox.tracking_utils.timer import Timer
import argparse
import os
import time
import importlib
IMAGE_EXT = [".jpg", ".jpeg", ".webp", ".bmp", ".png"]
def make_parser():
parser = argparse.ArgumentParser("ByteTrack Demo!")
parser.add_argument(
"--detector",default="yolox", help="choose your detector, eg. yolox-s, yolox-m, yolox-l, yolox-x"
)
parser.add_argument(
"--path", default="/home/workspace/ByteTrack/videos/palace.mp4", help="path to images or video"
)
parser.add_argument(
"--save_result",
action="store_true",
help="whether to save the inference result of image/video",
)
parser.add_argument(
"--vocabulary",
default='lvis',
type=str,
help="vocabulary of the dataset. Now support lvis and coco and custom.",
)
parser.add_argument(
"--thing_classes",
default=None,
type=str,
help="predict only these thing classes. Only valid when vocabulary is custom. Using ',' to split classes.",
)
# exp file
parser.add_argument(
"-f",
"--exp_file",
default=None,
type=str,
help="pls input your experiment description file",
)
parser.add_argument(
"--device",
default="gpu",
type=str,
help="device to run our model, can either be cpu or gpu",
)
# tracking args
parser.add_argument("--track_thresh", type=float, default=0.1, help="tracking confidence threshold")
parser.add_argument("--track_buffer", type=int, default=30, help="the frames for keep lost tracks")
parser.add_argument("--match_thresh", type=float, default=0.8, help="matching threshold for tracking")
parser.add_argument('--min-box-area', type=float, default=10, help='filter out tiny boxes')
parser.add_argument("--mot20", dest="mot20", default=False, action="store_true", help="test mot20.")
return parser
def imageflow_demo(predictor, vis_folder, current_time, args):
cap = cv2.VideoCapture(args.path)
# cap = cv2.VideoCapture(1)
width = cap.get(cv2.CAP_PROP_FRAME_WIDTH) # float
height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT) # float
fps = cap.get(cv2.CAP_PROP_FPS)
save_folder = os.path.join(
vis_folder, time.strftime("%Y_%m_%d_%H_%M_%S", current_time)
)
os.makedirs(save_folder, exist_ok=True)
save_path = os.path.join(save_folder, args.path.split("/")[-1])
logger.info(f"video save_path is {save_path}")
vid_writer = cv2.VideoWriter(
save_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (int(width), int(height))
)
tracker = BYTETracker(args, frame_rate=30)
timer = Timer()
frame_id = 0
results = []
while True:
if frame_id % 1 == 0:
logger.info('Processing frame {} ({:.2f} fps)'.format(frame_id, 1. / max(1e-5, timer.average_time)))
ret_val, frame = cap.read()
if ret_val:
outputs, img_info = predictor.inference(frame, timer)
tracker.isyolox=(predictor.exp._model == "yolox")
# print(outputs[0])
if outputs[0] is not None:
online_targets = tracker.update(outputs[0], [img_info['height'], img_info['width']], exp.test_size)
online_tlwhs = []
online_ids = []
online_scores = []
online_clss=[]
for t in online_targets:
tlwh = t.tlwh
tid = t.track_id
vertical = tlwh[2] / tlwh[3] > 1.6
if tlwh[2] * tlwh[3] > args.min_box_area and not vertical:
online_tlwhs.append(tlwh)
online_ids.append(tid)
online_scores.append(t.score)
online_clss.append(t.cls)
timer.toc()
# save results
results.append((frame_id + 1, online_tlwhs, online_ids, online_scores,online_clss))
if predictor.exp._model == "ovd":
thing_classes=predictor.model.model.metadata.thing_classes
else:
thing_classes=None
online_im = plot_tracking(img_info['raw_img'], online_tlwhs, online_ids, online_clss,frame_id=frame_id + 1,
fps=1. / timer.average_time,model_type=predictor.exp._model,thing_classes=thing_classes)
cv2.waitKey(1)
else:
timer.toc()
online_im = img_info['raw_img']
if args.save_result:
vid_writer.write(online_im)
ch = cv2.waitKey(1)
if ch == 27 or ch == ord("q") or ch == ord("Q"):
print("exit1")
break
else:
print("exit2")
break
frame_id += 1
def main(exp, args):
torch.cuda.set_device('cuda:0')
file_name = exp.output_dir
os.makedirs(file_name, exist_ok=True)
exp.vocabulary = args.vocabulary
if args.vocabulary=='custom':
if args.thing_classes is None:
raise ValueError("Custom vocabulary must be specified by --thing_classes")
else:
exp.thing_classes.clear()
thing_classes = args.thing_classes.split(',')
for thing_class in thing_classes:
exp.thing_classes.append(thing_class)
if args.save_result:
vis_folder = os.path.join(file_name, "track_vis")
os.makedirs(vis_folder, exist_ok=True)
args.device = "cuda"
logger.info("Args: {}".format(args))
exp.get_model_from_args(args)
predictor = Predictor(None, exp)
current_time = time.localtime()
imageflow_demo(predictor, vis_folder, current_time, args)
if __name__ == "__main__":
args = make_parser().parse_args()
exp = Exp()
main(exp, args)