From 5dacde5579da7dadbff0926da1a4584b29d60590 Mon Sep 17 00:00:00 2001 From: Morgan Schwartz Date: Tue, 17 Dec 2024 10:39:06 -0500 Subject: [PATCH 1/8] Add test description back to notebook --- examples/test-cases.ipynb | 9 +++++++++ 1 file changed, 9 insertions(+) diff --git a/examples/test-cases.ipynb b/examples/test-cases.ipynb index 26ecbf0..9083fc0 100644 --- a/examples/test-cases.ipynb +++ b/examples/test-cases.ipynb @@ -7,6 +7,15 @@ "# Standard Test Cases" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To facilitate testing, we have provided a suite of canonical examples that cover the basic, simple scenarios that can occur in segmentation and tracking. Here we describe them and show visualizations of each case.\n", + "\n", + "Matchers should test all the segmentation cases. Metrics should test all the tracking cases. The examples are generated by functions in the `tests/examples/` directory." + ] + }, { "cell_type": "code", "execution_count": null, From e708dd369528644cfbe28932dae9163636dd6ec1 Mon Sep 17 00:00:00 2001 From: Morgan Schwartz Date: Tue, 17 Dec 2024 11:18:19 -0500 Subject: [PATCH 2/8] Add division test cases --- tests/examples/example_matched_graphs.py | 255 +++++++++++++++++++++++ 1 file changed, 255 insertions(+) diff --git a/tests/examples/example_matched_graphs.py b/tests/examples/example_matched_graphs.py index ce7eab5..2cafe36 100644 --- a/tests/examples/example_matched_graphs.py +++ b/tests/examples/example_matched_graphs.py @@ -200,3 +200,258 @@ def get_division_graphs(): mapper = [("1_0", "1_0"), ("1_1", "1_1"), ("2_4", "2_4"), ("3_4", "3_4")] return G1, G2, mapper + + +def basic_division_t0(start_id=1, y_offset=0, frame_key="t", location_keys=("y")): + nodes = [ + (start_id, {frame_key: 0, location_keys[0]: y_offset}), + (start_id + 1, {frame_key: 1, location_keys[0]: y_offset + 0.5}), + (start_id + 2, {frame_key: 1, location_keys[0]: y_offset - 0.5}), + (start_id + 3, {frame_key: 2, location_keys[0]: y_offset + 0.5}), + (start_id + 4, {frame_key: 2, location_keys[0]: y_offset - 0.5}), + ] + edges = [ + (start_id, start_id + 1), + (start_id, start_id + 2), + (start_id + 1, start_id + 3), + (start_id + 2, start_id + 4), + ] + graph = nx.DiGraph() + graph.add_nodes_from(nodes) + graph.add_edges_from(edges) + + return TrackingGraph(graph, frame_key=frame_key, location_keys=location_keys) + + +def basic_division_t1(start_id=1, y_offset=0, frame_key="t", location_keys=("y")): + nodes = [ + (start_id, {frame_key: 0, location_keys[0]: y_offset}), + (start_id + 1, {frame_key: 1, location_keys[0]: y_offset}), + (start_id + 2, {frame_key: 2, location_keys[0]: y_offset + 0.5}), + (start_id + 3, {frame_key: 2, location_keys[0]: y_offset - 0.5}), + ] + edges = [ + (start_id, start_id + 1), + (start_id + 1, start_id + 2), + (start_id + 1, start_id + 3), + ] + graph = nx.DiGraph() + graph.add_nodes_from(nodes) + graph.add_edges_from(edges) + + return TrackingGraph(graph, frame_key=frame_key, location_keys=location_keys) + + +def basic_division_t2(start_id=1, y_offset=0, frame_key="t", location_keys=("y")): + nodes = [ + (start_id, {frame_key: 0, location_keys[0]: y_offset}), + (start_id + 1, {frame_key: 1, location_keys[0]: y_offset}), + (start_id + 2, {frame_key: 2, location_keys[0]: y_offset}), + (start_id + 3, {frame_key: 3, location_keys[0]: y_offset + 0.5}), + (start_id + 4, {frame_key: 3, location_keys[0]: y_offset - 0.5}), + ] + edges = [ + (start_id, start_id + 1), + (start_id + 1, start_id + 2), + (start_id + 2, start_id + 3), + (start_id + 2, start_id + 4), + ] + graph = nx.DiGraph() + graph.add_nodes_from(nodes) + graph.add_edges_from(edges) + + return TrackingGraph(graph, frame_key=frame_key, location_keys=location_keys) + + +def basic_division(t_div, start_id=1, y_offset=0, frame_key="t", location_keys=("y")): + if t_div == 0: + return basic_division_t0(start_id, y_offset, frame_key, location_keys) + elif t_div == 1: + return basic_division_t1(start_id, y_offset, frame_key, location_keys) + elif t_div == 2: + return basic_division_t2(start_id, y_offset, frame_key, location_keys) + + +def longer_division(t_div, start_id=1, y_offset=0, frame_key="t", location_keys=("y")): + nodes = [] + nid = start_id + for t in range(5): + if t <= t_div: + nodes.append((nid, {frame_key: t, location_keys[0]: y_offset})) + nid += 1 + else: + nodes.extend( + [ + (nid, {frame_key: t, location_keys[0]: y_offset + 0.5}), + (nid + 1, {frame_key: t, location_keys[0]: y_offset - 0.5}), + ] + ) + nid += 2 + edges = [] + for t in range(4): + if t < t_div: + edges.append((start_id + t, start_id + t + 1)) + elif t == t_div: + edges.extend( + [(start_id + t, start_id + t + 1), (start_id + t, start_id + t + 2)] + ) + else: + delta = start_id + t_div + 2 * (t - t_div) - 1 + edges.extend([(delta, delta + 2), (delta + 1, delta + 3)]) + + graph = nx.DiGraph() + graph.add_nodes_from(nodes) + graph.add_edges_from(edges) + + return TrackingGraph(graph, frame_key=frame_key, location_keys=location_keys) + + +def empty_pred_div(t_div): + gt = basic_division(t_div) + pred = TrackingGraph(nx.DiGraph()) + mapping = [] + return Matched(gt, pred, mapping, {}) + + +def empty_gt_div(t_div): + gt = TrackingGraph(nx.DiGraph()) + pred = basic_division(t_div) + mapping = [] + return Matched(gt, pred, mapping, {}) + + +def good_div(t_div): + gt = basic_division(t_div) + start_id = max(gt.graph.nodes) + 1 + pred = basic_division(t_div, start_id=start_id, y_offset=0.5) + mapping = list(zip(range(1, start_id), range(start_id, start_id * 2))) + return Matched(gt, pred, mapping, {}) + + +def fp_div(t_div): + # t_div either 0 or 1 + gt = basic_division(t_div) + start_id = max(gt.graph.nodes) + 1 + pred = basic_division(t_div, start_id=start_id, y_offset=0.5) + mapping = list(zip(range(1, start_id), range(start_id, start_id * 2))) + if t_div == 0: + gt.graph.remove_edge(1, 2) + elif t_div == 1: + gt.graph.remove_edge(2, 3) + return Matched(gt, pred, mapping, {}) + + +def one_child(t_div): + # t_div either 0 or 1 + gt = basic_division(t_div) + start_id = max(gt.graph.nodes) + 1 + pred = basic_division(t_div, start_id=start_id, y_offset=0.5) + mapping = list(zip(range(1, start_id), range(start_id, start_id * 2))) + pred.graph.remove_edge(6, 7) + return Matched(gt, pred, mapping, {}) + + +def no_children(t_div): + # t_div either 0 or 1 + gt = basic_division(t_div) + start_id = max(gt.graph.nodes) + 1 + pred = basic_division(t_div, start_id=start_id, y_offset=0.5) + mapping = list(zip(range(1, start_id), range(start_id, start_id * 2))) + pred.graph.remove_edge(6, 7) + pred.graph.remove_edge(6, 8) + return Matched(gt, pred, mapping, {}) + + +def wrong_child(t_div): + # t_div either 0 or 1 + gt_graph = basic_division(t_div).graph + child_start_id = max(gt_graph.nodes) + # Add additional gt node and/or edge for wrong child + nodes = [ + (child_start_id + 1, {"t": t_div + 1, "y": -0.25}), + (child_start_id + 2, {"t": t_div + 2, "y": -0.25}), + ] + if t_div == 0: + gt_graph.add_nodes_from(nodes) + gt_graph.add_edge(child_start_id + 1, child_start_id + 2) + elif t_div == 1: + gt_graph.add_nodes_from(nodes[0:1]) + gt = TrackingGraph(gt_graph, frame_key="t", location_keys=("y")) + start_id = max(gt.graph.nodes) + 1 + pred = basic_division(t_div, start_id=start_id, y_offset=0.5) + + # mapping of the two basic div graphs + mapping = list(zip(range(1, child_start_id + 1), range(start_id, start_id * 2))) + # remove mapping to one of the correct daughters and add to wrong daughter + if t_div == 0: + mapping.remove((3, 10)) + mapping.remove((5, 12)) + mapping.extend([(6, 10), (7, 12)]) + elif t_div == 1: + mapping.remove((4, 9)) + mapping.append((5, 9)) + return Matched(gt, pred, mapping, {}) + + +def div_1early_end(): + gt = longer_division(1) + start_id = max(gt.nodes) + 1 + pred = longer_division(0, start_id=start_id, y_offset=0.75) + mapping = [(1, 9), (2, 11), (4, 13), (6, 15), (8, 17), (3, 12), (5, 14), (7, 16)] + return Matched(gt, pred, mapping, {}) + + +def div_1early_mid(): + gt = longer_division(2) + start_id = max(gt.nodes) + 1 + pred = longer_division(1, start_id=start_id, y_offset=0.75) + mapping = [(1, 8), (2, 9), (3, 11), (5, 13), (7, 15), (4, 12), (6, 14)] + return Matched(gt, pred, mapping, {}) + + +def div_2early_end(): + gt = longer_division(2) + start_id = max(gt.nodes) + 1 + pred = longer_division(0, start_id=start_id, y_offset=0.75) + mapping = [(1, 8), (2, 10), (3, 12), (5, 14), (7, 16), (4, 13), (6, 15)] + return Matched(gt, pred, mapping, {}) + + +def div_2early_mid(): + gt = longer_division(3) + start_id = max(gt.nodes) + 1 + pred = longer_division(1, start_id=start_id, y_offset=0.75) + mapping = [(1, 7), (2, 8), (3, 10), (4, 12), (6, 14), (5, 13)] + return Matched(gt, pred, mapping, {}) + + +def div_1late_end(): + gt = longer_division(0) + start_id = max(gt.nodes) + 1 + pred = longer_division(1, start_id=start_id, y_offset=0.75) + mapping = [(1, 10), (2, 11), (4, 12), (6, 14), (8, 16), (5, 13), (7, 15), (9, 17)] + return Matched(gt, pred, mapping, {}) + + +def div_1late_mid(): + gt = longer_division(1) + start_id = max(gt.nodes) + 1 + pred = longer_division(2, start_id=start_id, y_offset=0.75) + mapping = [(1, 9), (2, 10), (3, 11), (6, 13), (8, 15), (5, 12), (7, 14)] + return Matched(gt, pred, mapping, {}) + + +def div_2late_end(): + gt = longer_division(0) + start_id = max(gt.nodes) + 1 + pred = longer_division(2, start_id=start_id, y_offset=0.75) + mapping = [(1, 10), (2, 11), (4, 12), (6, 13), (8, 15), (7, 14), (9, 16)] + return Matched(gt, pred, mapping, {}) + + +def div_2late_mid(): + gt = longer_division(1) + start_id = max(gt.nodes) + 1 + pred = longer_division(3, start_id=start_id, y_offset=0.75) + mapping = [(1, 9), (2, 10), (3, 11), (5, 12), (7, 13), (8, 14)] + return Matched(gt, pred, mapping, {}) From dd1d43863ea5bec64205647c1b5ef1bc646f77fe Mon Sep 17 00:00:00 2001 From: Morgan Schwartz Date: Tue, 17 Dec 2024 11:23:07 -0500 Subject: [PATCH 3/8] Add additional context to testing non sequential ids --- tests/matchers/test_iou.py | 6 +++++- 1 file changed, 5 insertions(+), 1 deletion(-) diff --git a/tests/matchers/test_iou.py b/tests/matchers/test_iou.py index bf5419b..81388bc 100644 --- a/tests/matchers/test_iou.py +++ b/tests/matchers/test_iou.py @@ -135,7 +135,11 @@ def test_input_error(self): "data", [ex_segs.no_overlap_2d(), ex_segs.no_overlap_3d()], ids=["2D", "3D"] ) def test_non_sequential(self, data): - # test when the segmentation ids are high numbers (the lower numbers should never appear) + """test when the segmentation ids are high numbers (the lower numbers should never appear) + At one point dummy nodes introduced from padding the iou matrix were appearing in the final + matching + See https://github.com/Janelia-Trackathon-2023/traccuracy/pull/173#discussion_r1882231345 + """ gt, pred = data[0], data[1] # Change id of segmentation to non sequntial high value gt[gt == 1] = 100 From 5b653dfb89ab6d00e67df800479ab9753909a252 Mon Sep 17 00:00:00 2001 From: Morgan Schwartz Date: Tue, 17 Dec 2024 11:37:52 -0500 Subject: [PATCH 4/8] Annotate div cases with one to one matching --- tests/examples/graphs.py | 15 +++++++++++++++ 1 file changed, 15 insertions(+) diff --git a/tests/examples/graphs.py b/tests/examples/graphs.py index 0a59b5d..737514b 100644 --- a/tests/examples/graphs.py +++ b/tests/examples/graphs.py @@ -264,6 +264,7 @@ def basic_division_t2(start_id=1, y_offset=0, frame_key="t", location_keys=("y") def basic_division(t_div, start_id=1, y_offset=0, frame_key="t", location_keys=("y")): + """one to one""" if t_div == 0: return basic_division_t0(start_id, y_offset, frame_key, location_keys) elif t_div == 1: @@ -273,6 +274,7 @@ def basic_division(t_div, start_id=1, y_offset=0, frame_key="t", location_keys=( def longer_division(t_div, start_id=1, y_offset=0, frame_key="t", location_keys=("y")): + """one to one""" nodes = [] nid = start_id for t in range(5): @@ -321,6 +323,7 @@ def empty_gt_div(t_div): def good_div(t_div): + """one to one""" gt = basic_division(t_div) start_id = max(gt.graph.nodes) + 1 pred = basic_division(t_div, start_id=start_id, y_offset=0.5) @@ -329,6 +332,7 @@ def good_div(t_div): def fp_div(t_div): + """one to one""" # t_div either 0 or 1 gt = basic_division(t_div) start_id = max(gt.graph.nodes) + 1 @@ -342,6 +346,7 @@ def fp_div(t_div): def one_child(t_div): + """one to one""" # t_div either 0 or 1 gt = basic_division(t_div) start_id = max(gt.graph.nodes) + 1 @@ -352,6 +357,7 @@ def one_child(t_div): def no_children(t_div): + """one to one""" # t_div either 0 or 1 gt = basic_division(t_div) start_id = max(gt.graph.nodes) + 1 @@ -363,6 +369,7 @@ def no_children(t_div): def wrong_child(t_div): + """one to one""" # t_div either 0 or 1 gt_graph = basic_division(t_div).graph child_start_id = max(gt_graph.nodes) @@ -394,6 +401,7 @@ def wrong_child(t_div): def div_1early_end(): + """one to one""" gt = longer_division(1) start_id = max(gt.nodes) + 1 pred = longer_division(0, start_id=start_id, y_offset=0.75) @@ -402,6 +410,7 @@ def div_1early_end(): def div_1early_mid(): + """one to one""" gt = longer_division(2) start_id = max(gt.nodes) + 1 pred = longer_division(1, start_id=start_id, y_offset=0.75) @@ -410,6 +419,7 @@ def div_1early_mid(): def div_2early_end(): + """one to one""" gt = longer_division(2) start_id = max(gt.nodes) + 1 pred = longer_division(0, start_id=start_id, y_offset=0.75) @@ -418,6 +428,7 @@ def div_2early_end(): def div_2early_mid(): + """one to one""" gt = longer_division(3) start_id = max(gt.nodes) + 1 pred = longer_division(1, start_id=start_id, y_offset=0.75) @@ -426,6 +437,7 @@ def div_2early_mid(): def div_1late_end(): + """one to one""" gt = longer_division(0) start_id = max(gt.nodes) + 1 pred = longer_division(1, start_id=start_id, y_offset=0.75) @@ -434,6 +446,7 @@ def div_1late_end(): def div_1late_mid(): + """one to one""" gt = longer_division(1) start_id = max(gt.nodes) + 1 pred = longer_division(2, start_id=start_id, y_offset=0.75) @@ -442,6 +455,7 @@ def div_1late_mid(): def div_2late_end(): + """one to one""" gt = longer_division(0) start_id = max(gt.nodes) + 1 pred = longer_division(2, start_id=start_id, y_offset=0.75) @@ -450,6 +464,7 @@ def div_2late_end(): def div_2late_mid(): + """one to one""" gt = longer_division(1) start_id = max(gt.nodes) + 1 pred = longer_division(3, start_id=start_id, y_offset=0.75) From 2cf71c8bec02fb1027e592d78f0a4d37aa50a74c Mon Sep 17 00:00:00 2001 From: Morgan Schwartz Date: Tue, 17 Dec 2024 11:38:24 -0500 Subject: [PATCH 5/8] Add division cases to collection of plots of test cases --- examples/test-cases.ipynb | 243 ++++++++++++++++++++++++++++++++++---- 1 file changed, 220 insertions(+), 23 deletions(-) diff --git a/examples/test-cases.ipynb b/examples/test-cases.ipynb index 9083fc0..3e2195b 100644 --- a/examples/test-cases.ipynb +++ b/examples/test-cases.ipynb @@ -18,7 +18,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 23, "metadata": {}, "outputs": [], "source": [ @@ -33,6 +33,7 @@ "\n", "sys.path.append(\"../tests\")\n", "\n", + "import examples.graphs as ex_graphs\n", "from examples.graphs import (\n", " empty_gt,\n", " empty_pred,\n", @@ -55,7 +56,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 24, "metadata": { "nbsphinx": "hidden" }, @@ -67,7 +68,7 @@ "\n", "def plot_graph(ax, graph: TrackingGraph, color=\"black\"):\n", " if graph.graph.number_of_nodes() == 0:\n", - " return 0\n", + " return [0, 0], [0, 0]\n", " ids = list(graph.graph.nodes)\n", " x = [graph.graph.nodes[node][\"t\"] for node in ids]\n", " y = [graph.graph.nodes[node][\"y\"] for node in ids]\n", @@ -80,7 +81,7 @@ " ys = [graph.graph.nodes[u][\"y\"], graph.graph.nodes[v][\"y\"]]\n", " ax.plot(xs, ys, color=color)\n", "\n", - " return max(y)\n", + " return [max(x), min(x)], [max(y), min(y)]\n", "\n", "\n", "def plot_matching(ax, matched, color=\"grey\"):\n", @@ -103,11 +104,13 @@ " fig, ax = plt.subplots(1, len(examples) + 1, figsize=(3 * len(examples) + 1, 2))\n", " for i, matched in enumerate(examples):\n", " axis = ax[i]\n", - " maxY = plot_graph(axis, matched.gt_graph, color=gt_color)\n", - " maxY = max([maxY, plot_graph(axis, matched.pred_graph, color=pred_color)])\n", + " xbounds, ybounds = plot_graph(axis, matched.gt_graph, color=gt_color)\n", + " bounds = plot_graph(axis, matched.pred_graph, color=pred_color)\n", + " xbounds.extend(bounds[0])\n", + " ybounds.extend(bounds[1])\n", " plot_matching(axis, matched, color=mapping_color)\n", - " axis.set_ybound(-0.5, maxY + 0.5)\n", - " axis.set_xbound(-0.5, 2.5)\n", + " axis.set_ybound(min(ybounds) - 0.5, max(ybounds) + 0.5)\n", + " axis.set_xbound(min(xbounds) - 0.5, max(xbounds) + 0.5)\n", " axis.set_ylabel(\"Y Value\")\n", " axis.set_xlabel(\"Time\")\n", "\n", @@ -132,7 +135,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 25, "metadata": {}, "outputs": [ { @@ -152,7 +155,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 26, "metadata": {}, "outputs": [ { @@ -172,7 +175,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 27, "metadata": {}, "outputs": [ { @@ -192,7 +195,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 28, "metadata": {}, "outputs": [ { @@ -212,7 +215,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 29, "metadata": {}, "outputs": [ { @@ -232,7 +235,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 30, "metadata": {}, "outputs": [ { @@ -252,7 +255,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 31, "metadata": {}, "outputs": [ { @@ -272,7 +275,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 32, "metadata": {}, "outputs": [ { @@ -292,7 +295,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 33, "metadata": {}, "outputs": [ { @@ -310,6 +313,200 @@ "plot_matched([one_to_two(t) for t in [0, 1, 2]], \"One Ground Truth to Two Predictions\")" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Division Cases" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9AAAADXCAYAAADyQ7nNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABnpElEQVR4nO3dd1gUV9sG8HvpKM0uHWzYS2yxRYwtFmI3sWKNUVSILWqiosYWNRE09gi+UdSoYI8ldk2skcQKahRLsAsoSnH3fH/Mx+pKW2A79++69tKdnZ19zjLPmT0zZ86RCSEEiIiIiIiIiChHZvoOgIiIiIiIiMgYsAFNREREREREpAY2oImIiIiIiIjUwAY0ERERERERkRrYgCYiIiIiIiJSAxvQRERERERERGpgA5qIiIiIiIhIDWxAExEREREREamBDWgiIiIiIiIiNbABTUREZAQGDBgALy+vPL/v9u3bkMlkCA8Pz9P7fH194evrm+fPIyIiMmVsQBMRkc7dvHkTw4YNQ7ly5WBjYwMHBwc0adIEISEheP36tb7Dy7MrV64gODgYt2/fVmv94OBgyGQy5aNIkSLw8PCAn58fwsLCkJqaqt2AiYiIKF8s9B0AEREVLrt370aPHj1gbW2N/v37o3r16khLS8OJEycwfvx4XL58GStXrtR3mHly5coVTJ8+Hb6+vnm6Srxs2TLY2dkhNTUV9+/fx759+zBo0CAsWrQIu3btgru7u3LdVatWQaFQ5Dk2T09PvH79GpaWlnl63/79+/P8WURERKaODWgiItKZW7du4fPPP4enpycOHToEZ2dn5WsBAQG4ceMGdu/eXeDPEUIgJSUFtra2mV5LSUmBlZUVzMz03wmre/fuKFmypPL51KlTsX79evTv3x89evTAqVOnlK/ltQGcQSaTwcbGJs/vs7KyytfnERERmTL9/3ogIqJC4/vvv8fLly/x888/qzSeM1SoUAGBgYHK52/evMHMmTNRvnx5WFtbw8vLC5MnT87UxdnLywsdO3bEvn37UK9ePdja2mLFihU4cuQIZDIZNm7ciG+//Raurq4oUqQIkpKSAACnT5/GJ598AkdHRxQpUgTNmzfHyZMnM8V1//59DB48GC4uLrC2toa3tzeGDx+OtLQ0hIeHo0ePHgCAFi1aKLtlHzlyJF/fUZ8+fTBkyBCcPn0aBw4cUC5/9x7o9PR0FC9eHAMHDsz0/qSkJNjY2GDcuHEAsr4H+sGDBxg4cCDc3NxgbW0NZ2dndOrUSaULelb3QD969AiDBw9GmTJlYGNjg1q1amHt2rUq62R83oIFC7By5Url365+/fo4e/asyrrqxEFERGRIeAWaiIh0ZufOnShXrhwaN26s1vpDhgzB2rVr0b17d4wdOxanT5/GnDlzcPXqVURFRamsGxMTg169emHYsGEYOnQofHx8lK/NnDkTVlZWGDduHFJTU2FlZYVDhw6hXbt2qFu3LqZNmwYzMzOEhYXh448/xvHjx9GgQQMAwH///YcGDRogISEBX3zxBSpXroz79+9jy5YtePXqFT766COMHj0aoaGhmDx5MqpUqQIAyn/zo1+/fli5ciX279+P1q1bZ3rd0tISXbp0QWRkJFasWKFytXjbtm1ITU3F559/nu32u3XrhsuXL2PUqFHw8vLCo0ePcODAAdy5cyfbLuivX7+Gr68vbty4gZEjR8Lb2xubN2/GgAEDkJCQoHLiAwAiIiLw4sULDBs2DDKZDN9//z26du2Kf//9V3k1PT9xEBER6ZUgIiLSgcTERAFAdOrUSa31o6OjBQAxZMgQleXjxo0TAMShQ4eUyzw9PQUAsXfvXpV1Dx8+LACIcuXKiVevXimXKxQKUbFiRdG2bVuhUCiUy1+9eiW8vb1F69atlcv69+8vzMzMxNmzZzPFmPHezZs3CwDi8OHDapVt2rRpAoB4/Phxlq8/f/5cABBdunRRLvP39xeenp7K5/v27RMAxM6dO1Xe2759e1GuXDnl81u3bgkAIiwsTGXb8+fPzzHG5s2bi+bNmyufL1q0SAAQ69atUy5LS0sTjRo1EnZ2diIpKUnl80qUKCGePXumXHf79u0q8aobBxERkSFhF24iItKJjG7T9vb2aq2/Z88eAMCYMWNUlo8dOxYAMt0r7e3tjbZt22a5LX9/f5X7oaOjo3H9+nX07t0bT58+xZMnT/DkyRMkJyejZcuWOHbsGBQKBRQKBbZt2wY/Pz/Uq1cv03ZlMplaZckrOzs7AMCLFy+yXefjjz9GyZIlsWnTJuWy58+f48CBA/jss8+yfZ+trS2srKxw5MgRPH/+XO2Y9uzZg7Jly6JXr17KZZaWlhg9ejRevnyJo0ePqqz/2WefoVixYsrnzZo1AwD8+++/BYqDiIhIn9iFm4iIdMLBwQFAzo3Cd8XFxcHMzAwVKlRQWV62bFk4OTkhLi5OZbm3t3e223r/tevXrwOQGtbZSUxMRFpaGpKSklC9enW1YtaUly9fAsj5ZIOFhQW6deuGiIgIpKamwtraGpGRkUhPT8+xAW1tbY158+Zh7NixKFOmDD788EN07NgR/fv3R9myZbN9X1xcHCpWrJhp8LWMrurv/z08PDxUnmc0pjMay/mNg4iISJ94BZqIiHTCwcEBLi4uuHTpUp7ep+5V3qxG3M7utYzpoObPn48DBw5k+ci4CqwPGd/R+ycP3vf555/jxYsX+O233wAAv/76KypXroxatWrl+L6goCDExsZizpw5sLGxwZQpU1ClShVcuHBBMwUAYG5unuVyIYRO4yAiItIkNqCJiEhnOnbsiJs3b+LPP//MdV1PT08oFArl1eIMDx8+REJCAjw9PfMdR/ny5QFIjfpWrVpl+bC0tESpUqXg4OCQa6Nf0125f/nlFwDItkt6ho8++gjOzs7YtGkTnjx5gkOHDuV49fld5cuXx9ixY7F//35cunQJaWlpWLhwYbbre3p64vr165nmor527Zry9fzIaxxERET6xAY0ERHpzIQJE1C0aFEMGTIEDx8+zPT6zZs3ERISAgBo3749AGDRokUq6/zwww8AgA4dOuQ7jrp166J8+fJYsGCBsrv0ux4/fgwAMDMzQ+fOnbFz506cO3cu03oZV1OLFi0KAEhISMh3TBkiIiKwevVqNGrUCC1btsxxXTMzM3Tv3h07d+7EL7/8gjdv3uTagH716hVSUlJUlpUvXx729vaZpgd7V/v27fHgwQOVe67fvHmDxYsXw87ODs2bN1ejdAWPg4iISJ94DzQREelM+fLlERERgc8++wxVqlRB//79Ub16daSlpeGPP/5QTosEALVq1YK/vz9WrlyJhIQENG/eHGfOnMHatWvRuXNntGjRIt9xmJmZYfXq1WjXrh2qVauGgQMHwtXVFffv38fhw4fh4OCAnTt3AgBmz56N/fv3o3nz5vjiiy9QpUoVxMfHY/PmzThx4gScnJxQu3ZtmJubY968eUhMTIS1tTU+/vhjlC5dOsc4tmzZAjs7O6SlpeH+/fvYt28fTp48iVq1amHz5s1qleWzzz7D4sWLMW3aNNSoUSPX6bNiY2PRsmVL9OzZE1WrVoWFhQWioqLw8OHDHKe++uKLL7BixQoMGDAA58+fh5eXF7Zs2YKTJ09i0aJFag8OV9A4iIiI9IkNaCIi0qlPP/0U//zzD+bPn4/t27dj2bJlsLa2Rs2aNbFw4UIMHTpUue7q1atRrlw5hIeHIyoqCmXLlsWkSZMwbdq0Asfh6+uLP//8EzNnzsSSJUvw8uVLlC1bFg0bNsSwYcOU67m6uuL06dOYMmUK1q9fj6SkJLi6uqJdu3YoUqQIAGlgs+XLl2POnDkYPHgw5HI5Dh8+nGsDevjw4QAAGxsblCxZErVr18aaNWvQu3dvWFtbq1WOxo0bw93dHXfv3lWr+7a7uzt69eqFgwcP4pdffoGFhQUqV66MX3/9Fd26dcv2fba2tjhy5AgmTpyItWvXIikpCT4+PggLC1Oe9MiL/MZBRESkTzLx7mgeRERERERERJQl3gNNREREREREpAY2oImIiIiIiIjUwAY0ERERERERkRrYgCYiIiIiIiJSAxvQRERERERERGpgA5qIiIiIiIhIDWxAExEREREREamBDWgiIiIiIiIiNbABTURERERERKQGNqCJiIiIiIiI1MAGNBEREREREZEa2IAmIiIiIiIiUgMb0ERERERERERqYAOaiIiIiIiISA2FqgEthEBSUhKEEPoOhSgT7p/5w++NDBn3z/zh90aGjvsoUeFloe8AdCkpKQlOTk64e/cuHBwc9B0OkYqkpCS4u7sjISEBjo6O+g7HaDCvyZAxr/OHeU2GjrlNVHgVqgb0ixcvAADu7u56joQoey9evODBOA+Y12QMmNd5w7wmY8HcJip8ClUD2t7eHgB4RpsMUsbZ7Iz9lNTDvCZDxrzOH+Y1GTrmNlHhVaga0DKZDADg4ODAAzIZrIz9lNTDvCZjwLzOG+Y1GQvmNlHhU6gGESMiIiIiIiLKLzagiYiIiIiIiNTABjQRERERERGRGtiAJiIiIiIiIlIDG9BEREREREREamADmoiIiIiIiEgNbEATERERERERqYENaCIiIiIiIiI1sAFNGuXl5QWZTJbpERAQoO/QNObFixcICgqCp6cnbG1t0bhxY5w9e1bfYRFRPhWGeouIVPFYTkT5ZaHvAMi0nD17FnK5XPn80qVLaN26NXr06KHHqDRryJAhuHTpEn755Re4uLhg3bp1aNWqFa5cuQJXV1d9h0dEeVQY6i0iUsVjORHll0wIIfQdhK4kJSXB0dERiYmJcHBw0Hc4hUJQUBB27dqF69evQyaT6TucAnv9+jXs7e2xfft2dOjQQbm8bt26aNeuHb777rt8b5v7Z/7weyNN02S9xf0zf/i9kTZp4ljOfZSo8GIXbtKatLQ0rFu3DoMGDTKJxjMAvHnzBnK5HDY2NirLbW1tceLECT1FRUSaYor1FhGp4rGciAqCDWjSmm3btiEhIQEDBgzQdygaY29vj0aNGmHmzJn477//IJfLsW7dOvz555+Ij4/Xd3hEVECmWG8RkSoey4moINiAJq35+eef0a5dO7i4uOg7FI365ZdfIISAq6srrK2tERoail69esHMjOlEZOxMtd4iIlU8lhNRfrGWIK2Ii4vD77//jiFDhug7FI0rX748jh49ipcvX+Lu3bs4c+YM0tPTUa5cOX2HRkQFYMr1FhGp4rGciPKLDWjSirCwMJQuXVplcA5TU7RoUTg7O+P58+fYt28fOnXqpO+QiKgACkO9RUSqeCwnorwyqgb0sWPH4OfnBxcXF8hkMmzbtk3fIRVacjlw5AiwYYP07zszwEChUCAsLAz+/v6wsDDOmdJyKt++ffuwd+9e3Lp1CwcOHECLFi1QuXJlDBw4UF/hGjXmNemKqddbhoR5TYYiu7znsZyI8suoGtDJycmoVasWfvrpJ32HUqhFRgJeXkCLFkDv3tK/Xl7ScgD4/fffcefOHQwaNEifYeZbbuVLTExEQEAAKleujP79+6Np06bYt28fLC0t9Rm20WJeky6Yer1laJjXZAhyynsey4kov4x2HmiZTIaoqCh07txZ7fdwzr6Ci4wEuncH3t9rMmZ72bIF6NpV93Fpij7Lx/2TeU3awbzWL+Y16YO28577KFHhxX5qpDa5HAgMzHwwAt4uGz0aaNUKMDfXbWyaIJcDo0ZlXz6ZDAgKAjp1Ms7yERVGudVbzGsi08O8JyJtMukGdGpqKlJTU5XPk5KS9BiN8Tt+HLh3L+d17t8HHB11E4+uCQHcvSt9D76++o6m8GJeU17kVm8xrw0D85o0iXlPRNpkVPdA59WcOXPg6OiofLi7u+s7JKP19CmwYsXb55aWaQgOno7g4OmwtEzTX2BaklP54uP1FBQBYF6T+uRyYMeOt8+Z14aLeU2adOHC2/8z74lI00z6CvSkSZMwZswY5fOkpCQelPPo4kUgNBRYtw5ISVF9LTm5SJbv2bMH+OgjHQSnYceOAe3bv32eXfmcnXUUEGWJeU25SUgAfv4ZWLIEuH1b9TXmtWFiXpMmJCUBs2YBP/6oupx5T0SaZNINaGtra1hbW+s7DKMjlwM7d0oN58OH3y6vU0f6Mfr8OZCeboX588ervE8mA9zcgDZtjPOeojZtpPjv38+5fM2a6SlAAsC8puxduybVW2vXAq9eScuKFwfS04EXL5jXhox5TQWhUADh4cDkycDDh9Iya2sgNZV5b0qEEHjz5g3k785BSPQec3NzWFhYQJYxYqAWGFUD+uXLl7hx44by+a1btxAdHY3ixYvDw8NDj5GZhoQEYM0a6arNrVvSMnNzoEsXaTCOJk2AqChpVEtAdXCOjH100SLjbDwDUtwhIVL5ZDLTK5+hYl5TQSgUwN69Uu7u3/92efXq0qCGffpIr5tqvWWomNekKydOSL9R/vpLel6xIvDDD1LjuUcPaRnz3vilpaUhPj4erzLOjhLloEiRInB2doaVlZVWtm9U01gdOXIELVq0yLTc398f4eHhub6fUw5k7do1YPFi6apNcrK0rHhxYOhQYMQI4P3fOpGR0sHq3QE63N2lg5ExT2GVQV/lK6z7J/Oa8uPFC+mK0+LFwPXr0jKZDPj0U6nh3KLF2x/KAPNa15jXpG137gATJgCbNknPHRyAqVOl2TQyfjNrM++5j+qOQqHA9evXYW5ujlKlSsHKykqrVxfJeAkhkJaWhsePH0Mul6NixYowM9P8kF9G1YAuKFZ2bykUwL590lWbffveLq9WTTrY9OkDFMn6liEAQEpKOpYvX4+0NKBu3T7w9bU0qTO5+igf98/84fdWuNy8KTWa16yRGtGA9MN58GBg5EigXLns38u8Nh783ig7ycnA999Lj5QU6UTZkCHAd98BpUtnXl9bec99VHdSUlJw69YteHp6okhOP06J/t+rV68QFxcHb29v2NjYaHz7RtWFmwruxQvpSvPixUBsrLRMJgP8/KSG8/tXbbJjZiaQmBgHAGjWTJhU4xkw/fIRGRMhgIMHpRN+u3e/7Y5ZqZJ0tdnfH7Czy307zGsi4yUEsGED8PXXb68of/SRdDW5Tp3s38e8Nx3auJJIpknb+wob0IXEzZvSvc1r1kijVALqX7UhItKHV6+AX36RBga7cuXt8k8+kU74tWkD8PcUkek7exYICgL++EN67ukJLFgAdOum3kl/IiJNYgPahAkBHDokXbXZtSvzVZv+/QF7e/3GSET0vrg4YOlSYNUqadR/AChaFBgwQLq/0cdHr+ERkY7ExwOTJkk95wDp1rLJk4ExYwBbW/3GRobhzp07ePLkic4+r2TJkoVmIMTg4GBs27YN0dHR+g4Fvr6+qF27NhYtWqTvUACwAW2SXr2S5m0ODQUuX367nFdtiMhQCQEcPy7VW1FR0jgNAODtLTWaBw0CHB31GyMR6UZKijSX8+zZwMuX0rJ+/YA5cwBXV/3GRobjzp078PHxQUpKis4+08bGBjExMXlqRD948ABz5szB7t27ce/ePTg6OqJChQro27cv/P39jfK+7uDgYEyfPj3HdfIzzFbGAJTPnz+Hk5NTPqPTPjagTcidO8BPP/GqDREZj5QUYONGqafMuye5P/5YOuHXoQOnmiEqLIQAtm0Dxo59O51mw4ZS/dCwoV5DIwP05MkTnTaeAWlAsydPnqjdgP7333/RpEkTODk5Yfbs2ahRowasra1x8eJFrFy5Eq6urvj000+zfG96ejosLS01Gb7GjBs3Dl9++aXyef369fHFF19g6NChWa6flpamtSml9IHXIY1cxlWb7t2lKzXffy81nr29pXkQ792T7n1m45mIDMl//wFTpkjT5A0cKDWebWyk6fMuXpQGDfv0UzaeiQqLf/4BWraUppe6dQtwcQH+9z/pvmc2nslYjRgxAhYWFjh37hx69uyJKlWqoFy5cujUqRN2794NPz8/5boymQzLli3Dp59+iqJFi2LWrFkAgGXLlqF8+fKwsrKCj48PfvnlF+V7bt++DZlMptLNOiEhATKZDEeOHAEgXdWVyWQ4ePAg6tWrhyJFiqBx48aIiYlRiXXu3LkoU6YM7O3tMXjw4BxPTtjZ2aFs2bLKh7m5Oezt7ZXPP//8c4wcORJBQUEoWbIk2rZtm2ust2/fVk5/WKxYMchkMgwYMEC5rkKhwIQJE1C8eHGULVsWwcHBefxraE6+G9BpaWmIiYnBmzdvNBlPoXD//n307dsXJUqUgK2tLWrUqIFz587laRspKdIcqHXrSqNQbt0qdXn8+GPp7O3168BXXwHa7P1gaWmZ6czYnDlzUL9+fdjb26N06dLo3LlzpgQ1FlmV731z586FTCZDUFCQboLSMuZ1/gQHB0Mmk6k8KleurO+wNEoT9RYAnD4N9O4tDQL03XfA48fSvKxz50on/FauBKpX10IB/l9Web1s2TLUrFkTDg4OcHBwQKNGjfDbb79pLwgdY15nT1P7tbZ5eXllqmNkMhkCAgL0HZoKuVyOKVOmwNvbG7a2tihfvjxmzpyZY1fOx4+B4cOlkbQPHwasrYFvvgFiYqRu25q45Syn47mpHcfJcDx9+hT79+9HQEAAihYtmuU6789nHRwcjC5duuDixYsYNGgQoqKiEBgYiLFjx+LSpUsYNmwYBg4ciMOHD+c5nm+++QYLFy7EuXPnYGFhgUGDBilf+/XXXxEcHIzZs2fj3LlzcHZ2xtKlS/P8Ge9au3YtrKyscPLkSSxfvjzX9d3d3bF161YAQExMDOLj4xESEqKyvaJFi+L06dP4/vvvMWPGDBw4cKBAMeabyKPk5GQxaNAgYW5uLszNzcXNmzeFEEKMHDlSzJkzJ6+b06nExEQBQCQmJuothmfPnglPT08xYMAAcfr0afHvv/+Kffv2iRs3bqj1/vv3hfj2WyFKlRJCuv4shI2NEEOHCvHPP1oOXg1t27YVYWFh4tKlSyI6Olq0b99eeHh4iJcvX+o7NI07c+aM8PLyEjVr1hSBgYEF3p4+90/mdcFMmzZNVKtWTcTHxysfjx8/1ls8mlbQeis1VYj164Vo0OBtvQUI0bSpEJs3C5GeruUC5GLHjh1i9+7dIjY2VsTExIjJkycLS0tLcenSpQJvm3mdP7r43gq6X+vSo0ePVOqXAwcOCADi8OHD+g5NxaxZs0SJEiXErl27xK1bt8TmzZuFnZ2dCAkJybRuWpoQP/4ohKPj2zqhRw8hbt3SXbwFOY4bwrGnsHj9+rW4cuWKeP36tcry8+fPCwA6f5w/f16tuE+dOiUAiMjISJXlJUqUEEWLFhVFixYVEyZMUC4HIIKCglTWbdy4sRg6dKjKsh49eoj27dsLIYS4deuWACAuXLigfP358+cq9cPhw4cFAPH7778r19m9e7cAoPxOGzVqJEaMGKHyOQ0bNhS1atVSq6yenp7ixx9/VD5v3ry5qFOnjso6eYn1+fPnKu9t3ry5aNq0qcqy+vXri6+//jrLeLLbZzQlz+f1Jk2ahL///htHjhxRmZi6VatW2LRpU143V+jMmzcP7u7uCAsLQ4MGDeDt7Y02bdqgfPnyOb7v9GmgTx/VqzZubtKAGhlXbWrU0FEhcrB3714MGDAA1apVQ61atRAeHo47d+7g/Pnz+g5No16+fIk+ffpg1apVKFasmL7DKTDmdcFZWFiodGcqWbKkvkPSmPzWW48eATNnAl5eUv115gxgZSXN23z+/NvbTyz0PBqHn58f2rdvj4oVK6JSpUqYNWsW7OzscOrUKf0GVkDM65zld7/Wh1KlSqnUL7t27UL58uXRvHlzfYem4o8//kCnTp3QoUMHeHl5oXv37mjTpg3OnDmjst5vv0m/Wb76CkhMBGrXBo4cAX79VaovdMHUjuNkPM6cOYPo6GhUq1YNqampKq/Vq1dP5fnVq1fRpEkTlWVNmjTB1atX8/y5NWvWVP7f2dkZAPDo0SPl5zR8716JRo0a5fkz3lW3bt0Cvf9978YPSGXIiF/X8tyA3rZtG5YsWYKmTZuqdDuoVq0abt68qdHgTNGOHTtQr1499OjRA6VLl0adOnWwatWqLNdNSwMiIoAPP5QeERHAmzdA06bSQebWLWDiRKBECR0XIg8SExMBAMWLF9dzJJoVEBCADh06oFWrVvoORSOY1wV3/fp1uLi4oFy5cujTpw/u3Lmj75A0Ji/1FgBcuCANXujuDkydKk1FU7YsMGOGNNhheDjwwQc6Cz9P5HI5Nm7ciOTk5AL/eNA35nXO8rpfG4q0tDSsW7cOgwYNytT9U98aN26MgwcPIjY2FgDw999/48SJE2jXrh0A4No1oH176RETA5QqJV0AOHcO0PW5AFM7jpPhqVChAmQyWaZbGcuVK4cKFSrANou52LLr6p0ds/+/x0G8c5tEenp6luu+extDRt2hyJjyQgveL0teYs3K+7dhyGQyrcafkzw3oB8/fozSpUtnWp6cnGxwFbkh+vfff7Fs2TJUrFgR+/btw/DhwzF69GiszZjkEJmv2pw+LV216d9fOsgcPw706KHfqzZv3rxBREQEIiIisr2vTqFQICgoCE2aNEF1bd7UqAU5lW/jxo3466+/MGfOHD1Fp3nM64Jp2LAhwsPDsXfvXixbtgy3bt1Cs2bN8OLFC32HphHq1Ftv3gBbtgDNmkmN47VrpZOA9etL0+rFxUmDhpUpo79y5JTXFy9ehJ2dHaytrfHll18iKioKVatW1VOkmsG8zpk6+7Uh2rZtGxISElQG1zEUEydOxOeff47KlSvD0tISderUQVBQENq374OvvpKuOv/2G2BpKY20ff26NHCgNgcLzCrvTfE4ToanRIkSaN26NZYsWYLk5OR8baNKlSo4efKkyrKTJ08qj0+lSpUCAMTHxytfz8+8zVWqVMHp06dVlmm6F5Y6sWaM1C2XyzX62ZqW5yZYvXr1sHv3bowaNQrA2zMYq1evNvqz9bqgUChQr149zJ49GwBQp04dXLp0CcuXL0fNmv4IDQU2bAAyenSULSsNrjFsmH5/eL5PoVDg+vXryv9nJSAgAJcuXcKJEyd0GZpGZFe+u3fvIjAwEAcOHFDpEmnsmNcFk3F1BZC6GDVs2BCenp749ddfMXjwYD1Gphk51Vt+fv5YtUqaQu/uXWl9CwvpJN/o0VLvGUORU73l4+OD6OhoJCYmYsuWLfD398fRo0eNuhHNvM5ZTvu1v7+/nqPL3s8//4x27drBxcVF36Fk8uuvv2L9+vWIiIhAtWrV8Ndf0QgICMKsWS5ITpa+Uz8/YOFCoGJF3cT0ft6b6nGcDNPSpUvRpEkT1KtXD8HBwahZsybMzMxw9uxZXLt2LdduzuPHj0fPnj1Rp04dtGrVCjt37kRkZCR+//13AICtrS0+/PBDzJ07F97e3nj06BG+/fbbPMcZGBiIAQMGoF69emjSpAnWr1+Py5cvo1y5cvkqd1bUidXT0xMymQy7du1C+/btYWtrCzs7O43FoCl5bkDPnj0b7dq1w5UrV/DmzRuEhITgypUr+OOPP3D06FFtxGhSnJ2dVX6QvXkDpKRUwV9/bVXp0li/vjQHao8e0tVnYzNy5Ejs2rULx44dg5ubm77D0Zjz58/j0aNH+OCdP5ZcLsexY8ewZMkSpKamwtwI591hXmuWk5MTKlWqhBs3bug7FI14v94CAEfHKvjnn61wcwNev5aWlSwpnewbPhxwddVDoAVgZWWFChUqAJDu2zp79ixCQkKwYsUKPUeWf8zrnGW1X1epUkU5CqwhiouLw++//47IyEh9h5Kl8ePHK69CHzoELFxYA8nJcQDmoGpVf/z4I9CmjX5jNNXjOBmm8uXL48KFC5g9ezYmTZqEe/fuwdraGlWrVsW4ceMwYsSIHN/fuXNnhISEYMGCBQgMDIS3tzfCwsLg6+urXGfNmjUYPHgw6tatCx8fH3z//fdok8dE++yzz3Dz5k1MmDABKSkp6NatG4YPH459+/blp9jZyi1WV1dXTJ8+HRMnTsTAgQPRv39/hIeHazQGTchzA7pp06aIjo7G3LlzUaNGDezfvx8ffPAB/vzzT9QwhFGsDIRcLnW1jo8HnJ2lbo3m5tKN/zExMXj2DFi9Wrpqc+dOLABPWFhIA+oEBkpzHhpyD7t3u1YcP34cvr6+MDc3hxACo0aNQlRUFI4cOQJvb289Rpl/2ZWvZcuWuHjxosq6AwcOROXKlfH1118b7UGXea2e7PL6fS9fvsTNmzfRr18/3QdZALnVW3I5sHs3EBICHDok1VsAUKuWVG/16iXN5WyossvrrCgUikyDuxgb5vVbWe3bGfv1u2JjY+Hp6amnKHOvY8LCwlC6dGl06NBBbzEC2cf56tUrPHtmhq5dgagoaV0bG3PY2ysQHS113dZ9rJnz3hSP44VRyZIlYWNjk+N8xZpmY2OT50FCnZ2dsXjxYixevDjH9UQ2070NHz4cw4cPz/Z9VapUwR9//JHttnx9fTNtu3bt2pmWTZ48GZMnT1ZZNm/evBxjznD79m2V5xlzUOc1VgCYMmUKpkyZkuv2tm3bplZs2pCvu2jLly9vFANt6EtkpPRj8t69t8vc3KQfnZ9++hV6926MMmVm482bngDOAFiJTp1W4qefjOOqTWRkJMaOHau8/6pdu3YoU6YMQkJC8PvvvyMiIgLbt2+Hvb09Hjx4AABwdHTMcrAEQ5RT+bp27Zrpfu6iRYuiRIkSRnef9/uY1znLKa//+GMc/Pz84Onpif/++w/Tpk2Dubk5evXqpb+A8yin8g0d+hVatWqMUqVm4/nzt/VWvXorsXCh9OPZkE/4ATnn9dmzZ9GuXTt4eHjgxYsXiIiIwJEjRzR+5l0fmNfZ79ujRn2FzZsbY/bs2ejZsyfOnDmDlStXYuXKlQYVZ0gI0LWrdFInLCwM/v7+sNDjICjZxTl3LuDi4oepU2cB8ICZWTW0bXsBZ878gIEDB+ml8Zzb8TyDqRzHCxsPDw/ExMTgyZMnOvvMkiVLwsPDQ2efR4YpzzVwbiPLFvadKjJSuor8/kmke/eAbt0AoD6AKLx5Mwky2QyULeuNb75ZhICAPnqINu8iIyPRvXv3TAfv+/fvo3v37sqzSO92LQGks+aGOODJ+3Ir35YtW1QOuqaCeZ2z7PL6/n1peePG9xAR0QtPnz5FqVKl0LRpU5w6dUo5YIahy63esrGpD4UiCs+fTwIwA8WLe2P8+EWYONE06q0WLVpgw4YNiI+Ph6OjI2rWrIl9+/ahdevWeopYM5jXOefuxIn1MXFiFDZsmIQZM2bA29sbixYtQp8+ut+vc6tjtmwB7Ox+x507dzBo0CCdx5chp7qib18AWAxgCmxsRkCIR4iJccGXXw7D1KlT9RBr4TyeFzYeHh6Foi4jw5LnBrSXl1eOo3ca+qhp2iSXS2dls+mBodSlS0cEBnbERx8Z/lWbd8nlcgQGBmbZxSRjmaurK65cuZJlF6j8jkCoK3K5HKNGjcq2fDKZDEFBQejUqZNK+bLrpmJMmNfZyymvM5bdvr0R165l7s5t4Ls8AKl8o0blXG+lpABVq3bE6NEd0bcvkMdZNvQqt3pLJpPh+vXruHXrlsl13Szsea1O7v7vfx1x5UpHldzVdd7mlIMZy0aPBq5caYOXL6UF+qhb1KkrLCzssXnzInTqtEivv2/Uyft3j+emcBwnIt3JcwP6woULKs/T09Nx4cIF/PDDD5g1a5bGAjNGx4+rdmnKzujRup/vUBOOHz+Oe7kU8P79+3B0dNRRRLolhMDdu3eV91CZEuZ19tTJ6/v3ARPd7ZWWLAFatNB3FHmXW73FvDZdppS7xhLnmzeAk5P+Lw4U5rwnIu3LcwO6Vq1amZbVq1cPLi4umD9/fqHuDvPOtGawtEzDN99I8wvOmjUJ6elWWa5nLIQQKqO2pqenIzg4WH8BaVlO5Ys3xj9gLpjX2VM3r01BTuX77z99RVUwV69eVf6feV248toYc9cU4jSEVLqbMaceCl/eE5H2aWwUCh8fH5w9e1ZTmzNKzs6qz5OTi2S53uLF0nQvrVrp/yxtblJTU7F582aEhITg3Llzar1nz549+Oijj7QcmeYdO3YM7du3z3U95/f/0CaMea1+Xu/ZAxjhbo9jx4B3d/vsyjdxIvDsGTBgAGBvr5vYCuLcuXMICQnBxo0b1VqfeW16jCV31c1BY4kzJkbq5q2v3zd79uzBN998o9a6hSnviUhzZCK7MdOzkZSUpPJcCIH4+HgEBwfj2rVriI6O1mR8GpWUlARHR0ckJibCwcFB49uXywEvL6mrlTrfatWqUnduQ7yn8OHDh1i+fDmWLVuGhw8fAgCsra1hbm6OV69eZfkemUwGNzc3o72XUC6Xw8vLC/fv38/yviltl0/b+2dun/0u5vVbueW1TCaNQHvrVtZTWhk6deotmezta/b2wKBB0r2Q5cvrLEy1pKenIzIyEiEhIfjzzz+Vy62srJCWlpble5jXhkkT35ux5K6pxPmujz4CFi0C6tTRRWSSq1evYsyYMdi7dy8AwMzMDAqFIst1NZH3+sztwiYlJQW3bt2Ct7c3bAx5rkQyGFrfZ0QeyWQyYWZmpvKQyWTCw8ND/PHHH3ndnE4lJiYKACIxMVFrn7F1qxAymfSQDjHSI2PZ4sVCjBolhJ3d29eKFRNi/Hghbt/WWlhqO3funOjXr5+wsrISAAQA4erqKmbNmiUeP34stm7dKmQymZDJZMrXASiXbd26Vd9FKBB9lk8X+2d2mNc5yy2vjXy3z7V869YJ8dNPQvj4qL7WsaMQBw4IoVDoN/7Hjx+LWbNmCVdXV2XOWlpair59+4ozZ84wrwtxXhtL7ppCnIAQPXsKYWv7dtmQIUI8fKjdmJ49eyYCAwOFhYWFMvfHjx8vfvnlF63mvT5zu7B5/fq1uHLlinj9+rW+QyEjoe19Js8N6CNHjqg8jh07Jq5evSrS09O1EZ9G6aqy27pVCDc31YOLu7vqATAhQYhFi4QoX/7tOmZmQnTtKsTRo7r9QZqWliY2bdokGjdurHKQadSokdi4caNIS0t7r3xbhZubm8q67u7uRt94zqCv8unzYMy8zp06eW3M1CmfXC7E3r1CtG+vul7VqkIsXy5EcrJuY/7777/FoEGDhLW1tTJXS5cuLaZNmybi4+PfKx/zurDmtbHkrqnEGRcnxOefv33NwUGIBQuESE3VbBzp6eli6dKlokSJEsqc/vTTT0VsbOw7sWov79mA1h02oCmvtL3P5LkLtzHTZXeblJR0LF++HmlpQN26feDra5ll1yu5HPjtNyAkBPj997fLa9eWunf36gVoq7fKkydPsGrVKixdulQ5WqWlpSU+++wzjB49GvXr18/2vXK5HMePH0d8fDycnZ3RrFkzo+y2nR19lI/dwfLHEPPaWOWlfLGx0ngO4eHAy5fSsmLFgCFDgIAAwNNTOzHK5XLs2LEDoaGhKlPP1K1bF4GBgejZsyesra2zfS/z2jho+nszltw1pThPnACCgoDz56XnFSsCCxcCHTsW/P7oQ4cOISgoCBcvXgQAVK1aFYsWLcpy7nZt5T1zW3dy6o575w7w5InuYilZEjDEaacHDBiAhIQEbNu2DQDg6+uL2rVrY9GiRfnepia2oS/a7sKt1iBiO3bsUHuDn376ab6DMSVmZgKJiXEAgGbNRLYHQHNz6WDSsSNw+bL0g/R//wOio6X7DCdMAIYNA0aMAFxcNBPbP//8g9DQUKxfvx4pKSkAgNKlS2P48OEYNmyYWoNqmJubm/TUD6ZePoB5nR/q5rWxykv5KlWS6qvvvgPCwqT///svMH++9CO5c2dpDt5mzTQzmNDz58+xZs0aLFmyBLdv3wYg5Wm3bt0QGBiIRo0a5Tjnccb6zOu3ClNeG0vumlKcTZsCZ84Aa9cCkyYB168Dn34KtGkD/PijNA5MXv37778YN24coqKiAADFihXDjBkz8OWXX8LCIuuftIUh7wurO3cAHx/g/3/K6oSNjTRQnrqN6AEDBmDt2rUApItUHh4e6N+/PyZPnpztPqsJkZGRsLS0VGvdI0eOoEWLFnj+/DmcnJzytY3CRq2/XOfOndXamEwmg1wuL0g8hVq1asDy5cDs2cDPP0vzrt65A8yaBcybB3TvLv0g/fDDvG9bLpdj586dCAkJyfNVGzJNzGvSBEdH6SrTqFHSKMEhIcDBg0BkpPQoaG+aq1evYvHixVi7dq1yAMMSJUrgiy++wPDhw+Hu7q7R8hg75jUZEjMzYOBAoFs36bfNjz8C+/cDNWtKFwaCg4HixXPfzosXLzB79mz88MMPSEtLg7m5OYYPH47g4GCUKFFC6+Ugw/TkiW4bz4D0eU+e5O0q9CeffIKwsDCkpqZiz549CAgIgKWlJSZNmqSyXlpaGqysNDN1XXF1EksH2zBVZuqspFAo1HrwYKwZxYsD48cDN28CW7ZIo1m+eQNs3Ag0agQ0bAisXw9kM6isioSEBCxcuBAVKlRAly5dcOTIEZibm6Nnz544efIkzp49i379+rHxXAgxr0mTzM0BPz/pVpRLl4AvvgBsbd/2pvHwAKZMUW8+aYVCgT179qBt27aoWrUqli1bhlevXqFGjRpYvXo17t69i9mzZ7PxnAXmNRkiBwdg7lzgyhWpd4pcLvVaqVgR+Okn6TdOVhQKBcLDw1GpUiXMnTsXaWlpaN26Nf7++28sXryYjWcyCtbW1ihbtiw8PT0xfPhwtGrVCjt27MCAAQPQuXNnzJo1Cy4uLvDx8QEgzWPes2dPODk5oXjx4ujUqZOy5xUgXRQbM2YMnJycUKJECUyYMCHT7DG+vr4ICgpSPk9NTcXXX38Nd3d3WFtbo0KFCvj5559x+/ZttGjRAoDUo0Mmk2HAgAFZbuP58+fo378/ihUrhiJFiqBdu3a4fv268vXw8HA4OTlh3759qFKlCuzs7PDJJ5+Y5HzrajWgST8sLKSztkePAn/9Jc2/amUldYnq21e6x3DGDOD/Z5lSce3aNYwYMQKurq4YN24cbt++jRIlSmDSpEm4desWNm3ahMaNG+fa5ZGIKK+qVQNWrADu3ZN6z7i7A48fS929PT2B3r2BU6cyv+/FixdYvHgxKleujA4dOmD//v2QyWTo3LkzDh8+jL///huDBw+Gra2t7gtFRAVWvjwQFSWdaKteXZpbfuRIqafKu+PAAMDJkyfRsGFDDBw4EA8ePECFChWwY8cO7Nu3D9WqVdNL/ESaYGtrq5xa8eDBg4iJicGBAwewa9cupKeno23btrC3t8fx48dx8uRJZUM04z0LFy5EeHg41qxZgxMnTuDZs2fK2xqy079/f2zYsAGhoaG4evUqVqxYATs7O7i7u2Pr1q0AgJiYGMTHxyMkJCTLbQwYMADnzp3Djh078Oeff0IIgfbt2yM9PV25zqtXr7BgwQL88ssvOHbsGO7cuYNx48Zp4mszKPnqfJ+cnIyjR4/izp07mebWHD16tEYCI1V16kj3Gc6bB6xcCSxdCsTHA9OmSV28e/UCRo5U4NGjvQgNDcW+ffuU761RowYCAwPRu3dv/vCkbDGvSdOKF5fGcRgzBti+Xereffw4sGGD9GjQQLotpU6dm1ixYjHWrFmDFy9eAAAcHR0xZMgQBAQEwNvbW88lMV7MazJELVsCFy4Aq1ZJPVMuXwZat5bukR43Lh7Llo3Fhg0bAAAODg6YMmUKRo0axd5yZNSEEDh48CD27duHUaNG4fHjxyhatChWr16t7Lq9bt06KBQKrF69WnmRKywsDE5OTjhy5AjatGmDRYsWYdKkSejatSsAYPny5Sq/+98XGxuLX3/9FQcOHECrVq0AAOXKlVO+ntFVu3Tp0ir3QL/r+vXr2LFjB06ePInGjRsDANavXw93d3ds27YNPXr0AACkp6dj+fLlKF++PABg5MiRmDFjRn6/MoOV5wb0hQsX0L59e7x69QrJyckoXrw4njx5giJFiqB06dI8IGtZ6dLAt99KP0q3bgVCQ6UrOWvXAmvXmgGw//+HBTp37ojRo0fD19eXV5opR8xr0qaM3jTdukk/mkNDgYgIgTNnZOjTBwBsIdVbNqhc2RWjR49Gv379YGdnp9/AjRzzmgyZhQUwfDjw+efA9OnAkiUCO3bIsGNHCQC1AezGkCE98d1336FMmTJ6jpYo/3bt2gU7Ozukp6dDoVCgd+/eCA4ORkBAAGrUqKFy3/Pff/+NGzduwN7eXmUbKSkpuHnzJhITExEfH4+GDRsqX7OwsEC9evUydePOEB0dDXNzczRv3jzfZbh69SosLCxUPrdEiRLw8fHB1atXlcuKFCmibDwDgLOzMx49epTvzzVUee7C/dVXX8HPzw/Pnz+Hra0tTp06hbi4ONStWxcLFizQRoxGy9LSMtPodceOHYOfnx9cXFwgk8mUw83nlZUV0KDBTXz44VcoWrQFgPUA0gE0A7AZzs6v8eGHUahZs4VOG89yuRxTpkyBt7c3bG1tUb58ecycOTPbpDY2uf39hBCYOnUqnJ2dYWtri1atWqncH2KomNfq02ZeG4KsyjdnzhzUr18f9vb2KF26NDp37oyYmJh8bd/H5xU+/HAFvLw+AvAtgP8AuACYCUvLB2jQ4Ao+/HC4ThvPplpvMa9VGUvuajsHNSWrOJctW4aaNWvCwcEBDg4OaNSoEX777bcct+PkJPDhhxtRqlRLAHsBWAGYgOLFn+DDD1ehZEnNN55N9VhOhqlFixaIjo7G9evX8fr1a6xduxZFixYFAOW/GV6+fIm6desiOjpa5REbG4vevXvn6/N12fv0/TpBJpMZ/bE0S3mdONrR0VFcu3ZN+f8rV64IIYQ4deqU8PHx0cDU1NpjCJPe79mzR3zzzTciMjJSABBRUVF5er9CoRAHDhwQfn5+QiaTCQACgPDx8RGzZoWJr79OFaVKCQFID1tbIYYOFeLiRe2U532zZs0SJUqUELt27RK3bt0SmzdvFnZ2diIkJEQ3AWhZbn+/uXPnCkdHR7Ft2zbx999/i08//VR4e3urNZG7PvdP5nXBFDSvDV3btm1FWFiYuHTpkoiOjhbt27cXHh4e4uXLl2pv4/bt22L8+PGiWLFiynrLzs5OjBgRJBYu/E80bPi23gKEaNpUiM2bhUhP12LB/p826y3mdf7o6nszltzVRA7qwo4dO8Tu3btFbGysiImJEZMnTxaWlpbi0qVLWa5/7tw50aRJE2Wd4O7uIb7++pioVEmhrAs++ECIY8c0G6cmjuWGcOwpLF6/fi2uXLmS6bfU+fOqxw1dPc6fVz92f39/0alTJ7VfW7lypShWrFiO+5Wzs7P4/vvvlc/T09OFu7u7yraaN28uAgMDhRBC3Lp1S8hkMnHgwIEst3fy5EkBQDx58kRl+bvbiI2NFQDEyZMnla8/efJE2Nrais2bNwshhAgLCxOOjo4q24iKihL5aG4WWHb7jKbkuUQlS5YUsbGxQgghKlasKPbu3SuEEOLq1auiSJEimo1OwwytssvLwTo5OVmsWLFCVKtWTXmgASDatWsn9u7dK+RyuXLd16+FCA8Xok4d1YT/+GMhtm8X4s0bLRVICNGhQwcxaNAglWVdu3YVffr00d6H6sn7fz+FQiHKli0r5s+fr1yWkJAgrK2txYYNG3Ldnj73T+a15hjyj3BNefTokQAgjh49muN6CoVCHD16VHTt2lWYmZkp661y5cqJH3/8USQkJKisf+qUEL17C2Fh8bbecncXYu5cId47rmuUNust5nX+6ON7M6bcVTcHDUGxYsXE6tWrVZbFx8eLgQMHKi8EFClSRMycOVO8evVKCCFEaqoQCxcK4ej4ti747DMh4uI0H19+j+WGduwxZYWpAZ2cnCwqVqwofH19xbFjx8S///4rDh8+LEaNGiXu3r0rhJBO8BQvXlxERUWJq1eviqFDhwp7e/tsG9BCCDFgwADh7u4uoqKilNvctGmTEEKIe/fuCZlMJsLDw8WjR4/EixcvstxGp06dRNWqVcXx48dFdHS0+OSTT0SFChVEWlqaEKJwNaDz3IW7Tp06OHv2LACgefPmmDp1KtavX4+goCBUr149r5ujXMTFxeHrr7+Gm5sbhg0bhsuXL8POzg4jR45ETEyMcqoXM7O3f0obG8DfHzh/Xhqwp3t3aYqZQ4eATp2ASpWkuRgTEzUfb+PGjXHw4EHExsYCkO7lOHHiBNq1a6f5DzMwt27dwoMHD5QDNADSQEgNGzbEn3/+qcfIcse8prxI/P/KI7s5IlNSUhAWFoYPPvgAzZs3R2RkJBQKBVq2bIkdO3YgNjYWQUFBcHR0VHlfxhR9cXHSwEKlSgF37wITJ0ojeX/xhTRFlqaZar3FvDZdueWgIZDL5di4cSOSk5PRqFEjANJUOvPmzUPFihURFhYGIQT69u2LmJgYfPvtt8quplZW0uCD168Dw4YBMhmwaRPg4yMNnpqcrL24jflYTsavSJEiOHbsGDw8PNC1a1dUqVIFgwcPRkpKChwcHAAAY8eORb9+/eDv749GjRrB3t4eXbp0yXG7y5YtQ/fu3TFixAhUrlwZQ4cORfL/J5KrqyumT5+OiRMnokyZMhg5cmSW2wgLC0PdunXRsWNHNGrUCEII7NmzJ1O37UJB3Zb2m/+/bHn27Flx6NAhIYQQDx8+FG3bthX29vbigw8+ENHR0dpo5GuMLs8Wpqeni/Xr14v169eL9Gz6ICKbs90KhUIcO3ZMdOvWTa2rNuqIixPi66+FKFbs7Rm0okWFCAgQ4v97+GmEXC4XX3/9tZDJZMLCwkLIZDIxe/ZszX2AAXn/75fRBea///5TWa9Hjx6iZ8+euW5PH2ezmdd5U5C8NgbqlE8ul4sOHTqIJk2aZHrt/v374ptvvhElS5ZU1lu2trbiiy++yLYLZ05evxYiLEyI2rW125tGm/UW8zp/NP29GUvuFjQHdSWnOP/55x9RtGhRYW5uLhwdHcXu3buFQqEQUVFRoly5csq6oUGDBuLPP/9U6/Oio4Xw9X1bB7i6CrFunRAKRcHLkt9jOa9A6052VxPj4oSwsdHt1WcbG+30hCDN0vYVaLVH4XZ1dcWAAQMwaNAg1KtXD4A03PnevXs105I3MQqFQjnghEKhUOs9KSkp2LhxI0JDQ3HhwgXl8pYtWyIwMBDt27eHubl5vuLx8ADmzgWmTpWu8ISESNNG/PST9PjkE2k6mTZtALMCzA7+66+/Yv369YiIiEC1atUQHR2NoKAguLi4wN/fP/8bJq1gXudNfvLamKhTvoCAAFy6dAknTpxQLjt16hRCQ0OxefNmvHnzBgDg7u6OkSNHYsiQIfm+SmZjAwwYIPWoOXFCqreioqTeNIcOAeXKSXPIDhoEvHcxO09Mrd5iXmdmLLmb3xzUtZzi9PHxQXR0NBITE7Flyxb07dsXlSpVwunTpwFIo/LOnTsXffv2Vek9l5NataScj4wExo0Dbt8G+vaVfr+EhAD162u0eGQkPDyAmBjgyRPdfWbJktLnUuGmdgM6ICAAa9euxfz589G4cWMMHjwYPXv2RJEiRbQZX6Hw33//YdmyZVixYgUeP34MQBoxr1+/fhg1apRGu9oVKQIMHQoMGQIcPiwdeHbuBPbulR4+PsCoUdIP1vwMgjt+/HhMnDgRn3/+OQBpDuq4uDjMmTPHKH+I5kXZsmUBAA8fPoSzs7Ny+cOHD1G7dm09RZUz5jXlxciRI7Fr1y4cO3YMpUuXxvr16xEaGoozZ84o12nWrBkCAwPRqVMnWFjkeabELMlkQLNm0uPOHelH86pVwL//St08p0yRGtqjRkl1WF6ZWr3FvDZd7+agm5ubvsPJkpWVFSpUqIAnT54gKSkJz58/x+nTp2FtbY2xY8di0qRJ+RplXyaTpsLr0AH44Qdg9mzgzz+l+eT9/aXnLi4Fj98Yj+WFmYcHG7Ske2pfa5wyZQpu3LiBgwcPoly5chg5ciScnZ0xdOhQ5VlFeksulyv/f/z4cZXn7/rhhx/g6emJ7777Do8fP4a7uzvmzZuHe/fuYcWKFVq7T00mAz7+GNi+HbhxA/jqK8DBQTqTN3Ik4Ooq/TD999+s3y+XA0eOABs2SP9mFO/Vq1eZziibm5sb9Bn/rGRXvpx4e3ujbNmyOHjwoHJZUlISTp8+rbz/y9Awr/NG3bw2VtmVTwiBkSNHIioqCps3b8a6devg5eWFvn374syZM7CyssKAAQPw119/4dixY+jWrZvGGs/v8/AA5s0D7t0DVqwAqlWT7of86SegcmWgfXvpZGBWVY6p11sZmNeZGUvuqpODhw4dgre3t75CBJDz95meno6QkBBUrFgRS5cuBQB4enri6tWrmDVrVoGnqLOxASZPBmJjgf79pWVr10rju8yZA6SkvB9r3o7nxngsJyIdy2/f7xcvXohVq1aJJk2aCJlMJqpWrSoWLlyouc7l2ViyZInw9PQU1tbWokGDBuL06dNqv1dX96ts3bpVeHl5ieDgYBEcHCwsLS2Fm5ub2Lp1q3j69KmYNWtWptG069evLzZv3pztPU+6kJQkxJIlQlSq9PZeD5lMiE6dhDh48O29Rlu3CuHmpnpPiJubtNzf31+4uroqp4OJjIwUJUuWFBMmTNBbufIqp/K9ePFCXLhwQVy4cEEAED/88IO4cOGCiPv/G2Lmzp0rnJycxPbt28U///wjOnXqZBTTWGVgXmcvp7zObb8wBjmVb/jw4cLOzk60bdtWWFpaKuutsmXLipkzZ4qHDx/qLW6FQojffxfCz0+qrzJy1sdHqs/+fzBRvdVbhTmvhch/bmvyezOW3M0tBx0dHcWRI0dEfHy88pExarWhxNmzZ0/h4eGhrCNKlSolZDKZ2L9/v9biOX1aiA8/fJvX3t5SXisU2ef9unUFP5YbQm4XFtq+n5VMj8FNY5WVXbt2ieLFiwszMzNNbC5bGzduFFZWVmLNmjXi8uXLYujQocLJyUntH2+6qOy2bt0qZDKZsLS0VDm4ZBxM7OzsVBrOGQ9/f3+txZRXcrkQe/YI8cknqged6tWF+PLLrAdVkMmkx7p1SSIwMFB4eHgIGxsbUa5cOfHNN9+I1NRUfRdLLVu3qv4If79806cfzvHvp1AoxJQpU0SZMmWEtbW1aNmypYiJiVHrsw3tYMy8fiu7vJbJZEImk4np06cbfF7nJLd6K7vHqlWr9B26ihs3hAgKEsLB4W3uOjpKjWt91VuFNa+FKFhua+p7M5bczS3O7HIwLCzMIOLMKjZ7e3vx8ccfa7XxnEEulwYVc3V9m9/VqmWf90DBj+WGltumjA1oyitt7zMyIYTIz5XrV69e4ddff0VYWBhOnDiB8uXLY9CgQZg4cWJ+NqeWhg0bon79+liyZAkAaeAKd3d3jBo1Sq3PTUpKgqOjIxITE5VDwWuSXC6Hl5cX7t27B0tLS3zzzTcAgFmzZiE9PV25nrOzM4YPH45hw4ahdOnSGo9Dk65dA5YsAcLD1Zs2wtUVuHJFmjbL2MjlQJUqwH//Zf26TAa4uQG3bmmnfNreP9XBvM5Mnbx2dXXFlStX8j3Inz7J5XJUqVIF//33X471loWFBXr27InRo0ejYcOG+gpXLS9eSF06Q0OlaXBywrzWnoLktia+N2PJXXVy0FjiBICgoCBMmzYNTk5OOo8xOVm6xWP+/Mxdud+libw3hNwuLFJSUnDr1i14e3vDxsZG3+GQEdD2PpPnm9T++OMPrFmzRjnaavfu3TFz5kx89NFHGg/uXWlpaTh//jwmTZqkXGZmZoZWrVplOy9famoqUlNTlc+TkpK0GuPx48dx7969XNdbu3YtWrdurdVYNKVyZakB/d130j1Hy5blvP79+wUbDdeQCSHNSXv8OODrq+9oNIt5nT118vr+/fuZ5jQ2NRs2bED37t31HYZa7O2lsRxGjJB+SOfUVmNea0dec1sbeW1KuWsscQJAp06d9NJ4BoCiRYEZM4CqVYFevbJfz5Tznoi0T+0G9Pfff4+wsDDExsaiXr16mD9/Pnr16gV7e3ttxqf05MkTyOVylClTRmV5mTJlcO3atSzfM2fOHEyfPl0X4QEA4uPjlf9PT09HcHBwlus90eV4+xri5CSNgJvRgLa0TMM338wBAMyaNQnp6Vb6C04LcirfO39mo8e8zp26eW0Kcirfu1eYjIWZmerorMxr3eQ1kPfc1kZeG2PumkKc8QaQTO/2rSwseU9EuqN2A3r+/Pno27cvNm/erLWRoTVt0qRJGDNmjPJ5UlIS3N3dtfZ57053kJOjR4/ik08+QbFixbQWiza8X7zk5KynRNmzB9DBBQ6NO3ZMGsE3Q3blU/PPbBSY17lTN6/37Nmjkyt7mnbs2DG0f3fHz8b//vc/VK1aFbVq1dJBVJqjbr3FvNYvbeS1seSuujloLHHKZDIdRJOzwpj3RKQ7at8DnZ6eDktLS23Hk620tDQUKVIEW7ZsQefOnZXL/f39kZCQgO3bt+e6DV3dK3n//n3k9rUWKVIE/fr1w+jRo1G1alWNx6INcjng5SV1086qeNq+l1Db9F0+fdxPxbzOXW55LZPJ4Obmhlu3bhntPdDq1lsA0Lx5c4wePRqffvqp1qaq0iTmtX4UNLc1eQ+0oeeuqcSZwcbGBuPGjcPEiRNRtGhRHUb4li7ynvdA605O97MmJibi1atXOoulSJEiRnM7RXbCw8MRFBSEhIQEfYeiNQZzD7S+D8ZWVlaoW7cuDh48qDwYKxQKHDx4ECNHjtRrbBnMzc0REhKC7t27QyaTqRxgMp6PGDECJ06cwD///IMVK1ZgxYoVaNWqFQIDA9G+fftMc5EaEnNzICQE6N5dOvi8e1DKOOG8aJFxNp4B0y9fVpjXucstrwFg0aJFRtl4BtSrt2bNmoW///4bW7duxdGjR3H06FF4enoiICAAQ4YMMejeNMxr/TCE3DaW3DWVOIUQqFatGi5fvozvvvsOYWFhmDt3Lnr37q3z3zaFMe8Lo8TERCxZsgRv3rzR2WdaWFhg5MiRajeiBwwYgLVr12LYsGFYvny5ymsBAQFYunQp/P39ER4eroVos/bZZ5+p1ZuEsme4rbUsjBkzBqtWrcLatWtx9epVDB8+HMnJyRg4cKC+Q1Pq2rUrtmzZAldXV5Xlbm5u2Lp1K3766SdER0fj8OHD6NKlC8zMzPD777/Dz88PlSpVQkhIiNYHRSqIrl2BLVuk0bbf5eYmLe/aVT9xaYqpl88QGXteb9myBV2NfMfIrd6aPHkyNm3ahNu3b2PSpEkoUaIE4uLiMGHCBLi5uWH48OG4cuWKnqLPHfNaPwwht40ld00hzq1bt+LixYvYunUrvL29cf/+ffTr1w9NmjTBmTNn9BAr897UvXr1SqeNZwB48+ZNnq94u7u7Y+PGjXj9+rVyWUpKCiIiIuDx7kAdOmJra2vwswAZOrW7cP/3339wcXHRdjy5WrJkCebPn48HDx6gdu3aCA0NVXtKFV12t5HL5Th+/Dji4+Ph7OyMZs2aZXn2+Pbt21iyZAlWr16NxMREAICdnR0GDhyIUaNGoWLFilqNM79SUtKxfPl6pKUBdev2ga+vpUmdydVH+fTRHYx5nTfq5rWxUrd8r1+/RkREBEJCQnDx4kXl8tatW2P06NEG25uGea17+c1tTX9vxpK7phJnSkoKfvzxR8yaNQvJ/z8HZv/+/TFnzhyd75vaynt24dad7LrjxsfHY+XKlTqP54svvlB7jIUBAwYgISEBN2/exMSJE9GnTx8AQEREBObNmwdvb284OTkhPDwce/fuxXfffYdLly7B3NwcjRo1QkhICMqXLw9AajN4e3tjw4YNCA0NxV9//YUKFSrgp59+QvPmzQEAR44cQYsWLbBr1y5MmjQJsbGxqF27NlavXq0cE+P9LtzBwcHYtm0bxo4diylTpuD58+do164dVq1apRx88sWLF/jyyy+xbds2ODg4YMKECdi+fTtq166NRYsWafDb1Qxtd+FW+xdOtWrVEBERofEA8mrkyJGIi4tDamoqTp8+bbDzkZqbm8PX1xe9evWCr69vtgdALy8vLFiwAPfu3cPSpUtRuXJlvHz5EosXL4aPjw86duyI/fv3q3Vvoi6ZmQkkJsbh9es4NGsmTKrxDJh++TIwr/NG3bw2VuqWz9bWFoMHD8bff/+Nw4cPo3PnzjAzM8OBAwfg5+cHHx8fhIaGGlxvGua17hlKbhtL7ppKnDY2Nsof7/7+/gCkgQgrVaqE2bNnIyWnSZo1rLDkPRm2QYMGISwsTPl8zZo1mXrjJCcnY8yYMTh37hwOHjwIMzMzdOnSBQqFQmW98ePHY+zYsbhw4QIaNWoEPz8/PH36NNM6CxcuxNmzZ1GqVCn4+fnlOJvGzZs3sW3bNuzatQu7du3C0aNHMXfuXOXrY8aMwcmTJ7Fjxw4cOHAAx48fx19//VWQr8Soqd2AnjVrFoYNG4YePXrg2bNn2oypULKzs1N2g9y3bx/at28PIQR2796Ntm3bolq1ali2bJnyTC6RJjCvqSBkMhl8fX0RFRWFGzduYOzYsXB0dMSNGzcQGBgINzc3BAYG4vr16/oOtVBhXpOhcHFxQXh4OM6cOYNGjRohOTkZ33zzDapUqYItW7YY3MUBIm3p27cvTpw4gbi4OMTFxeHkyZPo27evyjrdunVD165dUaFCBdSuXRtr1qzBxYsXM90iNXLkSHTr1g1VqlTBsmXL4OjoiJ9//lllnWnTpqF169aoUaMG1q5di4cPHyIqKirb+BQKBcLDw1G9enU0a9YM/fr1w8GDBwFIV5/Xrl2LBQsWoGXLlqhevTrCwsIgl8s19O0YH7Ub0CNGjMA///yDp0+fomrVqti5c6c24yq0ZDIZ2rRpg927dyM2NhajRo2CnZ0drl69ihEjRsDNzQ3jx4/H7du39R0qmQDmNWmKt7d3pt40L168QGhoqLI3zYEDB/iDWQeY12Ro6tevj5MnT2L9+vVwdXXF7du30aNHD7Ro0QLR0dH6Do9I60qVKoUOHTogPDwcYWFh6NChA0qWLKmyzvXr19GrVy+UK1cODg4O8PLyAgDcuXNHZb1GjRop/29hYYF69erh6tWr2a5TvHhx+Pj4ZFrnXV5eXsru2oA0DeCjR48AAP/++y/S09PRoEED5euOjo7w8fFRs/SmJ083qXl7e+PQoUP49ttv0bVrV9SsWRMffPCByoM0p2LFiggNDcX9+/exaNEilC9fHgkJCViwYAHKly+Prl274siRI/xBSgXCvCZNyuhNc/ny5Uy9adq0aYNq1aph+fLl7E2jZcxrMjQymQy9e/dGTEwMpk6dChsbGxw9ehQffPABhg0bpvyxTmSqBg0ahPDwcKxduxaDBg3K9Lqfnx+ePXuGVatW4fTp0zh9+jQAaVpAbXt/9gaZTJap6zi9ledRXuLi4hAZGYlixYqhU6dOmR6keQ4ODggMDERsbCx27tyJVq1aQaFQICoqCi1atECdOnWwZs0aldH9iPKCeU2aZmZmpuxNExMTo9KbZvjw4exNowPMazJERYsWxfTp03Ht2jV89tlnEEJg5cqVqFixIn744QedNBaI9OGTTz5BWloa0tPT0bZtW5XXnj59ipiYGHz77bdo2bIlqlSpgufPn2e5nVOnTin//+bNG5w/fx5VqlTJdp3nz58jNjY20zrqKleuHCwtLXH27FnlssTERMTGxuZre6ZA7XmgAWDVqlUYO3YsWrVqhcuXL6NUqVLaiouyYGZmho4dO6Jjx464cuUKQkND8b///Q9///03Bg8ejAkTJmDYsGEYMWJEpikmiLLDvCZtq1SpEkJDQzFz5kyEh4dj8eLFuHnzJhYsWIAffvgBnTp1QmBgID766CPlvLdUMMxrMnSenp7YuHEjAgICEBQUhL/++gtjx47FihUrsHDhQnTo0IH1AZkUc3NzZTfq9wfeK1asGEqUKIGVK1fC2dkZd+7cwcSJE7Pczk8//YSKFSuiSpUq+PHHH/H8+fNMV7RnzJiBEiVKoEyZMvjmm29QsmRJdO7cOV9x29vbw9/fH+PHj0fx4sVRunRpTJs2DWZmZoU2R9W+Av3JJ5/g66+/xpIlSxAZGcmDsZ5VrVoVy5cvx7179/D999/Dw8MDT58+xezZs+Hl5YXPP/8cf/75p1a7d1taWmbq8rFs2TLUrFkTDg4OcHBwQKNGjfDbb79pLQZtyqp8wcHBkMlkKo/KlSvrKcKCY16TLjk6OiIwMBAxMTHYsWOHSm8aX19fZW8abY7Qm1Vev2/u3LmQyWQICgrSWhzaxLwmY9KsWTOcOXMGP//8M0qXLo3Y2Fj4+fmhXbt2Od6zmRfv572pHcvJeGT8Pn6fmZkZNm7ciPPnz6N69er46quvMH/+/Cy3MXfuXMydOxe1atXCiRMnsGPHjkz3U8+dOxeBgYGoW7cuHjx4gJ07d8LKyirfcf/www9o1KgROnbsiFatWqFJkyaoUqWKVqaIMgZqzwPdunVrhIWFwc3NTdsxaY0pz9n35s0b7NixAyEhITh27Jhyeb169RAYGIgePXrA2tpa63Hs3LkT5ubmqFixIoQQWLt2LebPn48LFy6gWrVqWv98bQsODsaWLVvw+++/K5dZWFhkqrjyQx/7J/Oa9O3y5csIDQ3FL7/8orwNpWTJkvjiiy/00pvm7Nmz6NmzJxwcHNCiRYsCz2/JvM4f5nXhlJSUhFmzZuHHH39Eeno6zM3NERAQgODgYBQrVkxjn6OJYzn3Ud3Jbk7fxMRELFmyBG/evNFZLBYWFhg5ciQcHR119pkZMuaBvnDhAmrXrp3lOhnzQD9//hxOTk5aiyU5ORmurq5YuHAhBg8erLXPyS9tzwOtdgPaFBSWyi46OhqhoaGIiIhAamoqAKBMmTIYPnw4vvzyS5QpU0an8RQvXhzz5883yATLq4zJ5rUxamhh2T81jd+baXj27BlWr16Nn376STniqIWFBbp164bAwEB8+OGHWu8q9vLlS3zwwQdYunQpvvvuO9SuXdsoG9CmgN9b4Xbjxg2MGzcO27dvBwCUKFECM2bMwBdffAELizzdfZglTRzLuY/qTk6NocTERLx69UpnsRQpUkQvjWdAvw3oCxcu4Nq1a2jQoAESExMxY8YMHDlyBDdu3NDIRSRN03YDOs+DiJHhy5g77u7du/juu+/g4uKChw8fIjg4GB4eHujfvz/Onz+v9Tjkcjk2btyI5ORkleH0jd3169fh4uKCcuXKoU+fPpmmFyCivCtevDgmTJiAmzdvYsuWLWjWrBnevHmDTZs2oXHjxmjYsCHWrVun1QGGAgIC0KFDB7Rq1Uprn0FEuatQoQK2bduGAwcOoFq1anj69CkCAgJQp04d5dy0BcVjuWlwdHSEs7Ozzh76ajwbggULFqBWrVpo1aoVkpOTcfz4cYNsPOsCr0AXAunp6di6dStCQkJURuVr3LgxAgMD0aVLl1zvCXzfmzdv8OuvvwIAevbsqXJG+OLFi2jUqBFSUlJgZ2eHiIgItG/fXjOF0ZHsyvfbb7/h5cuX8PHxQXx8PKZPn4779+/j0qVLKvPn5Udh3T8Lit+b6bpw4YKyN01Gw7ls2bL48ssv89WbJqd6a+PGjZg1axbOnj0LGxsb+Pr68gq0HvF7owxv3rzBypUrMWXKFDx79gwA0KlTJyxYsAAVKlRQ6/3v570mjuXcR3VH21cTyfTwCjQVmKWlpXJQsdOnT6NPnz6wtLTEH3/8gc8++wzlypXDnDlz8OTJE7W3qVAocP36dVy/fj3TPHE+Pj6Ijo7G6dOnMXz4cPj7++PKlSuaLpZWZVe+du3aoUePHqhZsybatm2LPXv2ICEhQXlwJiLNqVOnDsLCwnD37l3MnDkTzs7OePDggbI3jb+/f55602SX13fv3kVgYCDWr1/PH2dEBsbCwgIjRozA9evXMXr0aJibm2P79u2oVq0avv76ayQlJeX4/qzynsdyIioINqALmQYNGmDdunWIi4vD1KlTUbp0ady7dw+TJ0+Gu7s7hgwZgosXLxboM6ysrFChQgXUrVsXc+bMQa1atRASEqKhEhgWJycnVKpUCTdu3NB3KEQmq3Tp0vj2229x+/ZtREREoGHDhkhLS8P//vc/1KtXD02bNsWvv/6a74Fkzp8/j0ePHuGDDz6AhYUFLCwscPToUYSGhsLCwgJyuVzDJSKivCpevDhCQkLwzz//oE2bNkhLS8P333+PSpUqYc2aNZlO5ucFj+VElBdsQBdSzs7OmD59Ou7cuYPw8HDUqVMHKSkp+Pnnn1GzZk18/PHH2LZtW7Y/HN9dfvz48Rx/YCoUCuVgZsZC3fK9fPkSN2/ehLOzs65CIyq0rKys0KtXL5w6dQqnTp1C7969YWFhgZMnT+Kzzz6Dt7c35s6di6dPn2b5/uzyumXLlrh48SKio6OVj3r16qFPnz6Ijo7ONF8nEelP1apVsXfvXuzcuRMVK1bEw4cPMXjwYNSvXx8nTpzItL46x3Mey41DIbrrlApI2/sKG9CFnLW1tbIb5PHjx9GjRw+Ym5vj8OHD6NKlCypUqICFCxciISFB+Z7IyEhUrVpV+bxdu3bw8vJCZGQkJk2ahGPHjuH27du4ePEiJk2ahCNHjqBPnz56KF3+5FS+cePG4ejRo7h9+zb++OMPdOnSBebm5ujVq5ceIyYqfBo2bIj169cjLi4OU6ZMQalSpXDv3j1MmjQJbm5uGDp0qEpvmpzy2t7eHtWrV1d5FC1aFCVKlED16tX1UTwiyoFMJkPHjh1x6dIlLFy4EA4ODvjrr7/QrFkzfP7558oBwbLL+06dOvFYbkQyxunR5WjbZNwy9pW8jvGkroLPBUAmQSaToWnTpmjatCnu3LmDpUuXYtWqVbh9+zbGjRuHadOmwd/fHz4+PggKCso0jcT9+/fRvXt3tGjRAhs2bEB8fDwcHR1Rs2ZN7Nu3D61bt9ZTyfImMjIS3bt3z7Z8jRs3RkREBJ4+fYpSpUqhadOmOHXqFEqVKqWniIkKNxcXF8yYMQOTJ0/Gpk2bEBISggsXLmD16tVYvXo1WrRogQYNGmDevHmZDqQZeb1lyxZ07dpVTyUgovyysrLCmDFj0LdvX0yZMgWrVq3Cpk2bsH37dvj5+WHz5s1Z5v29e/dw/PhxJCcn81huBMzNzeHk5IRHjx4BkKaS0va0hmSchBB49eoVHj16BCcnJ631IGMDmjLx8PDA3LlzMXXqVKxfvx6hoaG4dOkSli5dmu17MrpKxMTE4MqVK5l22OTkZK3GrAlyuRyjRo3KstuHEAIymQx37tzB3bt32aWTyMDY2NjA398f/fv3x8mTJxESEoLIyEgcPnwYhw8fzvI9GXkdFBSETp06qeT1kSNHdBQ5ERVU6dKlsWLFCgwfPhxBQUE4evQoNm/enOW6GXlvZ2eHx48f83huJMqWLQsAykY0UU6cnJyU+4w2sAFN2SpSpAiGDh2KIUOG4PDhw5g6dSpOnjyZ43vu379vsnPkCSFw9+5dHD9+HL6+vvoOh4iy8H5vmokTJ2LDhg3Zrs+8JjIdtWvXxuHDhzFjxgwEBwdnux7z3vjIZDI4OzujdOnSSE9P13c4ZMAsLS21fmKMDWjKlUwmw8cff4yHDx8qG9Dp6ek5HpyMXU7li4+P120wRJQvHh4e8PPzUzagmddEpk8mk6FSpUrK58x702Jubs5eA6R3bECT2tQdnXLPnj346KOPtByN5h07dgzt27fPdT2O0klkPNTNV+Y1kelg3hORNrEBTWpr1qwZ3NzccP/+/SzvE5bJZHBzc0ObNm2M8uxgmzZt1Cpfs2bN9BAdEeWHuvUW85rIdDDviUibOI0Vqc3c3BwhISEAkGn0w4znixYtMsrGM2D65SMqjJjXRIUP856ItIkNaMqTrl27YsuWLXB1dVVZ7ubmZhJTwZh6+YgKI+Y1UeHDvCcibZGJrPq2mKikpCQ4OjoiMTERDg4O+g7HqMnlchw/fhzx8fFwdnZGs2bNTOpMrj7Kx/0zf/i9kbqY18aD3xtpirbynvsoUeHFe6ApX8zNzU166gdTLx9RYcS8Jip8mPdEpGnswk1ERERERESkBjagiYiIiIiIiNTABjQRERERERGRGtiAJiIiIiIiIlIDG9BEREREREREamADmoiIiIiIiEgNbEATERERERERqYENaCIiIiIiIiI1sAFNREREREREpAY2oImIiIiIiIjUwAY0ERERERERkRrYgCYiIiIiIiJSAxvQRERERERERGowmgb0rFmz0LhxYxQpUgROTk76DoeINIB5TWSamNtERGSqjKYBnZaWhh49emD48OH6DoWINIR5TWSamNtERGSqLPQdgLqmT58OAAgPD9dvIESkMcxrItPE3CYiIlNlNFegiYiIiIiIiPTJaK5A50dqaipSU1OVzxMTEwEASUlJ+gqJKFsZ+6UQQs+RGDbmNRkT5rV6mNdkbJjbRIWXXhvQEydOxLx583Jc5+rVq6hcuXK+tj9nzhxlN7J3ubu752t7RLrw4sULODo66juMfGNeE2Vm7HkNaDe3mddkrEwht4kob2RCj6fOHj9+jKdPn+a4Trly5WBlZaV8Hh4ejqCgICQkJOS6/ffPaCsUCjx79gwlSpSATCbLd9zqSkpKgru7O+7evQsHBwetf56usXyaJYTAixcv4OLiAjMz4727gnlt3Fg+zTKVvAa0m9u6yGtj2bcZp+ZpI1ZTym0iyhu9XoEuVaoUSpUqpbXtW1tbw9raWmWZPqbTcHBwMPiDS0GwfJpjCmexmdemgeXTHFPIa0C7ua3LvDaWfZtxap6mYzWV3CaivDGae6Dv3LmDZ8+e4c6dO5DL5YiOjgYAVKhQAXZ2dvoNjojyhXlNZJqY20REZKqMpgE9depUrF27Vvm8Tp06AIDDhw/D19dXT1ERUUEwr4lME3ObiIhMldHctBEeHg4hRKaHIR+Ira2tMW3atEzd0kwFy0cFxbw2PCwfaYIh5rax/O0Zp+YZU6xEZPj0OogYERERERERkbEwmivQRERERERERPrEBjQRERERERGRGtiAJiIiIiIiIlIDG9Ba8tNPP8HLyws2NjZo2LAhzpw5o++QNObYsWPw8/ODi4sLZDIZtm3bpu+QNGrOnDmoX78+7O3tUbp0aXTu3BkxMTH6DosMhKnmNvOaTJ0x5K4x5KGx5NKyZctQs2ZN5dzPjRo1wm+//abvsIjIBLABrQWbNm3CmDFjMG3aNPz111+oVasW2rZti0ePHuk7NI1ITk5GrVq18NNPP+k7FK04evQoAgICcOrUKRw4cADp6elo06YNkpOT9R0a6Zkp5zbzmkyZseSuMeShseSSm5sb5s6di/Pnz+PcuXP4+OOP0alTJ1y+fFnfoRGRkeMo3FrQsGFD1K9fH0uWLAEAKBQKuLu7Y9SoUZg4caKeo9MsmUyGqKgodO7cWd+haM3jx49RunRpHD16FB999JG+wyE9Kiy5zbwmU2OMuWsseWhMuVS8eHHMnz8fgwcP1ncoRGTEeAVaw9LS0nD+/Hm0atVKuczMzAytWrXCn3/+qcfIKL8SExMBSAdeKryY26aFeV14MHe1yxhySS6XY+PGjUhOTkajRo30HQ4RGTk2oDXsyZMnkMvlKFOmjMryMmXK4MGDB3qKivJLoVAgKCgITZo0QfXq1fUdDukRc9t0MK8LF+au9hh6Ll28eBF2dnawtrbGl19+iaioKFStWlXfYRGRkbPQdwBEhiwgIACXLl3CiRMn9B0KEWkI85pIMww9l3x8fBAdHY3ExERs2bIF/v7+OHr0KBvRRFQgbEBrWMmSJWFubo6HDx+qLH/48CHKli2rp6goP0aOHIldu3bh2LFjcHNz03c4pGfMbdPAvC58mLvaYQy5ZGVlhQoVKgAA6tati7NnzyIkJAQrVqzQc2REZMzYhVvDrKysULduXRw8eFC5TKFQ4ODBg7zvxkgIITBy5EhERUXh0KFD8Pb21ndIZACY28aNeV14MXc1y5hzSaFQIDU1Vd9hEJGR4xVoLRgzZgz8/f1Rr149NGjQAIsWLUJycjIGDhyo79A04uXLl7hx44by+a1btxAdHY3ixYvDw8NDj5FpRkBAACIiIrB9+3bY29sr75FzdHSEra2tnqMjfTLl3GZekykzltw1hjw0llyaNGkS2rVrBw8PD7x48QIRERE4cuQI9u3bp+/QiMjYCdKKxYsXCw8PD2FlZSUaNGggTp06pe+QNObw4cMCQKaHv7+/vkPTiKzKBkCEhYXpOzQyAKaa28xrMnXGkLvGkIfGkkuDBg0Snp6ewsrKSpQqVUq0bNlS7N+/X99hEZEJ4DzQRERERERERGrgPdBEREREREREamADmoiIiIiIiEgNbEATERERERERqYENaCIiIiIiIiI1sAFNREREREREpAY2oImIiIiIiIjUwAY0ERERERERkRrYgCYiIiIiIiJSAxvQlKMBAwagc+fO+g6DiDSIeU1kepjXRES6YaHvAEh/ZDJZjq9PmzYNISEhEELoKCIiKijmNZHpYV4TERkOmWBtW2g9ePBA+f9NmzZh6tSpiImJUS6zs7ODnZ2dPkIjonxiXhOZHuY1EZHhYBfuQqxs2bLKh6OjI2QymcoyOzu7TF3CfH19MWrUKAQFBaFYsWIoU6YMVq1aheTkZAwcOBD29vaoUKECfvvtN5XPunTpEtq1awc7OzuUKVMG/fr1w5MnT3RcYiLTx7wmMj3MayIiw8EGNOXZ2rVrUbJkSZw5cwajRo3C8OHD0aNHDzRu3Bh//fUX2rRpg379+uHVq1cAgISEBHz88ceoU6cOzp07h7179+Lhw4fo2bOnnktCRBmY10Smh3lNRKR5bEBTntWqVQvffvstKlasiEmTJsHGxgYlS5bE0KFDUbFiRUydOhVPnz7FP//8AwBYsmQJ6tSpg9mzZ6Ny5cqoU6cO1qxZg8OHDyM2NlbPpSEigHlNZIqY10REmsdBxCjPatasqfy/ubk5SpQogRo1aiiXlSlTBgDw6NEjAMDff/+Nw4cPZ3l/1s2bN1GpUiUtR0xEuWFeE5ke5jURkeaxAU15ZmlpqfJcJpOpLMsYLVShUAAAXr58CT8/P8ybNy/TtpydnbUYKRGpi3lNZHqY10REmscGNGndBx98gK1bt8LLywsWFtzliEwB85rI9DCviYhyx3ugSesCAgLw7Nkz9OrVC2fPnsXNmzexb98+DBw4EHK5XN/hEVE+MK+JTA/zmogod2xAk9a5uLjg5MmTkMvlaNOmDWrUqIGgoCA4OTnBzIy7IJExYl4TmR7mNRFR7mRCCKHvIIiIiIiIiIgMHU8nEhEREREREamBDWgiIiIiIiIiNbABTURERERERKQGNqCJiIiIiIiI1MAGNBEREREREZEa2IAmIiIiIiIiUgMb0ERERERERERqYAOaiIiIiIiISA1sQBMRERERERGpgQ1oIiIiIiIiIjWwAU1ERERERESkBjagiYiIiIiIiNTwf4q2+NKzhynEAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_matched([ex_graphs.good_div(t) for t in [0, 1, 2]], 'Correct Divisions')" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqQAAADXCAYAAADMb0PvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABS0klEQVR4nO3dd1wT9/8H8NcRhggIAoLIdiEOcODEWVGL1uIeVQui/loLKo6qqFW0Ks6qdVZbgTqqVkGtWnGB4MKJrYUiKqBStzLEAYTP74/7EomsBEIuCe/n45GH5nK5e3+Se1/e3H3ucxxjjIEQQgghhBCBaAkdACGEEEIIqd6oICWEEEIIIYKigpQQQgghhAiKClJCCCGEECIoKkgJIYQQQoigqCAlhBBCCCGCooKUEEIIIYQIigpSQgghhBAiKCpICSGEEEKIoKggJYRIREdHg+M4REdHCx1KleI4DkFBQTLN6+DgAB8fnyqNR1HkaVdRQUFB4DhOrvekpqaC4ziEhobKvT5CCPkYFaSEaIDQ0FBwHFfiY/bs2UKHV6aPY69RowYaN24Mf39/PHnyRCkxXLhwAUFBQcjIyFDK+mTh4OAg+Uy0tLRgYmKCFi1a4P/+7/8QFxcndHiEEKJQ2kIHQAhRnEWLFsHR0VFqWvPmzQWKRj6Fsb979w7nzp3D5s2bcezYMdy6dQs1a9ZU6Lrevn0Lbe0Pu78LFy5g4cKF8PHxgYmJidS8SUlJ0NIS5m/3li1bYvr06QCA7OxsJCYm4vfff8e2bdswdepU/PDDD1Lzf9wuWc2bN0/uP1zs7e3x9u1b6OjoyL0+Qgj5GBWkhGgQT09PuLm5CR1GhRSNffz48TAzM8MPP/yAQ4cOYeTIkQpdV40aNWSeV09PT6Hrloe1tTVGjx4tNW358uX44osvsGbNGjRq1AgTJ06UvCZPu4rS1taWu5AtPJpNCCGKQKfsCakG0tLS8M0338DJyQn6+vowMzPD0KFDkZqaWu57k5OTMXjwYNStWxc1atSAjY0NRowYgczMTKn5du7ciTZt2kBfXx+mpqYYMWIEHjx4UOGYP/nkEwBASkoKACA/Px/ff/89GjRoAD09PTg4OGDOnDl4//691PuuXr2KPn36wNzcHPr6+nB0dISvr6/UPEX7WgYFBeHbb78FADg6OkpOkxd+NkX7kF69ehUcxyEsLKxYvJGRkeA4DkeOHJFMS09Ph6+vLywtLaGnp4dmzZph+/btFf5MAEBfXx87duyAqakplixZAsZYie3av38/OI7D2bNniy3jp59+AsdxuHXrluQz+LgP6cmTJ9G5c2eYmJjA0NAQTk5OmDNnjuT10vqQnjlzBl26dIGBgQFMTEzg5eWFxMREqXkK13fnzh3JUWljY2OMHTsWb968qczHQwhRU3SElBANkpmZiefPn0tNMzc3x5UrV3DhwgWMGDECNjY2SE1NxebNm9G9e3ckJCSUeko8NzcXffr0wfv37zFp0iTUrVsX6enpOHLkCDIyMmBsbAwAWLJkCb777jsMGzYM48ePx7Nnz7B+/Xp07doVN27cKHYaXBZ3794FAJiZmQHgj5qGhYVhyJAhmD59OuLi4hAcHIzExEREREQAAJ4+fYrevXujTp06mD17NkxMTJCamorw8PBS1zNo0CDcvn0bv/32G9asWQNzc3MAQJ06dYrN6+bmhvr162Pfvn3w9vaWem3v3r2oXbs2+vTpAwB48uQJOnToAI7j4O/vjzp16uDPP//EuHHjkJWVhYCAALk/k0KGhoYYOHAgfvnlFyQkJKBZs2bF5unXrx8MDQ2xb98+dOvWrViszZo1K7U7xz///IPPPvsMLi4uWLRoEfT09HDnzh2cP3++zLhOnToFT09P1K9fH0FBQXj79i3Wr18Pd3d3XL9+HQ4ODlLzDxs2DI6OjggODsb169fx888/w8LCAsuXL5fvAyGEqD9GCFF7ISEhDECJD8YYe/PmTbH3XLx4kQFgv/76q2RaVFQUA8CioqIYY4zduHGDAWC///57qetOTU1lIpGILVmyRGr633//zbS1tYtNLy32U6dOsWfPnrEHDx6wPXv2MDMzM6avr88ePnzI4uPjGQA2fvx4qffOmDGDAWBnzpxhjDEWERHBALArV66UuU4AbMGCBZLnK1euZABYSkpKsXnt7e2Zt7e35HlgYCDT0dFhL1++lEx7//49MzExYb6+vpJp48aNY1ZWVuz58+dSyxsxYgQzNjYu8Tv5eL39+vUr9fU1a9YwAOzQoUOltmvkyJHMwsKC5efnS6Y9evSIaWlpsUWLFkmmLViwgBX9OShc9rNnz0pdf0pKCgPAQkJCJNNatmzJLCws2IsXLyTTbt68ybS0tNiXX35ZbH1FPy/GGBs4cCAzMzMrdZ2EEM1Fp+wJ0SAbN27EyZMnpR4Af5q3UF5eHl68eIGGDRvCxMQE169fL3V5hUdAIyMjSz2VGh4ejoKCAgwbNgzPnz+XPOrWrYtGjRohKipKptg9PDxQp04d2NraYsSIETA0NERERASsra1x7NgxAMC0adOk3lN4wc/Ro0cBQHIk9siRI8jLy5NpvfIaPnw48vLypI66njhxAhkZGRg+fDgAgDGGAwcOoH///mCMSX0uffr0QWZmZpmfuywMDQ0B8Bc7lRXr06dPpYbx2r9/PwoKCiSxlqTwczx06BAKCgpkiufRo0eIj4+Hj48PTE1NJdNdXFzQq1cvyXdY1Ndffy31vEuXLnjx4gWysrJkWichRHNQQUqIBmnXrh08PDykHgB/9fX8+fNha2sLPT09mJubo06dOsjIyCjWF7QoR0dHTJs2DT///DPMzc3Rp08fbNy4Ueo9ycnJYIyhUaNGqFOnjtQjMTERT58+lSn2wmI6KioKCQkJuHfvnuT0d1paGrS0tNCwYUOp99StWxcmJiZIS0sDAHTr1g2DBw/GwoULYW5uDi8vL4SEhBTrZ1oZrq6uaNKkCfbu3SuZtnfvXpibm0v6vT579gwZGRnYunVrsc9k7NixACDz51Ka169fAwCMjIxKnefTTz+FsbFxsVhbtmyJxo0bl/q+4cOHw93dHePHj4elpSVGjBiBffv2lVmcFn4HTk5OxV5zdnbG8+fPkZOTIzXdzs5O6nnt2rUBAK9evSp1PYQQzUR9SAmpBiZNmoSQkBAEBASgY8eOMDY2BsdxGDFiRLlHwFavXg0fHx8cOnQIJ06cwOTJkxEcHIxLly7BxsYGBQUF4DgOf/75J0QiUbH3Fx7JK0+7du3KHSGgvMHbOY7D/v37cenSJfzxxx+IjIyEr68vVq9ejUuXLskcS3mGDx+OJUuW4Pnz5zAyMsLhw4cxcuRIyZXqhZ/p6NGji/U1LeTi4lKpGAovSPq4SC9KT08PAwYMQEREBDZt2oQnT57g/PnzWLp0aZnL1tfXR0xMDKKionD06FEcP34ce/fuxSeffIITJ06U+D1XRGnLYUUu1CKEVA9UkBJSDezfvx/e3t5YvXq1ZNq7d+9kHgi+RYsWaNGiBebNm4cLFy7A3d0dW7ZsweLFi9GgQQMwxuDo6FjmUbfKsLe3R0FBAZKTk+Hs7CyZ/uTJE2RkZMDe3l5q/g4dOqBDhw5YsmQJdu/ejVGjRmHPnj0YP358icuX9y5Fw4cPx8KFC3HgwAFYWloiKysLI0aMkLxep04dGBkZQSwWS45SK9Lr168REREBW1tbqc+jtFjDwsJw+vRpJCYmgjFW5un6QlpaWujZsyd69uyJH374AUuXLsXcuXMRFRVVYpsKv4OkpKRir/37778wNzeHgYGBjC0khFQ3dMqekGpAJBIVO+q0fv16iMXiMt+XlZWF/Px8qWktWrSAlpaW5DT4oEGDIBKJsHDhwmLrYIzhxYsXlY6/b9++AIC1a9dKTS8cGL5fv34A+FO9H8fQsmVLACjztH1hoSRrge7s7IwWLVpg79692Lt3L6ysrNC1a1fJ6yKRCIMHD8aBAwckRzKLevbsmUzrKcnbt28xZswYvHz5EnPnzi23mPbw8ICpqakk1nbt2hW7ecLHXr58WWxaeZ+jlZUVWrZsibCwMKnP8datWzhx4oTkOySEkJLQEVJCqoHPPvsMO3bsgLGxMZo2bYqLFy/i1KlTkiGVSnPmzBn4+/tj6NChaNy4MfLz87Fjxw5JwQUADRo0wOLFixEYGIjU1FQMGDAARkZGSElJQUREBP7v//4PM2bMqFT8rq6u8Pb2xtatW5GRkYFu3brh8uXLCAsLw4ABA9CjRw8AQFhYGDZt2oSBAweiQYMGyM7OxrZt21CrVq0yC6I2bdoAAObOnYsRI0ZAR0cH/fv3L/OI3vDhwzF//nzUqFED48aNK3Y3p2XLliEqKgrt27fHhAkT0LRpU7x8+RLXr1/HqVOnSiz6Ppaeno6dO3cC4I+KJiQk4Pfff8fjx48xffp0fPXVV+UuQ0dHB4MGDcKePXuQk5ODVatWlfueRYsWISYmBv369YO9vT2ePn2KTZs2wcbGBp07dy71fStXroSnpyc6duyIcePGSYZ9MjY2loyPSgghJaGClJBqYN26dRCJRNi1axfevXsHd3d3nDp1SnLRUGlcXV3Rp08f/PHHH0hPT0fNmjXh6uqKP//8Ex06dJDMN3v2bDRu3Bhr1qzBwoULAQC2trbo3bs3Pv/8c4W04eeff0b9+vURGhqKiIgI1K1bF4GBgViwYIFknsJCdc+ePXjy5AmMjY3Rrl077Nq1q8yjgm3btsX333+PLVu24Pjx4ygoKEBKSkq5Bem8efPw5s2bEk+BW1pa4vLly1i0aBHCw8OxadMmmJmZoVmzZjKPsxkfH48xY8aA4zgYGRnB1tYW/fv3x/jx49GuXTuZllEY688//wyO4zBs2LBy5//888+RmpqK7du34/nz5zA3N0e3bt2wcOFCycgLJfHw8MDx48exYMECzJ8/Hzo6OujWrRuWL19e7lFZQkj1xjHqPU4IIYQQQgREfUgJIYQQQoigqCAlhBBCCCGCooKUEEIIIYQIigpSQgghhBAiKCpICSGEEEKIoKggJYQQQgghgqKClBBCCCGECIoKUkIIIYQQIigqSAkhhBBCiKCoICWEEEIIIYKigpQQQgghhAiKClJCCCGEECIoKkgJIYQQQoigqCAlhBBCCCGCqlYFKWMMWVlZYIwJHQrRILRdVQx9bqSq0LZFiPrRFjoAZcrKyoKJiQkePHiAWrVqCR0O0RBZWVmwtbVFRkYGjI2NhQ5HbVA+kqpCOUmI+qlWBWl2djYAwNbWVuBIiCbKzs6mHz85UD6SqkY5SYj6qFYFqZGREQDQERmiUIVHYwq3LyIbykdSVSgnCVE/1aog5TgOAFCrVi36ASQKV7h9EdlQPpKqRjlJiPqoVhc1EUIIIYQQ1UMFKSGEEEIIERQVpIQQQgghRFBUkBJCCCGEEEFRQUoIIYQQQgRFBSkhhBBCCBEUFaSEEEIIIURQVJASQgghhBBBUUFKZObg4ACO44o9/Pz8hA5NbtnZ2QgICIC9vT309fXRqVMnXLlyReiwCKl2NGm/QgipuGp1pyZSOVeuXIFYLJY8v3XrFnr16oWhQ4cKGFXFjB8/Hrdu3cKOHTtQr1497Ny5Ex4eHkhISIC1tbXQ4RFSbWjSfoUQUnEcY4wJHYSyZGVlwdjYGJmZmXSrQgUICAjAkSNHkJycrFa36Hv79i2MjIxw6NAh9OvXTzK9TZs28PT0xOLFi+VaHm1XFUOfGymJIvYrtG0Ron7olD2pkNzcXOzcuRO+vr5qVYwCQH5+PsRiMWrUqCE1XV9fH+fOnRMoKkKIOu9XCCGVQwUpqZCDBw8iIyMDPj4+QociNyMjI3Ts2BHff/89/vvvP4jFYuzcuRMXL17Eo0ePhA6PkGpLnfcrhJDKoYKUVMgvv/wCT09P1KtXT+hQKmTHjh1gjMHa2hp6enr48ccfMXLkSGhpUUoQIhR1368QQiqOfn2J3NLS0nDq1CmMHz9e6FAqrEGDBjh79ixev36NBw8e4PLly8jLy0P9+vWFDo2QakkT9iuEkIqjgpTILSQkBBYWFlIXBKkrAwMDWFlZ4dWrV4iMjISXl5fQIRFSLWnSfoUQIj+1KkhjYmLQv39/1KtXDxzH4eDBg0KHpJHEYiA6GvjtN/7fIiOyoKCgACEhIfD29oa2tmqPGlZWOyIjI3H8+HGkpKTg5MmT6NGjB5o0aYKxY8cKFa7aoXwk8tCU/QohpGqoVUGak5MDV1dXbNy4UehQNFZ4OODgAPToAXzxBf+vgwM/HQBOnTqF+/fvw9fXV8gwy1VeOzIzM+Hn54cmTZrgyy+/ROfOnREZGQkdHR0hw1YrlI9EVpqyXyGEVB21HYeU4zhERERgwIABMr+HxqYrW3g4MGQI8PEWUTj6yv79wKBByo9LXspuB21XlI+kdELsV2jbIkT90LkRAoA/fTZlSvEfDeDDtMmTAQ8PQCRSbmzyEIuBSZNKbwfHAQEBgJeXareDEE1Q3n6F8pEQUkijC9L379/j/fv3kudZWVkCRqPaYmOBhw/Lnic9HTA2Vk48VYUx4MEDvr3duwsdTfVC+Vj9lLdfoXwkhBRSqz6k8goODoaxsbHkYWtrK3RIKokx4MyZD891dHIRFLQQQUELoaOTK1xglVRWO2j8e+WjfKx+kpM//J/ykRBSFo0+QhoYGIhp06ZJnmdlZdGPYBGMASdOAIsXAx/fMTMnp2aJ7zl2DOjaVQnBVVBMDNC374fnpbXDykpJAREJysfq4+lT4IcfgB9/lJ5O+UgIKY1GF6R6enrQ09MTOgyVU1AAHD7MF6LXrvHTdHUBHR0gJwfIy9PFypXfSr2H4wAbG6B3b9Xu69W7Nx9nenrZ7ejSRaAAqzHKR8338CGwciWwbRvw9i0/TUcHyMujfFRnjDHk5+dDXHSsLkI+IhKJoK2tDa7wikU5qVVB+vr1a9y5c0fyPCUlBfHx8TA1NYWdnZ2AkakHsRj4/XdgyRLg1i1+mr4+8PXXwPTpQFwcfzUsIH0RQuG2tXatahejAB/funV8OzhOfduhDigfSaF794Dly4GQEL74BIC2bYHvvgNyc4GhQ/lplI/qJzc3F48ePcKbN2+EDoWogZo1a8LKygq6urpyv1ethn2Kjo5Gjx49ik339vZGaGhoue+vrkOB5OUBO3cCwcEf+nQZGQH+/sDUqUCdOh/mDQ/nr4oteiGCrS3/o6EOQz4VUmY7qut2RflIEhP5/cru3R8Guu/aFZg3jx+Ro7DoVPZ+hbYtxSgoKEBycjJEIhHq1KkDXV3dCh/9IpqNMYbc3Fw8e/YMYrEYjRo1gpaWfJcpqVVBWlnVbSf17h1/xGL5ciAtjZ9masoPs+LvD9SuXdr78rBlyy7k5gJt2oxC9+46ankEQ1ntqG7blaLQ56a+bt7kz7Ts3//hqGefPsDcuaWfflfmfoW2LcV49+4dUlJSYG9vj5o1S+7/S0hRb968QVpaGhwdHVGjRg253qtWp+yJbHJygK1b+b5chVevWlgAM2bwp+eNjMp+v5YWQ2YmX8F26cLUshgFNKcdhKiKuDi+EP3jjw/TvLz4QrRt27LfS/movuQ90kWqr8psK1SQapDMTGDjRmDNGuD5c36ajQ0waxYwbhzfX5QQQuTBGD96xeLFwKlT/DSOA4YPB+bMAVq0EDY+QohmoIJUA7x4wV/I8+OPfFEKAPXrA4GBwJdf8lfQE0KIPEoaFk4kAsaMAWbPBpychI2PCOv+/ft4XnjkQwnMzc2rzcWSQUFBOHjwIOLj44UOBd27d0fLli2xdu3aKl8XFaRq7PFjYPVqYPNm/jQ9ADg786fPhg8HtOnbJYTIqbRh4Xx9+bMtDg6ChkdUwP379+Hk5IR3794pbZ01atRAUlKSXEXp48ePERwcjKNHj+Lhw4cwNjZGw4YNMXr0aHh7e6tlv9igoCAsXLiwzHkqcmlQ4UWqr169gomJSQWjqxwqWdTQ/fsfxvorvBNjy5b8la0DBwLU3YcQIq/yhoWzthY2PqI6nj9/rtRiFOAvsHr+/LnMBem9e/fg7u4OExMTLF26FC1atICenh7+/vtvbN26FdbW1vj8889LfG9eXh50dHQUGb7CzJgxA19//bXkedu2bfF///d/mDBhQonz5+bmVmgIJiFQ6aJG7twBxo8HGjYENmzgi9EOHYAjR4Dr14HBg6kYJYTIJy+PH43D2RkYOZIvRo2M+C4/aWn8HZeoGCXq5ptvvoG2tjauXr2KYcOGwdnZGfXr14eXlxeOHj2K/v37S+blOA6bN2/G559/DgMDAyxZsgQAsHnzZjRo0AC6urpwcnLCjh07JO9JTU0Fx3FSp9UzMjLAcRyio6MB8EcdOY7D6dOn4ebmhpo1a6JTp05ISkqSinXZsmWwtLSEkZERxo0bV2axb2hoiLp160oeIpEIRkZGkucjRoyAv78/AgICYG5ujj59+pQba2pqqmQIv9q1a4PjOPj4+EjmLSgowMyZM2Fqaoq6desiKChIzm9DNhUuX3Jzc5GUlIT8/HxFxqOR0tPTMXr0aJiZmUFfXx8tWrTA1atXZX5/QgIwejTfZ+uXX/gfkB49gNOngQsXgH79Poz3pyg6OjrF/kIMDg5G27ZtYWRkBAsLCwwYMKBYYqmaktpR1LJly8BxHAICApQXVBWgfJRdUFAQOI6TejRp0kTosCqkMvuWd+/47j6NGvGn45OT+WHhFi3iC9GlS6XHKFaEkvJx8+bNcHFxQa1atVCrVi107NgRf/75p2JXTKqVFy9e4MSJE/Dz84OBgUGJ83w8nmpQUBAGDhyIv//+G76+voiIiMCUKVMwffp03Lp1C1999RXGjh2LqKgoueOZO3cuVq9ejatXr0JbWxu+vr6S1/bt24egoCAsXboUV69ehZWVFTZt2iT3OooKCwuDrq4uzp8/jy1btpQ7v62tLQ4cOAAASEpKwqNHj7Bu3Tqp5RkYGCAuLg4rVqzAokWLcPLkyUrFWCImp5ycHObr68tEIhETiUTs7t27jDHG/P39WXBwsLyLU6rMzEwGgGVmZiptnS9fvmT29vbMx8eHxcXFsXv37rHIyEh2586dct977RpjgwYxxl9ewD/69mXs/HklBF6CPn36sJCQEHbr1i0WHx/P+vbty+zs7Njr16+FCaiSLl++zBwcHJiLiwubMmVKhZcjxHZViPJRfgsWLGDNmjVjjx49kjyePXum1BgUoaL7ltevGVu9mjErqw/7FQsLxlasYCwrS0nBF3H48GF29OhRdvv2bZaUlMTmzJnDdHR02K1btyq8TCFzUpO8ffuWJSQksLdv30pNv3btGgOg9Me1a9dkivvSpUsMAAsPD5eabmZmxgwMDJiBgQGbOXOmZDoAFhAQIDVvp06d2IQJE6SmDR06lPXt25cxxlhKSgoDwG7cuCF5/dWrVwwAi4qKYowxFhUVxQCwU6dOSeY5evQoAyD5TDt27Mi++eYbqfW0b9+eubq6ytRWe3t7tmbNGsnzbt26sVatWknNI0+sr169knpvt27dWOfOnaWmtW3bls2aNavEeErbZmQh9xHSwMBA3Lx5E9HR0VKDnnp4eGDv3r3yLk7jLV++HLa2tggJCUG7du3g6OiI3r17o0GDBqW+5+JF/qhnmzb8HU4A/m4m164BR48CnTopKfiPHD9+HD4+PmjWrBlcXV0RGhqK+/fv41rhlQ9q5PXr1xg1ahS2bduG2qXdIUANUD5WjLa2ttRpL3Nzc6FDkpu8+5bMTP6op4MD3yf00SN+WLj164HUVODbb8sfo7gq9O/fH3379kWjRo3QuHFjLFmyBIaGhrh06ZLygyEa7fLly4iPj0ezZs3wvvACjP9xc3OTep6YmAh3d3epae7u7khMTJR7vS4uLpL/W1lZAQCePn0qWU/79u2l5u/YsaPc6yiqTZs2lXr/x4rGD/BtKIxfkeQuSA8ePIgNGzagc+fOUoe8mzVrhrt37yo0OE1w+PBhuLm5YejQobCwsECrVq2wbdu2YvMxBpw5A3zyCV9wHjvG9wcdNYrv03XgANC6tQANKEPm/8aYMjU1FTgS+fn5+aFfv37w8PAQOpRKoXysmOTkZNSrVw/169fHqFGjcP/+faFDkpus+5bnz/l7ytvb8yNwPH/ODwu3bRtw9y5/1zZVGaNYLBZjz549yMnJqfSPMqm+GjZsCI7jinUpq1+/Pho2bAj9Ejb40k7tl6ZwAHhW5Ir2vLy8Euct2k2lcD9dUFAg1/rk8XFb5Im1JB93s+E4rkril7sgffbsGSwsLIpNz8nJoXvcluDevXvYvHkzGjVqhMjISEycOBGTJ09GWFgYAL4QPXYMcHcHevYEoqIAHR1+IPukJP4e9M2aKTfm/Px87N69G7t37y61T2JBQQECAgLg7u6O5s2bKzdAGZXWjj179uD69esIDg4WMDrFoHyUX/v27REaGorjx49j8+bNSElJQZcuXZCdnS10aHIpb9/y+DF/1NPBgR/CKTOTv3Bp505+3zJ+vHLHKC5rv/L333/D0NAQenp6+PrrrxEREYGmTZsqLziiUczMzNCrVy9s2LABOYVjIsrJ2dkZ58+fl5p2/vx5yXZZ538drB8V3g4RqNC4oc7OzoiLi5OapuizA7LEWnglvlgsVui65SH3sE9ubm44evQoJk2aBOBDtf/zzz/TX7QlKCgogJubG5YuXQoAaNWqFW7duoUtW7bAyMgbixcDN27w8+rpARMm8D8iQo7/W1BQgOTkZMn/S+Ln54dbt27hXOGI2SqopHY8ePAAU6ZMwcmTJ+W+z64qonyUn6enp+T/Li4uaN++Pezt7bFv3z6MGzdOwMjkU9q+Zd26Lbh61VvlhoUra7/i5OSE+Ph4ZGZmYv/+/fD29sbZs2epKCUVtmnTJri7u8PNzQ1BQUFwcXGBlpYWrly5gn///bfc09rffvsthg0bhlatWsHDwwN//PEHwsPDcep/tyvT19dHhw4dsGzZMjg6OuLp06eYN2+e3HFOmTIFPj4+cHNzg7u7O3bt2oV//vkH9evXr1C7SyJLrPb29uA4DkeOHEHfvn2hr68PQ0NDhcUgC7kL0qVLl8LT0xMJCQnIz8/HunXrkJCQgAsXLuDs2bNVEaNas7Kyktqp5ucD2dnOuHr1AAYP5qcZGAATJwLTpgH/616i0vz9/XHkyBHExMTAxsZG6HDkcu3aNTx9+hSti/R/EIvFiImJwYYNG/D+/XuI1Ogm25SPlWdiYoLGjRvjzp07Qocil4/3LXfuANeuOePGjQOSP3I7dOAL0b59FT8ShyLp6uqiYcOGAPj+b1euXMG6devw008/CRwZUVcNGjTAjRs3sHTpUgQGBuLhw4fQ09ND06ZNMWPGDHzzzTdlvn/AgAFYt24dVq1ahSlTpsDR0REhISHo3r27ZJ7t27dj3LhxaNOmDZycnLBixQr07t1brjiHDx+Ou3fvYubMmXj37h0GDx6MiRMnIjIysiLNLlV5sVpbW2PhwoWYPXs2xo4diy+//BKhoaEKjaE8HGPyD+l/9+5dLFu2DDdv3sTr16/RunVrzJo1Cy1U/KbGWVlZMDY2RmZmJmrVqqXw5YvFQGwsf7GAlRXQpQswZswXePDgAU6fjsWOHUBwMHD37lQAcTA2voDJk4EpUwAzM4WHU2Fv377FihUrAACdO3dG9+7dIRKJwBjDpEmTEBERgejoaDRq1EjgSMtWUjvevHmDtLQ0qfnGjh2LJk2aYNasWRXqflDV21V5KB9LVlI+lvS3xuvXr2FnZ4egoCBMnjxZ4XFUVmnt+OILft/y00+xWLoU+O03oKCA37f06HEB8+bxw8OpSiFa2n6lJJ988gns7Owq/IModE5qinfv3iElJQWOjo5SZ5TU5U5NRPlK22ZkUaE7NTVo0KDEzvPVWXg4X1g+fPhhmo0N8NVXU7F3bydYWCxFZuYwAJcBbMXQoVuxbRtgbCxUxCULDw/H9OnTJYPienp6wtLSEuvWrcOpU6ewe/duHDp0CEZGRnj8+DEAwNjYuMRO4kIqqx2DBg2SmtfAwABmZmYq2xe2PJSPxZWWj+vWARcuzED//v1hb2+P//77DwsWLIBIJMLIkSOFC7gUZbXD03MqvL07oVmzpQD4fYtItBVz525FOXcWVLqy8vHKlSvw9PSEnZ0dsrOzsXv3bkRHRyv8CBFRHDs7OyQlJdG97IlCyV2Qlnc1anXcYMLDgSFD+AuUinr4EPjuu7YAIpCZGQhgESwsHPHdd2vh7z9KiFDLFB4ejiFDhkBbW3qzSE9Px5AhQyRX6BU9ZQEAISEhUnd1EFp57di/f3+xolRdUT4WV1o+pqfz0zt1eojdu0fixYsXqFOnDjp37oxLly5JOv6rirL2K3x3H37fAgRCS2sR7OwcMWfOWkyYoFr7lvLysUePHvjtt9/w6NEjGBsbw8XFBZGRkejVq5dAERNZ2NnZVcv9C6k6chekDg4OZV69K+QVWkIQi/kjGGV1fBCJPsO6dZ9h3DhAVa+jEYvFmDJlCkrqwVE4zdraGgkJCSWeZqvolYyKJhaLMWnSpFLbUXhXJi8vL0k7Cm/zpo4oH6WVlY+F01JT9+Dff4ufvleRTRgA345Jk8rerwDAF198hjlzPlP6SByyKm+/wnEckpOTkZKSolZ9twkhiid3QXqjsLf8/+Tl5eHGjRv44YcfJPd/rU5iY6VPp5VELOaHblLVYhQAYmNj8bCchqSnp8NY1foYyIkxhgcPHiA2NrbYkV51RPkoTZZ8TE9Xva4yFTVhgvKHhZNHefsVTctHQkjFyV2Qurq6Fpvm5uaGevXqYeXKlRpzKlRWRYb1go5OLubO5ce2XLIkEHl5uiXOp4qKjk+Wl5eHoKAg4YJRkLLa8UjVvxAZUT5KkzUf1Ul12K9oSj4SQiquQhc1lcTJyQlXrlxR1OLUxsfDNOXk1CxxvvPnAS8voGbJLwvOSsbxpo4dO4auXbtWcTQVFxMTg759+5Y7n6ztVVeUj7zS8vHYMUCFN2PExPBDNRUqrR0//cQPdt+ypXLikpeseabp+UgIKZ/cwz5lZWVJPWeM4dGjRwgKCsK///5boTsVKEtVDAUiFvN3QklPL7+/V506/Fij33wDqNpIJGKxGA4ODkhPTy+xvxfHcbCxsVH5vl5CtEPIIWYoH6WVl48cx1+lnpJS8hBQqkKe/QoA9OvHjzfaoUOVhyYXofYrNOyTYlRmCB9SPVVmm5H7nh0mJiaoXbu25GFqaoqmTZvi4sWL2Lx5s7yLU3siET8EC1B8vL/C519/DTg6As+eAYGB/D2lFywAXr5UbqxlEYlEWPe/hnx8kUzh87Vr16p0MQpoTjtkRfkoTZZ8XLtWtYtRoPx2cBywZg0wciR/56WjR4GOHQEPDyA6WrYiVhmqWz4SQiqBySk6OlrqERMTwxITE1leXp68i1K6zMxMBoBlZmYqfNkHDjBmY8MY/1PAP2xt+emMMZaXx9iOHYw1afLhdUNDxmbOZOzxY4WHU2EHDhxgNjY2DIDkYWtryw4UNkRNKLMdVbldlYfysWTl5aO6kKUdt28z5uvLmLb2h3k6dWLs2DHGCgqEi70oZe9XhMxJTfL27VuWkJDA3r59K3QoRE1UZpup0J2a1FVVn8Z59y4PW7bsQm4u0KbNKHTvrlPsSExBAT++4OLFwM2b/LQaNT7cw97WVuFhyU0sFiM2NhaPHj2ClZUVunTpopZHMJTVDjo9WDGqkI/qQNZ2pKUBK1YAv/zy4R72rVvzp/K9vIS7h30hZe5XKCcVo6zTr/fvA0ocFx/m5oAqDnvq4+ODjIwMHDx4EAA/TnfLli2xdu3aCi9TEcsQSpXfqenw4cMyL/Dzzz+XKwBNoqXFkJnJ35aySxdW4o+GlhY/2PXgwfxptsWLgbg4YP16YMsWwMcHmD0bqF9fubEXJRKJNGIIFk1px8coH2UjSz6qA1nbYW8PbNzIF6CrVwObNwPXrwODBvFDQ82ZAwwbBmgr7FJW+WhqPlZH9+8DTk6AEu8ciho1gKQk2YtSHx8fhIWFAQB0dHRgZ2eHL7/8EnPmzCl2kwZFCg8Ph46OjkzzRkdHo0ePHnj16hVMTEwqtAxNItO3MmDAAJkWxnFctRuIu6I4DvjsM/5ihDNn+MI0OhrYtg3Yvh344gu+v6mzs9CRElVD+UjKYmUFrFrF/2G7di3/x+4//wCjRvF91wMDgdGjAV31HAWLqIDnz5VbjAL8+p4/l+8o6aeffoqQkBC8f/8ex44dg5+fH3R0dBAYGCg1X25uLnQVlBCmpqYqsQx1JNNJnIKCApke9OMnP44DevYEoqKAc+cAT0/+CtsdO/ijGkOHAip8oTQRAOUjkYW5Of+Hbloa/6+ZGXDnDjBuHNCoEbBpk/KLCkKUSU9PD3Xr1oW9vT0mTpwIDw8PHD58GD4+PhgwYACWLFmCevXqwcnJCQDw4MEDDBs2DCYmJjA1NYWXlxdSU1MlyxOLxZg2bRpMTExgZmaGmTNnFhs9onv37ggICJA8f//+PWbNmgVbW1vo6emhYcOG+OWXX5CamooePXoAAGrXrg2O4yS34P54Ga9evcKXX36J2rVro2bNmvD09ERycrLk9dDQUJiYmCAyMhLOzs4wNDTEp59+qnbj+wrcq4gU5e7Oj4949SowcCB/ecL+/UCrVkD//sClS0JHSAhRNyYmwNy5QGoqf+S0bl3+lKufHz/6x+rVwOvXQkdJSNXT19dHbm4uAOD06dNISkrCyZMnceTIEeTl5aFPnz4wMjJCbGwszp8/LynsCt+zevVqhIaGYvv27Th37hxevnyJiIiIMtf55Zdf4rfffsOPP/6IxMRE/PTTTzA0NIStrS0OHDgAAEhKSsKjR48kI1J8zMfHB1evXsXhw4dx8eJFMMbQt29f5OXlSeZ58+YNVq1ahR07diAmJgb379/HjBkzFPGxKU2FOlLk5OTg7NmzuH//vuSLKjR58mSFBFadtWnDX/h06xawdCmwdy9w5Aj/6NmT7yPWrVvx4WBI9UT5SGRhaAhMn86Pg7x9O7B8OfDgATBjBhAcDEydCvj7a85tVQkpxBjD6dOnERkZiUmTJuHZs2cwMDDAzz//LDlVv3PnThQUFODnn3+WDEkWEhICExMTREdHo3fv3li7di0CAwMld8DbsmULIiMjS13v7du3sW/fPpw8eRIeHh4AgPpFLhApPDVvYWEh1Ye0qOTkZBw+fBjnz59Hp06dAAC7du2Cra0tDh48iKFDhwLg74S2ZcsWNGjQAADg7++PRYsWVfQjE0SF7mXft29fvHnzBjk5OTA1NcXz589Rs2ZNWFhY0A+gAjVvDuzeDSxcCCxbBvz6K3D6NP9wd+cL0z59qDCtzigfibz09fmjoxMmADt38sXonTv8/mTlSr4oDQjgT/kTos6OHDkCQ0ND5OXloaCgAF988QWCgoLg5+eHFi1aSPUbvXnzJu7cuQMjIyOpZbx79w53795FZmYmHj16hPbt20te09bWhpubW4k3fQCA+Ph4iEQidOvWrcJtSExMhLa2ttR6zczM4OTkhMTERMm0mjVrSopRgL/72dOnTyu8XiHIfcp+6tSp6N+/P169egV9fX1cunQJaWlpaNOmDVatWlUVMaoVHR2dYlfHxcTEoH///qhXrx44jpMMDyGrRo34oVzu3OGPbujp8bci9fQE2rYFIiL44aSqmlgsxnfffQdHR0fo6+ujQYMG+P7770tNRlVV3vfBGMP8+fNhZWUFfX19eHh4SPXXUSWUj2WrinwUQkntCA4ORtu2bWFkZAQLCwsMGDAASUlJMi9TVxfw9QUSE4Fdu/g+65mZwJIl/BX7M2YAyuiCpin7FaJ6evTogfj4eCQnJ+Pt27cICwuDgYEBAEj+LfT69Wu0adMG8fHxUo/bt2/jiy++qND69fX1K90GWX28f+A4Tu1ySO6CND4+HtOnT4eWlhZEIhHev38PW1tbrFixAnPmzKmKGNWGrq4u5syZgzlz5kj95ZWTkwNXV1ds3LixUssvHNYlJYU/9VazJnDtGj+si4sL8Ntv/AVRVWX58uXYvHkzNmzYgMTERCxfvhwrVqzA+vXrq26lVaC872PFihX48ccfsWXLFsTFxcHAwAB9+vTBOxW8AoTysXRVnY/KUlo7zp49Cz8/P1y6dAknT55EXl4eevfujZycHLmWr63Nj+rx1198V6HWrYE3b/i+pY6O/BHT+/cV3aoPNGW/QlSPgYEBGjZsCDs7u3KHemrdujWSk5NhYWGBhg0bSj2MjY1hbGwMKysrxMXFSd6Tn5+Pa9eulbrMFi1aoKCgAGfPni3x9cJ8LusCVGdnZ+Tn50ut98WLF0hKSkLTpk3LbJO6kbsg1dHRgdb/Rli2sLDA/f/tqYyNjfHgwQPFRqchPD09sXjxYgwcOFAhyysc1iUtjb9YoVYtfliXL77gh4navh34qCuhQly4cAFeXl7o168fHBwcMGTIEPTu3RuXL19W/MqqUFnfB2MMa9euxbx58+Dl5QUXFxf8+uuv+O+//1TySBrlo/wUnY9COX78OHx8fNCsWTO4uroiNDQU9+/fL/MHsixaWvzFlFev8hdXdurED7C/cSPQoAF/dX5VnCjQlP0KUW+jRo2Cubk5vLy8EBsbi5SUFERHR2Py5Ml4+PAhAGDKlClYtmwZDh48iH///RfffPMNMjIySl2mg4MDvL294evri4MHD0qWuW/fPgCAvb09OI7DkSNH8OzZM7wu4erCRo0awcvLCxMmTMC5c+dw8+ZNjB49GtbW1vDy8qqSz0IochekrVq1wpUrVwAA3bp1w/z587Fr1y4EBASgefPmCg+QlK6kYV2Sk6tuWJdOnTrh9OnTuH37NgC+z825c+fg6empuJUILCUlBY8fP5Z0QAf44q59+/a4ePGigJGVjPKRFMrMzARQ+TEMOY7vDnTuHD8cXc+eQH4+/4dukyb8eKb//KOIiHnVYb9CVF/NmjURExMDOzs7DBo0CM7Ozhg3bhzevXsnudvX9OnTMWbMGHh7e6Njx44wMjIq9w/bzZs3Y8iQIfjmm2/QpEkTTJgwQXIWw9raGgsXLsTs2bNhaWkJf3//EpcREhKCNm3a4LPPPkPHjh3BGMOxY8c0b/B8We8xmp+fzxhj7MqVK+zMmTOMMcaePHnC+vTpw4yMjFjr1q1ZfHy83PcuVaaqvr9xXl4e27VrF9u1a1ep9xIHwCIiIqpk/dnZjK1axVjduh/uaV23Lj8tO7vyyxeLxWzWrFmM4zimra3NOI5jS5curfyCBfTx93H+/HkGgP33339S8w0dOpQNGzasxGUIcd9sysfyCZ2PiiJLO8RiMevXrx9zd3evkhguXGCsX78P+xWAsYEDGbt6tfLLror9Ct3LXjFKuy95WhpjNWpIbw9V/ahRg18vUW2VuZe9zFfZW1tbw8fHB76+vnBzcwPAnyI8fvy4wotkdVVQUCC5+KVAGVcZfaSqh3XZt28fdu3ahd27d6NZs2aIj49HQEAA6tWrB29vb8U2hpSJ8rF8QuejosjSDj8/P9y6dQvnzp2rkhg6duSHnbtxgx+K7sAB/mLKiAj+aOq8efwp/oqg/Yr6sbPjb+NJ97IniiRzQern54ewsDCsXLkSnTp1wrhx4zBs2DDUrFmzKuMjFVBVw7p8++23mD17NkaMGAGA77CdlpaG4OBgjfnhqFu3LgDgyZMnsLKykkx/8uQJWrZsKVBUxVE+kkL+/v44cuQIYmJiYGNjU6XratUK+P13ICGB36/s3g38+Sf/6NGD79P+ySfyDUVXHfYrmsjOjgpEolgy9yH97rvvcOfOHZw+fRr169eHv78/rKysMGHCBKmrv6qzolfKxcbGCn7rxooO6yIWA9HR/FX70dEfrtx/8+aN5AKaQiKRSGWPPpXWjrI4Ojqibt26OH36tGRaVlYW4uLi0LFjxyqLVV6Uj+VTtXysqNLawRiDv78/IiIicObMGTg6OiotpqZN+dsb377N/+Gro8P3N/Xw4I+UHj3Kn2iVbodm7FcIIVWkov0EsrOz2bZt25i7uzvjOI41bdqUrV69uqKLk9mGDRuYvb0909PTY+3atWNxcXEyv7cq+xUdOHCAOTg4sKCgIBYUFMR0dHSYjY0NO3DgAMvOzmY3btxgN27cYADYDz/8wG7cuMHSlNwhRixmLDycsdatP/TL0dNjzM/vQ9+cAwcYs7GR7rtjY8NP9/b2ZtbW1uzIkSMsJSWFhYeHM3NzczZz5kyltkMWZbWjvO9j2bJlzMTEhB06dIj99ddfzMvLizk6OpbaJ0YV+qsJlY+MVTwnq3s+yqKsdkycOJEZGxuz6Oho9ujRI8njzZs3So/z/n3GJk2S7lfYsiVjv//O73eUvV9RhZzUBJXpD0iqp8psMxUuSIs6cuQIMzU1ZVpaWopYXKn27NnDdHV12fbt29k///zDJkyYwExMTNiTJ09ken9V7aQOHDjAOI5jOjo6Uj8cHMcxjuPYwoULGYBiD29vb4XGIauCAsaOHWOsU6cPPw7a2ox98knJnck5jn/s3JnFpkyZwuzs7FiNGjVY/fr12dy5c9n79+8FaUdpDhzg4y2tHQsXRpX5fRQUFLDvvvuOWVpaMj09PdazZ0+WlJRU6vpU7cdPWfnIWOVykvKxbOW1o6Q2AGAhISGCxfz4MWMzZzJmYCBdeCp7v6JqOamuqCAl8qrMNsMxVrGh/N+8eYN9+/YhJCQE586dQ4MGDeDr64vZs2dXZHEyad++Pdq2bYsNGzYA4Dv429raYtKkSTKtNysrC8bGxsjMzJQM41BZYrEYDg4OePjwIXR0dDB37lwAwJIlS5CXlweO42BjY4OUlBSIRCKFrFNRGAPOnuWHjCpyhrpU1tZ83zEVa4YUsZgfi/W//0p+neMAGxv+5gKKakdVbFfyEiIfgcrlpBD5CPAXhCUkJKhcPhYlFovh7OyM//77T+32KwDw4gXw44/8o4xhGqskHwHVyElN8O7dO6SkpMDR0RE1atQQOhyiBiqzzch9L/sLFy5g+/bt+P3335Gfn48hQ4bg+++/R9euXeVdlFxyc3Nx7do1BAYGSqZpaWnBw8Oj1PEh379/j/fv30ueZ2VlKTyu2NhYyaC5JWGM4cGDB4iNjUX37t0Vvv7K4Dige3f+sXEjf7FTWdLTK36FvqpgjB95IDaWb7e6EyofAflzUhXyEQDS09NhrOYbsirvVwB+TOSFC/lbG/fvX/p8mpaPhJCKk7kgXbFiBUJCQnD79m24ublh5cqVGDlyJIyMjKoyPonnz59DLBbD0tJSarqlpSX+/fffEt8THByMhQsXVmlcj4pcFZSXl4egoKBy51NFRcfS1tHJxdy5wQCAJUsCkZenW8q7VFtZ7VDxr6NcQucjIH9OqlI+qhN13q9kZ3/4vybnIyGk8mQuSFeuXInRo0fj999/V5s7wAQGBmLatGmS51lZWbC1tVXoOooODVSW7KJ7ZhX0cTNyckoePujYMUAJB98qLCYG6Nv3w/PS2iHj16ayKB9LJms+Hjt2TClHkSsqJiYGfYtuyKW4dOkSBgwYAH19fSVEJT9Z9yvqno+EkMqTuQ9pXl6eoLepys3NRc2aNbF//34MGDBAMt3b2xsZGRk4dOhQucuoyj5r6enpKO+j7Nu3L+bNm6dSwwcVEosBBwf+tHxJzaiqvl6KJkQ7hOivJnQ+ApXPSSHyUdX7XhaSZ79iaWmJ6dOn4+uvv1bqEXJZCLVfoT6kilFWf8DMzEy8efNGabHUrFlT7bvahIaGIiAgABlldaxWc0rpQyr0j5+uri7atGmD06dPS378CgoKcPr06VLv/6oMIpEI69atw5AhQ8BxnNSPR+Hzrl274ty5czh27BiOHTuGHj16YN68eejRowc4eUaQrkIiEbBuHTBkCP8jUfTHozDEtWtVuxgFNKcd5RE6HwHVzMny8hEA1q5dq9LFKCDbfmXChAk4ceIE0tLSMHPmTCxbtgwBAQGYNGkSTExMhAu+iOqSj9VNZmYmNmzYgPz8fKWtU1tbG/7+/jIXpT4+PggLC8NXX32FLVu2SL3m5+eHTZs2wdvbG6GhoVUQbcmGDx8u05mP6krmgfFVwbRp07Bt2zaEhYUhMTEREydORE5ODsaOHStoXIMGDcL+/fthbW0tNd3GxgYHDhzA2bNnkZSUhPHjx0NHRwdRUVHo2bMn3N3dcezYsXKPgCjLoEHA/v381fRF2djw0wcNEiYueWlKO9SBKuZkWfm4f/9+DFKTDaC8/crWrVuRnJyMkJAQNGrUCC9fvsT8+fNhZ2eHOXPm4NmzZwJFLo3yUfO8efNGqcUoAOTn58t9RNbW1hZ79uzB27dvJdPevXuH3bt3w06A20zp6+vDwsJC6etVFzIXpP+VNo6OEg0fPhyrVq3C/Pnz0bJlS8THx+P48ePFLqoQwqBBg5CamoqoqCjs3r0bUVFRSElJkfz4NWzYENu2bcOdO3fg7+8PPT09XLx4Ef369UObNm1w4MABlbgzyaBBQHJyHtasCcXy5aE4dSoPKSnq96OhKe0ojSrkI6C6OVlePqqL8tqho6MDHx8fJCYm4rfffkPz5s2RnZ2N4OBgODg4YNq0aSqxrWh6PhLV1Lp1a9ja2iI8PFwyLTw8HHZ2dmjVqpVk2vHjx9G5c2eYmJjAzMwMn332Ge7evSt5PTU1FRzHYc+ePejUqRNq1KiB5s2b4+zZs5J5oqOjwXEcjh49ChcXF9SoUQMdOnTArVu3JPOEhoZKnb0ICgpCy5YtsWPHDjg4OMDY2BgjRoyQuuYkOzsbo0aNgoGBAaysrLBmzRp0794dAQEBCv60hCdzQdqsWTPs3r27KmORib+/P9LS0vD+/XvExcWhffv2QockIRKJ0L17d4wcORLdu3cv8bSgnZ0d1q9fj9TUVHz77bcwMDDAjRs3MGTIELRo0QK7du1S+l+eH9PSYsjMTMPbt2no0oWp7ek0TWlHSVQlHwHVzUlZ8lEdyNIOkUiEESNG4ObNmzh48CDc3Nzw5s0brFmzBo6Ojpg4cSJSU1OVH3wRmpyPRHX5+voiJCRE8nz79u3FzuDk5ORg2rRpuHr1Kk6fPg0tLS0MHDiw2EGib7/9FtOnT8eNGzfQsWNH9O/fHy9evCg2z+rVq3HlyhXUqVMH/fv3l4yBXJK7d+/i4MGDOHLkCI4cOYKzZ89i2bJlktenTZuG8+fP4/Dhwzh58iRiY2Nx/fr1ynwkKkvmgnTJkiX46quvMHToULx8+bIqY6oW6tatixUrViAtLQ3fffcdjI2NkZCQgNGjR8PJyQk///wzcnNzhQ6TqCjKR1ISLS0teHl54fLly5KjPrm5udiyZQsaNWqEsWPH4vbt20KHSYjSjB49GufOnUNaWhrS0tJw/vx5jB49WmqewYMHY9CgQWjYsCFatmyJ7du34++//0ZCQoLUfP7+/hg8eDCcnZ2xefNmGBsb45dffpGaZ8GCBejVqxdatGiBsLAwPHnyBBEREaXGV1BQgNDQUDRv3hxdunTBmDFjcPp/d6rJzs5GWFgYVq1ahZ49e6J58+YICQmBWCxW0KejWmQuSL/55hv89ddfePHiBZo2bYo//vijKuOqNszMzLBo0SKkpaVh6dKlMDc3x7179zBhwgQ0bNgQGzZskOr/QghA+UjKxnEc+vTpg9jYWJw9exa9evVCfn4+QkND0aRJE4wYMQJ///230GESUuXq1KmDfv36ITQ0FCEhIejXrx/Mzc2l5klOTsbIkSNRv3591KpVCw4ODgCA+/fvS81XdIQcbW1tuLm5ITExsdR5TE1N4eTkVGyeohwcHKRGx7CyssLTp08BAPfu3UNeXh7atWsned3Y2BhOTk4ytl69yHVRk6OjI86cOYN58+Zh0KBBcHFxQevWraUepGKMjY0RGBiI1NRU/PDDD7CyssKDBw8wadIkODo6YuXKlSo/lilRLspHIouuXbvixIkTuHTpEvr37w/GGPbu3QsXFxcMGDAAV65cETpEQqqUr68vQkNDERYWBl9f32Kv9+/fHy9fvsS2bdsQFxeHuLg4AFDKWcqPR0zhOE4lricRgtxX2aelpSE8PBy1a9eGl5dXsQepHAMDA0ydOhX37t3D5s2bYW9vjydPnmDmzJlwcHDA999/r9FjmBH5UD4SWbVv3x6HDx9GfHw8hg0bBo7jcOjQIbRr1w6ffvopYmNjhQ6RkCrx6aefIjc3F3l5eejTp4/Uay9evEBSUhLmzZuHnj17wtnZGa9evSpxOZcuXZL8Pz8/H9euXYOzs3Op87x69Qq3b98uNo+s6tevDx0dHak/GjMzMzW2241c97Lftm0bpk+fDg8PD/zzzz+oU6dOVcVV7dWoUQNff/01xo0bh127dmHp0qVITk7G/PnzsXLlSvj7+2Pq1Kn0HVRjlI+kIlxdXbF3714sXLgQwcHB2LVrFyIjIxEZGYmuXbti3rx58PDwUJkxkgmpLJFIJDlt/vFFgbVr14aZmRm2bt0KKysr3L9/H7Nnzy5xORs3bkSjRo3g7OyMNWvW4NWrV8WOuC5atAhmZmawtLTE3LlzYW5uLnXjEHkYGRnB29sb3377LUxNTWFhYYEFCxZAS0tLI/NT5iOkn376KWbNmoUNGzYgPDycfvyURKhhXXR0dIqdSti8eTNcXFxQq1Yt1KpVCx07dsSff/6p8HUrUkntCAoKAsdxUo8mTZoIFGHFUD6SymrSpAnCwsJw+/ZtfPXVV9DV1UVMTAx69+6NDh064PDhwwofI7mkfPzYsmXLwHGcRg5rQ4RT+Lv1MS0tLezZswfXrl1D8+bNMXXqVKxcubLEZSxbtgzLli2Dq6srzp07h8OHDxfrj7ps2TJMmTIFbdq0wePHj/HHH39AV1e3wnH/8MMP6NixIz777DN4eHjA3d0dzs7Oct8FSR3IfOvQXr16ISQkBDY2NlUdU5XRhNvJFRQU4I8//sDixYtx9epVAPwdc3x9fTFr1ixJZ+yq8Mcff0AkEqFRo0ZgjCEsLAwrV67EjRs30KxZsypbr6IFBQVh//79OHXqlGSatrZ2sR2LrITYrigfiaI9fPgQq1atwtatWyUXUrq4uGDu3LkYPHiwUobNunLlCoYNG4ZatWqhR48eWLt2bYWWQ9uWYpR2G0h1uFOTIqWmpsLR0RE3btxAy5YtS5wnOjoaPXr0wKtXr6r0Tmk5OTmwtrbG6tWrMW7cuCpbT0VV5tahMhekmkCTdlKMMZw4cQKLFy/GuXPnAPAJO3r0aAQGBqJx48ZKicPU1BQrV65UycQoTVBQEA4ePIj4+HiFLE+Ttitlos9NNT19+hRr1qzBhg0b8Pr1awCAk5MT5syZg5EjR1bZbWtfv36N1q1bY9OmTVi8eDFatmxJBanA6F72PCEL0hs3buDff/9Fu3btkJmZiUWLFiE6Ohp37typ8EGUqlSZglStbh1KPhB6WBexWIw9e/YgJydHapgLdZGcnIx69eqhfv36GDVqVLHhPQipriwsLBAcHIy0tDQEBQWhdu3aSEpKgre3Nxo3boyffvoJ79+/V/h6/fz80K9fP3h4eCh82UTxjI2NYWVlpbSHUMWoKli1ahVcXV3h4eGBnJwcxMbGqmQxWmmsGsnMzGQAWGZmptChVIm4uDj2+eefMwCSh5eXF7t8+bJcy8nLy2O7du1iu3btYnl5eVKv/fXXX8zAwICJRCJmbGzMjh49qsgmKFRp7Th27Bjbt28fu3nzJjt+/Djr2LEjs7OzY1lZWRVaj6ZvV1WFPjf1kJWVxZYvX84sLCwk+5V69eqxtWvXspycHJmXU9Z+5bfffmPNmzdnb9++ZYwx1q1bNzZlypQKx0zblmK8ffuWJSQkSL4XQspTmW2GjpBqkHbt2uHQoUOVHtaloKAAycnJSE5OLjYempOTE+Lj4xEXF4eJEyfC29u72N0sVEVp7fD09MTQoUPh4uKCPn364NixY8jIyMC+ffsEjJYQ1WRkZISZM2ciJSUF69atg7W1Nf777z8EBATAwcEBy5YtQ1ZWVrnLKS0fHzx4gClTpmDXrl0aeaEGIUQ2VJBqoMJhXRISEuDt7Q2RSCQZ0qVbt244efJkha+e1dXVRcOGDdGmTRsEBwfD1dUV69atU3ALlMvExASNGzfGnTt3hA6FEJVVs2ZNTJ48GXfv3sXWrVvh6OiIZ8+eITAwEPb29ggKCqrQbWyvXbuGp0+fonXr1tDW1oa2tjbOnj2LH3/8Edra2hp7m0RCiDQqSDVYkyZNEBoaiuTkZLmGdSn6AxAbG1vmD0JBQUGV9CdTBFnb8fr1a9y9exdWVlbKCo0QtaWnp4cJEybg9u3b+PXXX9GkSRNkZGRg4cKFsLe3x6xZs/DkyZNi7ystH3v27Im///4b8fHxkoebmxtGjRqF+Ph4pVzdT8pW0QMYpPqpzLZCBWk14OjoiC1btuDevXsICAiAvr4+Ll++DC8vL7Rs2RL79u2T/DiEh4ejadOmkvd6enrCwcEB4eHhCAwMRExMDFJTU/H3338jMDAQ0dHRGDVqlFBNK1VZ7ZgxYwbOnj2L1NRUXLhwAQMHDoRIJMLIkSMFjJgQ9aKtrY0xY8bg1q1b+P333+Hq6orXr19jxYoVcHBwwJQpU/Dw4UMAZeejkZERmjdvLvUwMDCAmZkZmjdvLlTzCD7c1lKZV9MT9Va4rVRkNA657tRE1Ju1tTXWrFmDwMBArFmzBhs3bsRff/2F4cOHw8nJCb169cKGDRuKbUjp6ekYMmQIevTogd9++w2PHj2CsbExXFxcEBkZiV69egnUopKFh4djyJAh0NaW3rwL29GpUyfs3r0bL168QJ06ddC5c2dcunSJBpcnpAJEIhGGDBmCwYMH4+jRo1i8eDHi4uLw448/YvPmzejWrRtOnTpV6n5l//79GDRokEDRk7KIRCKYmJjg6dOnAPhuG5p4hyBSeYwxvHnzBk+fPoWJiUmFzmxQQVoNFQ7rMnPmTKxfvx5r165FUlISkpKSSpy/8BB8UlISEhISim1oOTk5VR6zrMRiMSZNmlTiaQPGGDiOw/379/HgwQM6FUiIAnEch88++wz9+vXDmTNnsHjxYkRHR0vdgKKownwMCAiAl5eXVD5GR0crKWpSnrp16wKApCglpCwmJiaSbUZeVJBWY7Vr18b8+fMxdepUzJgxA1u3bi1z/vT0dLUfC44xhgcPHiA2Nhbdu3cXOhxCNA7HcejZsyd69uyJ9evXY/LkyaXOS/mo+jiOg5WVFSwsLJCXlyd0OESF6ejoVOpADxWkBEZGRujevbukIM3Ly0NQUJCwQSlAWe149OiRcoMhpBoqOng35aN6E4lEdFaJVCkqSAkAyHyF+bFjx9C1a9cqjqbiYmJi0Ldv33LnoyvqCal6suYZ5SMhhO5lTwDwfS8dHByQnp5eYv9LjuNgY2ODlJQUlf4rWYh20HZVMfS5aT6h9iu0bRGifmjYJwKAPx1TOMD9x1dRFj5fu3atShejgOa0gxBNQPlICJEVFaREYtCgQdi/fz+sra2lptvY2KjV0Cya0g5CNAHlIyFEFnTKnhQjFosRGxuLR48ewcrKCl26dFHLIxjKagdtVxVDn1v1osz9Cm1bhKgfuqiJFCMSiTRiCBZNaQchmoDykRBSFjplTwghhBBCBEUFKSGEEEIIERQVpIQQQgghRFBUkBJCCCGEEEFRQUoIIYQQQgRFBSkhhBBCCBEUFaSEEEIIIURQVJASQgghhBBBUUFKCCGEEEIERQUpIYQQQggRFBWkhBBCCCFEUFSQEkIIIYQQQVFBSgghhBBCBKU2BemSJUvQqVMn1KxZEyYmJkKHQ0i1RvlICCFEkdSmIM3NzcXQoUMxceJEoUMhpNqjfCSEEKJI2kIHIKuFCxcCAEJDQ4UNhBBC+UgIIUSh1OYIKSGEEEII0Uxqc4S0It6/f4/3799LnmdmZgIAsrKyhAqJaKDC7YkxJnAkqo3ykSgL5SQh6kfQgnT27NlYvnx5mfMkJiaiSZMmFVp+cHCw5NRiUba2thVaHiFlyc7OhrGxsdBhVBjlI9E06p6ThFQnHBPwT8hnz57hxYsXZc5Tv3596OrqSp6HhoYiICAAGRkZ5S7/4yMyBQUFePnyJczMzMBxXIXjLktWVhZsbW3x4MED1KpVq0rWoQzUDtkxxpCdnY169epBS0t9e8FQPqouaod8NCUnCalOBD1CWqdOHdSpU6fKlq+npwc9PT2pacoaoqZWrVpq/cNRiNohG004CkP5qPqoHbLThJwkpDpRmz6k9+/fx8uXL3H//n2IxWLEx8cDABo2bAhDQ0NhgyOkmqF8JIQQokhqU5DOnz8fYWFhkuetWrUCAERFRaF79+4CRUVI9UT5SAghRJHUpnNNaGgoGGPFHqr246enp4cFCxYUOzWpbqgdpCyUj8pF7SCEaDpBL2oihBBCCCFEbY6QEkIIIYQQzUQFKSGEEEIIERQVpIQQQgghRFBUkCrQxo0b4eDggBo1aqB9+/a4fPmy0CHJLSYmBv3790e9evXAcRwOHjwodEgVEhwcjLZt28LIyAgWFhYYMGAAkpKShA6LKJm65yTlIyGkuqCCVEH27t2LadOmYcGCBbh+/TpcXV3Rp08fPH36VOjQ5JKTkwNXV1ds3LhR6FAq5ezZs/Dz88OlS5dw8uRJ5OXloXfv3sjJyRE6NKIkmpCTlI+EkOqCrrJXkPbt26Nt27bYsGEDAP62iLa2tpg0aRJmz54tcHQVw3EcIiIiMGDAAKFDqbRnz57BwsICZ8+eRdeuXYUOhyiBpuUk5SMhRJPREVIFyM3NxbVr1+Dh4SGZpqWlBQ8PD1y8eFHAyEihzMxMAICpqanAkRBloJxUbZSPhJCPUUGqAM+fP4dYLIalpaXUdEtLSzx+/FigqEihgoICBAQEwN3dHc2bNxc6HKIElJOqi/KREFIStbl1KCEV5efnh1u3buHcuXNCh0JItUf5SAgpCRWkCmBubg6RSIQnT55ITX/y5Anq1q0rUFQEAPz9/XHkyBHExMTAxsZG6HCIklBOqibKR0JIaeiUvQLo6uqiTZs2OH36tGRaQUEBTp8+jY4dOwoYWfXFGIO/vz8iIiJw5swZODo6Ch0SUSLKSdVC+UgIKQ8dIVWQadOmwdvbG25ubmjXrh3Wrl2LnJwcjB07VujQ5PL69WvcuXNH8jwlJQXx8fEwNTWFnZ2dgJHJx8/PD7t378ahQ4dgZGQk6TdobGwMfX19gaMjyqAJOUn5SAipNhhRmPXr1zM7Ozumq6vL2rVrxy5duiR0SHKLiopiAIo9vL29hQ5NLiW1AQALCQkROjSiROqek5SPhJDqgsYhJYQQQgghgqI+pIQQQgghRFBUkBJCCCGEEEFRQUoIIYQQQgRFBSkhhBBCCBEUFaSEEEIIIURQVJASQgghhBBBUUFKCCGEEEIERQUpIYQQQggRFBWk1ZiPjw8GDBggdBiEEFA+EkKqN7qXvYbiOK7M1xcsWIB169aBbtRFSNWjfCSEkLLRrUM11OPHjyX/37t3L+bPn4+kpCTJNENDQxgaGgoRGiHVDuUjIYSUjU7Za6i6detKHsbGxuA4TmqaoaFhsVOE3bt3x6RJkxAQEIDatWvD0tIS27ZtQ05ODsaOHQsjIyM0bNgQf/75p9S6bt26BU9PTxgaGsLS0hJjxozB8+fPldxiQlQX5SMhhJSNClIiJSwsDObm5rh8+TImTZqEiRMnYujQoejUqROuX7+O3r17Y8yYMXjz5g0AICMjA5988glatWqFq1ev4vjx43jy5AmGDRsmcEsIUX+Uj4SQ6oIKUiLF1dUV8+bNQ6NGjRAYGIgaNWrA3NwcEyZMQKNGjTB//ny8ePECf/31FwBgw4YNaNWqFZYuXYomTZqgVatW2L59O6KionD79m2BW0OIeqN8JIRUF3RRE5Hi4uIi+b9IJIKZmRlatGghmWZpaQkAePr0KQDg5s2biIqKKrH/2927d9G4ceMqjpgQzUX5SAipLqggJVJ0dHSknnMcJzWt8GrhgoICAMDr16/Rv39/LF++vNiyrKysqjBSQjQf5SMhpLqggpRUSuvWrXHgwAE4ODhAW5s2J0KERPlICFFX1IeUVIqfnx9evnyJkSNH4sqVK7h79y4iIyMxduxYiMViocMjpFqhfCSEqCsqSEml1KtXD+fPn4dYLEbv3r3RokULBAQEwMTEBFpatHkRokyUj4QQdUUD4xNCCCGEEEHRn8yEEEIIIURQVJASQgghhBBBUUFKCCGEEEIERQUpIYQQQggRFBWkhBBCCCFEUFSQEkIIIYQQQVFBSgghhBBCBEUFKSGEEEIIERQVpIQQQgghRFBUkBJCCCGEEEFRQUoIIYQQQgRFBSkhhBBCCBHU/wNH1Y13jTJr+gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_matched([ex_graphs.fp_div(t) for t in [0, 1]], 'False Positive Division')" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqQAAADXCAYAAADMb0PvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABO50lEQVR4nO3dd1hT5xcH8O9lbxBcyFYs4AAV1Lqh4pZiqdpaB6i1VtGCW9QqWhVcFVutqwq24qqCWrVatSK4cFS0KEVUhgMXKksFDO/vj/xIjawkhNwknM/z5NHc3Nx73nDPzckd78sxxhgIIYQQQgjhiQbfARBCCCGEkLqNClJCCCGEEMIrKkgJIYQQQgivqCAlhBBCCCG8ooKUEEIIIYTwigpSQgghhBDCKypICSGEEEIIr6ggJYQQQgghvKKClBBCCCGE8IoKUkKIUrK3t0dAQADfYSgdT09PtGrVqtr5MjIywHEcoqKiRNNCQ0PBcZxE6+E4DqGhoTJGSQgh0qGClBBSIzdu3MCIESNgZWUFXV1dNGnSBMOHD8eNGzf4Dq2cnJwczJgxA05OTtDT04O5uTn69OmDQ4cO8R0a8vLysHDhQri5ucHIyAj6+vpo1aoVZs2ahYcPH/IdHiGE1CotvgMghKiumJgYDBs2DObm5hg7diwcHByQkZGBLVu2YO/evdi1axc++eQTvsMEAKSmpqJnz554+vQpRo8eDQ8PD7x8+RLR0dHw8fHB9OnTsWLFCl5iu3v3Lry9vZGVlYUhQ4bgq6++go6ODq5fv44tW7YgNjYWt27dkmqZdnZ2eP36NbS1tWspakIIkR8qSAkhMrlz5w5GjhyJpk2bIj4+Hg0aNBC9FhQUhG7dumHkyJG4fv06mjZtymOkQElJCQYPHowXL14gPj4eHTt2FL02ZcoUDB8+HCtXroSHhwc+++wzhcb29u1b+Pn54fHjx4iLi0PXrl3FXl+yZAmWLVsm9XI5joOenp68wiSEkFpFp+wJITJZsWIFXr16hU2bNokVowBQv359bNy4EYWFhVi+fLloetk1jLdv30ZAQADMzMxgamqK0aNH49WrV5Wu6+7du+A4DqtXry732rlz58BxHHbu3Fnp+/ft24fk5GTMnj1brBgFAE1NTWzcuBFmZmZi10zGxcWB4zjs2bMHS5YsgbW1NfT09NCzZ0/cvn273DoSExPRt29fmJqawsDAAD169MDZs2crjend2K5du4a5c+eWK0YBwMTEBEuWLCk3/ebNm/Dy8oKBgQGsrKzEPmeg4mtIK1JUVIQpU6agQYMGMDY2xscff4z79+9XGzchhMgTFaSEEJn8/vvvsLe3R7du3Sp8vXv37rC3t8fhw4fLvTZ06FDk5+cjLCwMQ4cORVRUFBYuXFjpupo2bYouXbogOjq63GvR0dEwNjaGr69vlbECwKhRoyp83dTUFL6+vvj333/LFZvh4eGIjY3F9OnTERISggsXLmD48OFi8/z111/o3r078vLysGDBAixduhQvX77ERx99hIsXL1YaFwAcPHgQADBy5Mgq53vXixcv0LdvX7i5uWHVqlVwdnbGrFmz8Mcff0i8jDJffvklIiIi0Lt3b4SHh0NbWxsDBgyQejmEEFITdMqeECK13NxcPHz4sMoiEABcXV1x8OBB5Ofnw9jYWDS9bdu22LJli+h5Tk4OtmzZUuWp6VGjRmH8+PH4999/4ezsDEB4Kn7Pnj3w8/ODgYFBpe+9efMmTE1NYWdnV+k8bm5uAICUlBQ4OjqKpr958wZJSUnQ0dEBANSrVw9BQUFITk5Gq1atwBjD119/DS8vL/zxxx+iu9jHjx+Pli1bYt68efjzzz8rXW9KSgpMTU1hY2NT6Tzve/jwIX755RdRETt27FjY2dlhy5Yt6Nevn8TLuXbtGrZv346JEydi3bp1AIDAwEAMHz4c169fl3g5hBBSU3SElBAitfz8fAAQKzIrUvZ6Xl6e2PSvv/5a7Hm3bt2Qk5NTbr53DR06FHp6emJHSY8dO4Znz55hxIgR1cYra6yjR48WFaNlsQLCywgAICkpCWlpafjiiy+Qk5ODZ8+e4dmzZygsLETPnj0RHx+P0tLSStebl5dXbWzvMzIyEmuzjo4OOnToIIpJUkeOHAEAfPPNN2LTg4ODpVoOIYTUFBWkhBCplRVQZYVpZSorXG1tbcWe16tXD4DwVHRlzMzM4OPjgx07doimRUdHw8rKCh999FG18dZWrGlpaQAAf39/NGjQQOzx888/o6ioCLm5uZWu18TEpNrY3mdtbV2uP9F69epV+flVJDMzExoaGmjWrJnYdCcnJ6mWQwghNUWn7AkhUjM1NYWlpWW1p3WvX78OKysrmJiYiE3X1NSscH7GWJXLGzVqFH777TecO3cOrVu3xsGDBzFx4kRoaFT929rFxQVJSUnIysoqV2C+GysAtGjRQqpYy45+rlixAm3atKlwXiMjo0pjc3Z2xtWrV3Hv3j2JT9vL+vkRQoiyoiOkhBCZDBw4EOnp6Thz5kyFryckJCAjIwMDBw6U2zr79u2LBg0aIDo6GrGxsXj16pVENwOVxfDLL79U+HpeXh4OHDgAZ2dnsetHJVF2dNHExATe3t4VPqrqC9THxwcAsH37dqnWKw92dnYoLS3FnTt3xKanpqYqPBZCSN1GBSkhRCYzZsyAvr4+xo8fj5ycHLHXnj9/jq+//hoGBgaYMWOG3NappaWFYcOGYc+ePYiKikLr1q3h6upa7fsGDx6MFi1aIDw8HJcvXxZ7rbS0FBMmTMCLFy+wYMECqWNyd3dHs2bNsHLlShQUFJR7/enTp9XG1rp1ayxZsgTnz58v93p+fj7mzp0rdVySKLsB6ocffhCbHhERUSvrI4SQytApe0KITJo3b45t27Zh+PDhaN26dbmRmp49e4adO3eWuz6xpkaNGoUffvgBp06dkrjDeB0dHezduxc9e/ZE165dxUZq2rFjB/7++29MmzYNn3/+udTxaGho4Oeff0a/fv3QsmVLjB49GlZWVnjw4AFOnToFExMTUbdTFdHW1kZMTAy8vb3RvXt3DB06FF26dIG2tjZu3LiBHTt2oF69ehX2RVpTbdq0wbBhw/DTTz8hNzcXnTt3xsmTJyvsZ5UQQmoTFaSEEJkNGTIEzs7OCAsLExWhFhYW8PLywpw5c9CqVSu5r9Pd3R0tW7ZESkpKuf5Aq+Li4oJr164hPDwcBw8eRGRkJPT19eHh4YGDBw+KTp3LwtPTE+fPn8d3332HtWvXoqCgAI0bN0bHjh0xfvz4at/v6OiIpKQkrF69GrGxsdi/fz9KS0vh6OiIL7/8stxd8PK0detW0WUQ+/fvx0cffYTDhw9L1Q0VIYTUFMfoKnhCiIpp27YtzM3NcfLkSb5DIYQQIgd0DSkhRKVcvnwZSUlJlY66RAghRPXQEVJCiEpITk7GlStXsGrVKjx79gx3796Fnp4e32ERQgiRAzpCSghRCXv37sXo0aNRUlKCnTt3UjFKCCFqhI6QEkIIIYQQXtERUkIIIYQQwisqSAkhhBBCCK+oICWEEEIIIbyigpQQQgghhPCKClJCCCGEEMIrKkgJIYQQQgivqCAlhBBCCCG8ooKUEEIIIYTwigpSQgghhBDCKypICSGEEEIIr+pUQcoYQ15eHmi0VCJPtF3Jhj43Ulto2yJE9WjxHYAi5eXlwczMDPfu3YOJiQnf4RA1kZeXBxsbG7x8+RKmpqZ8h6MyKB9JbaGcJET11KmCND8/HwBgY2PDcyREHeXn59OXnxQoH0lto5wkRHXUqYLU2NgYAOiIDJGrsqMxZdsXkQzlI6ktlJOEqJ46VZByHAcAMDExoS9AIndl2xeRDOUjqW2Uk4Sojjp1UxMhhBBCCFE+VJASQgghhBBeUUFKCCGEEEJ4RQUpIYQQQgjhFRWkhBBCCCGEV1SQEkIIIYQQXlFBSgghhBBCeEUFKSGEEEII4RUVpERi9vb24Diu3CMwMJDv0KSWn5+P4OBg2NnZQV9fH507d8alS5f4DouQOked9iuEENnVqZGaSM1cunQJAoFA9Dw5ORm9evXCkCFDeIxKNl9++SWSk5Px66+/okmTJti+fTu8vb1x8+ZNWFlZ8R0eIXWGOu1XCCGy4xhjjO8gFCUvLw+mpqbIzc2loQrlIDg4GIcOHUJaWppKDdH3+vVrGBsb48CBAxgwYIBouru7O/r164fFixdLtTzarmRDnxupiDz2K7RtEaJ66JQ9kUlxcTG2b9+OMWPGqFQxCgBv376FQCCAnp6e2HR9fX2cOXOGp6gIIaq8XyGE1AwVpEQm+/fvx8uXLxEQEMB3KFIzNjZGp06d8N133+Hhw4cQCATYvn07zp8/j+zsbL7DI6TOUuX9CiGkZqggJTLZsmUL+vXrhyZNmvAdikx+/fVXMMZgZWUFXV1d/PDDDxg2bBg0NCglCOGLqu9XCCGyo29fIrXMzEycOHECX375Jd+hyKxZs2Y4ffo0CgoKcO/ePVy8eBElJSVo2rQp36ERUiepw36FECI7KkiJ1CIjI9GwYUOxG4JUlaGhISwtLfHixQscO3YMvr6+fIdESJ2kTvsVQoj0VKogjY+Ph4+PD5o0aQKO47B//36+Q1JLAgEQFwfs3Cn8950eWVBaWorIyEj4+/tDS0u5ew2rqh3Hjh3D0aNHkZ6ejuPHj8PLywvOzs4YPXo0X+GqHMpHIg112a8QQmqHShWkhYWFcHNzw7p16/gORW3FxAD29oCXF/DFF8J/7e2F0wHgxIkTyMrKwpgxY/gMs1rVtSM3NxeBgYFwdnbGqFGj0LVrVxw7dgza2tp8hq1SKB+JpNRlv0IIqT0q2w8px3GIjY3FoEGDJH4P9U1XtZgYYPBg4P0toqz3lb17AT8/xcclLUW3g7YrykdSOT72K7RtEaJ66NwIASA8fRYUVP5LA/hv2jffAN7egKamYmOThkAATJ5ceTs4DggOBnx9lbsdhKiD6vYrlI+EkDJqXZAWFRWhqKhI9DwvL4/HaJRbQgJw/37V8zx4AJiaKiae2sIYcO+esL2ennxHU7dQPtY91e1XKB8JIWVU6hpSaYWFhcHU1FT0sLGx4TskpfVuf/Da2sUIDV2I0NCF0NYu5i+oGqqqHdT/veJRPtY9ku5XKB8JIWp9hDQkJARTp04VPc/Ly6MvwUpYWoo/Lyw0qHC+I0eA7t0VEJCM4uOB/v3/e15ZO95vL6l9lI91j6T7FcpHQgjd1EQACK/1srcXnpavaIvgOMDaGkhPV+5rvfhoB21XlI+kYnztV2jbki/GGN6+fQvBu311EfIeTU1NaGlpgSu7Y1FKKnWEtKCgALdv3xY9T09PR1JSEszNzWFra8tjZKpPUxNYs0Z4NyzHiX95lG1bERHKXYwC6tMOVUD5SKpD+aj6iouLkZ2djVevXvEdClEBBgYGsLS0hI6OjtTvVakjpHFxcfDy8io33d/fH1FRUdW+n341Vy8mRnhX7Ls3ItjYCL80VKHLpzKKbEdd3a4oH4mkFL1foW1LPkpLS5GWlgZNTU00aNAAOjo6Mh/9IuqNMYbi4mI8ffoUAoEAzZs3h4aGdLcpqVRBWlO0k5LMmzcl2LAhGsXFgLv7cHh6aqvkEQxFtYO2K9nQ51a3KHK/QtuWfLx58wbp6emws7ODgUHF1/8S8q5Xr14hMzMTDg4O0NPTk+q9KnXKniiGhgZDbm4mAKBbN6aSxSigPu0gRB1QPqouaY90kbqrJtsKbWWEEEIIIYRXdISUEEIIIVLJysrCs2fPFLa++vXr15mbJUNDQ7F//34kJSXxHQo8PT3Rpk0bRERE1Pq6qCAlhBBCiMSysrLg5OSEN2/eKGydenp6SE1NlaooffToEcLCwnD48GHcv38fpqamcHR0xIgRI+Dv76+S18WGhoZi4cKFVc4jy61BZTepvnjxAmZmZjJGVzNUkBJCCCFEYs+ePVNoMQoIb7B69uyZxAXp3bt30aVLF5iZmWHp0qVo3bo1dHV18c8//2DTpk2wsrLCxx9/XOF7S0pKoK2tLc/w5Wb69On4+uuvRc/bt2+Pr776CuPGjatw/uLiYpm6YOIDXUNKCCGEELUyceJEaGlp4fLlyxg6dChcXFzQtGlT+Pr64vDhw/Dx8RHNy3Ec1q9fj48//hiGhoZYsmQJAGD9+vVo1qwZdHR04OTkhF9//VX0noyMDHAcJ3Za/eXLl+A4DnFxcQCERx05jsPJkyfh4eEBAwMDdO7cGampqWKxhoeHo1GjRjA2NsbYsWOrLPaNjIzQuHFj0UNTUxPGxsai559//jkmTZqE4OBg1K9fH3369Kk21oyMDFEXfvXq1QPHcQgICBDNW1paipkzZ8Lc3ByNGzdGaGiolH8NychckBYXFyM1NRVv376VZzxq6cGDBxgxYgQsLCygr6+P1q1b4/Lly3yHVSVtbe1yvxDDwsLQvn17GBsbo2HDhhg0aFC5xFI2FbXjXeHh4eA4DsHBwYoLqhZQPkouNDQUHMeJPZydnfkOSyaqtm+pKB/Xr18PV1dXmJiYwMTEBJ06dcIff/zBU4REHeTk5ODPP/9EYGAgDA0NK5zn/f5UQ0ND8cknn+Cff/7BmDFjEBsbi6CgIEybNg3JyckYP348Ro8ejVOnTkkdz9y5c7Fq1SpcvnwZWlpaGDNmjOi1PXv2IDQ0FEuXLsXly5dhaWmJn376Sep1vGvbtm3Q0dHB2bNnsWHDhmrnt7Gxwb59+wAAqampyM7Oxpo1a8SWZ2hoiMTERCxfvhyLFi3C8ePHaxRjhZiUCgsL2ZgxY5impibT1NRkd+7cYYwxNmnSJBYWFibt4hQqNzeXAWC5ubkKW+fz58+ZnZ0dCwgIYImJiezu3bvs2LFj7Pbt2wqLQV769OnDIiMjWXJyMktKSmL9+/dntra2rKCggO/QZHLx4kVmb2/PXF1dWVBQkMzL4WO7KkP5KL0FCxawli1bsuzsbNHj6dOnCo1BHtRl33Lw4EF2+PBhduvWLZaamsrmzJnDtLW1WXJysszL5DMn1cnr16/ZzZs32evXr8WmX7lyhQFQ+OPKlSsSxX3hwgUGgMXExIhNt7CwYIaGhszQ0JDNnDlTNB0ACw4OFpu3c+fObNy4cWLThgwZwvr3788YYyw9PZ0BYFevXhW9/uLFCwaAnTp1ijHG2KlTpxgAduLECdE8hw8fZgBEn2mnTp3YxIkTxdbTsWNH5ubmJlFb7ezs2OrVq0XPe/Towdq2bSs2jzSxvnjxQuy9PXr0YF27dhWb1r59ezZr1qwK46lsm5GE1EdIQ0JCcO3aNcTFxYl1eurt7Y3du3dLuzi1t2zZMtjY2CAyMhIdOnSAg4MDevfujWbNmvEdmtSOHj2KgIAAtGzZEm5uboiKikJWVhauXLnCd2hSKygowPDhw7F582bUq1eP73BkRvkoGy0tLbHTXvXr1+c7JKmpy77Fx8cH/fv3R/PmzfHBBx9gyZIlMDIywoULF/gOjaiZixcvIikpCS1btkRRUZHYax4eHmLPU1JS0KVLF7FpXbp0QUpKitTrdXV1Ff3f0tISAPDkyRPRejp27Cg2f6dOnaRex7vc3d1r9P73vRs/IGxDWfzyJHVBun//fqxduxZdu3YVO+TdsmVL3LlzR67BqYODBw/Cw8MDQ4YMQcOGDdG2bVts3ryZ77DkIjc3FwBgbm7OcyTSCwwMxIABA+Dt7c13KDVC+SibtLQ0NGnSBE2bNsXw4cORlZXFd0hSU8d9i0AgwK5du1BYWFjjL2VSdzk6OoLjuHKXlDVt2hSOjo7Q19cv957KTu1XpqwDePbOHe0lJSUVzvvuZSpl++nS0lKp1ieN99siTawVef8yG47jaiV+qQvSp0+fomHDhuWmFxYW0hi3Fbh79y7Wr1+P5s2b49ixY5gwYQK++eYbbNu2je/QKvX27Vvs2LEDO3bsqPSaxNLSUgQHB6NLly5o1aqVgiOUTGXt2LVrF/7++2+EhYXxGJ18UD5Kr2PHjoiKisLRo0exfv16pKeno1u3bsjPz+c7NKmo2r6lqv3KP//8AyMjI+jq6uLrr79GbGwsWrRowVOkRNVZWFigV69eWLt2LQoLC2VahouLC86ePSs27ezZs6LtskGDBgCA7Oxs0euy9Bvq4uKCxMREsWnyPjsgSaxld+ILBAK5rlsaUnf75OHhgcOHD2Py5MkA/qv2f/75Z/pFW4HS0lJ4eHhg6dKlAIC2bdsiOTkZGzZsgL+/P8/RVay0tBRpaWmi/1ckMDAQycnJOHPmjCJDk0pF7bh37x6CgoJw/PhxqcfZVUaUj9Lr16+f6P+urq7o2LEj7OzssGfPHowdO5bHyKSjavuWqvYrTk5OSEpKQm5uLvbu3Qt/f3+cPn2ailIis59++gldunSBh4cHQkND4erqCg0NDVy6dAn//vtvtae1Z8yYgaFDh6Jt27bw9vbG77//jpiYGJw4cQIAoK+vjw8//BDh4eFwcHDAkydPMG/ePKnjDAoKQkBAADw8PNClSxdER0fjxo0baNq0qUztrogksdrZ2YHjOBw6dAj9+/eHvr4+jIyM5BaDJKQuSJcuXYp+/frh5s2bePv2LdasWYObN2/i3LlzOH36dG3EqNIsLS3L7VRdXFxEd7SpokmTJuHQoUOIj4+HtbU13+FI5cqVK3jy5AnatWsnmiYQCBAfH4+1a9eiqKgImio0yDblY82ZmZnhgw8+wO3bt/kORSrqtG/R0dGBo6MjAOH1b5cuXcKaNWuwceNGniMjqqpZs2a4evUqli5dipCQENy/fx+6urpo0aIFpk+fjokTJ1b5/kGDBmHNmjVYuXIlgoKC4ODggMjISHh6eorm2bp1K8aOHQt3d3c4OTlh+fLl6N27t1RxfvbZZ7hz5w5mzpyJN2/e4NNPP8WECRNw7NgxWZpdqepitbKywsKFCzF79myMHj0ao0aNQlRUlFxjqA7HmPRd+t+5cwfh4eG4du0aCgoK0K5dO8yaNQutW7eujRjlJi8vD6ampsjNzYWJiYncly8QAAkJQHY2YGkJdOsGjBz5Be7du4eEhATRfFOmTEFiYiLOnTsn9xjk4fXr11i+fDkAoGvXrvD09ISmpiYYY5g8eTJiY2MRFxeH5s2b8xxp1Spqx6tXr5CZmSk23+jRo+Hs7IxZs2bJdPlBbW9X1aF8rFhF+VjRb42CggLY2toiNDQU33zzjdzjqKnK2vHFF6q1b6lsv1KRjz76CLa2tjJ/IfKdk+rizZs3SE9Ph4ODg9gZJVUZqYkoXmXbjCRkGqmpWbNmKn/xvLzFxABBQcD9+/9Ns7YGJk+egt9+64ylS5di6NChuHjxIjZt2oRNmzbxF2wVYmJiMG3aNFGnuP369UOjRo2wZs0anDhxAjt27MCBAwdgbGyMR48eAQBMTU0rvEicT1W1w8/PT2xeQ0NDWFhYKO21sNWhfCyvsnxcswY4d246fHx8YGdnh4cPH2LBggXQ1NTEsGHD+Au4ElW1Y8qUKejcWTX2LVXl46VLl9CvXz/Y2toiPz8fO3bsQFxcnNyPEBH5sbW1RWpqKo1lT+RK6oK0urtR6+IGExMDDB4MvH+s+cEDYPbs9pg9OxY7d4Zg0aJFcHBwQEREBIYPH85PsFWIiYnB4MGDoaUlvlk8ePAAgwcPFt2h9+4pCwCIjIwUG9WBb9W1Y+/eveWKUlVF+VheVfk4eDDQufN97NgxDDk5OWjQoAG6du2KCxcuiC78VxbVtWPv3vaIjY1FSIhy71uqy0cvLy/s3LkT2dnZMDU1haurK44dO4ZevXrxFDGRhK2tbZ3cv5DaI3VBam9vX+Xdu3zeocUHgUB4BKOiCx8YAzgO2L59INLTB1Z4ulBZCAQCBAUFoaIrOMqmWVlZ4ebNmxWeZpP1TkZ5EwgEmDx5cqXtKBuVydfXV9SOsmHeVBHlo7jq8hEAMjJ24d9/y5++V5JNGICwHZMnV71fCQ4G0tMHYuDAgQqPT1LV7Vc4jkNaWhrS09NV6tptQoj8SV2QXr16Vex5SUkJrl69iu+//140/mtdkpAgfjrtfYwB9+4J53vvwKJSSUhIwP2qGgLhEQ1TU1MFRVQ7GGOi6+7eP9KriigfxVWXj4DwCKOKb8Zqs19Rt3wkhMhO6oLUzc2t3DQPDw80adIEK1asUJtToZJ6p1svaGsXY+5cYd+WS5aEoKREp8L5lNG7dxiXlJQgNDSUv2DkpKp2ZCv7H0RClI/iJM1HVaLK+5WHDx+K/l8X8pEQIjuZbmqqiJOTEy5duiSvxamM/48CJlJYaFDhfGfPAr6+gEHFL/Pm2bNniIiIQEREhETzHzlyBN27d6/doGogPj4e/fv3r3Y+y/f/cGqG8lGosnw8cgRQ4s0Y8fHAu5txZe3YuBFwcQHatFFMXJJijOHo0aOiPlKro+75SAipntTdPuXl5Yk9Z4whOzsboaGh+Pfff2UaqUBRaqMrEIEAsLcXngas7pNs0ACYOhWYOBHguyeS7OxsrFq1CuvXr8erV68ACMf3rmxkJo7jYG1trfTXegkEAtjb2+PBgwcVXrdWG+3gs4sZykdx1eUjxwnvUk9Pr7gLKGUhzX4FAAYMAObNAz78sNZDq1JpaSkOHDiAxYsX4++//652/trar1C3T/JRky58SN1Uo22GSYnjOKahoSH24DiO2drasnPnzkm7OIXKzc1lAFhubq5cl7tvH2McJ3wIvz6Ej7LnX3/NmIPDf9PNzBibP5+xnBy5hiGRjIwMNnHiRKarq8sAMADM3d2dxcbGst9++41xHMc4jhO9BkA0bd++fYoPWAb79u1TaDtqa7uSBOVjeVXlI8cJX1cF1bVj9WrGhg1jTEPjv9d69mTs1CnGSksVG2tJSQmLjo5mLVu2FOWboaEhmz59Ovv5558Vvl/hMyfVyevXr9nNmzfZ69ev+Q6FqIiabDNSF6RxcXFij/j4eJaSksJKSkqkXrmi1eZOat8+xqytxb84bGz++/IrKWHs118Zc3b+73UjI8ZmzmTs0SO5h1POrVu32JgxY5iWlpboC6FLly7sjz/+YKXvfHvt27ePWVtbi31x2NjYqEwxWkaR7eDzy4/ysWLV5aOqkKQdt24xNmYMY1pa/83TuTNjR47UfmFaVFTEtmzZwhwdHUV5ZmJiwubNm8eePn36TjsUu1+hglQ+qCAl0qrJNiPTSE2qqrZP47x5U4ING6JRXAy4uw+Hp6d2udOCpaXC/gUXLwauXRNO09MDxo0DZswAbGzkG1NycjKWLl2K3bt3i8aP9vb2xrx589C9e/cKuwwSCARISEhAdnY2LC0t0a1bN6U+TV8ZRbWDTg/KRhnyURVI2o7MTGD5cmDLFqCoSDitXTvhqXxfX0BDQ34xvX79Glu3bsWyZctw7949AICFhQWmTJmCwMBAmJmZlXuPIvcrlJPyUdXp16wsQIH94qN+fUAZuz0NCAjAy5cvsX//fgDCfrrbtGkj8X0ZFZHHMvhS6yM1HTx4UOIFfvzxx1IFoE40NBhyc4XDUnbrxir80tDQEHZq/emnwOHDwsI0MRH48UdgwwYgIACYPRto2rRmsVy5cgVLlixBbGysaNrAgQMxd+5cfFjNhWaamppq0QWLurTjfZSPkpEkH1WBpO2wswPWrRMWoKtWAevXA3//Dfj5AS1bAnPmAEOHAlo1uJW1oKAAGzduxMqVK0UjtTVu3BgzZszAV199BSMjo0rfq675WBdlZQFOToACRw6Fnh6Qmip5URoQEIBt27YBALS1tWFra4tRo0Zhzpw55QZpkKeYmBhoa2tLNG9cXBy8vLzw4sULsR9x0ixDnUj0Vxk0aJBEC+M4rs51xC0rjgMGDhTejPDXX8LCNC4O2LwZ2LoV+OILICREeAetNM6ePYvFixfj6NGj/18Ph08//RRz5sxB27Zt5d8QonCUj6QqlpbAypXCH7YREcIfuzduAMOHAwsWCPcrI0YAOlL0gvXy5UusXbsWERERyMnJASAcqWfWrFkYM2YM3fBSxzx7pthiFBCu79kz6Y6S9u3bF5GRkSgqKsKRI0cQGBgIbW1thISEiM1XXFwMHWkSogrm5uZKsQxVJNFJnNLSUoke9OUnPY4DevYETp0CzpwB+vUT3mH766/CoxpDhgDV3SjNGMPJkyfh5eWFrl274ujRo9DU1MTIkSNx48YN/Pbbb1SMqhHKRyKJ+vWFP3QzM4X/WlgAt28DY8cCzZsDP/1UfVHx7NkzzJs3D3Z2dvj222+Rk5MDR0dHbN26FWlpaZg4cSIVo0Rp6erqonHjxrCzs8OECRPg7e2NgwcPIiAgAIMGDcKSJUvQpEkTODk5AQDu3buHoUOHwszMDObm5vD19UVGRoZoeQKBAFOnToWZmRksLCwwc+bMcr25eHp6Ijg4WPS8qKgIs2bNgo2NDXR1deHo6IgtW7YgIyMDXl5eAIB69eqB4zjRENzvL+PFixcYNWoU6tWrBwMDA/Tr1w9paWmi16OiomBmZoZjx47BxcUFRkZG6Nu3r8r17yvHq4pITXXpIuwf8fJl4JNPhLcn7N0LtG0L+PgAFy6Iz88Yw6FDh9CpUyd4e3sjLi4O2traGDduHFJTU/HLL7/ARdpDrIQQtWJmBsydC2RkCI+cNm4sPOUaGAg4OAhP7xcUiL8nOzsb06ZNg52dHZYsWYK8vDy0bNkSO3bsQEpKCkaPHi23I0qEKIq+vj6Ki4sBACdPnkRqaiqOHz+OQ4cOoaSkBH369IGxsTESEhJw9uxZUWFX9p5Vq1YhKioKW7duxZkzZ/D8+XOxy+IqMmrUKOzcuRM//PADUlJSsHHjRhgZGcHGxgb79u0DAKSmpiI7Oxtr1qypcBkBAQG4fPkyDh48iPPnz4Mxhv79+6OkpEQ0z6tXr7By5Ur8+uuviI+PR1ZWFqZPny6Pj01hZLqQorCwEKdPn0ZWVpboD1Xmm2++kUtgdZm7u/DGp+RkYOlSYPdu4NAh4aNnT2DOnFLk5MRgyZLFuPb/O6P09PTw1VdfYfr06bCR951RRKlRPhJJGBkB06YJ+0HeuhVYtkw4/Oj06UBYGDBlCvDxx1nYsGEZtmzZgqL/3xnl7u6OuXPnwtfXFxryvDOKEAUpO4t47NgxTJ48GU+fPoWhoSF+/vln0Q+r7du3o7S0FD///LPoZt/IyEiYmZkhLi4OvXv3RkREBEJCQkQj4G3YsAHHjh2rdL23bt3Cnj17cPz4cXh7ewMAmr5zg0jZqfmGDRtWeCMgAKSlpeHgwYM4e/YsOnfuDACIjo6GjY0N9u/fjyFDhgAQjoS2YcMGNGvWDAAwadIkLFq0SNaPjBcyjWXfv39/vHr1CoWFhTA3N8ezZ89gYGCAhg0b0hegHLVqBezYASxcCISHA7/8wnDyJIeTJzUANAbQGIaGdxAYOBFTp05Fo0aN+A6ZKBjlI5GWvr7w6Oi4ccD27cJi9PZt4c1Q8+aZALAEYITOnd3x7bffok+fPhX2xkGIsjt06BCMjIxQUlKC0tJSfPHFFwgNDUVgYCBat24tdpT/2rVruH37NoyNjcWW8ebNG9y5cwe5ubnIzs5Gx44dRa9paWnBw8OjwkFYACApKQmampro0aOHzG1ISUmBlpaW2HotLCzg5OSElJQU0TQDAwNRMQoIRz978uSJzOvlg9Q/d6dMmQIfHx+8ePEC+vr6uHDhAjIzM+Hu7o6VK1fWRowqRVtbu9zdcfHx8fDx8UGTJk3AcZyoewhJ2doW4cMPN8PSsjuAdQDeAOgK4CgcHV/gww+XoUGD2i9GBQIBvv32Wzg4OEBfXx/NmjXDd999V2kyKqvq/h6MMcyfPx+WlpbQ19eHt7e32PU6yoTysWq1kY98qKgdYWFhaN++PYyNjdGwYUMMGjQIqampEi9TRwfo0CEZ7u4jwHEjACQDMAMwD3p6j/Hhh2fg5ta31otRddmvEOXj5eWFpKQkpKWl4fXr19i2bRsMDQ0BQPRvmYKCAri7uyMpKUnscevWLXzxxRcyrV9fX7/GbZDU+/sHjuNULoekLkiTkpIwbdo0aGhoQFNTE0VFRbCxscHy5csxZ86c2ohRZejo6GDOnDmYM2eO2C+vwsJCuLm5Yd26dVIt7/Xr1/jxxx/h6OiIr776CvfunUGDBgsRErIZkyYVwcAAuHZNC35+gKsrsHOn8Iao2rJs2TKsX78ea9euRUpKCpYtW4bly5fjxx9/rL2V1oLq/h7Lly/HDz/8gA0bNiAxMRGGhobo06cP3ij6tlIJUD5WTt75yJfK2nH69GkEBgbiwoULOH78OEpKStC7d28UFhZWu8wrV67Az88PrVu3xu7d0WAsGgMGzEFYWCratQPevNHE999zcHAAJk0SXnNaW9Rlv0KUj6GhIRwdHWFra1ttV0/t2rVDWloaGjZsCEdHR7GHqakpTE1NYWlpicTERNF73r59iytXrlS6zNatW6O0tBSnT5+u8PWyfK7qBlQXFxe8fftWbL05OTlITU1FixYtqmyTypG2J/369euzW7duMcYYa968OTt69ChjjLGUlBRmYGAgdc/8iqQMo3cAYLGxsVXOk5eXx5YtW8YaNmwoGtWkSZMmLCIighUWForme/qUsblzGTMx+W+ElubNGduyhbGiIvnHPmDAADZmzBixaX5+fmz48OHyX5mCvP/3KC0tZY0bN2YrVqwQTXv58iXT1dVlO3furHAZfG5XlI81I0k+qoonT54wAOz06dOVznPmzBnWt29fseE7Bw8ezP7++2/RPKWlwlGeOnf+b7+ipSUcDer/m5pc1cZ+RRm2LXVQ2ag7V66Ijx6mqMeVK5LH7u/vz3x9fSV+rbCwkDVv3px5enqy+Ph4dvfuXXbq1Ck2efJkdu/ePcYYY+Hh4czc3JzFxsaylJQUNm7cOGZsbCy2rB49erCgoCDR84CAAGZjY8NiY2NFy9y9ezdjjLH79+8zjuNYVFQUe/LkCcvPz69wGb6+vqxFixYsISGBJSUlsb59+zJHR0dWXFzMGGMsMjKSmZqairUnNjaWyVDi1VhNRmqS+ghp27ZtcenSJQBAjx49MH/+fERHRyM4OBitWrWSR41cZ7148QKLFi2CnZ0dZs2ahSdPnsDe3h4bNmzA3bt3ERQUBAMDA9H8FXXrkpYmXbcu0ujcuTNOnjyJW7duARBec3PmzBn069dPfivhWXp6Oh49eiS6AB0ATE1N0bFjR5w/f57HyCpG+UjK5ObmAijfhyGTsls4jhN2P3fmjLA7up49gbdvhTdCOTsL+zO9cUN+cdeF/QpRfgYGBoiPj4etrS38/Pzg4uKCsWPH4s2bN6LRvqZNm4aRI0fC398fnTp1grGxMT755JMql7t+/XoMHjwYEydOhLOzM8aNGyc6i2FlZYWFCxdi9uzZaNSoESZNmlThMiIjI+Hu7o6BAweiU6dOYIzhyJEj6td5vqSV69u3bxljjF26dIn99ddfjDHGHj9+zPr06cOMjY1Zu3btWFJSktQVsSLV9q/mkpISFh0dzaKjoysdSxwVHJF5/Pgxmz17NjM2NhYduXBycmLbtm0T/QKSRH4+YytXMta48X+/KBs3Fk77/w+vGhEIBGzWrFmM4zimpaXFOI5jS5curfmCefT+3+Ps2bMMAHv48KHYfEOGDGFDhw6tcBl8HI2hfKyerPmobCRph0AgYAMGDGBdunQRTSstLWW///4769ixo2i/oq2tzcaNG8du374tVQznzjE2YID40apPPmHs8uUaNU0Uu7z3K3SEVD4qO9qVmcmYnp5ij47q6QnXS5RbTY6QSnyXvZWVFQICAjBmzBh4eHgAEHZVUDYiEBF2WF5280vZuPFVefDgAVauXImNGzfi9evXAITXnMybNw+ffvqp1OM8S9Kty6RJgKmp9G0DgD179iA6Oho7duxAy5YtkZSUhODgYDRp0gT+/v6yLZTIhPKxetLmo7KSpB2BgYFITk7GmTNnUFpaipiYGCxeLN4t3Lhx4zBjxgyZuoXr1EnY7dzVq8Ku6PbtA2JjhY9+/YR36P+/Rxqp0X5F9djaCofxpLHsiVxJWrkuWrSINWvWjGloaLCuXbuyyMhIsesZVUFt/2ouKipioaGhLDQ0lBVVchEnALZhwwY2fvx4pqOjIzpy0b59e3bgwAEmEAjkGI/welJHx/9+ZZqaCq87ffpU+uVZW1uztWvXik377rvvmJOTk3wC5gHeO0J2584dBoBdvXpVbL7u3buzb775psJl8HE0hvKxepLmo7IfIa2uHYGBgcza2prdunWL/fLLL8zZ2Vm0XzEyMmIzZ85kjx49kmtMN24wNmIEYxoa/+1bvLwYO3FCeA2qNGpjv0JHSOWjJke7SN2kkGtIv/32W9y+fRsnT55E06ZNMWnSJFhaWmLcuHFid3/VZe/eKZeQkFDuzrmyLlkmTpyIjRs3ori4GN27d8eff/6JxMREfPzxx3LteFpHBxgzBkhJAaKjhUOR5uYCS5YAdnbCI6cVjSwmEABxccK79uPi/rtz/9WrV+Xi09TUVNqjT5W1oyoODg5o3LgxTp48KZqWl5eHxMREdOrUqdZilRblY/Wqy0dVUVk7GGOYNGkSYmNjMX78ePTt2xejRo3Cv//+CzMzM8yfPx8ZGRlYtmyZ3PsobtFCOLzxrVvC/ky1tYXXm3p7C4+UHj4sLFPF26Ee+xVCSC2RtQrOz89nmzdvZl26dGEcx7EWLVqwVatWybo4ia1du5bZ2dkxXV1d1qFDB5aYmCjxe2vzV/O+ffuYvb296EiGtrY2s7a2Zvv27WPnz59nvXr1Eh21AMA+/PBDtmfPHrnHURWBgLGYGMbatfvvqIauLmOBgf9dm7NvH2PW1uLX7lhbC6f7+/szKysrdujQIZaens5iYmJY/fr12cyZMxXaDklU1Y78/Hx29epVdvXqVQaAff/99+zq1ass8/8fQnh4ODMzM2MHDhxg169fZ76+vszBwaHSX3zKcDSGr3xkTPac5Csfq/v7K5Oq2jFu3Dimr6/PGjRoINqvmJubs0WLFil8W8zKYmzyZPHrCtu0Yey334T7HUXvV5QhJ9UBHSEl0qrJNiOXPgEOHTrEzM3NmYaGhjwWV6ldu3YxHR0dtnXrVnbjxg02btw4ZmZmxh4/fizR+2trJ7Vv3z7GcRzT1tYW++J4twCt6OHv7y/XOCRVWbcuH31U8cXkHCd8bN+ex4KCgpitrS3T09NjTZs2ZXPnzq30dChf9u0TxltZOxYuPFXl36O0tJR9++23rFGjRkxXV5f17NmTpaamVro+ZfvyU1Q+MlaznFR0PnIcxziOYwsXLlSqfKyMrPuVyMhI3mJ+9IixmTMZMzQULzwVvV9RtpxUVVSQEmnVZJvhGJOtK/9Xr15hz549iIyMxJkzZ9CsWTOMGTMGs2fPlmVxEunYsSPat2+PtWvXAhBe4G9jY4PJkydLtN68vDyYmpoiNzdX1I1DTQkEAtjb2+P+/fvQ1tbG3LlzAQBLlixBSUmJaL6hQ4di7ty5cHV1lct65YEx4PRpYZdR75yhrpSVFXDzJiDlvVYKJRAALi7Aw4cVv85xgLU1kJ4uv3bUxnYlLT7yEahZTvKVj1ZWVrh586bUNw0qkkAggIuLCx4+fFjlfsXe3h6zZs1CQEAA9PT0+Aq3nJwc4IcfhI+XLyufrzbyEVCOnFQHb968QXp6OhwcHJRq+yLKqybbjNRj2Z87dw5bt27Fb7/9hrdv32Lw4MH47rvv0L17d2kXJZXi4mJcuXIFISEhomkaGhrw9vautH/IoqIiFBUViZ7n5eXJPa6EhATcv3+/2vkmTJigVMUoIPwy8PQUPtatE96BX5UHD2S/Q19ZMCbseSAhQdhuVcdXPgLS56Sy5OODBw9gquob8v9t3rxZrM9cZWFhASxcCLRvD/j4VD6fuuUjIUR2Eheky5cvR2RkJG7dugUPDw+sWLECw4YNg7GxcW3GJ/Ls2TMIBIJyF+c3atQI//77b4XvCQsLw8KFC2s1rux37goqKSlBaGhotfMpo3f70tbWLsbcuWEAgCVLQlBSolPJu5RbVe1Q8j9HtfjOR0D6nFSmfFQlVbXj6dOnig1GSvn5//1fnfOREFJzEhekK1aswIgRI/Dbb7+pzAgwISEhmDp1quh5Xl6eTH3wVcXS0lKi+fLf3TMrofebUVhoUOF8R44ACjj4JrP4eKB///+eV9YOCf9sSovysWKS5uORI0cUchRZVvHx8ej/7oZciQsXLmDQoEHQ19dXQFTSk3S/our5SAipOYmvIS0pKeF1mKri4mIYGBhg7969GDRokGi6v78/Xr58iQMHDlS7jNq8Zu3Bgweo7qPs378/5s2bp1TdB5URCAB7e+Fp+YqaUVvXeskbH+3g43o1vvMRqHlO8pGPHMfB2toa6enpSn8NqaT7lUaNGmHatGn4+uuvFXqEXBJ87VfoGlL5qOp6wNzcXLx69UphsRgYGKj8pTZRUVEIDg7Gy6ourFZxCrmGlO8vPx0dHbi7u+PkyZOiL7/S0lKcPHmy0vFfFUFTUxNr1qzB4MGDwXGc2JdH2fPu3bvjzJkzOHLkCI4cOQIvLy/MmzcPXl5e4DiOt9jfpakJrFkDDB4s/JJ498ujLMSICOUuRgH1aUd1+M5HQDlzsrp8BICIiAilLkYByfYr48aNw59//onMzEzMnDkT4eHhCA4OxuTJk2FmZsZf8O+oK/lY1+Tm5mLt2rV4+/atwtappaWFSZMmSVyUBgQEYNu2bRg/fjw2bNgg9lpgYCB++ukn+Pv7Iyoqqhairdhnn30m0ZmPukp+vbArwNSpU7F582Zs27YNKSkpmDBhAgoLCzF69Ghe4/Lz88PevXthZWUlNt3a2hr79u3D6dOnkZqaii+//BLa2to4deoUevbsiS5duuDIkSPVHgFRFD8/YO9e4d3077K2Fk738+MnLmmpSztUgTLmZFX5uHfvXvipyAZQ3X5l06ZNSEtLQ2RkJJo3b47nz59j/vz5sLW1xZw5c5Tm+lLKR/Xz6tUrhRajAPD27Vupj8ja2Nhg165doqG5AeERvB07dsCWh3FI9fX10bBhQ4WvV1VIXJA+rKwfHQX67LPPsHLlSsyfPx9t2rRBUlISjh49KvdRSGTh5+eHjIwMnDp1Cjt27MCpU6eQnp4u+vJzdHTE5s2bcfv2bUyaNAm6uro4f/48BgwYAHd3d+zbt08pRibx8wPS0kqwenUUli2LwokTJUhPV70vDXVpR2WUIR8B5c3J6vJRVVTXDm1tbQQEBCAlJQU7d+5Eq1atkJ+fj7CwMNjb22Pq1KlKsa2oez4S5dSuXTvY2NggJiZGNC0mJga2trZo27ataNrRo0fRtWtXmJmZwcLCAgMHDsSdO3dEr2dkZIDjOOzatQudO3eGnp4eWrVqhdOnT4vmiYuLA8dxOHz4MFxdXaGnp4cPP/wQycnJonmioqLEzl6EhoaiTZs2+PXXX2Fvbw9TU1N8/vnnYvec5OfnY/jw4TA0NISlpSVWr14NT09PBAcHy/nT4p/EBWnLli2xY8eO2oxFIpMmTUJmZiaKioqQmJiIjh078h2SiKamJjw9PTFs2DB4enpWeFrQ1tYWP/74IzIyMjBjxgwYGhri6tWrGDx4MFq3bo3o6GiF//J8n4YGQ25uJl6/zkS3bkxlT6epSzsqoiz5CChvTkqSj6pAknZoamri888/x7Vr17B//354eHjg1atXWL16NRwcHDBhwgRkZGQoPvh3qHM+EuU1ZswYREZGip5v3bq13BmcwsJCTJ06FZcvX8bJkyehoaGBTz75pNxBohkzZmDatGm4evUqOnXqBB8fH+Tk5JSbZ9WqVbh06RIaNGgAHx8fsb6D33fnzh3s378fhw4dwqFDh3D69GmEh4eLXp86dSrOnj2LgwcP4vjx40hISMDff/9dk49EaUlckC5ZsgTjx4/HkCFD8Pz589qMqU5o3Lgxli9fjszMTHz77bcwNTXFzZs3MWLECDg5OeHnn39GcXEx32ESJUX5SCqioaEBX19fXLx4UXTUp7i4GBs2bEDz5s0xevRo3Lp1i+8wCVGYESNG4MyZM8jMzERmZibOnj2LESNGiM3z6aefws/PD46OjmjTpg22bt2Kf/75Bzdv3hSbb9KkSfj000/h4uKC9evXw9TUFFu2bBGbZ8GCBejVqxdat26Nbdu24fHjx4iNja00vtLSUkRFRaFVq1bo1q0bRo4ciZP/H6kmPz8f27Ztw8qVK9GzZ0+0atUKkZGREAgEcvp0lIvEBenEiRNx/fp15OTkoEWLFvj9999rM646w8LCAosWLUJmZiaWLl2K+vXr4+7duxg3bhwcHR2xdu1asetfCAEoH0nVOI5Dnz59kJCQgNOnT6NXr154+/YtoqKi4OzsjM8//xz//PMP32ESUusaNGiAAQMGICoqCpGRkRgwYADq168vNk9aWhqGDRuGpk2bwsTEBPb29gCArKwssfne7SFHS0sLHh4eSElJqXQec3NzODk5lZvnXfb29mK9Y1haWuLJkycAgLt376KkpAQdOnQQvW5qagonJycJW69apLqpycHBAX/99RfmzZsHPz8/uLq6ol27dmIPIhtTU1OEhIQgIyMD33//PSwtLXHv3j1MnjwZDg4OWLFihdL3ZUoUi/KRSKJ79+74888/ceHCBfj4+IAxht27d8PV1RWDBg3CpUuX+A6RkFo1ZswYREVFYdu2bRgzZky51318fPD8+XNs3rwZiYmJSExMBACFnKV8v8cUjuOU4n4SPkh9l31mZiZiYmJQr149+Pr6lnuQmjE0NMSUKVNw9+5drF+/HnZ2dnj8+DFmzpwJe3t7fPfdd2rdhxmRDuUjkVTHjh1x8OBBJCUlYejQoeA4DgcOHECHDh3Qt29fJCQk8B0iIbWib9++KC4uRklJCfr06SP2Wk5ODlJTUzFv3jz07NkTLi4uePHiRYXLuXDhguj/b9++xZUrV+Di4lLpPC9evMCtW7fKzSOppk2bQltbW+xHY25urtpediPVWPabN2/GtGnT4O3tjRs3bqBBgwa1FVedp6enh6+//hpjx45FdHQ0li5dirS0NMyfPx8rVqzApEmTMGXKFPob1GGUj0QWbm5u2L17NxYuXIiwsDBER0fj2LFjOHbsGLp374558+bB29tbafpIJqSmNDU1RafN378psF69erCwsMCmTZtgaWmJrKwszJ49u8LlrFu3Ds2bN4eLiwtWr16NFy9elDviumjRIlhYWKBRo0aYO3cu6tevLzZwiDSMjY3h7++PGTNmwNzcHA0bNsSCBQugoaGhlvkp8RHSvn37YtasWVi7di1iYmLoy09B+OrWRVtbu9yphPXr18PV1RUmJiYwMTFBp06d8Mcff8h93fJUUTtCQ0PBcZzYw9nZmacIZUP5SGrK2dkZ27Ztw61btzB+/Hjo6OggPj4evXv3xocffoiDBw/KvY/kivLxfeHh4eA4Ti27tSH8Kfveep+GhgZ27dqFK1euoFWrVpgyZQpWrFhR4TLCw8MRHh4ONzc3nDlzBgcPHix3PWp4eDiCgoLg7u6OR48e4ffff4eOjo7McX///ffo1KkTBg4cCG9vb3Tp0gUuLi5Sj4KkCiQeOrRXr16IjIyEtbV1bcdUa9RhOLnS0lL8/vvvWLx4MS5fvgxAOGLOmDFjMGvWLNHF2LXh999/h6amJpo3bw7GGLZt24YVK1bg6tWraNmyZa2tV95CQ0Oxd+9enDhxQjRNS0ur3I5FUnxsV5SPRN7u37+PlStXYtOmTaIbKV1dXTF37lx8+umnCuk269KlSxg6dChMTEzg5eWFiIgImZZD25Z8VDYMpCqM1CRPGRkZcHBwwNWrV9GmTZsK54mLi4OXlxdevHhRqyOlFRYWwsrKCqtWrcLYsWNrbT2yqsnQoRIXpOpAnXZSjDH8+eefWLx4Mc6cOQNAmLAjRoxASEgIPvjgA4XEYW5ujhUrVihlYlQmNDQU+/fvR1JSklyWp07blSLR56acnjx5gtWrV2Pt2rUoKCgAADg5OWHOnDkYNmxYrQ1bW1BQgHbt2uGnn37C4sWL0aZNGypIeUZj2QvxWZBevXoV//77Lzp06IDc3FwsWrQIcXFxuH37tswHUWpTTQpSlRo6lPyH725dBAIBdu3ahcLCQrFuLlRFWloamjRpgqZNm2L48OHluvcgpK5q2LAhwsLCkJmZidDQUNSrVw+pqanw9/fHBx98gI0bN6KoqEju6w0MDMSAAQPg7e0t92UT+TM1NYWlpaXCHnwVo8pg5cqVcHNzg7e3NwoLC5GQkKCUxWiNsTokNzeXAWC5ubl8h1IrEhMT2ccff8wAiB6+vr7s4sWLUi2npKSERUdHs+joaFZSUiL22vXr15mhoSHT1NRkpqam7PDhw/JsglxV1o4jR46wPXv2sGvXrrGjR4+yTp06MVtbW5aXlyfTetR9u6ot9Lmphry8PLZs2TLWsGFD0X6lSZMmLCIighUWFkq8nKr2Kzt37mStWrVir1+/Zowx1qNHDxYUFCRzzLRtycfr16/ZzZs3RX8XQqpTk22GjpCqkQ4dOuDAgQM17taltLQUaWlpSEtLK9cfmpOTE5KSkpCYmIgJEybA39+/3GgWyqKydvTr1w9DhgyBq6sr+vTpgyNHjuDly5fYs2cPj9ESopyMjY0xc+ZMpKenY82aNbCyssLDhw8RHBwMe3t7hIeHIy8vr9rlVJaP9+7dQ1BQEKKjo9XyRg1CiGSoIFVDZd263Lx5E/7+/tDU1BR16dKjRw8cP35c5rtndXR04OjoCHd3d4SFhcHNzQ1r1qyRcwsUy8zMDB988AFu377NdyiEKC0DAwN88803uHPnDjZt2gQHBwc8ffoUISEhsLOzQ2hoqEzD2F65cgVPnjxBu3btoKWlBS0tLZw+fRo//PADtLS01HaYREKIOCpI1ZizszOioqKQlpYmVbcu734BJCQkVPmFUFpaWivXk8mDpO0oKCjAnTt3YGlpqajQCFFZurq6GDduHG7duoVffvkFzs7OePnyJRYuXAg7OzvMmjULjx8/Lve+yvKxZ8+e+Oeff5CUlCR6eHh4YPjw4UhKSlLI3f2karIewCB1T022FSpI6wAHBwds2LABd+/eRXBwMPT19XHx4kX4+vqiTZs22LNnj+jLISYmBi1atBC9t1+/frC3t0dMTAxCQkIQHx+PjIwM/PPPPwgJCUFcXByGDx/OV9MqVVU7pk+fjtOnTyMjIwPnzp3DJ598Ak1NTQwbNozHiAlRLVpaWhg5ciSSk5Px22+/wc3NDQUFBVi+fDns7e0RFBSE+/fvA6g6H42NjdGqVSuxh6GhISwsLNCqVSu+mkfw37CWirybnqi2sm1Flt44pBqpiag2KysrrF69GiEhIVi9ejXWrVuH69ev47PPPoOTkxN69eqFtWvXltuQHjx4gMGDB8PLyws7d+5EdnY2TE1N4erqimPHjqFXr148tahiMTExGDx4MLS0xDfvsnZ07twZO3bsQE5ODho0aICuXbviwoUL1Lk8ITLQ1NTE4MGD8emnn+Lw4cNYvHgxEhMT8cMPP2D9+vXo0aMHTpw4Uel+Ze/evfDz8+MpelIVTU1NmJmZ4cmTJwCEl22o4whBpOYYY3j16hWePHkCMzMzmc5sUEFaB5V16zJz5kz8+OOPiIiIQGpqKlJTUyucv+wQfGpqKm7evFluQyssLKz1mCUlEAgwefLkCk8bMMbAcRyysrJw7949OhVIiBxxHIeBAwdiwIAB+Ouvv7B48WLExcWJDUDxrrJ8DA4Ohq+vr1g+xsXFKShqUp3GjRsDgKgoJaQqZmZmom1GWlSQ1mH16tXD/PnzMWXKFEyfPh2bNm2qcv4HDx6ofF9wjDHcu3cPCQkJ8PT05DscQtQOx3Ho2bMnevbsiR9//BHffPNNpfNSPio/juNgaWmJhg0boqSkhO9wiBLT1tau0YEeKkgJjI2N4enpKSpIS0pKEBoaym9QclBVO7KzsxUbDCF10Ludd1M+qjZNTU06q0RqFRWkBAAkvsP8yJEj6N69ey1HI7v4+Hj079+/2vnojnpCap+keUb5SAihsewJAOG1l/b29njw4EGF119yHAdra2ukp6cr9a9kPtpB25Vs6HNTf3ztV2jbIkT1ULdPBIDwdExZB/fv30VZ9jwiIkKpi1FAfdpBiDqgfCSESIoKUiLi5+eHvXv3wsrKSmy6tbW1SnXNoi7tIEQdUD4SQiRBp+xJOQKBAAkJCcjOzoalpSW6deumkkcwFNUO2q5kQ59b3aLI/QptW4SoHrqpiZSjqampFl2wqEs7CFEHlI+EkKrQKXtCCCGEEMIrKkgJIYQQQgivqCAlhBBCCCG8ooKUEEIIIYTwigpSQgghhBDCKypICSGEEEIIr6ggJYQQQgghvKKClBBCCCGE8IoKUkIIIYQQwisqSAkhhBBCCK+oICWEEEIIIbyigpQQQgghhPCKClJCCCGEEMIrlSlIlyxZgs6dO8PAwABmZmZ8h0NInUb5SAghRJ5UpiAtLi7GkCFDMGHCBL5DIaTOo3wkhBAiT1p8ByCphQsXAgCioqL4DYQQQvlICCFErlTmCCkhhBBCCFFPKnOEVBZFRUUoKioSPc/NzQUA5OXl8RUSUUNl2xNjjOdIlBvlI1EUyklCVA+vBens2bOxbNmyKudJSUmBs7OzTMsPCwsTnVp8l42NjUzLI6Qq+fn5MDU15TsMmVE+EnWj6jlJSF3CMR5/Qj59+hQ5OTlVztO0aVPo6OiInkdFRSE4OBgvX76sdvnvH5EpLS3F8+fPYWFhAY7jZI67Knl5ebCxscG9e/dgYmJSK+tQBGqH5BhjyM/PR5MmTaChobpXwVA+Ki9qh3TUJScJqUt4PULaoEEDNGjQoNaWr6urC11dXbFpiuqixsTERKW/OMpQOySjDkdhKB+VH7VDcuqQk4TUJSpzDWlWVhaeP3+OrKwsCAQCJCUlAQAcHR1hZGTEb3CE1DGUj4QQQuRJZQrS+fPnY9u2baLnbdu2BQCcOnUKnp6ePEVFSN1E+UgIIUSeVObimqioKDDGyj2U7ctPV1cXCxYsKHdqUtVQO0hVKB8Vi9pBCFF3vN7URAghhBBCiMocISWEEEIIIeqJClJCCCGEEMIrKkgJIYQQQgivqCCVo3Xr1sHe3h56enro2LEjLl68yHdIUouPj4ePjw+aNGkCjuOwf/9+vkOSSVhYGNq3bw9jY2M0bNgQgwYNQmpqKt9hEQVT9ZykfCSE1BVUkMrJ7t27MXXqVCxYsAB///033Nzc0KdPHzx58oTv0KRSWFgINzc3rFu3ju9QauT06dMIDAzEhQsXcPz4cZSUlKB3794oLCzkOzSiIOqQk5SPhJC6gu6yl5OOHTuiffv2WLt2LQDhsIg2NjaYPHkyZs+ezXN0suE4DrGxsRg0aBDfodTY06dP0bBhQ5w+fRrdu3fnOxyiAOqWk5SPhBB1RkdI5aC4uBhXrlyBt7e3aJqGhga8vb1x/vx5HiMjZXJzcwEA5ubmPEdCFIFyUrlRPhJC3kcFqRw8e/YMAoEAjRo1EpveqFEjPHr0iKeoSJnS0lIEBwejS5cuaNWqFd/hEAWgnFRelI+EkIqozNChhMgqMDAQycnJOHPmDN+hEFLnUT4SQipCBakc1K9fH5qamnj8+LHY9MePH6Nx48Y8RUUAYNKkSTh06BDi4+NhbW3NdzhEQSgnlRPlIyGkMnTKXg50dHTg7u6OkydPiqaVlpbi5MmT6NSpE4+R1V2MMUyaNAmxsbH466+/4ODgwHdIRIEoJ5UL5SMhpDp0hFROpk6dCn9/f3h4eKBDhw6IiIhAYWEhRo8ezXdoUikoKMDt27dFz9PT05GUlARzc3PY2tryGJl0AgMDsWPHDhw4cADGxsai6wZNTU2hr6/Pc3REEdQhJykfCSF1BiNy8+OPPzJbW1umo6PDOnTowC5cuMB3SFI7deoUA1Du4e/vz3doUqmoDQBYZGQk36ERBVL1nKR8JITUFdQPKSGEEEII4RVdQ0oIIYQQQnhFBSkhhBBCCOEVFaSEEEIIIYRXVJASQgghhBBeUUFKCCGEEEJ4RQUpIYQQQgjhFRWkhBBCCCGEV1SQEkIIIYQQXlFBWocFBARg0KBBfIdBCAHlIyGkbqOx7NUUx3FVvr5gwQKsWbMGNFAXIbWP8pEQQqpGQ4eqqUePHon+v3v3bsyfPx+pqamiaUZGRjAyMuIjNELqHMpHQgipGp2yV1ONGzcWPUxNTcFxnNg0IyOjcqcIPT09MXnyZAQHB6NevXpo1KgRNm/ejMLCQowePRrGxsZwdHTEH3/8Ibau5ORk9OvXD0ZGRmjUqBFGjhyJZ8+eKbjFhCgvykdCCKkaFaREzLZt21C/fn1cvHgRkydPxoQJEzBkyBB07twZf//9N3r37o2RI0fi1atXAICXL1/io48+Qtu2bXH58mUcPXoUjx8/xtChQ3luCSGqj/KREFJXUEFKxLi5uWHevHlo3rw5QkJCoKenh/r162PcuHFo3rw55s+fj5ycHFy/fh0AsHbtWrRt2xZLly6Fs7Mz2rZti61bt+LUqVO4desWz60hRLVRPhJC6gq6qYmIcXV1Ff1fU1MTFhYWaN26tWhao0aNAABPnjwBAFy7dg2nTp2q8Pq3O3fu4IMPPqjliAlRX5SPhJC6ggpSIkZbW1vsOcdxYtPK7hYuLS0FABQUFMDHxwfLli0rtyxLS8tajJQQ9Uf5SAipK6ggJTXSrl077Nu3D/b29tDSos2JED5RPhJCVBVdQ0pqJDAwEM+fP8ewYcNw6dIl3LlzB8eOHcPo0aMhEAj4Do+QOoXykRCiqqggJTXSpEkTnD17FgKBAL1790br1q0RHBwMMzMzaGjQ5kWIIlE+EkJUFXWMTwghhBBCeEU/mQkhhBBCCK+oICWEEEIIIbyigpQQQgghhPCKClJCCCGEEMIrKkgJIYQQQgivqCAlhBBCCCG8ooKUEEIIIYTwigpSQgghhBDCKypICSGEEEIIr6ggJYQQQgghvKKClBBCCCGE8IoKUkIIIYQQwqv/AT0DnmuYDpkbAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_matched([ex_graphs.one_child(t) for t in [0, 1]], 'Only One Child')" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqQAAADXCAYAAADMb0PvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABIbUlEQVR4nO3deXhMZ/sH8O9kQUQkhJDISkhSO0FRW8VOqaJVS4LmVUIT1BJSQhFrG63W1krS1lIlluKVqoqgFUtFKY0giaWxyyLIMnl+f+SXeY1sM8lkzszk+7muuZgzZ87cT3LuZ+6c5XlkQggBIiIiIiKJGEkdABERERFVbixIiYiIiEhSLEiJiIiISFIsSImIiIhIUixIiYiIiEhSLEiJiIiISFIsSImIiIhIUixIiYiIiEhSLEiJiIiISFIsSImIACQlJUEmk2HVqlWlrhscHAyZTKa0zNnZGT4+PqW+Nzw8HDKZDElJSWWMlIjI8LAgJSKtKSjGqlWrhjt37hR6vXv37mjWrJnGPzcuLg6jR4+Gg4MDqlatitq1a8PLywthYWGQy+Ua/zwiIlIPC1Ii0rqsrCwsW7ZMK5/1zTffwNPTE0ePHsWoUaPw9ddfY/78+TAzM8OECROwfPlytbcZFBSE58+fV0C0RESVk4nUARBR5dOqVSts2rQJgYGBsLOzq7DPOXXqFD788EN07NgRBw8ehIWFheK1gIAAnD17FpcuXVJ7uyYmJjAxqbjuUwiBFy9ewMzMrMI+g4hIl/AIKRFp3dy5cyGXy1U6Spqbm4tPP/0UjRo1QtWqVeHs7Iy5c+ciKyur1PcuXLgQMpkMW7ZsUSpGC3h6ehZ53efGjRsVn9euXTucOXNG6fWiriEtyt9//40333wTZmZmsLe3x+LFi5GXl1doPWdnZwwcOBBRUVHw9PSEmZkZNmzYAABITU1FQECA4nIDV1dXLF++XGk7L1//WlrsRES6iEdIiUjrXFxcMHbsWGzatAlz5swp8SjpBx98gIiICAwbNgwzZsxAbGwsQkJCcOXKFezevbvY9z179gxHjhxB165d4ejoqHJsW7duRUZGBiZOnAiZTIYVK1Zg6NChuHHjBkxNTVXezt27d9GjRw/k5uZizpw5MDc3x8aNG4s96hkfH4+RI0di4sSJ8PX1hZubG549e4Zu3brhzp07mDhxIhwdHfH7778jMDAQKSkpCA0NrZDYiYi0ThARaUlYWJgAIM6cOSOuX78uTExMxEcffaR4vVu3bqJp06aK53FxcQKA+OCDD5S28/HHHwsA4rfffiv2sy5cuCAACH9/f5ViS0xMFACEtbW1ePz4sWL53r17BQDx888/K5YtWLBAvNp9Ojk5CW9vb8XzgIAAAUDExsYqlt2/f19YWloKACIxMVHpvQDEoUOHlLb56aefCnNzc3H16lWl5XPmzBHGxsbi5s2basdORKSLeMqeiCTRsGFDjBkzBhs3bkRKSkqR6xw8eBAAMH36dKXlM2bMAAAcOHCg2O2np6cDQJGn6kvy7rvvolatWornXbp0AQDcuHFDre0cPHgQr7/+Otq3b69YVrduXYwaNarI9V1cXNCnTx+lZT/99BO6dOmCWrVq4eHDh4qHl5cX5HI5YmJiKiR2IiJtY0FKRJIJCgpCbm5usdeSJicnw8jICK6urkrL69evDysrKyQnJxe77Zo1awIAMjIy1Irp1dP7BQXekydP1NpOcnIyGjduXGi5m5tbkeu7uLgUWpaQkIBDhw6hbt26Sg8vLy8AwP379yskdiIibeM1pEQkmYYNG2L06NHYuHEj5syZU+x6qtxA9CpXV1eYmJjg4sWLar3P2Ni4yOVCCLVjUEdR15bm5eWhV69emDVrVpHvadKkidJzqWInIiovFqREJKmgoCD88MMPRY4H6uTkhLy8PCQkJMDDw0Ox/N69e0hNTYWTk1Ox261evTrefPNN/Pbbb7h16xYcHBwqJP7iODk5ISEhodDy+Ph4lbfRqFEjPH36VHFElIjIUPGUPRFJqlGjRhg9ejQ2bNiAu3fvKr3Wv39/ACh0N/lnn30GABgwYECJ216wYAGEEBgzZgyePn1a6PVz584hIiKiHNEXr3///jh16hROnz6tWPbgwQNs2bJF5W2MGDECf/zxB6Kiogq9lpqaitzcXI3ESkQkNR4hJSLJzZs3D99//z3i4+PRtGlTxfKWLVvC29sbGzduRGpqKrp164bTp08jIiICQ4YMQY8ePUrcbqdOnfDVV19h8uTJcHd3x5gxY9C4cWNkZGQgOjoa+/btw+LFiyukTbNmzcL333+Pvn37wt/fXzHsk5OTE/766y+VtjFz5kzs27cPAwcOhI+PD9q2bYvMzExcvHgRO3fuRFJSEurUqVMh8RMRaRMLUiKSnKurK0aPHl3k0cpvvvkGDRs2RHh4OHbv3o369esjMDAQCxYsUGnbEydORLt27bB69Wp89913ePDgAWrUqIE2bdogLCwMo0eP1nRzAAC2trY4evQopk6dimXLlsHa2hoffvgh7OzsMGHCBJW2Ub16dRw7dgxLly7FTz/9hO+++w41a9ZEkyZNsHDhQlhaWlZI7ERE2iYTvNqdiIiIiCTEa0iJiIiISFIsSImIiIhIUixIiYiIiEhSLEiJiIiISFIsSImIiIhIUixIiYiIiEhSLEiJiIiISFIsSImIiIhIUixIiYiIiEhSLEiJiIiISFIsSImIiIhIUixIiYiIiEhSLEiJiIiISFIsSImIiIhIUpWqIBVCID09HUIIqUMhA8L9qmz4c6OKwn2LSP+YSB2ANqWnp8PKygq3bt1CzZo1pQ6HDER6ejocHByQmpoKS0tLqcPRG8xHqijMSSL9U6kK0oyMDACAg4ODxJGQIcrIyOCXnxqYj1TRmJNE+qNSFaQWFhYAwCMypFEFR2MK9i9SDfORKgpzkkj/VKqCVCaTAQBq1qzJL0DSuIL9i1TDfKSKxpwk0h+V6qYmIiIiItI9LEiJiIiISFIsSImIiIhIUixIiYiIiEhSLEiJiIiISFIsSImIiIhIUixIiYiIiEhSLEiJiIiISFIsSEllzs7OkMlkhR5+fn5Sh6a2jIwMBAQEwMnJCWZmZujUqRPOnDkjdVhElY4h9StEVHaVaqYmKp8zZ85ALpcrnl+6dAm9evXC8OHDJYyqbD744ANcunQJ33//Pezs7PDDDz/Ay8sLly9fRoMGDaQOj6jSMKR+hYjKTiaEEFIHoS3p6emwtLREWloapyrUgICAAOzfvx8JCQl6NUXf8+fPYWFhgb1792LAgAGK5W3btkW/fv2wePFitbbH/aps+HOjomiiX+G+RaR/eMqeyiQ7Oxs//PADxo8fr1fFKADk5uZCLpejWrVqSsvNzMxw4sQJiaIiIn3uV4iofFiQUpns2bMHqamp8PHxkToUtVlYWKBjx4749NNP8e+//0Iul+OHH37AH3/8gZSUFKnDI6q09LlfIaLyYUFKZfLtt9+iX79+sLOzkzqUMvn+++8hhECDBg1QtWpVfPHFFxg5ciSMjJgSRFLR936FiMqO376ktuTkZPz666/44IMPpA6lzBo1aoRjx47h6dOnuHXrFk6fPo2cnBw0bNhQ6tCIKiVD6FeIqOxYkJLawsLCYGNjo3RDkL4yNzeHra0tnjx5gqioKAwePFjqkIgqJUPqV4hIfXpVkMbExGDQoEGws7ODTCbDnj17pA7JIMnlQHQ0sG1b/r8vjciCvLw8hIWFwdvbGyYmuj1qWEntiIqKwqFDh5CYmIjDhw+jR48ecHd3x7hx46QKV+8wH0kdhtKvEFHF0KuCNDMzEy1btsRXX30ldSgGKzIScHYGevQA3n8//19n5/zlAPDrr7/i5s2bGD9+vJRhlqq0dqSlpcHPzw/u7u4YO3Ys3njjDURFRcHU1FTKsPUK85FUZSj9ChFVHL0dh1Qmk2H37t0YMmSIyu/h2HQli4wEhg0DXt0jCkZf2bkTGDpU+3GpS9vt4H7FfKTiSdGvcN8i0j88N0IA8k+f+fsX/tIA/rfso48ALy/A2Fi7salDLgemTi2+HTIZEBAADB6s2+0gMgSl9SvMRyIqYNAFaVZWFrKyshTP09PTJYxGtx0/Dty+XfI6d+4AlpbaiaeiCAHcupXf3u7dpY6mcmE+Vj6l9SvMRyIqoFfXkKorJCQElpaWioeDg4PUIemsl8eDNzXNRnDwQgQHL4SpabZ0QZVTSe3g+Pfax3ysfFTtV5iPRGTQR0gDAwMxffp0xfP09HR+CRbD1lb5eWZm9SLXO3gQ6NpVCwGVUUwM0L///54X145X20sVj/lY+ajarzAfiYg3NRGA/Gu9nJ3zT8sXtUfIZIC9PZCYqNvXeknRDu5XzEcqmlT9CvctzRJCIDc3F/KXx+oieoWxsTFMTEwgK7hjUU16dYT06dOnuHbtmuJ5YmIi4uLiULt2bTg6OkoYmf4zNgbWrMm/G1YmU/7yKNi3QkN1uxgFDKcd+oD5SKVhPuq/7OxspKSk4NmzZ1KHQnqgevXqsLW1RZUqVdR+r14dIY2OjkaPHj0KLff29kZ4eHip7+dfzaWLjMy/K/blGxEcHPK/NPRhyKcC2mxHZd2vmI+kKm33K9y3NCMvLw8JCQkwNjZG3bp1UaVKlTIf/SLDJoRAdnY2Hjx4ALlcjsaNG8PISL3blPSqIC0vdlKqefEiB+vXb0F2NtC27Sh0726ql0cwtNUO7ldlw59b5aLNfoX7lma8ePECiYmJcHJyQvXqRV//S/SyZ8+eITk5GS4uLqhWrZpa79WrU/akHUZGAmlpyQCALl2EXhajgOG0g8gQMB/1l7pHuqjyKs++wr2MiIiIiCTFI6RERESklps3b+Lhw4da+7w6depUmpslg4ODsWfPHsTFxUkdCrp3745WrVohNDS0wj+LBSkRERGp7ObNm3Bzc8OLFy+09pnVqlVDfHy8WkXp3bt3ERISggMHDuD27duwtLSEq6srRo8eDW9vb728LjY4OBgLFy4scZ2y3BpUcJPqkydPYGVlVcboyocFKREREans4cOHWi1GgfwbrB4+fKhyQXrjxg107twZVlZWWLp0KZo3b46qVavi4sWL2LhxIxo0aIC33nqryPfm5OTA1NRUk+FrzMcff4wPP/xQ8bxdu3b4z3/+A19f3yLXz87OLtMQTFLgNaRERERkUCZPngwTExOcPXsWI0aMgIeHBxo2bIjBgwfjwIEDGDRokGJdmUyGdevW4a233oK5uTmWLFkCAFi3bh0aNWqEKlWqwM3NDd9//73iPUlJSZDJZEqn1VNTUyGTyRAdHQ0g/6ijTCbDkSNH4OnpierVq6NTp06Ij49XinXZsmWoV68eLCwsMGHChBKL/Ro1aqB+/fqKh7GxMSwsLBTP33vvPUyZMgUBAQGoU6cO+vTpU2qsSUlJiiH8atWqBZlMBh8fH8W6eXl5mDVrFmrXro369esjODhYzd+GaspckGZnZyM+Ph65ubmajMcg3blzB6NHj4a1tTXMzMzQvHlznD17VuqwSmRqalroL8SQkBC0a9cOFhYWsLGxwZAhQwollq4pqh0vW7ZsGWQyGQICArQXVAVgPqouODgYMplM6eHu7i51WGWib31LUfm4bt06tGjRAjVr1kTNmjXRsWNH/Pe//5UoQjIEjx49wi+//AI/Pz+Ym5sXuc6r46kGBwfj7bffxsWLFzF+/Hjs3r0b/v7+mDFjBi5duoSJEydi3LhxOHr0qNrxzJs3D6tXr8bZs2dhYmKC8ePHK17bsWMHgoODsXTpUpw9exa2trb4+uuv1f6Ml0VERKBKlSo4efIk1q9fX+r6Dg4O2LVrFwAgPj4eKSkpWLNmjdL2zM3NERsbixUrVmDRokU4fPhwuWIsklBTZmamGD9+vDA2NhbGxsbi+vXrQgghpkyZIkJCQtTdnFalpaUJACItLU1rn/n48WPh5OQkfHx8RGxsrLhx44aIiooS165d01oMmtKnTx8RFhYmLl26JOLi4kT//v2Fo6OjePr0qdShlcnp06eFs7OzaNGihfD39y/zdqTYrwowH9W3YMEC0bRpU5GSkqJ4PHjwQKsxaIKh9C379u0TBw4cEFevXhXx8fFi7ty5wtTUVFy6dKnM25QyJw3J8+fPxeXLl8Xz58+Vlp87d04A0Prj3LlzKsV96tQpAUBERkYqLbe2thbm5ubC3NxczJo1S7EcgAgICFBat1OnTsLX11dp2fDhw0X//v2FEEIkJiYKAOL8+fOK1588eSIAiKNHjwohhDh69KgAIH799VfFOgcOHBAAFD/Tjh07ismTJyt9TocOHUTLli1VaquTk5P4/PPPFc+7desmWrdurbSOOrE+efJE6b3dunUTb7zxhtKydu3aidmzZxcZT3H7jCrUPkIaGBiICxcuIDo6WmnQUy8vL/z444/qbs7gLV++HA4ODggLC0P79u3h4uKC3r17o1GjRlKHprZDhw7Bx8cHTZs2RcuWLREeHo6bN2/i3LlzUoemtqdPn2LUqFHYtGkTatWqJXU4ZcZ8LBsTExOl01516tSROiS1GUrfMmjQIPTv3x+NGzdGkyZNsGTJEtSoUQOnTp2SOjQyMKdPn0ZcXByaNm2KrKwspdc8PT2Vnl+5cgWdO3dWWta5c2dcuXJF7c9t0aKF4v+2trYAgPv37ys+p0OHDkrrd+zYUe3PeFnbtm3L9f5XvRw/kN+Ggvg1Se2CdM+ePVi7di3eeOMNpUPeTZs2xfXr1zUanCHYt28fPD09MXz4cNjY2KB169bYtGmT1GFpRFpaGgCgdu3aEkeiPj8/PwwYMABeXl5Sh1IuzMeySUhIgJ2dHRo2bIhRo0bh5s2bUoekNkPsW+RyObZv347MzMxyfylT5eXq6gqZTFbokrKGDRvC1dUVZmZmhd5T3Kn94hQMAC9euqM9JyenyHVfvkyloJ/Oy8tT6/PU8Wpb1Im1KK9eZiOTySokfrUL0gcPHsDGxqbQ8szMTM5xW4QbN25g3bp1aNy4MaKiojBp0iR89NFHiIiIkDq0YuXm5mLr1q3YunVrsdck5uXlISAgAJ07d0azZs20HKFqimvH9u3b8eeffyIkJETC6DSD+ai+Dh06IDw8HIcOHcK6deuQmJiILl26ICMjQ+rQ1KJvfUtJ/crFixdRo0YNVK1aFR9++CF2796N1157TaJISd9ZW1ujV69eWLt2LTIzM8u0DQ8PD5w8eVJp2cmTJxX7Zd26dQEAKSkpitfLMm6oh4cHYmNjlZZp+uyAKrEW3Ikvl8s1+tnqUHvYJ09PTxw4cABTp04F8L9q/5tvvuFftEXIy8uDp6cnli5dCgBo3bo1Ll26hPXr18Pb21vi6IqWl5eHhIQExf+L4ufnh0uXLuHEiRPaDE0tRbXj1q1b8Pf3x+HDh9WeZ1cXMR/V169fP8X/W7RogQ4dOsDJyQk7duzAhAkTJIxMPfrWt5TUr7i5uSEuLg5paWnYuXMnvL29cezYMRalVGZff/01OnfuDE9PTwQHB6NFixYwMjLCmTNn8M8//5R6WnvmzJkYMWIEWrduDS8vL/z888+IjIzEr7/+CgAwMzPD66+/jmXLlsHFxQX3799HUFCQ2nH6+/vDx8cHnp6e6Ny5M7Zs2YK///4bDRs2LFO7i6JKrE5OTpDJZNi/fz/69+8PMzMz1KhRQ2MxqELtgnTp0qXo168fLl++jNzcXKxZswaXL1/G77//jmPHjlVEjHrN1ta2UKfq4eGhuKNNH02ZMgX79+9HTEwM7O3tpQ5HLefOncP9+/fRpk0bxTK5XI6YmBisXbsWWVlZMNajSbaZj+VnZWWFJk2a4Nq1a1KHohZD6luqVKkCV1dXAPnXv505cwZr1qzBhg0bJI6M9FWjRo1w/vx5LF26FIGBgbh9+zaqVq2K1157DR9//DEmT55c4vuHDBmCNWvWYNWqVfD394eLiwvCwsLQvXt3xTqbN2/GhAkT0LZtW7i5uWHFihXo3bu3WnG+++67uH79OmbNmoUXL17gnXfewaRJkxAVFVWWZhertFgbNGiAhQsXYs6cORg3bhzGjh2L8PBwjcZQGpkQ6g/pf/36dSxbtgwXLlzA06dP0aZNG8yePRvNmzeviBg1Jj09HZaWlkhLS0PNmjU1vn25HDh+HEhJAWxtgS5dgDFj3setW7dw/PhxxXrTpk1DbGwsfv/9d43HoAnPnz/HihUrAABvvPEGunfvDmNjYwghMHXqVOzevRvR0dFo3LixxJGWrKh2PHv2DMnJyUrrjRs3Du7u7pg9e3aZLj+o6P2qNMzHohWVj0X9rfH06VM4OjoiODgYH330kcbjKK/i2vH++/rVtxTXrxTlzTffhKOjY5m/EKXOSUPx4sULJCYmwsXFRemMkr7M1ETaV9w+o4oyzdTUqFEjvb94XtMiIwF/f+D27f8ts7cHpk6dhp9+6oSlS5dixIgROH36NDZu3IiNGzdKF2wJIiMjMWPGDMWguP369UO9evWwZs0a/Prrr9i6dSv27t0LCwsL3L17FwBgaWlZ5EXiUiqpHUOHDlVa19zcHNbW1jp7LWxpmI+FFZePa9YAv//+MQYNGgQnJyf8+++/WLBgAYyNjTFy5EjpAi5GSe2YNm0aOnXSj76lpHw8c+YM+vXrB0dHR2RkZGDr1q2Ijo7W+BEi0hxHR0fEx8dzLnvSKLUL0tLuRq2MO0xkJDBsGPDqseY7d4A5c9phzpzd2LYtEIsWLYKLiwtCQ0MxatQoaYItQWRkJIYNGwYTE+Xd4s6dOxg2bJjiDr2XT1kAQFhYmNKsDlIrrR07d+4sVJTqK+ZjYSXl47BhQKdOt7F160g8evQIdevWxRtvvIFTp04pLvzXFaW1Y+fOdti9ezcCA3W7byktH3v06IFt27YhJSUFlpaWaNGiBaKiotCrVy+JIiZVODo6Vsr+hSqO2gWps7NziXfvSnmHlhTk8vwjGEVd+CAEIJMBP/wwEImJA4s8Xagr5HI5/P39UdQVHAXLGjRogMuXLxd5mq2sdzJqmlwux9SpU4ttR8GsTIMHD1a0o2CaN33EfFRWWj4CQFLSdvzzT+HT9zqyCwPIb8fUqSX3KwEBQGLiQAwcOFDr8amqtH5FJpMhISEBiYmJenXtNhFpntoF6fnz55We5+Tk4Pz58/jss88U879WJsePK59Oe5UQwK1b+eu9cmBRpxw/fhy3S2oI8o9oWFpaaimiiiGEUFx39+qRXn3EfFRWWj4C+UcY9Xw3Nph+xdDykYjKTu2CtGXLloWWeXp6ws7ODitXrjSYU6GqemlYL5iaZmPevPyxLZcsCUROTpUi19NFL99hnJOTg+DgYOmC0ZCS2pGi678QFTEflamaj/pEn/uVf//9V/H/ypCPRFR2ZbqpqShubm44c+aMpjanN/5/FjCFzMzqKq2nKx4+fIjQ0FCEhoaqtP7BgwfRtWvXig2qHGJiYtC/f/9S17PV1V+IhjAf8xWXjwcPAjq8GyMmBnh5N9a3fkUIgUOHDinGSC2NoecjEZVO7WGf0tPTlZ4LIZCSkoLg4GD8888/ZZqpQFsqYigQuRxwds4/DVjUT1Imy78rNjGx6CFnpJKSkoLVq1dj3bp1ePbsGYD8+b2Lm5lJJpPB3t5e56/1ksvlcHZ2xp07d4q8bq0i2iHlEDPMR2X6mo+v0td25OXlYe/evVi8eDH+/PPPUtevqH6Fwz5pRnmG8KHKSavDPllZWRW6iUIIAQcHB2zfvl3dzek9Y+P8IViGDcv/knj5y6PgxxQaqjtfGsnJyVixYgW+/fZbZGVlAcgfiDooKAi5ubkYMWIEAOU5bwt+36GhoTpdjAKAsbEx1qxZg2HDhkEmk+ltO1TFfFSmb/lYHH1rR25uLnbs2IGlS5fi77//BpA/nNqkSZPg7u4OX19fAPrbrxCRFgg1RUdHKz1iYmLElStXRE5Ojrqb0rq0tDQBQKSlpWl827t2CWFvL0T+V0f+w8Ehf7kuuHr1qhg/frwwMTERAAQA0blzZ/Hf//5X5OXlKdbbtWuXsLe3V6wDQDg4OIhdutIQFWmzHRW5X5WG+Vg0Xc9HVel6O7KyssS3334rXF1dFXlWs2ZNERQUJB48eKBYT9v9ipQ5aUieP38uLl++LJ4/fy51KKQnyrPPlGmmJn1V0adxXrzIwfr1W5CdDbRtOwrdu5tKfgTj0qVLWLp0KX788UfF/NFeXl4ICgpC165dixwySC6X4/jx40hJSYGtrS26dOmil0cwtNUOnh4sm8qYj2Whi+14/vw5Nm/ejOXLl+PWrVsAAGtra0ybNg1+fn6wsrIq9B5t9ivMSc0o6fTrzZuAFsfFR506gC4Oe+rj44PU1FTs2bMHQP443a1atVL5voyiaGIbUqnwU/b79u1TeYNvvfWWWgEYEiMjgbS0/Gkpu3QRkn5pnDt3DkuWLMHu3bsVywYOHIh58+bh9ddfL/G9xsbGBjEEi6G041XMR9XoUj6Why614+nTp9iwYQNWrVqlmKmtfv36mDlzJv7zn/+gRo0axb7XUPOxMrp5E3BzA7Q4cyiqVQPi41UvSn18fBAREQEAMDU1haOjI8aOHYu5c+cWmqRBkyIjI2FqaqrSutHR0ejRoweePHmi9EecOtswJCr9VoYMGaLSxmQyWaUbiFvXnDx5EosXL8ahQ4cA5P9O3nnnHcydOxetW7eWODrSBOYjaVtqairWrl2L0NBQPHr0CED+TD2zZ8/G+PHjecNLJfPwoXaLUSD/8x4+VO8oad++fREWFoasrCwcPHgQfn5+MDU1RWBgoNJ62dnZqFJFM8PC1a5dWye2oY+MVFkpLy9PpQe//KQhhMCRI0fQo0cPvPHGGzh06BCMjY0xZswY/P333/jpp59YjBoQ5iNpy8OHDxEUFAQnJyd88sknePToEVxdXbF582YkJCRg8uTJLEZJZ1WtWhX169eHk5MTJk2aBC8vL+zbtw8+Pj4YMmQIlixZAjs7O7i5uQEAbt26hREjRsDKygq1a9fG4MGDkZSUpNieXC7H9OnTYWVlBWtra8yaNavQaC7du3dHQECA4nlWVhZmz54NBwcHVK1aFa6urvj222+RlJSEHj16AABq1aoFmUymmIL71W08efIEY8eORa1atVC9enX069cPCQkJitfDw8NhZWWFqKgoeHh4oEaNGujbt6/eje+rUkFKukkIgf3796Njx47w8vJCdHQ0TE1N4evri/j4eHz33Xfw8PCQOkwi0jMpKSmYMWMGnJycsGTJEqSnp6Np06bYunUrrly5gnHjxmnsiBKRtpiZmSE7OxsAcOTIEcTHx+Pw4cPYv38/cnJy0KdPH1hYWOD48eM4efKkorAreM/q1asRHh6OzZs348SJE3j8+LHSZXFFGTt2LLZt24YvvvgCV65cwYYNG1CjRg04ODhg165dAID4+HikpKRgzZo1RW7Dx8cHZ8+exb59+/DHH39ACIH+/fsjJydHsc6zZ8+watUqfP/994iJicHNmzfx8ccfa+LHpjVlupAiMzMTx44dw82bNxW/qAIfffSRRgKj4uXl5SEyMhKLFy/GhQsXAADVqlXDf/7zH3z88cdwcHCQOELSJuYjaUpxw8LNmzcPgwcPhpERj2GQ/ik4ixgVFYWpU6fiwYMHMDc3xzfffKP4w+qHH35AXl4evvnmG8XNvmFhYbCyskJ0dDR69+6N0NBQBAYGKmbAW79+PaKioor93KtXr2LHjh04fPgwvLy8AAANGzZUvF5wat7GxqbIGwEBICEhAfv27cPJkyfRqVMnAMCWLVvg4OCAPXv2YPjw4QDyZ0Jbv349GjVqBACYMmUKFi1aVNYfmSTKNJd9//798ezZM2RmZqJ27dp4+PAhqlevDhsbG34BVqDc3Fxs27YNISEhuHLlCgCgRo0amDx5MqZPn4569epJHCFpG/ORNCEhIQHLli3Dd999p5gco1OnTvjkk0/Qp0+fIkfjINJ1+/fvR40aNZCTk4O8vDy8//77CA4Ohp+fH5o3b650lP/ChQu4du0aLCwslLbx4sULXL9+HWlpaUhJSUGHDh0Ur5mYmMDT07PISVgAIC4uDsbGxujWrVuZ23DlyhWYmJgofa61tTXc3NwUdQAAVK9eXVGMAvmzn92/f7/MnysFtf/cnTZtGgYNGoQnT57AzMwMp06dQnJyMtq2bYtVq1ZVRIx6xdTUtNDdcTExMRg0aBDs7Owgk8kUw0OoKisrC5s2bYKbmxvGjh2LK1euwMrKCgsWLEBycjKWL1+ulWJULpfjk08+gYuLC8zMzNCoUSN8+umnxSajrirt9yGEwPz582FrawszMzN4eXkpXa+jS5iPJauIfJRCUe0ICQlBu3btYGFhARsbGwwZMgTx8fFqbffSpUt4//334e7ujs2bNyM3Nxc9e/bE0aNHceLECfTt27fCi1FD6VdI9/To0QNxcXFISEjA8+fPERERAXNzcwBQ/Fvg6dOnaNu2LeLi4pQeV69exfvvv1+mzzczMyt3G1T1av/w6sQw+kDtI6RxcXHYsGEDjIyMYGxsjKysLDRs2BArVqyAt7e34lB2ZVSlShXMnTu30PLMzEy0bNkS48ePV+vn8/z5c3zzzTdYsWIFbt++DQCoW7cupk+fjsmTJ2t9fL3ly5dj3bp1iIiIQNOmTXH27FmMGzcOlpaWenUkrrTfx4oVK/DFF18gIiICLi4uiqNEly9f1rkbOJiPxdN0PkqluHYcO3YMfn5+aNeuHXJzczF37lz07t0bly9fLvRl+6ryDAunaYbSr5DuMTc3h6urq0rrtmnTBj/++CNsbGyK/W61tbVFbGwsunbtCiD/rOW5c+fQpk2bItdv3rw58vLycOzYMcUp+5cVHKEt6QZUDw8P5ObmIjY2VnHK/tGjR4iPj8drr72mUtv0hdoFqampqeI6IhsbG9y8eRMeHh6wtLRUDJBMyvr164d+/fqpvH5GRgbWrVuH1atXKw6529nZYdasWfD19UX16tUrKtQS/f777xg8eDAGDBgAAHB2dsa2bdtw+vRpSeIpq5J+H0IIhIaGIigoCIMHDwYAfPfdd6hXrx727NmD9957T5uhlor5qD5181FXFQztViA8PBw2NjY4d+6c4gvzVbo4LJyh9Cuk30aNGoWVK1di8ODBWLRoEezt7ZGcnIzIyEjMmjUL9vb28Pf3x7Jly9C4cWO4u7vjs88+Q2pqarHbdHZ2hre3N8aPH48vvvgCLVu2RHJyMu7fv48RI0bAyckJMpkM+/fvR//+/WFmZlZoLN/GjRtj8ODB8PX1xYYNG2BhYYE5c+agQYMGiu8oQ6H2KfvWrVvjzJkzAIBu3bph/vz52LJlCwICAtCsWTONB1iZPHnyBIsWLYKTkxNmz56N+/fvw9nZGevXr8eNGzfg7+8vWTEK5F9TduTIEVy9ehVA/jU3J06cMIgv9wKJiYm4e/eu0l+zlpaW6NChA/744w8JIysa85EKpKWlASg8hqGuDwtXGfoV0n3Vq1dHTEwMHB0dMXToUHh4eGDChAl48eKF4ojpjBkzMGbMGHh7e6Njx46wsLDA22+/XeJ2161bh2HDhmHy5Mlwd3eHr68vMjMzAQANGjTAwoULMWfOHNSrVw9TpkwpchthYWFo27YtBg4ciI4dO0IIgYMHDxre4PmqzjGam5srhBDizJkz4rfffhNCCHHv3j3Rp08fYWFhIdq0aSPi4uLUnrtUmyp6fuOcnByxZcsWsWXLlmLnEgcgdu/erbTs3r17Ys6cOcLCwkIxz7Obm5uIiIgQ2dnZFRJrWcjlcjF79mwhk8mEiYmJkMlkYunSpVKHVS6v/j5OnjwpAIh///1Xab3hw4eLESNGFLkNKebNZj6Wrqz5qGtUaYdcLhcDBgwQnTt3VizLy8sTP//8s+jQoYOiXzE1NRW+vr7i2rVr2gq/VBXRr3Aue80obl7y5GQhqlUTAtDeo1q1/M8l3VaeuexVPmXfoEED+Pj4YPz48fD09ASQf4rw1dNGlVleXp7i5peCeeNLcufOHaxatQobNmzA8+fPAeRfcxIUFIR33nlH5+aP37FjB7Zs2YKtW7eiadOmiIuLQ0BAAOzs7ODt7S11eJUK87F06uajrlKlHX5+frh06RJOnDhR7LBwvr6+mDlzps4NC8d+Rf84OuZP48m57EmTVC5I/fz8EBERgZUrV6JTp06YMGECRowYIekpZH117949fPjhhwgLC1OMG9muXTsEBQVh4MCBOjvW38yZMzFnzhzFdZTNmzdHcnIyQkJCDOaLo379+gDyf0e2traK5ffu3UOrVq0kiqow5iMVmDJlCvbv34/ffvsNR48exdKlS/HPP/8A0I9h4SpDv2KIHB1ZIJJmqVz5fPLJJ7h27RqOHDmChg0bYsqUKbC1tYWvry9iY2MrMka98fKdcsePHy9051zBkCyTJ0/Ghg0bkJ2dja5du+KXX35BbGws3nrrLZ0oRuVyIDoa2LYt/9+CZjx79qxQfMbGxjp79Km4dpTExcUF9evXx5EjRxTL0tPTERsbi44dO1ZYrOpiPpautHzUF8W1QwiBKVOmYPfu3Zg4cSL69u2LsWPH4p9//oGVlRXmz5+PpKQkrQ0LVxpD6VeIqIKU9TqBjIwMsWnTJtG5c2chk8nEa6+9JlavXl3Wzals7dq1wsnJSVStWlW0b99exMbGqvzeiryuaNeuXcLZ2VkEBweL4OBgYWpqKuzt7cWuXbvEH3/8IXr16qW4jguAeP3118WOHTs0Hkd57dolhL298rU79vb5y729vUWDBg3E/v37RWJiooiMjBR16tQRs2bNkjrsQkpqR0ZGhjh//rw4f/68ACA+++wzcf78eZH8/xcoLVu2TFhZWYm9e/eKv/76SwwePFi4uLgUe02MLlyvJlU+ClH2nJQqH0v7/euSktrh6+srzMzMRN26dRX9Su3atcWiRYt07tpJbfcrupCThqA81wNS5VSefabMBenL9u/fL2rXri2MjIw0sblibd++XVSpUkVs3rxZ/P3338LX11dYWVmJe/fuqfT+iuqkdu3aJWQymTA1NVX64ni5AC3q4e3trdE4ymvXLiFkssIXk8tk+Y8ffkgX/v7+wtHRUVSrVk00bNhQzJs3T2RlZUkdupLS2rFw4dESfx95eXnik08+EfXq1RNVq1YVPXv2FPHx8cV+nq59+WkrH4UoX05qOx9lMpmQyWRi4cKFepKPZetXwsLCpA5diRT9iq7lpL5iQUrqKs8+IxOibEP5P3v2DDt27EBYWBhOnDiBRo0aYfz48ZgzZ05ZNqeSDh06oF27dli7di2A/Av8HRwcMHXqVJU+Nz09HZaWlkhLS9PYoPJyuRzOzs64ffs2TE1NMW/ePADAkiVLkJOTo1hvxIgRmDdvHlq0aKGRz9U0uRxwdgb+f/z9IjVoAFy+DOjYvVZK5HLAwwP499+iX5fJAHt7IDFRc+2oiP1KXVLkI1C+nJQqHxs0aIDLly/r3E2DL5PL5fDw8MC///5bYr/i7OyM2bNnw8fHR+cmbQBK71cqIh8B3chJQ/DixQskJibCxcVFJ/cv0j3l2WfUHhj/999/x+bNm/HTTz8hNzcXw4YNw6efflrsQMyakp2djXPnziEwMFCxzMjICF5eXsWOD5mVlYWsrCzF8/T0dI3Hdfz4ccUsSiWZNGmSzhajAHD8eMnFKADcuQNYWmonnooiBHDrVn57u3eXOprykyofAfVzUlfy8c6dO7DU9x35/23atKnIGWB0RWn9iqHlIxGVncoF6YoVKxAWFoarV6/C09MTK1euxMiRI2FhYVGR8Sk8fPgQcrm80MX59erVU9xR+qqQkBAsXLiwQuNKSUlR/D8nJwfBwcGlrqeLXg7P1DQb8+aFAACWLAlETk4ViaIqn5LaoeO/jlJJnY+A+jmpS/moT0pqx4MHD7QbjJpU7Vf0PR+JqPxULkhXrlyJ0aNH46efftKbGWACAwMxffp0xfP09HSNj8H38tBAJcnIyNDo52raq83IzCx6+KCDBwEtHHwrs5gYoH///z0vrh0q/tp0FvOxaKrm48GDB7VyFLmsYmJi0P/lHbkYp06dwpAhQ2BmZqaFqNSnar+i7/lIROWn8jWkOTk5kk5TlZ2djerVq2Pnzp0YMmSIYrm3tzdSU1Oxd+/eUrdRkdes3blzB6X9KPv374+goCCdGj6oQMG1Xnfu5J9Ge1VFXeulaVK0Q4rr1aTOR6D8OSlFPspkMtjb2yMxMVHnryFVtV+pV68eZsyYgQ8//FCrR8hVIVW/wmtINaOk6wHT0tLw7NkzrcVSvXp1vb/UJjw8HAEBAUhNTZU6lAqjlWtIpf7yq1KlCtq2bYsjR44ovvzy8vJw5MiRYud/1QZjY2OsWbMGw4YNg0wmU/ryKHjetWtXnDhxAgcPHsTBgwfRo0cPBAUFoUePHpDJZJLF/jJjY2DNGmDYsPwviZe/PApCDA3V7WIUMJx2lEbqfAR0MydLy0cACA0N1eliFFCtX/H19cUvv/yC5ORkzJo1C8uWLUNAQACmTp0KKysr6YJ/SWXJx8omLS0Na9euRW5urtY+08TEBFOmTFG5KPXx8UFERAQmTpyI9evXK73m5+eHr7/+Gt7e3ggPD6+AaIv27rvvqnTmo7KSfhR2NUyfPh2bNm1CREQErly5gkmTJiEzMxPjxo2TNK6hQ4di586daNCggdJye3t77Nq1C8eOHUN8fDw++OADmJqa4ujRo+jZsyc6d+6MgwcPlnoERFuGDgV27sy/m/5l9vb5y4cOlSYudRlKO/SBLuZkSfm4c+dODNWTHaC0fmXjxo1ISEhAWFgYGjdujMePH2P+/PlwdHTE3Llzdeb6Uuaj4Xn27JlWi1EAyM3NVfuIrIODA7Zv366YmhvIP4K3detWOEowzZSZmRlsbGy0/rn6QuWC9N/ixtHRonfffRerVq3C/Pnz0apVK8TFxeHQoUM6MQvJ0KFDkZSUhKNHj2Lr1q04evQoEhMTFV9+rq6u2LRpE65du4YpU6agatWq+OOPPzBgwAC0bdsWu3bt0omZSYYOBRIScvD55+FYvjwcv/6ag8RE/fvSMJR2FEcX8hHQ3ZwsLR/1RWntMDU1hY+PD65cuYJt27ahWbNmyMjIQEhICJydnTF9+nSd2FcMPR9JN7Vp0wYODg6IjIxULIuMjISjoyNat26tWHbo0CG88cYbsLKygrW1NQYOHIjr168rXk9KSoJMJsP27dvRqVMnVKtWDc2aNcOxY8cU60RHR0Mmk+HAgQNo0aIFqlWrhtdffx2XLl1SrBMeHq509iI4OBitWrXC999/D2dnZ1haWuK9995TuuckIyMDo0aNgrm5OWxtbfH555+je/fuCAgI0PBPS3oqF6RNmzbF1q1bKzIWlUyZMgXJycnIyspCbGwsOnToIHVICsbGxujevTtGjhyJ7t27F3la0NHREV9++SWSkpIwc+ZMmJub4/z58xg2bBiaN2+OLVu2aP0vz1cZGQmkpSXj+fNkdOki9PZ0mqG0oyi6ko+A7uakKvmoD1Rph7GxMd577z1cuHABe/bsgaenJ549e4bPP/8cLi4umDRpEpKSkrQf/EsMOR9Jd40fPx5hYWGK55s3by50BiczMxPTp0/H2bNnceTIERgZGeHtt98udJBo5syZmDFjBs6fP4+OHTti0KBBePToUaF1Vq9ejTNnzqBu3boYNGiQ0tjBr7p+/Tr27NmD/fv3Y//+/Th27BiWLVumeH369Ok4efIk9u3bh8OHD+P48eP4888/y/Mj0VkqF6RLlizBxIkTMXz4cDx+/LgiY6oU6tevjxUrViA5ORmffPIJLC0tcfnyZYwePRpubm745ptvkJ2dLXWYpKOYj1QUIyMjDB48GKdPn1Yc9cnOzsb69evRuHFjjBs3DlevXpU6TCKtGT16NE6cOIHk5GQkJyfj5MmTGD16tNI677zzDoYOHQpXV1e0atUKmzdvxsWLF3H58mWl9aZMmYJ33nkHHh4eWLduHSwtLfHtt98qrbNgwQL06tULzZs3R0REBO7du4fdu3cXG19eXh7Cw8PRrFkzdOnSBWPGjMGRI0cA5B8djYiIwKpVq9CzZ080a9YMYWFhkMvlGvrp6BaVC9LJkyfjr7/+wqNHj/Daa6/h559/rsi4Kg1ra2ssWrQIycnJWLp0KerUqYMbN27A19cXrq6uWLt2rdL1L0QA85FKJpPJ0KdPHxw/fhzHjh1Dr169kJubi/DwcLi7u+O9997DxYsXpQ6TqMLVrVsXAwYMQHh4OMLCwjBgwADUqVNHaZ2EhASMHDkSDRs2RM2aNeHs7AwAuHnzptJ6L4+QY2JiAk9PT1y5cqXYdWrXrg03N7dC67zM2dlZaXQMW1tb3L9/HwBw48YN5OTkoH379orXLS0t4ebmpmLr9YtaNzW5uLjgt99+Q1BQEIYOHYoWLVqgTZs2Sg8qG0tLSwQGBiIpKQmfffYZbG1tcevWLUydOhUuLi5YuXKlzo9lStrFfCRVdO3aFb/88gtOnTqFQYMGQQiBH3/8ES1atMCQIUNw5swZqUMkqlDjx49HeHg4IiIiMH78+EKvDxo0CI8fP8amTZsQGxuL2NhYANDKWcpXR0yRyWQ6cT+JFNS+yz45ORmRkZGoVasWBg8eXOhB5WNubo5p06bhxo0bWLduHZycnHDv3j3MmjULzs7O+PTTTw16DDNSD/ORVNWhQwfs27cPcXFxGDFiBGQyGfbu3Yv27dujb9++OH78uNQhElWIvn37Ijs7Gzk5OejTp4/Sa48ePUJ8fDyCgoLQs2dPeHh44MmTJ0Vu59SpU4r/5+bm4ty5c/Dw8Ch2nSdPnuDq1auF1lFVw4YNYWpqqvRHY1pamsFedqPWXPabNm3CjBkz4OXlhb///ht169atqLgqvWrVquHDDz/EhAkTsGXLFixduhQJCQmYP38+Vq5ciSlTpmDatGn8HVRizEcqi5YtW+LHH3/EwoULERISgi1btiAqKgpRUVHo2rUrgoKC4OXlpTNjJBOVl7GxseK0+as3BdaqVQvW1tbYuHEjbG1tcfPmTcyZM6fI7Xz11Vdo3LgxPDw88Pnnn+PJkyeFjrguWrQI1tbWqFevHubNm4c6deooTRyiDgsLC3h7e2PmzJmoXbs2bGxssGDBAhgZGRlkfqp8hLRv376YPXs21q5di8jISH75aYlUw7qYmpoWOpWwbt06tGjRAjVr1kTNmjXRsWNH/Pe//9X4Z2tSUe0IDg6GTCZTeri7u0sUYdkwH6m83N3dERERgatXr2LixImoUqUKYmJi0Lt3b7z++uvYt2+fxsdILiofX7Vs2TLIZDKDHNaGpFPwvfUqIyMjbN++HefOnUOzZs0wbdo0rFy5sshtLFu2DMuWLUPLli1x4sQJ7Nu3r9D1qMuWLYO/vz/atm2Lu3fv4ueff0aVKlXKHPdnn32Gjh07YuDAgfDy8kLnzp3h4eGh9ixI+kDlqUN79eqFsLAw2NvbV3RMFcYQppPLy8vDzz//jMWLF+Ps2bMA8mfMGT9+PGbPnq24GLsi/PzzzzA2Nkbjxo0hhEBERARWrlyJ8+fPo2nTphX2uZoWHByMnTt34tdff1UsMzExKdSxqEqK/Yr5SJp2+/ZtrFq1Chs3blTcSNmiRQvMmzcP77zzjlaGzTpz5gxGjBiBmjVrokePHggNDS3TdrhvaUZx00Dqw0xNmpSUlAQXFxecP38erVq1KnKd6Oho9OjRA0+ePKnQmdIyMzPRoEEDrF69GhMmTKiwzymr8kwdqnJBaggMqZMSQuCXX37B4sWLceLECQD5CTt69GgEBgaiSZMmWomjdu3aWLlypU4mRnGCg4OxZ88exMXFaWR7hrRfaRN/brrp/v37+Pzzz7F27Vo8ffoUAODm5oa5c+di5MiRFTZt7dOnT9GmTRt8/fXXWLx4MVq1asWCVGKcyz6flAXp+fPn8c8//6B9+/ZIS0vDokWLEB0djWvXrpX5IEpFKk9BqldTh9L/SD2si1wux/bt25GZmak0zIW+SEhIgJ2dHRo2bIhRo0YVGt6DqLKysbFBSEgIkpOTERwcjFq1aiE+Ph7e3t5o0qQJNmzYgKysLI1/rp+fHwYMGAAvLy+Nb5s0z9LSEra2tlp7SFWM6oJVq1ahZcuW8PLyQmZmJo4fP66TxWi5iUokLS1NABBpaWlSh1IhYmNjxVtvvSUAKB6DBw8Wp0+fVms7OTk5YsuWLWLLli0iJydH6bW//vpLmJubC2NjY2FpaSkOHDigySZoVHHtOHjwoNixY4e4cOGCOHTokOjYsaNwdHQU6enpZfocQ9+vKgp/bvohPT1dLF++XNjY2Cj6FTs7OxEaGioyMzNV3k5J/cq2bdtEs2bNxPPnz4UQQnTr1k34+/uXOWbuW5rx/PlzcfnyZcXvhag05dlneITUgLRv3x579+4t97AueXl5SEhIQEJCQqHx0Nzc3BAXF4fY2FhMmjQJ3t7ehWaz0BXFtaNfv34YPnw4WrRogT59+uDgwYNITU3Fjh07JIyWSDdZWFhg1qxZSExMxJo1a9CgQQP8+++/CAgIgLOzM5YtW4b09PRSt1NcPt66dQv+/v7YsmWLQd6oQUSqYUFqgAqGdbl8+TK8vb1hbGysGNKlW7duOHz4cJnvnq1SpQpcXV3Rtm1bhISEoGXLllizZo2GW6BdVlZWaNKkCa5duyZ1KEQ6q3r16vjoo49w/fp1bNy4ES4uLnjw4AECAwPh5OSE4ODgMk1je+7cOdy/fx9t2rSBiYkJTExMcOzYMXzxxRcwMTEx2GkSiUgZC1ID5u7ujvDwcCQkJKg1rMvLXwDHjx8v8QshLy+vQq4n0wRV2/H06VNcv34dtra22gqNSG9VrVoVvr6+uHr1Kr777ju4u7sjNTUVCxcuhJOTE2bPno179+4Vel9x+dizZ09cvHgRcXFxioenpydGjRqFuLg4rdzdTyUr6wEMqnzKs6+wIK0EXFxcsH79ety4cQMBAQEwMzPD6dOnMXjwYLRq1Qo7duxQfDlERkbitddeU7y3X79+cHZ2RmRkJAIDAxETE4OkpCRcvHgRgYGBiI6OxqhRo6RqWrFKasfHH3+MY8eOISkpCb///jvefvttGBsbY+TIkRJGTKRfTExMMGbMGFy6dAk//fQTWrZsiadPn2LFihVwdnaGv78/bt++DaDkfLSwsECzZs2UHubm5rC2tkazZs2kah7hf9NaavNuetJvBftKWUbjUGumJtJvDRo0wOeff47AwEB8/vnn+Oqrr/DXX3/h3XffhZubG3r16oW1a9cW2pHu3LmDYcOGoUePHti2bRtSUlJgaWmJFi1aICoqCr169ZKoRUWLjIzEsGHDYGKivHsXtKNTp07YunUrHj16hLp16+KNN97AqVOnOLg8URkYGxtj2LBheOedd3DgwAEsXrwYsbGx+OKLL7Bu3Tp069YNv/76a7H9ys6dOzF06FCJoqeSGBsbw8rKCvfv3weQf9mGIc4QROUnhMCzZ89w//59WFlZlenMBgvSSqhgWJdZs2bhyy+/RGhoKOLj4xEfH1/k+gWH4OPj43H58uVCO1pmZmaFx6wquVyOqVOnFnnaQAgBmUyGmzdv4tatWzwVSKRBMpkMAwcOxIABA/Dbb79h8eLFiI6OVpqA4mUF+RgQEIDBgwcr5WN0dLSWoqbS1K9fHwAURSlRSaysrBT7jLpYkFZitWrVwvz58zFt2jR8/PHH2LhxY4nr37lzR+/HghNC4NatWzh+/Di6d+8udThEBkcmk6Fnz57o2bMnvvzyS3z00UfFrst81H0ymQy2trawsbFBTk6O1OGQDjM1NS3XgR4WpAQLCwt0795dUZDm5OQgODhY2qA0oKR2pKSkaDcYokro5cG7mY/6zdjYmGeVqEKxICUAUPkO84MHD6Jr164VHE3ZxcTEoH///qWuxzvqiSqeqnnGfCQizmVPAPKvvXR2dsadO3eKvP5SJpPB3t4eiYmJOv1XshTt4H5VNvy5GT6p+hXuW0T6h8M+EYD80zEFA9y/ehdlwfPQ0FCdLkYBw2kHkSFgPhKRqliQksLQoUOxc+dONGjQQGm5vb29Xg3NYijtIDIEzEciUgVP2VMhcrkcx48fR0pKCmxtbdGlSxe9PIKhrXZwvyob/twqF232K9y3iPQPb2qiQoyNjQ1iCBZDaQeRIWA+ElFJeMqeiIiIiCTFgpSIiIiIJMWClIiIiIgkxYKUiIiIiCTFgpSIiIiIJMWClIiIiIgkxYKUiIiIiCTFgpSIiIiIJMWClIiIiIgkxYKUiIiIiCTFgpSIiIiIJMWClIiIiIgkxYKUiIiIiCSlNwXpkiVL0KlTJ1SvXh1WVlZSh0NUqTEfiYhIk/SmIM3Ozsbw4cMxadIkqUMhqvSYj0REpEkmUgegqoULFwIAwsPDpQ2EiJiPRESkUXpzhJSIiIiIDJPeHCEti6ysLGRlZSmep6WlAQDS09OlCokMUMH+JISQOBLdxnwkbWFOEukfSQvSOXPmYPny5SWuc+XKFbi7u5dp+yEhIYpTiy9zcHAo0/aISpKRkQFLS0upwygz5iMZGn3PSaLKRCYk/BPywYMHePToUYnrNGzYEFWqVFE8Dw8PR0BAAFJTU0vd/qtHZPLy8vD48WNYW1tDJpOVOe6SpKenw8HBAbdu3ULNmjUr5DO0ge1QnRACGRkZsLOzg5GR/l4Fw3zUXWyHegwlJ4kqE0mPkNatWxd169atsO1XrVoVVatWVVqmrSFqatasqddfHAXYDtUYwlEY5qPuYztUZwg5SVSZ6M01pDdv3sTjx49x8+ZNyOVyxMXFAQBcXV1Ro0YNaYMjqmSYj0REpEl6U5DOnz8fERERiuetW7cGABw9ehTdu3eXKCqiyon5SEREmqQ3F9eEh4dDCFHooWtfflWrVsWCBQsKnZrUN2wHlYT5qF1sBxEZOklvaiIiIiIi0psjpERERERkmFiQEhEREZGkWJASERERkaRYkGrQV199BWdnZ1SrVg0dOnTA6dOnpQ5JbTExMRg0aBDs7Owgk8mwZ88eqUMqk5CQELRr1w4WFhawsbHBkCFDEB8fL3VYpGX6npPMRyKqLFiQasiPP/6I6dOnY8GCBfjzzz/RsmVL9OnTB/fv35c6NLVkZmaiZcuW+Oqrr6QOpVyOHTsGPz8/nDp1CocPH0ZOTg569+6NzMxMqUMjLTGEnGQ+ElFlwbvsNaRDhw5o164d1q5dCyB/WkQHBwdMnToVc+bMkTi6spHJZNi9ezeGDBkidSjl9uDBA9jY2ODYsWPo2rWr1OGQFhhaTjIficiQ8QipBmRnZ+PcuXPw8vJSLDMyMoKXlxf++OMPCSOjAmlpaQCA2rVrSxwJaQNzUrcxH4noVSxINeDhw4eQy+WoV6+e0vJ69erh7t27EkVFBfLy8hAQEIDOnTujWbNmUodDWsCc1F3MRyIqit5MHUpUVn5+frh06RJOnDghdShElR7zkYiKwoJUA+rUqQNjY2Pcu3dPafm9e/dQv359iaIiAJgyZQr279+PmJgY2NvbSx0OaQlzUjcxH4moODxlrwFVqlRB27ZtceTIEcWyvLw8HDlyBB07dpQwsspLCIEpU6Zg9+7d+O233+Di4iJ1SKRFzEndwnwkotLwCKmGTJ8+Hd7e3vD09ET79u0RGhqKzMxMjBs3TurQ1PL06VNcu3ZN8TwxMRFxcXGoXbs2HB0dJYxMPX5+fti6dSv27t0LCwsLxXWDlpaWMDMzkzg60gZDyEnmIxFVGoI05ssvvxSOjo6iSpUqon379uLUqVNSh6S2o0ePCgCFHt7e3lKHppai2gBAhIWFSR0aaZG+5yTzkYgqC45DSkRERESS4jWkRERERCQpFqREREREJCkWpEREREQkKRakRERERCQpFqREREREJCkWpEREREQkKRakRERERCQpFqREREREJCkWpJWYj48PhgwZInUYRATmIxFVbpzL3kDJZLISX1+wYAHWrFkDTtRFVPGYj0REJePUoQbq7t27iv//+OOPmD9/PuLj4xXLatSogRo1akgRGlGlw3wkIioZT9kbqPr16yselpaWkMlkSstq1KhR6BRh9+7dMXXqVAQEBKBWrVqoV68eNm3ahMzMTIwbNw4WFhZwdXXFf//7X6XPunTpEvr164caNWqgXr16GDNmDB4+fKjlFhPpLuYjEVHJWJCSkoiICNSpUwenT5/G1KlTMWnSJAwfPhydOnXCn3/+id69e2PMmDF49uwZACA1NRVvvvkmWrdujbNnz+LQoUO4d+8eRowYIXFLiPQf85GIKgsWpKSkZcuWCAoKQuPGjREYGIhq1aqhTp068PX1RePGjTF//nw8evQIf/31FwBg7dq1aN26NZYuXQp3d3e0bt0amzdvxtGjR3H16lWJW0Ok35iPRFRZ8KYmUtKiRQvF/42NjWFtbY3mzZsrltWrVw8AcP/+fQDAhQsXcPTo0SKvf7t+/TqaNGlSwRETGS7mIxFVFixISYmpqanSc5lMprSs4G7hvLw8AMDTp08xaNAgLF++vNC2bG1tKzBSIsPHfCSiyoIFKZVLmzZtsGvXLjg7O8PEhLsTkZSYj0Skr3gNKZWLn58fHj9+jJEjR+LMmTO4fv06oqKiMG7cOMjlcqnDI6pUmI9EpK9YkFK52NnZ4eTJk5DL5ejduzeaN2+OgIAAWFlZwciIuxeRNjEfiUhfcWB8IiIiIpIU/2QmIiIiIkmxICUiIiIiSbEgJSIiIiJJsSAlIiIiIkmxICUiIiIiSbEgJSIiIiJJsSAlIiIiIkmxICUiIiIiSbEgJSIiIiJJsSAlIiIiIkmxICUiIiIiSbEgJSIiIiJJ/R+0zfGArWwcOwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_matched([ex_graphs.no_children(t) for t in [0, 1]], 'No Children')" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqQAAADXCAYAAADMb0PvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABV9UlEQVR4nO3dd1hT5xcH8O9lT0EQBNmCVeoWXFgHLQ60FutqneCgDlCpo25Fq4Kz2Gq1LqBWrVXASd2Ao4ITq8UiKkP5uZUhKCN5f3+kRCMrgZCbwPk8Tx7Nzc295w333Jzc8b4cY4yBEEIIIYQQnqjxHQAhhBBCCKnbqCAlhBBCCCG8ooKUEEIIIYTwigpSQgghhBDCKypICSGEEEIIr6ggJYQQQgghvKKClBBCCCGE8IoKUkIIIYQQwisqSAkhhBBCCK+oICWEEBWQlpYGjuOwZs2aSucNDAwEx3ES0+zt7eHj41Ppe8PCwsBxHNLS0qoYKSGEyI4KUkJItZQUMFeuXOE7FN4lJSUhMDBQ5mIuMTERI0eOhI2NDbS1tWFiYgIPDw+EhoZCIBDUTLCEEKJEqCAlhBA5SUpKwpIlS2QqSLdt2wZXV1fExMRgxIgR+Pnnn7Fo0SLo6upi3LhxWLlypcxxLFiwAG/evJH5fYQQwhcNvgMghJCawhjD27dvoaurW+q1t2/fQktLC2pq/P0uj4+Px8SJE9G5c2dER0fD0NBQ/FpAQACuXLmCW7duybxcDQ0NaGjQ7p0QojroCCkhRO58fHxgYGCAzMxMDBgwAAYGBjAzM8PMmTNLnYIWCoVYv349WrZsCR0dHZiZmaFPnz4SlwAUFxfj+++/h6OjI7S1tWFvb4958+ahoKBAYln29vb4/PPPcfz4cbi6ukJXVxe//PILYmNjwXEcfv/9dyxYsABWVlbQ09NDTk4OACAhIQF9+vSBkZER9PT00L17d1y4cKFUuzIzMzFu3Dg0atQI2tracHBwwKRJk1BYWIiwsDAMGTIEAODu7g6O48BxHGJjY8v9nJYsWQKO47Br1y6JYrSEq6trmdd9btmyRfxZtG/fHpcvX5Z4vaxrSMvyzz//4NNPP4Wuri6sra2xbNkyCIXCSt9HCCHyRj+hCSE1QiAQoHfv3ujYsSPWrFmDU6dOYe3atXB0dMSkSZPE840bNw5hYWHw9PTE+PHjUVxcjHPnziE+Ph6urq4AgPHjxyM8PByDBw/GjBkzkJCQgKCgINy+fRtRUVES601OTsawYcMwYcIE+Pr6omnTpuLXvv/+e2hpaWHmzJkoKCiAlpYWzpw5A09PT7i4uGDx4sVQU1NDaGgoPv30U5w7dw4dOnQAAPzvf/9Dhw4dkJWVhW+++QbNmjVDZmYm9u/fj/z8fHTr1g1Tp07Fjz/+iHnz5sHZ2RkAxP9+KD8/H6dPn0a3bt1ga2sr9ee6e/du5ObmYsKECeA4DqtWrcLAgQNx//59aGpqSr2cx48fw93dHcXFxZgzZw709fWxZcuWMo8mE0JIjWOEEFINoaGhDAC7fPmyeJq3tzcDwJYuXSoxb9u2bZmLi4v4+ZkzZxgANnXq1FLLFQqFjDHGEhMTGQA2fvx4iddnzpzJALAzZ86Ip9nZ2TEA7NixYxLzxsTEMACscePGLD8/X2IdTZo0Yb179xavjzHG8vPzmYODA+vZs6d42ujRo5mamppEOz+Mdd++fQwAi4mJKf1BfeDGjRsMAJs2bVql8zLGWGpqKgPATE1N2cuXL8XTDx48yACww4cPi6ctXryYfbh7t7OzY97e3uLnAQEBDABLSEgQT3v69CkzMjJiAFhqaqpUcRFCiDzQKXtCSI2ZOHGixPOuXbvi/v374ucRERHgOA6LFy8u9d6SU87R0dEAgOnTp0u8PmPGDADA0aNHJaY7ODigd+/eZcbj7e0tcQQwMTERKSkpGD58OF68eIHnz5/j+fPnyMvLw2effYazZ89CKBRCKBTiwIED6N+/v/iobVmxyqLkcoGyTtVX5KuvvkL9+vXFz7t27QoAEp+rNKKjo9GpUyfxEWAAMDMzw4gRI2RaDiGEyAOdsieE1IiS60HfV79+fbx69Ur8/N69e2jUqBFMTEzKXU56ejrU1NTg5OQkMd3CwgLGxsZIT0+XmO7g4FDusj58LSUlBYCoUC1PdnY2CgsLkZOTgxYtWpQ7n6zq1asHAMjNzZXpfR+e3i8pTt//XKWRnp6Ojh07lpr+/iUOhBCiKFSQEkJqhLq6ulyXJ+1RyIqugfzwtZIbeFavXo02bdqU+R4DAwO8fPlSuiBl4OTkBA0NDdy8eVOm95X3uTLG5BEWIYTwggpSQghvHB0dcfz4cbx8+bLco6R2dnYQCoVISUmRuEHoyZMnyMrKgp2dXbXWD4iOVnp4eJQ7n5mZGerVq1dpF0yynLrX09PDp59+ijNnzuDBgwewsbGR+r3yYGdnJz5C/L7k5GSFxkEIIQB1+0QI4dGgQYPAGMOSJUtKvVZyxK9v374AgJCQEInX161bBwDo169fldfv4uICR0dHrFmzBq9fvy71+rNnzwAAampqGDBgAA4fPlzmiFQlserr6wMAsrKypFr/4sWLwRjDqFGjylz/1atXER4eLm1zZNK3b1/Ex8fj0qVL4mnPnj3Drl27amR9hBBSETpCSgjhjbu7O0aNGoUff/wRKSkp6NOnD4RCIc6dOwd3d3f4+/ujdevW8Pb2xpYtW5CVlYXu3bvj0qVLCA8Px4ABA+Du7l7l9aupqWHbtm3w9PRE8+bNMWbMGFhZWSEzMxMxMTGoV68eDh8+DABYsWIFTpw4ge7du+Obb76Bs7MzHj16hH379uH8+fMwNjZGmzZtoK6ujpUrVyI7Oxva2tr49NNPYW5uXub63dzcsHHjRkyePBnNmjXDqFGj0KRJE+Tm5iI2NhaHDh3CsmXLqty+inz33XfYuXMn+vTpg2nTpom7fbKzs8Pff/9dI+skhJDyUEFKCOFVaGgoWrVqhe3bt2PWrFkwMjKCq6sr3NzcxPNs27YNjRs3RlhYGKKiomBhYYG5c+eWeXe+rHr06IGLFy/i+++/x4YNG/D69WtYWFigY8eOmDBhgng+KysrJCQkYOHChdi1axdycnJgZWUFT09P6OnpARDdaLV582YEBQVh3LhxEAgEiImJKbcgBYAJEyagffv2WLt2LX799Vc8e/YMBgYGaNeuHUJDQzFy5Mhqt7EslpaWiImJwZQpUxAcHAxTU1NMnDgRjRo1wrhx42pknYQQUh6O0ZXwhBBCCCGER3QNKSGEEEII4RUVpIQQQgghhFdUkBJCCCGEEF5RQUoIIYQQQnhFBSkhhBBCCOEVFaSEEEIIIYRXVJASQgghhBBeUUFKCCGEEEJ4RQUpIYQQQgjhFRWkhBBCCCGEV1SQEkIIIYQQXlFBSgghhBBCeEUFKSGEEEII4RUVpIQQQgghhFd1qiBljCEnJweMMb5DIbUIbVdVQ58bqSm0bRGiejT4DkCRcnJyYGxsjAcPHqBevXp8h0NqiZycHNjY2CArKwtGRkZ8h6MyKB9JTaGcJET11KmCNDc3FwBgY2PDcySkNsrNzaUvPxlQPpKaRjlJiOqoUwWpoaEhANARGSJXJUdjSrYvIh3KR1JTKCcJUT11qiDlOA4AUK9ePfoCJHJXsn0R6VA+kppGOUmI6qhTNzURQgghhBDlQwUpIYQQQgjhFRWkhBBCCCGEV1SQEkIIIYQQXlFBSgghhBBCeEUFKSGEEEII4RUVpIQQQgghhFdUkBJCCCGEEF5RQUqklpubi4CAANjZ2UFXVxdubm64fPky32HJ7OzZs+jfvz8aNWoEjuNw4MABidcjIyPRq1cvmJqaguM4JCYm8hInIXWBQCDAwoUL4eDgAF1dXTg6OuL7778HY4zv0AghCkQFKZHa+PHjcfLkSezcuRM3b95Er1694OHhgczMTL5Dk0leXh5at26NjRs3lvv6J598gpUrVyo4MkLqnpUrV2LTpk3YsGEDbt++jZUrV2LVqlX46aef+A6NEKJAdWroUFJ1b968QUREBA4ePIhu3boBAAIDA3H48GFs2rQJy5Yt4zlC6Xl6esLT07Pc10eNGgUASEtLU1BEhNRdf/31F7y8vNCvXz8AgL29Pfbs2YNLly7xHBkhRJHoCCmRSnFxMQQCAXR0dCSm6+rq4vz58zxFRQhRdW5ubjh9+jTu3LkDALhx4wbOnz9f4Y9GQkjtQ0dIiVQMDQ3RuXNnfP/993B2dkbDhg2xZ88eXLx4EU5OTnyHRwhRUXPmzEFOTg6aNWsGdXV1CAQCLF++HCNGjOA7NEKIAtERUiK1nTt3gjEGKysraGtr48cff8SwYcOgpkabESGkav744w/s2rULu3fvxrVr1xAeHo41a9YgPDyc79AIIQpER0iJ1BwdHREXF4e8vDzk5OTA0tISX331FRo3bsx3aIQQFTVr1izMmTMHX3/9NQCgZcuWSE9PR1BQELy9vXmOjhCiKHRoi8hMX18flpaWePXqFY4fPw4vLy++QyKEqKj8/PxSZ1nU1dUhFAp5iogQwgeVKkgr6z+SyIdAAMTGAnv2iP4VCETTjx8/jmPHjiE1NRUnT56Eu7s7mjVrhjFjxvAZbrnKa8fr16+RmJgo7l80NTUViYmJyMjIAAC8fPkSiYmJSEpKAgAkJycjMTERjx8/VnwjlBjlI5FFefnYv39/LF++HEePHkVaWhqioqKwbt06fPnll3yGSwhRNKZCoqOj2fz581lkZCQDwKKiomR6f3Z2NgPAsrOzaybAWiAigjFra8aAdw9ra9H0vXv3ssaNGzMtLS1mYWHB/Pz8WFZWFt8hl6midsTExDAApR7e3t6MMcZCQ0PLfH3x4sVlrquubleUj0RaFeVjTk4OmzZtGrO1tWU6OjqscePGbP78+aygoKDK66NtixDVwzGmmsNhcByHqKgoDBgwQOr35OTkwMjICNnZ2ahXr17NBaeiIiOBwYNFXxfv4zjRv/v3AwMHKj4uWSm6HbRdUT6S8vGxX6FtixDVQzc1EQCi02fTppX+0gDeTZs6FfDwANTVFRubLAQCYMqU8tvBcUBAAODlpdztIKQ2qGy/QvlICClRqwvSgoICFBQUiJ/n5OTwGI1yO3cOePiw4nkyMwEjI8XEU1MYAx48ELW3Rw++o6lbKB/rnsr2K5SPhJASKnVTk6yCgoJgZGQkftjY2PAdklJiDDhz5t1zTc1CBAYuQWDgEmhqFvIXWDVV1I5Hj3gKqg6jfKx7UlLe/Z/ykRBSkVp9hHTu3LmYPn26+HlOTg59Cb6HMeDECWDZMuDD0T/z8vTKfE90NPDfUPZK6exZoG/fd8/La4elpYICImKUj3XH06fAunXAjz9KTqd8JISUp1YXpNra2tDW1uY7DKUjFAKHDokK0atXRdO0tABNTSAvDygq0sLq1bMk3sNxgLU10KuXcl/r1auXKM7MzIrb0bUrTwHWYZSPtd/Dh8Dq1cDWrcCbN6JpmppAURHloypjjKG4uBiCkr66CCmDuro6NDQ0wJXcsSgjlSpIX79+jbt374qfl/QfaWJiAltbWx4jUw0CAbBvH7B8OXDrlmiari4wcSIwYwaQkCC6GxaQvAmhZNsKCVHuYhQQxbd+vagdHKe67VAFlI+kxP37wMqVQGioqPgEgPbtgYULgcJCYMgQ0TTKR9VTWFiIR48eIT8/n+9QiArQ09ODpaUltLS0ZH6vSnX7FBsbC3d391LTvb29ERYWVun762pXIEVFwG+/AUFB767pMjQE/P2Bb78FzMzezRsZKbor9v0bEWxsRF8aqtDlUwlFtqOubleUj+T2bdF+Zffudx3dd+sGLFgg6pGjpOhU9H6Fti35EAqFSElJgbq6OszMzKClpVXlo1+kdmOMobCwEM+ePYNAIECTJk1KjcBWGZUqSKurru2k3r4VHbFYuRJITxdNMzERdbPi7w/Ur1/e+4qwefMuFBYCLi4j0KOHpkoewVBUO+radiUv9Lmprhs3RGda9u9/d9Szd29g/vzyT78rcr9C25Z8vH37FqmpqbCzs4OeXtnX/xLyvvz8fKSnp8PBwQE6OjoyvVelTtkT6eTlAVu2iK7lKrl71dwcmDlTdHre0LDi96upMWRniyrYrl2ZShajQO1pByHKIiFBVIgePvxumpeXqBBt377i91I+qi5Zj3SRuqs62woVpLVIdjawcSPwww/A8+eiadbWwOzZwLhxoutFCSFEFoyJeq9Ytgw4dUo0jeOAr74C5s0DWrbkNz5CSO1ABWkt8OKF6EaeH38UFaUA0LgxMHcuMHq06A56QgiRRVndwqmrA6NGAXPmAE2b8hsf4VdGRgaelxz5UIAGDRrUmZslAwMDceDAASQmJvIdCnr06IE2bdogJCSkxtdFBakKe/wYWLsW2LRJdJoeAJydRafPvvoK0KC/LiFERuV1Czd2rOhsi709r+ERJZCRkYGmTZvi7du3Clunjo4OkpOTZSpKHz9+jKCgIBw9ehQPHz6EkZERnJycMHLkSHh7e6vkdbGBgYFYsmRJhfNU5dagkptUX716BWNj4ypGVz1UsqigjIx3ff2VjMTYpo3oztYvvwToch9CiKwq6xbOyorf+IjyeP78uUKLUUB0g9Xz58+lLkjv37+PLl26wNjYGCtWrEDLli2hra2NmzdvYsuWLbCyssIXX3xR5nuLioqgqakpz/DlZubMmZg4caL4efv27fHNN9/A19e3zPkLCwur1AUTH6h0USF37wLjxwNOTsCGDaJitFMn4MgR4No1YNAgKkYJIbIpKhL1xuHsDAwbJipGDQ1Fl/ykp4tGXKJilKiayZMnQ0NDA1euXMHQoUPh7OyMxo0bw8vLC0ePHkX//v3F83Ich02bNuGLL76Avr4+li9fDgDYtGkTHB0doaWlhaZNm2Lnzp3i96SlpYHjOInT6llZWeA4DrGxsQBERx05jsPp06fh6uoKPT09uLm5ITk5WSLW4OBgNGzYEIaGhhg3blyFxb6BgQEsLCzED3V1dRgaGoqff/311/D390dAQAAaNGiA3r17VxprWlqauAu/+vXrg+M4+Pj4iOcVCoX47rvvYGJiAgsLCwQGBsr415BOlcuXwsJCJCcno7i4WJ7x1DoCgQALFy6Eg4MDdHV14ejoiO+//16mQ+pJScDIkaJrtrZvF32BuLsDp08Df/0F9Ov3rr8/edHU1Cz1CzEoKAjt27eHoaEhzM3NMWDAgFKJpWzKasf7goODwXEcAgICFBdUDaB8lE1mZiZGjhwJU1NT6OrqomXLlrhy5QrfYcnE3t4eHMeVevj5+Un1/rdvRZf7NGkiOh2fkiLqFm7pUlEhumKFZB/F8lBWPm7atAmtWrVCvXr1UK9ePXTu3Bl//vmnfFdM6pQXL17gxIkT8PPzg76+fpnzfNifamBgIL788kvcvHkTY8eORVRUFKZNm4YZM2bg1q1bmDBhAsaMGYOYmBiZ45k/fz7Wrl2LK1euQENDA2PHjhW/9scffyAwMBArVqzAlStXYGlpiZ9//lnmdbwvPDwcWlpauHDhAjZv3lzp/DY2NoiIiAAAJCcn49GjR1i/fr3E8vT19ZGQkIBVq1Zh6dKlOHnyZLViLBOTUV5eHhs7dixTV1dn6urq7N69e4wxxvz9/VlQUJCsi1Oo7OxsBoBlZ2crbJ3Lly9npqam7MiRIyw1NZXt27ePGRgYsPXr11f63qtXGRs4kDHR7QWiR9++jF24oIDAy9C7d28WGhrKbt26xRITE1nfvn2Zra0te/36NT8BVdOlS5eYvb09a9WqFZs2bVqVl8PHdlWC8lF2L1++ZHZ2dszHx4clJCSw+/fvs+PHj7O7d+8qNI7qevr0KXv06JH4cfLkSQaAxcTEVPi+168ZW7uWMUvLd/sVc3PGVq1iLCdHMbG/79ChQ+zo0aPszp07LDk5mc2bN49pamqyW7duVXmZfOZkbfLmzRuWlJTE3rx5IzH96tWrDIDCH1evXpUq7vj4eAaARUZGSkw3NTVl+vr6TF9fn3333Xfi6QBYQECAxLxubm7M19dXYtqQIUNY3759GWOMpaamMgDs+vXr4tdfvXolkYMxMTEMADt16pR4nqNHjzIA4s+0c+fObPLkyRLr6dixI2vdurVUbbWzs2M//PCD+Hn37t1Z27ZtJeaRJdZXr15JvLd79+7sk08+kZjWvn17Nnv27DLjKW+bkYbMR0jnzp2LGzduIDY2VqLTUw8PD+zdu1fWxdV6f/31F7y8vNCvXz/Y29tj8ODB6NWrFy5dulTuey5eFB31dHERjXACiEYzuXoVOHoUcHNTUPAfOHbsGHx8fNC8eXO0bt0aYWFhyMjIwNWSOx9UyOvXrzFixAhs3boV9csbIUAFUD7KbuXKlbCxsUFoaCg6dOgABwcH9OrVC46OjnyHJhMzMzOJU3dHjhyBo6MjunfvXub82dmio5729qJrQh89EnUL99NPQFoaMGtW5X0U14T+/fujb9++aNKkCT766CMsX74cBgYGiI+PV3wwpFa7dOkSEhMT0bx5cxSU3IDxH1dXV4nnt2/fRpcuXSSmdenSBbdv35Z5va1atRL/39LSEgDw9OlT8Xo6duwoMX/nzp1lXsf7XFxcqvX+D70fPyBqQ0n88iRzQXrgwAFs2LABn3zyicQh7+bNm+PevXtyDa42cHNzw+nTp3Hnzh0AwI0bN3D+/Hl4enpKzMcYcOYM8OmnooIzOlp0PeiIEaJruiIigHbt+GhB+bL/62PKxMSE50hk5+fnh379+sHDw4PvUKqF8lF2hw4dgqurK4YMGQJzc3O0bdsWW7du5TusaiksLMRvv/2GsWPHljoV+fy5aEx5OztRDxzPn4u6hdu6Fbh3TzRqm7L0USwQCPD7778jLy+v2l/KpO5ycnICx3GlLilr3LgxnJycoFvGBl/eqf3ylHQAz967/K6oqKjMed+/TKUkP4VCoUzrk8WHbZEl1rJ8eJkNx3E1Er/MBemzZ89gbm5eanpeXh6NcVuGOXPm4Ouvv0azZs2gqamJtm3bIiAgACNGjAAgKkSjo4EuXYDPPgNiYgBNTVFH9snJojHomzdXbMzFxcXYvXs3du/eXe41iUKhEAEBAejSpQtatGih2AClVF47fv/9d1y7dg1BQUE8RicflI+yu3//PjZt2oQmTZrg+PHjmDRpEqZOnYrw8HC+Q6uyAwcOICsrS+JGhMePRUc97e1FXThlZ4tuXPrtN9G+Zfx4xfZRXNF+5ebNmzAwMIC2tjYmTpyIqKgofPzxx4oLjtQqpqam6NmzJzZs2IC8kj4RZeTs7IwLFy5ITLtw4YJ4uzT77wLrRyXDIQJV6jfU2dkZCQkJEtPkfXZAmlhL7sQXCARyXbcsZO72ydXVFUePHsWUKVMAvKv2t23bRr9oy/DHH39g165d2L17N5o3b47ExEQEBATAwqIRjIy8sWwZcP26aF5tbcDXV/Qlwmf/v0KhECkpKeL/l8XPzw+3bt3C+ZIes5VQWe148OABpk2bhpMnT8o8zq4yonyUnVAohKurK1asWAEAaNu2LW7duoXNmzfD29ub5+iqZvv27fD09ESjRo2Utlu4ivYrTZs2RWJiIrKzs7F//354e3sjLi6OilJSZT///DO6dOkCV1dXBAYGolWrVlBTU8Ply5fx77//Vnpae9asWRg6dCjatm0LDw8PHD58GJGRkTj133Blurq66NSpE4KDg+Hg4ICnT59iwYIFMsc5bdo0+Pj4wNXVFV26dMGuXbvwzz//oHHjxlVqd1mkidXOzg4cx+HIkSPo27cvdHV1YWBgILcYpCFzQbpixQp4enoiKSkJxcXFWL9+PZKSkvDXX38hLi6uJmJUabNmzRIfJQUAZ+eWOHQoHRMnBqGwUPTlp68PTJoETJ8O/Hd5iVLz9/fHkSNHcPbsWVhbW/MdjkyuXr2Kp0+fot171z8IBAKcPXsWGzZsQEFBAdRVaJBtykfZWVpalip0nJ2dxXeZqpr09HScOnUKGzdGYvx44NdfRT1xAKJu4RYsAPr2lX9PHPKkpaUFJycnAKLr3y5fvoz169fjl19+4TkyoqocHR1x/fp1rFixAnPnzsXDhw+hra2Njz/+GDNnzsTkyZMrfP+AAQOwfv16rFmzBtOmTYODgwNCQ0PRo0cP8Tw7duzAuHHj4OLigqZNm2LVqlXo1auXTHF+9dVXuHfvHr777ju8ffsWgwYNwqRJk3D8+PGqNLtclcVqZWWFJUuWYM6cORgzZgxGjx6NsLAwucZQGY4x2bv0v3fvHoKDg3Hjxg28fv0a7dq1w+zZs9FSyQc1zsnJgZGREbKzs1GvXj25L18gAM6dE90sYGkJdO0KmJubYtmyZRg3bhJ27gSCgoB794IAhMLI6A6mTgWmTQNMTeUeTpW9efMGq1atAgB88skn6NGjB9TV1cEYw5QpUxAVFYXY2Fg0adKE50grVlY78vPzkZ6eLjHfmDFj0KxZM8yePbtKlx/U9HZVGcrHspWVj+rqwPDhw/HgwQOcO3dOPO+3336LhIQE/PXXX3KPo7rKa0cJP79A7NjxCwoKHoAx0TEGd3dRIerurjyFaHn7lbJ8+umnsLW1rfIXIt85WVu8ffsWqampcHBwkDijpCojNRHFK2+bkUaVRmpydHRU+ZsA5C0yUlRYPnz4bpq1NdCiRX/Mm7ccixbZ4vnz5gCug+PW4ZNPxuLwYcDIiLeQyxQZGYkZM2aIr0Xz9PREw4YNsX79epw6dQq7d+/GwYMHYWhoiMePHwMAjIyMyrxInE8VtWPgwIES8+rr68PU1FRpr4WtDOVjaeXl4/r1ouLTzc0NK1aswNChQ3Hp0iVs2bIFW7Zs4S/gclTUDtG1oUJERYUC8Aaggb59RTcu8dUTR3kqysfLly/D09MTtra2yM3Nxe7duxEbGyv3I0REfmxtbZGcnExj2RO5krkgzcjIqPD1urjBREYCgweLblB638OHwMOHPwFYCGAygKcwNW2EsWMnYNmyRQq9oUAakZGRGDx4MDQ0JDeLzMxMDB48WHyH3vunLAAgNDRU4mYKvlXWjv3795cqSlUV5WNp5eVjZqZo+v797REVFYW5c+di6dKlcHBwQEhIiPhGQ2VR0X5l0KCSZ6cAZKBnz7EIDla+njiAyvPR3d0de/bswaNHj2BkZIRWrVrh+PHj6NmzJ08RE2nY2trWyf0LqTkyF6Qlo4OUh887tPggEIiOYJR/4YMh1NVDsH59CMaNA5T1PhqBQIBp06aVOYJUyTQrKyskJSWVeZqtqncyyptAIMCUKVPKbUfJqExeXl7idpQM86aKKB8lVZSPJdOmTgWSkj5HfPznEq8rySYMQNSOKVMq2q+IDB/eC/PmMYX3xCGtyvYrHMchJSUFqampKnXtNiFE/mQuSK+X3BL+n6KiIly/fh3r1q0Tj/9al5w7J3k6rSwCgajrJmUtRgHg3LlzeFhJQzIzM2GkbNcYyIgxJr5+8MMjvaqI8lGSNPmYmal8l8pUla+v4ruFk0Vl+5Xalo+EkKqTuSBt3bp1qWmurq5o1KgRVq9eXWtOhUrrvW69oKlZiPnzRX1bLl8+F0VFWmXOp4zu3r0r/n9RURECAwP5C0ZOKmrHI2X/g0iJ8lGStPmoSlR5v/K///1P/P+6kI+EkKqr0k1NZWnatCkuX74sr8WpjA+7acrL0ytzvgsXAC8vQK/sl3nz/PlzhISEICQkRKr5o6Oj0a1bt5oNqhrOnj2Lvn37VjqfpSr0r1UNlI8i5eVjdDSgxJsxzp4VddVUorx2/PKLqLP7Nm0UE5e0GGM4duyYuK/XytT2fCSEVE7mbp9ycnIknjPG8OjRIwQGBuLff/+t0kgFilITXYEIBKK7XTMzK7/ey8xM1Nfo5MkA3z2RPHr0CGvXrsWmTZuQn58PANDQ0Ch3ZCaO42Btba3013oJBALY29sjMzOzzOvWaqIdfHYxQ/koqbJ85DjRXeqpqZJdJykbWfYrANCvn6ibp06dajy0CgmFQhw8eBDLli3DtWvXKp2/pvYr1O2TfFSnCx9SN1Vrm2Ey4jiOqampSTw4jmO2trbsr7/+knVxCpWdnc0AsOzsbLkuNyKCMY4TPURfH6JHyfOJExlzcHg33diYsUWLGHvxQq5hSCUtLY1NnjyZaWtrMwAMAHNxcWFRUVFs3759jOM4xnGc+DUA4mkRERGKD7gKIiIiFNqOmtqupEH5WFpF+chxotdVQWXt+OEHxoYNY0xN7d1rn33GWEwMY0KhYmMtKipiu3btYs2bNxfnm76+Pps5cybbtm2bwvcrfOZkbfLmzRuWlJTE3rx5w3coREVUZ5uRuSCNjY2VeJw9e5bdvn2bFRUVybxyRavJnVREBGPW1pJfHDY27778iooY27mTsWbN3r1uYMDYd98x9vix3MMp5c6dO2zs2LFMQ0ND/IXQpUsX9ueffzLhe99eERERzNraWuKLw8bGRmWK0RKKbAefX36Uj2WrLB9VhTTtuHOHsbFjGdPQeDePmxtj0dE1X5gWFBSw7du3MycnJ3Ge1atXjy1YsIA9e/bsvXYodr9CBal8UEFKZFWdbaZKIzWpqpo+jfP2bRE2b96FwkLAxWUEevTQLHVaUCgU9S+4bBlw44Zomo7OuzHsbWzkG9OtW7ewYsUK7N27Vzx+tIeHBxYsWIBu3bqV2WWQQCDAuXPn8OjRI1haWqJr165KfZq+PIpqB50erBplyEdVIG070tOBVauA7dvfjWHfrp3oVL6Xl3zHsH/z5g127NiBlStX4sGDBwAAU1NTfPvtt/Dz84OxsXGp9yhyv0I5KR8VnX7NyAAU2C8+GjQAlLHbUx8fH2RlZeHAgQMARP10t2nTRur7Msoij2XwpcZHajp06JDUC/ziiy9kCqA2UVNjyM4WDUvZtSsr80tDTU3U2fWgQcDRo6LCNCEB+OknYPNmwMcHmDMHaNy4erFcvXoVy5cvR1RUlHja559/jvnz56NTJReaqaur14ouWGpLOz5E+SgdafJRFUjbDjs7YONGUQG6di2waRNw7RowcKCoa6h584ChQwGNatzK+vr1a/zyyy9Ys2aNeKQ2CwsLzJo1C9988w0MDAzKfW9tzce6KCMDaNoUUODIodDRAZKTpS9KfXx8EB4eDgDQ1NSEra0tRo8ejXnz5pUapEGeIiMjoampKdW8sbGxcHd3x6tXryR+xMmyjNpEqr/KgAEDpFoYx3F1riPuquI44PPPRTcjnDkjKkxjY4GtW4EdO4Dhw4G5c0V30MriwoULWLZsGY4dO/bfejgMGjQI8+bNQ9u2beXfEKJwlI+kIpaWwJo1oh+2ISGiH7v//AOMGAEsXizar4wcCZlGisvKysKGDRsQEhKCFy9eABCN1DN79myMHTuWbnipY54/V2wxCojW9/y5bEdJ+/Tpg9DQUBQUFCA6Ohp+fn7Q1NTE3LlzJeYrLCyElpyGTjQxMVGKZagiqU7iCIVCqR705Sc7jgM++wyIiQHOnwc8PUV32O7cKTqqMWQIUNmN0owxnD59Gu7u7vjkk09w7NgxqKurY9SoUfjnn3+wb98+KkZrEcpHIo0GDUQ/dNPTRf+amgJ37wLjxgFNmgA//1x5UfH8+XMsWLAAdnZ2WLhwIV68eAEnJyfs2LEDKSkpmDx5MhWjRGlpa2vDwsICdnZ2mDRpEjw8PHDo0CH4+PhgwIABWL58ORo1aoSmTZsCAB48eIChQ4fC2NgYJiYm8PLyQlpamnh5AoEA06dPh7GxMUxNTfHdd9+V6s2lR48eCAgIED8vKCjA7NmzYWNjA21tbTg5OWH79u1IS0uDu7s7AKB+/frgOE48BPeHy3j16hVGjx6N+vXrQ09PD56enkhJSRG/HhYWBmNjYxw/fhzOzs4wMDBAnz59VK5/XzleVUSqq0sXUf+IV64AX34puj1h/36gbVugf38gPl5yfsYYjhw5gs6dO8PDwwOxsbHQ1NSEr68vkpOT8euvv8JZ1kOshJBaxdgYmD8fSEsTHTm1sBCdcvXzAxwcRKf3X7+WfM+jR48wY8YM2NnZYfny5cjJyUHz5s2xe/du3L59G2PGjJHbESVCFEVXVxeFhYUAgNOnTyM5ORknT57EkSNHUFRUhN69e8PQ0BDnzp3DhQsXxIVdyXvWrl2LsLAw7NixA+fPn8fLly8lLosry+jRo7Fnzx78+OOPuH37Nn755RcYGBjAxsYGERERAIDk5GQ8evQI69evL3MZPj4+uHLlCg4dOoSLFy+CMYa+ffuiqKhIPE9+fj7WrFmDnTt34uzZs8jIyMDMmTPl8bEpTJUupMjLy0NcXBwyMjLEf6gSU6dOlUtgdZmLi+jGp1u3gBUrgL17gSNHRI/PPgPmzRPixYtILF++DDf+uzNKR0cH33zzDWbOnAkbed8ZRZQa5SORhoEBMGOGqB/kHTuAlSuBBw+AmTOBoCDg22+BL77IwObNK7F9+3YU/HdnlIuLC+bPnw8vLy+oyfPOKEIUpOQs4vHjxzFlyhQ8e/YM+vr62LZtm/iH1W+//QahUIht27aJb/YNDQ2FsbExYmNj0atXL4SEhGDu3LniEfA2b96M48ePl7veO3fu4I8//sDJkyfh4eEBAGj83g0iJafmzc3Ny7wREABSUlJw6NAhXLhwAW5ubgCAXbt2wcbGBgcOHMCQIUMAiEZC27x5MxwdHQEA/v7+WLp0aVU/Ml5UaSz7vn37Ij8/H3l5eTAxMcHz58+hp6cHc3Nz+gKUoxYtgN27gSVLgOBg4NdfGU6f5nD6tBoACwAW0Ne/Bz+/yZg+fToaNmzId8hEwSgfiax0dUVHR319gd9+ExWjd++KboZasKAeAEsABnBzc8HChQvRu3fvMnvjIETZHTlyBAYGBigqKoJQKMTw4cMRGBgIPz8/tGzZUuIo/40bN3D37l0YGhpKLOPt27e4d+8esrOz8ejRI3Ts2FH8moaGBlxdXcschAUAEhMToa6uju7du1e5Dbdv34aGhobEek1NTdG0aVPcvn1bPE1PT09cjAKi0c+ePn1a5fXyQeafu99++y369++PV69eQVdXF/Hx8UhPT4eLiwvWrFlTEzGqFE1NzVJ3x509exb9+/dHo0aNwHGcuHsIadnaFqBTp62wtOwGYCOAtwA+AXAMTk6v0KnTSpiZ1XwxWlk7GGNYtGgRLC0toaurCw8PD4nrXJRFRe0oKirC7Nmz0bJlS+jr66NRo0YYPXq0xJjcyoTysWI1kY98KKsdQUFBaN++PQwNDWFubo4BAwYgOTlZ6mVqaQEdOtyCi8tIcNxIALcAGANYAB2dJ+jU6Txat+6jkGI0NzcXAQEBsLOzg66uLtzc3Ork0LdEvtzd3ZGYmIiUlBS8efMG4eHh0NfXBwDxvyVev34NFxcXJCYmSjzu3LmD4cOHV2n9urq61W6DtD7cP3AcV26hrKxkLkgTExMxY8YMqKmpQV1dHQUFBbCxscGqVaswb968mohRZWhpaWHevHmYN2+exC+vvLw8tG7dGhs3bpRpeW/evMFPP/0EJycnfPPNN3jw4DzMzJZg7tyt8PcvgJ4ecOOGBgYOBFq1AvbsEd0QVVMqa8eqVavw448/YvPmzUhISIC+vj569+6Nt4q+HbMSFbUjPz8f165dw8KFC3Ht2jVERkYiOTlZabtPonwsn7zzkS/ltSMuLg5+fn6Ij4/HyZMnUVRUhF69eiEvL6/SZV69ehUDBw5Ey5YtsXfvLjC2C/36zUNQUDLatQPevlXHunUcHBwAf3/RNac1afz48Th58iR27tyJmzdvolevXvDw8EBmZmbNrpjUavr6+nBycoKtrW2lXT21a9cOKSkpMDc3h5OTk8TDyMgIRkZGsLS0REJCgvg9xcXFuHr1arnLbNmyJYRCIeLi4sp8vSSfK7oB1dnZGcXFxRLrffHiBZKTk/Hxxx9X2CaVI2tP+g0aNGB37txhjDHWpEkTduzYMcYYY7dv32Z6enoy98yvSMowegcAFhUVVeE8OTk5bOXKlczc3Fw8qkmjRo1YSEgIy8vLE8/37Blj8+czVq/euxFamjRhbPt2xgoKFNsOoVDILCws2OrVq8XTsrKymLa2NtuzZ0/NBlMN0vw9Ll26xACw9PT0Ml/nc7uifKweaf7+quLp06cMAIuLiyt3nvPnz7M+ffpIDN85ePBgdu3aNfE8QqFolCc3t3f7FQ0N0WhQ/21qcpWfn8/U1dXZkSNHJKa3a9eOzZ8/v0rLVIZtqzYob9Sdq1clRw9T1OPqVelj9/b2Zl5eXlK/lpeXx5o0acJ69OjBzp49y+7fv89iYmLYlClT2IMHDxhjjAUHBzMTExMWFRXFbt++zXx9fZmhoaHEsrp3786mTZsmfu7j48NsbGxYVFSUeJl79+5ljDH28OFDxnEcCwsLY0+fPmW5ubllLsPLy4t9/PHH7Ny5cywxMZH16dOHOTk5scLCQsYYY6GhoczIyEiiPVFRUawKJV61VWekJpmPkLZt21Z8KqV79+5YtGgRdu3ahYCAALRo0aL6FXId9urVKyxduhR2dnaYPXs2nj59Cnt7e2zevBn379/HtGnToKenJ56/rG5dUlJk69ZFXlJTU/H48WPxhdsAYGRkhI4dO+LixYuKCaKGZGdng+O4ci865xPlIymRnZ0NoHQfhkzGbuE4TtT93Pnzou7oPvsMKC4W3QjVrJmoP9N//pFf3MXFxRAIBKW6j9LV1cX58+fltyJCKqCnp4ezZ8/C1tYWAwcOhLOzM8aNG4e3b9+KR/uaMWMGRo0aBW9vb3Tu3BmGhob48ssvK1zupk2bMHjwYEyePBnNmjWDr6+v+CyGlZUVlixZgjlz5qBhw4bw9/cvcxmhoaFwcXHB559/js6dO4Mxhujo6NrXeb60lWtxcTFjjLHLly+zM2fOMMYYe/LkCevduzczNDRk7dq1Y4mJiTJXxIpU07+ai4qK2K5du9iuXbvKHUscZRyRefLkCZszZw4zNDQUH7lo2rQpCw8PF/8CkkZuLmNr1jBmYfHuF6WFhWjafz+85ObDdly4cIEBYP/73/8k5hsyZAgbOnSofFcuR2X9Pd735s0b1q5dOzZ8+PBy5+HjaAzlY+Wqmo/KRpp2CAQC1q9fP9alSxfxNKFQyA4fPsw6duwo3q9oamoyX19fdvfuXZli+Osvxvr1kzxa9eWXjF25Uq2miXXu3Jl1796dZWZmsuLiYrZz506mpqbGPvrooyotj46Qykd5R7vS0xnT0VHs0VEdHdF6iXKrzhFSqe+yt7Kygo+PD8aOHQtXV1cAoq4KSkYEIqIOy0tu4ikZN74imZmZWLNmDX755Re8efMGgOiakwULFmDQoEEyj/MsTbcu/v6AkZHsbauLioqKMHToUDDGsGnTJr7DkUD5WDlZ81FZSdMOPz8/3Lp1C+fPn4dQKERkZCSWLZPsFs7X1xezZs2qUrdwnTuLup27fl3UFV1EBBAVJXp4eoru0P+vR5oq2blzJ8aOHQsrKyuoq6ujXbt2GDZsWIXX5xH+2NqKhvGkseyJPEldkPr5+SE8PByrV6+Gm5sbxo0bh6FDh0qcQibSefLkCSZOnIjQ0FBxv5Ht27fHggUL8Pnnn1e7r7+KunVZvVpUlAYEiBJcXiwsLACI2mZpaSme/uTJE7Rp00Z+K1KQkmI0PT0dZ86cEZ+yURaUj6SEv78/jhw5gjNnziAmJgYrVqzAv//+CwAwMDDA5Mny6xaubVtg3z4gKUm0X9m9G/jzT9HD3V3UAf+nn4pO+8vC0dERcXFxyMvLQ05ODiwtLfHVV19J9NlIlIutLRWIRL6krnwWLlyIu3fv4vTp02jcuDH8/f1haWkJX19fibu/6rL375Q7d+5cqTvnSrpkmTx5Mn755RcUFhaiW7duOHHiBBISEvDFF1/IteNpLS1g7Fjg9m1g1y7RUKTZ2cDy5YCdnejIaVkjiwkEQGys6K792Fjp7tx3cHCAhYUFTp8+LZ6Wk5ODhIQEdO7cWW5tkkVV2gG8K0ZTUlJw6tQpmJqa1mSYVUL5WLnK8lFVlNcOxhj8/f0RFRWFCRMmoE+fPhg9ejT+/fdfGBsbY9GiRUhLS8PKlSvl3kfxxx+Lhje+c0f0w1dTU3S9qYeH6Ejp0aOiE62S7ag8H/X19WFpaYlXr17h+PHj8PLykmvchBAlVtXrBHJzc9nWrVtZly5dGMdx7OOPP2Zr166t6uKktmHDBmZnZ8e0tbVZhw4dWEJCgtTvrcnriiIiIpi9vT0LDAxkgYGBTFNTk1lbW7OIiAh28eJF1rNnT/F1XABYp06d2B9//CH3OCoiEDAWGclYu3bvrsvR1mbMz+/dtTkREYxZW0teu2NtLZqem5vLrl+/zq5fv84AsHXr1rHr16+L7z4PDg5mxsbG7ODBg+zvv/9mXl5ezMHBoUrXklRXVdtRWFjIvvjiC2Ztbc0SExPZo0ePxI+CcrouUIbr1fjKR8aqnpN85WNl27Eyqagdvr6+TFdXl5mZmYn3KyYmJmzp0qUK3xYzMhibMkXyusI2bRjbt0+036koHxlj7NixY+zPP/9k9+/fZydOnGCtW7dmHTt2lOka+vcpQ07WBtW5HpDUTdXZZuTSJ8CRI0eYiYkJU1NTk8fiyvX7778zLS0ttmPHDvbPP/8wX19fZmxszJ48eSLV+2tqJxUREcE4jmOampoSXxzvF6BlPby9veUah7TK69bl00/Lvpic40SPJUtiKmyHUChkCxcuZA0bNmTa2trss88+Y8nJyQpvX0SEKN6qtCM1NbXcv1dMTEyZ61O2Lz9F5SNj1ctJRecjx3GM4zi2ZMkSpcrH8lR1vxIaGspbzI8fM/bdd4zp60sWnhXtVyIiGNu7dy9r3Lgx09LSYhYWFszPz49lZWVVOQ5ly0lVRQUpkVV1thmOsap15Z+fn48//vgDoaGhOH/+PBwdHTF27FjMmTOnKouTSseOHdG+fXts2LABgOgCfxsbG0yZMkWq9ebk5MDIyAjZ2dlyuyZQIBDA3t4eDx8+hKamJubPnw8AWL58OYqKisTzDR06FPPnz0erVq3ksl55YAyIixN1GfXemfZyWVmJrh2T8V4rhRIIAGdnoLyBlTgOsLYGUlPl146a2K5kxUc+AtXLSb7y0crKCklJSTLfNKhIAoEAzs7O+N///lfhfsXe3h6zZ8+Gj49PqW6T+PTiBfDjj6JHVlb589VEPgLKkZO1wdu3b5GamgoHBwel2r6I8qrONiPzWPZ//fUXduzYgX379qG4uBiDBw/G999/j27dusm6KJkUFhbi6tWrmDt3rniampoaPDw8yu3nsqCgAAUFBeLnOTk5co/r3LlzePjwYaXzTZo0SamKUUD0ZdCjh+ixcaPoZqeKZGaq/h36jIl6Hjh3TtRuVcdXPgKy56Sy5GNmZiaMVH1D/s/WrVsl+v5VFqamwJIlQPv2QP/+5c9X2/KREFJ1Uhekq1atQmhoKO7cuQNXV1esXr0aw4YNg6GhYU3GJ/b8+XMIBIJSF+c3bNhQfEfph4KCgrBkyZIajevRe3cFFRUVITAwsNL5lNH7fWlrahZi1izROOirV89EUZHWe3NmApgN4E8A+QCcAIQCcFVUqFIrvx32cHdPLzX/5MmTVWY4Sb7zEZA9J5UpH1VJRe149uyZYoORUW7uu/+Xn4+BcHeX3C6aNm1a7n6dEFI7SV2Qrl69GiNHjsS+fftUZgSYuXPnYvr06eLnOTk5VeqDryLvd3FUkdz398xK6P1mFBVpYcWKssZBfwVz8y7o1csd48f/iQYNzHDvXgocHOpDWXpnOXsW6NtX9P/y23EZERECcb+Jt27dQs+ePTFkyBCFxVldlI9lkzYfo6OjFXIUuarOnj2LviUbcgXi4+MxYMAA6OrqKiAq2Um3XwHs7Zvj4sVT4ueVjTtOCKl9pM76kmuZ+NKgQQOoq6vjyZMnEtOfPHki7gPzQ9ra2tDW1q7RuLp27Qpra2tkZmaiostxJ0yYgIMHD2LBggW8dYNUka5dRddyZWaW7q4FEJ3eNzBYiSZNbLBzZ6h4evPmDgqMsnK9elXeDmtrM3h5vbtmLTg4GI6Ojujevbtig60GvvMRkD0nlSEfOY6DtbU1evXqpdTXkPbq1Uuq/cqPP/6IvXv3YsaMGZg4caJCj5BLQ5r9iqEhYGSkUe5+nCin7Oxs5OfnK2x9enp6Kn+pTVhYGAICApBV0YXVdZjUBSnfX35aWlpwcXHB6dOnMWDAAACiGyhOnz5d7viviqCuro7169dj8ODB4DhO4suj5Hm3bt1w/vx5REdHIzo6Gu7u7liwYAHc3d3BydqDdA1RVwfWrwcGDxZ9Sbz/5VESopHRIbRv3xtDhgxBXFwcrKysMHnyZPj6+vITdBmkaUdIyLtitLCwEL/99humT5+uNH8LafCdj4By5mRl+QgAISEhSl2MAtLtV3x9fXHixAmkp6fju+++Q3BwMAICAjBlyhQYGxvzF/x7pMnHPn2AI0dS0KhRI+jo6KBz584ICgqCLfW6rrSys7OxYcMGFBcXK2ydGhoa8Pf3l7oo9fHxQXh4OCZMmIDNmzdLvObn54eff/4Z3t7eCAsLq4Foy/bVV19JdeajrpJfL+wKMH36dGzduhXh4eG4ffs2Jk2ahLy8PIwZM4bXuAYOHIj9+/fDyspKYrq1tTUiIiIQFxeH5ORkjB8/HpqamoiJicFnn32GLl26IDo6usIjIIo0cCCwfz9ga1uM4cN3Y/jw3dDQKIa1tWj6s2f3sWnTJjRp0gTHjx/HpEmTMHXqVISHh/MduoTK2jFw4Lt5Dxw4gKysLPj4+PAWrypTxpysKB/379+Pge9vAEqssv3Kli1bkJKSgtDQUDRp0gQvX77EokWLYGtri3nz5inN9aWV5aOPT0eEhYXh2LFj2LRpE1JTU9G1a1elv8ypLsvPz1doMQoAxcXFMh+RtbGxwe+//y4emhsQ3QW+e/duXn7w6OrqwtzcXOHrVRVSF6T/K68fHQX66quvsGbNGixatAht2rRBYmIijh07JvdRSKpi4MCBSEtLQ0xMDHbv3o2YmBikpqaKv/ycnJywdetW3L17F/7+/tDW1sbFixfRr18/uLi4ICIiQinG2x44ELh9W4iPPkrBRx+l4NgxIVJTRdOFQiHatWuHFStWoG3btvjmm2/g6+tb6tenMqioHe/bvn07PD090ahRI34CrSJlyEdAeXOysnxUFZW1Q1NTEz4+Prh9+zb27NmDFi1aIDc3F0FBQbC3t8f06dOVYlupKB89PT0xZMgQtGrVCr1790Z0dDSysrLwxx9/8B02UXHt2rWDjY0NIiMjxdMiIyNha2uLtm3biqcdO3YMn3zyCYyNjWFqaorPP/8c9+7dE7+elpYGjuPw+++/w83NDTo6OmjRogXi4uLE88TGxoLjOBw9ehStWrWCjo4OOnXqhFu3bonnCQsLkzh7ERgYiDZt2mDnzp2wt7eHkZERvv76a4kfY7m5uRgxYoR4FLMffvgBPXr0QEBAgJw/Lf5JXZA2b94cu3fvrslYpOLv74/09HQUFBQgISEBHTt25DskMXV1dfTo0QPDhg1Djx49yjwtaGtri59++glpaWmYNWsW9PX1cf36dQwePBgtW7bErl27FP7L80Pvh92167vnlpaW+PjjjyXmdXZ2RkZGhgKjk1557SiRnp6OU6dOYfz48YoNTA6UJR8B5c1JafJRFUjTDnV1dXz99de4ceMGDhw4AFdXV+Tn5+OHH36Ag4MDJk2ahLS0NMUHLxHju/+XlY8ljI2N8dFHH+Hu3buKCYzUamPHjkVo6Lv7Hnbs2FHqDE5eXh6mT5+OK1eu4PTp01BTU8OXX35Z6iDRrFmzMGPGDFy/fh2dO3dG//798eLFi1LzrF27FpcvX4aZmRn69+8v0Xfwh+7du4cDBw7gyJEjOHLkCOLi4hAcHCx+ffr06bhw4QIOHTqEkydP4ty5c7h27Vp1PhKlJXVBunz5ckyYMAFDhgzBy5cvazKmOsHCwgKrVq1Ceno6Fi5cCCMjIyQlJWHkyJFo2rQptm3bhsLCQl5iK2/s7C5duiA5OVli3jt37sDOzk6h8UmrsrHMQ0NDYW5ujn79+ik6tGqjfCRlUVNTg5eXFy5duiQ+6lNYWIjNmzejSZMmGDNmDO7cucNLbJXlY4nXr1/j3r17UveYQEhFRo4cifPnzyM9PR3p6em4cOECRo4cKTHPoEGDMHDgQDg5OaFNmzbYsWMHbt68iaSkJIn5/P39MWjQIDg7O2PTpk0wMjLC9u3bJeZZvHgxevbsiZYtWyI8PBxPnjxBVFRUufEJhUKEhYWhRYsW6Nq1K0aNGoXT/41Uk5ubi/DwcKxZswafffYZWrRogdDQ0HJzR9VJXZBOnjwZf//9N168eIGPP/4Yhw8frsm46gxTU1MsXboU6enpWLFiBRo0aID79+/D19cXTk5O2LBhg8T1LzUtMjJS4iiop6cn7O3tERkZiW+//Rbx8fFYsWIF7t69i927d2PLli3w8/NTWHzSqqgdgGgnEBoaCm9vb5XsYobykVSE4zj07t0b586dQ1xcHHr27Ini4mKEhYWhWbNm+Prrr3Hz5k2FxVNRPs6cORNxcXFIS0vDX3/9hS+//BLq6uoYNmyYwuIjtZeZmRn69euHsLAwhIaGol+/fmjQoIHEPCkpKRg2bBgaN26MevXqwd7eHgBKnf17v4ccDQ0NuLq64vbt2+XOY2JigqZNm5aa53329vYSvWNYWlri6dOnAID79++jqKgIHTp0EL9uZGSEpk2bStl61SLTTU0ODg44c+YMFixYgIEDB6JVq1Zo166dxINUjZGREebOnYu0tDSsW7cOlpaWePDgAaZMmQIHBwesXr26xi/yj4yMxODBg5GZmSkxPTMzE4MHD8aDBw8QFRUlvlbt+++/R0hICEaMGFGjccmqsnZERkbi1KlTyMjIwNixY3mKsvooH4k0unXrhhMnTiA+Ph79+/cHYwx79+5Fq1atMGDAAFy+fLlG119ZPsbHx2PYsGFo2rQphg4dClNTU8THx8PMzKxG4yJ1x9ixYxEWFobw8PAy9/n9+/fHy5cvsXXrViQkJCAhIQEAFHKW8sMeUziOU4r7Sfgg86Gh9PR0REZGon79+vDy8lLJo0vKTF9fH99++y0mTZqEsLAwBAcHK6RbF4FAgGnTppV5x3/JtKlTpyIpKQnx8fESr+fl5ck1luoQCASYMmVKue3gOA4BAQFITU1Vmt4NqoPykUirY8eOOHToEG7cuIEVK1Zg3759OHjwIA4ePIjevXtj/vz56Nq1q1zXWdl+heM4ZGRk4MGDByp7jS9Rfn369EFhYaH4zMH7Xrx4geTkZGzdulW8/Z8/f77M5cTHx4sH1CguLsbVq1dLdXEXHx8vvoP/1atXuHPnDpydnasUd+PGjaGpqYnLly+Ll5mdnY07d+4o9cAeVSXTt9fWrVsxY8YMeHh44J9//qFfsDVIR0cHEydOxLhx47Br1y6sWLECKSkpWLRoEVavXg1/f398++23cvsb1JUxwBljePDgAc6dO4ceKj54NuUjqYrWrVtj7969WLJkCYKCgrBr1y4cP34cx48fR7du3bBgwQJ4eHjIpV/eyvYrtSkfifJSV1cXnzb/8IdP/fr1YWpqii1btsDS0hIZGRmYM2dOmcvZuHEjmjRpAmdnZ/zwww949epVqSOuS5cuhampKRo2bIj58+ejQYMG4n6aZWVoaAhvb2/MmjULJiYmMDc3x+LFi6GmpqZS/WZLS+pT9n369MHs2bOxYcMGREZG0pefgiiqW5eyxgAPDAys8O5AZVdRO0oGJSh5NGvWjKcoq4bykVRXs2bNEB4ejjt37mDChAnQ0tLC2bNn0atXL3Tq1AmHDh2q9lkEafcr788XHBwsPpNBiLzUq1cP9erVKzVdTU0Nv//+O65evYoWLVrg22+/xerVq8tcRnBwMIKDg9G6dWucP38ehw4dKnU9anBwMKZNmwYXFxc8fvwYhw8fhpaWVpXjXrduHTp37ozPP/8cHh4e6NKlC5ydnaGjo1PlZSorjkm5x+nZsydCQ0NhbW1d0zHVmJycHBgZGSE7O7vMDVMVCIVCHD58GMuWLcOVK1cAiEbMGTt2LGbPni2+GFtWsbGxcHd3r3S+JUuWwMvLC4wx7Nq1C+vXr8eFCxdKdQfFF2nHALe3t8fFixfFzzU0NErtWKTFx3ZF+Ujk7eHDh1izZg22bNkivpGyVatWmD9/PgYNGlSlU+rS7ldiYmLQo0cPXL58GUOHDkW9evXg7u6OkJAQmdcJ0LYlL2/fvkVqaiocHBwkCiBVGKlJntLS0uDg4IDr16+jTZs2Zc5Tsq2/evWqRkdKy8vLg5WVFdauXYtx48bV2HqqqrxtRhpSF6S1QW3aSTHGcOLECSxbtkx8vYuGhgZGjhyJuXPn4qOPPpJpeQKBAPb29pWOAZ6amirxxWRiYoLVq1crTWJI0w5DQ0M4ODggMTFRLuusTduVItHnppyePn2KH374ARs2bMDr168BAE2bNsW8efMwbNgwmYatlWW/8ubNG7Rr1w4///wzli1bhjZt2lBByrOKiou6NJY9nwXp9evX8e+//6JDhw7Izs7G0qVLERsbi7t371b5IEpNqk5BClaHZGdnMwAsOzub71DkKi4ujvXs2ZMBYAAYx3Hsq6++Yn///bdMy4mIiGAcxzGO48TLKlkex3EsIiJCPG9xcTHbs2cP09LSYv/884+8m1QtlbVj6NChTE9Pj1laWjIHBwc2fPhwlp6eXuX11dbtqqbR56bcXrx4wQIDA1n9+vXFOWRvb882b97M3r59K/VypN2vjB49mgUEBDDGGOvevTubNm1alWOnbUs+3rx5w5KSktibN2/4DoVXqampDAC7fv16ufPExMQwAOzVq1dyXfe1a9dYu3btmL6+Pqtfvz7z8PCQ+btdkaqzzVBBWoskJCSwL774QmKn7+XlxS5duiT1MiIiIpi1tbXEMmxsbMRfGn///TfT19dn6urqzMjIiB09erSmmlMtFbUjOjqa/fHHH+zGjRvs2LFjrHPnzszW1pbl5ORUaV21fbuqKfS5qYacnBy2cuVKZm5uLs6lRo0asZCQEJaXlyfVMirbr+zZs4e1aNFC/CVGBalyoIKUyKo62wydsq+F3u/WpeTPK0u3LgKBAOfOncOjR49gaWmJrl27ik/TFxYWIiMjA9nZ2di/fz+2bduGuLg4pbmG9H0VteN9WVlZsLOzw7p166p06UFd2a7kjT431ZKfn49t27Zh1apV4j5FzczMMH36dEyePLnSv2F5+fjgwQO4urri5MmTaNWqFQCgR48edMpeCVTr9Cupk+gaUinVtZ3Uv//+i+DgYPz222/iocbk3a2Lh4cHHB0d8csvv1R7WXxq3749PDw8EBQUJPN769p2JS/0uammgoIC/PrrrwgKCkJqaioA0fjz06ZNw9SpU2FiYiLT8g4cOCAenamEQCAAx3FQU1NDQUGBzDdU0bYlH1SQEllVZ5uRaaQmolqaNWuGsLAwpKSkyNSti0AgQGxsLPbs2YPY2NgKx80VCoUoKCioyWZUmbTtoLGzCZGetrY2fH19cefOHfz6669o1qwZsrKysGTJEtjZ2WH27Nl48uRJqfeVl4+fffYZbt68icTERPHD1dUVI0aMQGJiInWYrwTq0HErUk3V2lbkeOmA0qvr1xU9fPiQBQQEMF1dXfF1XK1atWJ79+5lxcXFjLGyr/WytrZmERERbM6cOSwuLo6lpqayv//+m82ZM4dxHMdOnDjBc8tKq6gdM2bMYLGxsSw1NZVduHCBeXh4sAYNGrCnT59WaV11fbuqKvrcaofi4mK2b98+1rp1a3Gu6ejosKlTp7IHDx4wxirOx7LQNaTKobi4mCUlJbHnz5/zHQpREc+fP2dJSUnimkIWdMq+Dirp1mXjxo3Izc0FIOrWpWfPntiwYUOp+UtO7bu7u+PevXt49OgRjIyM0KpVK8yePRs9e/ZUaPyVKRk7+8NNu6Qdbm5uuH//Pl68eAEzMzN88sknWL58ORwdHau0PtquqoY+t9qFMYajR49i2bJl4rHANTU10b17d5w6darU/CX5uH//fgwcOFDiNbqGVHk8evQIWVlZMDc3h56eXq0cIYhUH2MM+fn5ePr0KYyNjat0xpEK0jrs1atX+OmnnxASEoJXr15VOr+VlRWSkpKU+hSaQCCAs7NzuaNXldefanXQdlU19LnVTowxnDlzBsuWLUNsbGyF89ZEPgK0bckTYwyPHz9GVlYW36EQFWBsbAwLC4sq/XChgpQgNzcXM2fOxJYtW/gORWFKRoaRB9quqoY+t9rvp59+wtSpUyudT575CNC2VRMEAoFKDyVNap6mpma1flhqyDEWoqIMDQ3Ro0ePOlWQvj92NiGkZkg7kgzlo/JTV1dX6rNjRPVRQUoAQOrrPaKjo9GtW7cajqbqpB3Lnu6oJ6TmSZtnlI+EEDplTwBUfSx7ZcNHO2i7qhr63Go/vvYrtG0RonqoH1ICQHQ6Zv369QBQ6mLkkuchISFKXYwCtacdhNQGlI+EEGlRQUrEBg4ciP3798PKykpiurW1dZldsyir2tIOQmoDykdCiDTolD0pRdox4JWdotpB21XV0OdWtyhyv0LbFiGqh25qIqWoq6vLtQsWvtSWdhBSG1A+EkIqQqfsCSGEEEIIr6ggJYQQQgghvKKClBBCCCGE8IoKUkIIIYQQwisqSAkhhBBCCK+oICWEEEIIIbyigpQQQgghhPCKClJCCCGEEMIrKkgJIYQQQgivqCAlhBBCCCG8ooKUEEIIIYTwigpSQgghhBDCKypICSGEEEIIr1SmIF2+fDnc3Nygp6cHY2NjvsMhpE6jfCSEECJPKlOQFhYWYsiQIZg0aRLfoRBS51E+EkIIkScNvgOQ1pIlSwAAYWFh/AZCCKF8JIQQIlcqc4SUEEIIIYTUTipzhLQqCgoKUFBQIH6enZ0NAMjJyeErJFILlWxPjDGeI1FulI9EUSgnCVE9vBakc+bMwcqVKyuc5/bt22jWrFmVlh8UFCQ+tfg+GxubKi2PkIrk5ubCyMiI7zCqjPKR1DaqnpOE1CUc4/En5LNnz/DixYsK52ncuDG0tLTEz8PCwhAQEICsrKxKl//hERmhUIiXL1/C1NQUHMdVOe6K5OTkwMbGBg8ePEC9evVqZB2KQO2QHmMMubm5aNSoEdTUVPcqGMpH5UXtkE1tyUlC6hJej5CamZnBzMysxpavra0NbW1tiWmK6qKmXr16Kv3FUYLaIZ3acBSG8lH5UTukVxtykpC6RGWuIc3IyMDLly+RkZEBgUCAxMREAICTkxMMDAz4DY6QOobykRBCiDypTEG6aNEihIeHi5+3bdsWABATE4MePXrwFBUhdRPlIyGEEHlSmYtrwsLCwBgr9VC2Lz9tbW0sXry41KlJVUPtIBWhfFQsagchpLbj9aYmQgghhBBCVOYIKSGEEEIIqZ2oICWEEEIIIbyigpQQQgghhPCKClI52rhxI+zt7aGjo4OOHTvi0qVLfIcks7Nnz6J///5o1KgROI7DgQMH+A6pSoKCgtC+fXsYGhrC3NwcAwYMQHJyMt9hEQVT9ZykfCSE1BVUkMrJ3r17MX36dCxevBjXrl1D69at0bt3bzx9+pTv0GSSl5eH1q1bY+PGjXyHUi1xcXHw8/NDfHw8Tp48iaKiIvTq1Qt5eXl8h0YUpDbkJOUjIaSuoLvs5aRjx45o3749NmzYAEA0LKKNjQ2mTJmCOXPm8Bxd1XAch6ioKAwYMIDvUKrt2bNnMDc3R1xcHLp168Z3OEQBaltOUj4SQmozOkIqB4WFhbh69So8PDzE09TU1ODh4YGLFy/yGBkpkZ2dDQAwMTHhORKiCJSTyo3ykRDyISpI5eD58+cQCARo2LChxPSGDRvi8ePHPEVFSgiFQgQEBKBLly5o0aIF3+EQBaCcVF6Uj4SQsqjM0KGEVJWfnx9u3bqF8+fP8x0KIXUe5SMhpCxUkMpBgwYNoK6ujidPnkhMf/LkCSwsLHiKigCAv78/jhw5grNnz8La2prvcIiCUE4qJ8pHQkh56JS9HGhpacHFxQWnT58WTxMKhTh9+jQ6d+7MY2R1F2MM/v7+iIqKwpkzZ+Dg4MB3SESBKCeVC+UjIaQydIRUTqZPnw5vb2+4urqiQ4cOCAkJQV5eHsaMGcN3aDJ5/fo17t69K36empqKxMREmJiYwNbWlsfIZOPn54fdu3fj4MGDMDQ0FF83aGRkBF1dXZ6jI4pQG3KS8pEQUmcwIjc//fQTs7W1ZVpaWqxDhw4sPj6e75BkFhMTwwCUenh7e/MdmkzKagMAFhoayndoRIFUPScpHwkhdQX1Q0oIIYQQQnhF15ASQgghhBBeUUFKCCGEEEJ4RQUpIYQQQgjhFRWkhBBCCCGEV1SQEkIIIYQQXlFBSgghhBBCeEUFKSGEEEII4RUVpIQQQgghhFdUkNZhPj4+GDBgAN9hEEJA+UgIqdtoLPtaiuO4Cl9fvHgx1q9fDxqoi5CaR/lICCEVo6FDa6nHjx+L/793714sWrQIycnJ4mkGBgYwMDDgIzRC6hzKR0IIqRidsq+lLCwsxA8jIyNwHCcxzcDAoNQpwh49emDKlCkICAhA/fr10bBhQ2zduhV5eXkYM2YMDA0N4eTkhD///FNiXbdu3YKnpycMDAzQsGFDjBo1Cs+fP1dwiwlRXpSPhBBSMSpIiYTw8HA0aNAAly5dwpQpUzBp0iQMGTIEbm5uuHbtGnr16oVRo0YhPz8fAJCVlYVPP/0Ubdu2xZUrV3Ds2DE8efIEQ4cO5bklhKg+ykdCSF1BBSmR0Lp1ayxYsABNmjTB3LlzoaOjgwYNGsDX1xdNmjTBokWL8OLFC/z9998AgA0bNqBt27ZYsWIFmjVrhrZt22LHjh2IiYnBnTt3eG4NIaqN8pEQUlfQTU1EQqtWrcT/V1dXh6mpKVq2bCme1rBhQwDA06dPAQA3btxATExMmde/3bt3Dx999FENR0xI7UX5SAipK6ggJRI0NTUlnnMcJzGt5G5hoVAIAHj9+jX69++PlStXllqWpaVlDUZKSO1H+UgIqSuoICXV0q5dO0RERMDe3h4aGrQ5EcInykdCiKqia0hJtfj5+eHly5cYNmwYLl++jHv37uH48eMYM2YMBAIB3+ERUqdQPhJCVBUVpKRaGjVqhAsXLkAgEKBXr15o2bIlAgICYGxsDDU12rwIUSTKR0KIqqKO8QkhhBBCCK/oJzMhhBBCCOEVFaSEEEIIIYRXVJASQgghhBBeUUFKCCGEEEJ4RQUpIYQQQgjhFRWkhBBCCCGEV1SQEkIIIYQQXlFBSgghhBBCeEUFKSGEEEII4RUVpIQQQgghhFdUkBJCCCGEEF5RQUoIIYQQQnj1fzcIAV/Ql3mrAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_matched([ex_graphs.wrong_child(t) for t in [0, 1]], 'Incorrect Child')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Shifted Division Cases" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArIAAADXCAYAAADm37JAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABVCklEQVR4nO3de1yM6fsH8M80lc6TzlEph81ZCEvY9ivFYlmLRVT4Wocc0spiF1lsDot8Fzmtarccfkss1mGxpZwTWbtIbIpE61ApOk3374/ZRlNTzdTMPDN1vV+veWmeeXqua8Zc99w9cz/3zWOMMRBCCCGEEKJhtLhOgBBCCCGEkLqgjiwhhBBCCNFI1JElhBBCCCEaiTqyhBBCCCFEI1FHlhBCCCGEaCTqyBJCCCGEEI1EHVlCCCGEEKKRqCNLCCGEEEI0EnVkCSGEEEKIRqKOLCGEELGHDx+Cx+MhIiKC61QIIaRW1JElhHAqPz8fy5Ytw6BBg2BmZiZ3Jyo4OBg8Hk/qbdu2bcpLXIVqeo48Hg9Pnz7lOkVCCOGENtcJEEIat+fPn+Obb76Bg4MDunTpgri4uDodJywsDEZGRhLbevXqpYAM1Ye05wgApqamqk+GEELUAHVkCSGcsrW1RVZWFmxsbHDt2jX06NGjTscZNWoULCwsZNq3oKAAhoaGdYrDJXmeo7xKS0tRVlamlGMTQoiy0NACQginmjRpAhsbG6UdPyIiAjweD+fOncPMmTNhZWUFOzs7AEB6ejpmzpwJZ2dn6Ovrw9zcHKNHj8bDhw+lHuP8+fOYM2cOLC0tYWpqimnTpqG4uBg5OTnw8fFB06ZN0bRpUyxYsACMMYljlJWVITQ0FB06dICenh6sra0xbdo0vHr1SmHPtbi4GEuXLkX37t0hEAhgaGiIfv36ITY2VmK/8nGw3333HUJDQ9GqVSs0adIEt2/frnLM8PBw8Hg83Lhxo8pj3377Lfh8PjIzMxX2HAghRB50RpYQ0iC8fPlS4j6fz0fTpk3F92fOnAlLS0ssXboUBQUFAIDExERcvHgRY8eOhZ2dHR4+fIiwsDC4u7vj9u3bMDAwkDjm7NmzYWNjg+XLl+Py5cvYsWMHTE1NcfHiRTg4OODbb7/F8ePHsW7dOnTs2BE+Pj7i3502bRoiIiIwadIkzJkzB2lpadi8eTNu3LiBCxcuQEdHR+7nCADa2trioQV5eXnYtWsXxo0bh6lTp+L169f44Ycf4OXlhatXr8LFxUXid8PDw1FYWIjPP/8cTZo0gZmZWZWzsqNGjYK/vz+io6PRtWtXiceio6Ph7u6O5s2b15o7IYQoBSOEEDWRmJjIALDw8HCZf2fZsmUMQJVbixYtGGOMhYeHMwCsb9++rLS0VOJ337x5U+V4ly5dYgDYjz/+KN5WfgwvLy9WVlYm3t67d2/G4/HY9OnTxdtKS0uZnZ0d++CDD8TbEhISGAAWHR0tEevkyZNSt8v6HAEwZ2dnidhFRUUSv/vq1StmbW3NJk+eLN6WlpbGADATExOWnZ0tsX/5YxX/D8aNG8eaNWvGhEKheNv169fl/r8ihBBFozOyhJAG4eDBgzAxMRHf19fXl3h86tSp4PP5Etsq7lNSUoK8vDy0bt0apqamuH79OiZOnCix/5QpU8Dj8cT3e/XqhUuXLmHKlCnibXw+H66urkhKShJv+/nnnyEQCDBw4EA8f/5cvL179+4wMjJCbGwsxo8fL/dzBCAx1pfP54ufY1lZGXJyclBWVgZXV1dcv369yvE+/fRTWFpa1hrXx8cHe/fuRWxsLAYMGABAdDZWX18fn376aa2/TwghykIdWUJIg9C/f/8aL4RycnKqsu3t27cICQlBeHg4MjMzJca15ubmVtnfwcFB4r5AIAAA2NvbV9lecexramoqcnNzYWVlJTW37OzsavOuqLbnCACRkZFYv3497t69i5KSEvF2ac9f2jZpBg4cCFtbW0RHR2PAgAEoKyvD3r17MXz4cBgbG8t0DEIIUQbqyBJCGoXKZ2gB0ZjX8PBwBAQEoHfv3hAIBODxeBg7dqzUK/grn9GtaXvFTnFZWRmsrKwQHR0t9fdlOSsqi6ioKPj5+WHEiBEICgqClZUV+Hw+QkJC8ODBgyr7S3tNpOHz+Rg/fjx27tyJrVu34sKFC3jy5AkmTJigkLwJIaSuqCNLCGm0Dhw4AF9fX6xfv168rbCwEDk5OQqN06pVK5w5cwZubm4ydx7r4sCBA2jZsiViYmIkhkAsW7as3sf28fHB+vXrcfToUZw4cQKWlpbw8vKq93EJIaQ+aPotQkijxefzq0yT9f3330MoFCo0zpgxYyAUCrFixYoqj5WWliqs41x+Zrjic7py5QouXbpU72N37twZnTt3xq5du3Dw4EGMHTsW2tp0LoQQwi1qhQghnNu8eTNycnLw5MkTAMDRo0fx+PFjAKKv/8vHoira0KFD8dNPP0EgEKB9+/a4dOkSzpw5A3Nzc4XG+eCDDzBt2jSEhIQgOTkZnp6e0NHRQWpqKn7++Wds2rQJo0aNqvU4Bw4ckLqy18CBA2FtbY2hQ4ciJiYGn3zyCYYMGYK0tDRs27YN7du3R35+fr2fh4+PD+bPnw8ANKyAEKIWqCNLCOHcd999h/T0dPH9mJgYxMTEABB1mJTVkd20aRP4fD6io6NRWFgINzc3nDlzRilfmW/btg3du3fH9u3bsXjxYmhra8PR0RETJkyAm5ubTMeYMWOG1O2xsbGwtraGn58fnj59iu3bt+PUqVNo3749oqKi8PPPP9d56d+KvL298eWXX6JVq1bo2bNnvY9HCCH1xWOVv1cjhBBCpHj+/DlsbW2xdOlSLFmyhOt0CCGExsgSQgiRTUREBIRCYZX5dQkhhCs0tIAQQkiNfv/9d9y+fRurVq3CiBEj4OjoyHVKhBACgIYWEEIIqYW7uzsuXrwINzc3REVFoXnz5lynRAghAKgjSwghhBBCNBSNkSWEEEIIIRqJOrKEEEIIIUQjUUeWEEIIIYRoJOrIEkIIIYQQjUQdWUIIIYQQopEa1TyyZWVlePLkCYyNjcHj8bhOhzRCjDG8fv0azZo1g5YW/R1JNUnUAdUlIZqrUXVknzx5Ant7e67TIASPHj2CnZ0d12lwjmqSqBOqS0I0T6PqyBobGwMQNVYmJiYcZ0Mao7y8PNjb24vfi40d1SRRB1SXhGiuRtWRLf/q0sTEhD40Cafoa3QRqkmiTqguCdE8NBiIEEIIIYRoJOrIEkIIIYQQjUQdWUIIIYQQopGoI0sIIYQQQjQSdWQJIYQQQohGoo4sIYQQQgjRSNSRJYQQQgghGok6soQQQgghRCNRR1aDxcfHY9iwYWjWrBl4PB4OHz4s8ThjDEuXLoWtrS309fXh4eGB1NRUleVQUlKCL7/8Ep06dYKhoSGaNWsGHx8fPHnyRCXxK5s+fTp4PB5CQ0NVGv/OnTv4+OOPIRAIYGtrC0C0khUhysB1u8B1m1BbDpVNnz4dAoFAofEJIapDHVkNVlBQgC5dumDLli1SH1+7di3+97//Ydu2bbhy5QoMDQ3h5eWFwsJCleTw5s0bXL9+HUuWLMH169cRExODlJQUfPzxxyqJX9GhQ4dw+fJlNGvWTGGxZYn/4MED9O3bF23btkVcXBwuXLgAANDT01NoHoSU47pd4LpNqC2HisrbhfI/MAkhGog1Irm5uQwAy83N5ToVhQPADh06JL5fVlbGbGxs2Lp168TbcnJyWJMmTdjevXtVkoM0V69eZQBYenq6yuI/fvyYNW/enP3555+sRYsWbOPGjQqPXV38zz77jE2YMEF8vyG/B+uCXg/l4rpd4LpNqCmHiu2Cg4MDvQ8J0VB0RraBSktLw9OnT+Hh4SHeJhAI0KtXL1y6dImzvHJzc8Hj8WBqaqqSeGVlZZg4cSKCgoLQoUMHlcSsGPvXX3/Fe++9By8vL1hZWeE///mPSnMgpCJ1bBdU3SYA3LYLhBDFoo5sA/X06VMAgLW1tcR2a2tr8WOqVlhYiC+//BLjxo2DiYmJSmKuWbMG2tramDNnjkriVZSdnY38/HysXr0agwYNwm+//YahQ4cCAM6fP6/yfAhRt3aBizYB4LZdIIQoljbXCZDGoaSkBGPGjAFjDGFhYSqJmZSUhE2bNuH69evg8XgqiVlRWVkZAGD48OGYN28eAKBly5ZYvnw5du/ejY8++kjlORGiLrhoEwDu2wVCiGLRGdkGysbGBgDw7Nkzie3Pnj0TP6Yq5R9Y6enpOH36tMrOvCQkJCA7OxsODg7Q1taGtrY20tPT8cUXX8DR0VHp8S0sLKCtrY327dtXeezx48dKj09IZerSLnDVJgDS24WMjAwAQKdOnVSWByFEMeiMrIYQCoGEBCArC7C1Bfr1A/j86vd3cnKCjY0Nzp49CxcXFwBAXl4erly5ghkzZig9frnyD6zU1FTExsbC3Nxc7th1zWHixIkSYwEBwMvLCxMnTsSkSZOUHl9XVxc9evRASkpKlcfs7e3ljk9IZZrYLnDZJgDS2wVPT09kZWUhJiamzrkQQrhBHVkNEBMDzJ0LVDyJZ2cHrF6djw4d7ou3paWlITk5GWZmZnBwcEBAQABWrlyJNm3awMnJCUuWLEGzZs0wYsQIhcTftAnw9MzH/fvSc7C1tcWoUaNw/fp1HDt2DEKhUDwOz8zMDLq6ukp/DSp/SOro6MDGxgbOzs4KeQ1qix8UFITPPvsM/fv3x4cffiiez/K///2vXPEJqUxd24Wa4quiTaitXaquXQCANm3ayPMSEELUAdfTJqiSJk71c/AgYzweY4DkTbQtlgGocvP19WWMiabaWbJkCbO2tmZNmjRhAwYMYCkpKQqLz+Mxtnx59TmkpaVJfQwAi42NVclrUFldpt+qb/wffviBtW7dmunp6bFOnTpp3HtQmTSxJtWBOrcLNcVXRZtQW7skDU2/RYjm4jHGmIL7xmorLy8PAoEAubm5Kh2TVVdCIeDoKHnGobLmzYHbt2X7mr8u8du1A2padEeZ8dUhh9ri83iis0BpabLF17T3oLLR6yG/xt4uKLomAXofEqLJaGiBGktIqPnDCgAyMwEuV1fkOj7XOTAGPHok+r9yd+cmB9K4ULtQM6pJQhoX6siqsawsrjN4R0enGF99FQIAWLVqEUpKZB/L1lByqCm+Ov1fkYZNnd5rVJOEEK5RR1aNyXpG4/hxoH9/xcePjwfeTXXKQ06OQPyzKuKrQw6yxqel2omqlJTIth/XNcF1fKpJQhoHGiOrpq5cAcaPB/7+u/p96jIWTB7lY/EyM0Vf16k6vjrkoOj4mvQeVAV6PWTHGLBrFxAQALx5U/1+mlYT6hCf3oeEaC5aEEHNCIXAypWAm5uoE2thIdpeeQGa8vuhocrrRPL5oqlsuIqvDjlwHZ8QAHjxAvj0U+Dzz0Wd2PJ5+xtjTXAdnxCiXqgjq0YyMoAPPwSWLBF1aMeOBVJTgYMHRVcBV2RnBxw4AIwcqdycRo4UxeEqvjrkwHV80ridPQt07gwcOgTo6ADr1gHJyY27XeA6PiFEfdDQAjWxfz8wbRqQmwsYGQFbtgATJ747w1DXlbUUpbCwBFu3RqC4GOjRww/u7joqP+PBdQ6KiK/O70Eu0OtRveJi4Ouvge++E32F7uwM7NkDdOv2bp/G3i4oKj69DwnRXHSxF8devwZmzwYiI0X3338fiIoCWrWS3I/P53YqGS0thtevRRM39uvHOPnajuscuI5PGo+UFNEY+evXRfenTQPWrwcMDSX3a+ztAtfxyTtCoRAlsl6JSBolHR0d8JVQpBrVkY2Pj8e6deuQlJSErKwsHDp0SO5lFdVJxQu6tLSAr74SDSv4d7VEQtReQ6tJrlW+oMvMDPjhB4BeUqKuGGN4+vQpcnJyuE6FaABTU1PY2NiAV3mAez1oVEe2oKAAXbp0weTJkzFSgwdBCYVASAgQHCz62cFBdBa2Xz+uMyNEPg2lJtXBixfA1KmisbAAMGAA8OOPQLNm3OZFSE3KO7FWVlYwMDBQaAeFNByMMbx58wbZ2dkAAFsFzo+nUR3ZwYMHY/DgwVynUS8ZGcCECaJxbYDogq6wMMDUlNO0CKmThlCT6uDsWcDHR7Tsqo4O8O23QGCg6JsaQtSVUCgUd2LNzc25ToeoOX19fQBAdnY2rKysFDbMgJpJFdq/X3T1cUKC6IKuyEjRxRvUiSWkcSouBhYsAAYOFHVinZ2By5eB+fOpE0vUX/mYWAMDA44zIZqi/L2iyPHUDbqpLCoqQl5ensRNkV6/fo2AgAC0aNEC+vr66NOnDxITE6XsB/j5ic6+5uaKLuhKThadgaFvYUhjouyaFAqFWLJkCZycnKCvr49WrVphxYoVUOXkLLK2CykpQO/eoum0GBNd0JWUJDkrASGagIYTEFkp473SoDuyISEhEAgE4pu9vb1Cj//f//4Xp0+fxk8//YRbt27B09MTHh4eyMzMFO9z5Qrg4iI6+6qlJbqYKz6+6qwEmsDAwIDzv7y5zoHr+JpO2TW5Zs0ahIWFYfPmzbhz5w7WrFmDtWvX4vvvv1donJrU1i4wBuzcKeqwXr8uuqDr0CFg27aqsxJoAq5rguv4hKhScHAwXFxcuE4DAODu7o6AgACu09DceWR5PF6tV0gXFRWhqKhIfD8vLw/29vYKmSvw7du3MDY2xi+//IIhQ4aIt3fv3h2DBw/G8uUr6YIuUkVDnq+S65oEgKFDh8La2ho//PCDeNunn34KfX19REVF1fv4tamtXZg3byVd0KWGGnJdKlNhYSHS0tLg5OQEPT09iccyMjLw/PlzleRhYWEBBwcHuX7n6dOnCAkJwa+//orHjx9DIBCgdevWmDBhAnx9fdX2j6Pg4GAcPnwYycnJUh9bvnx5jb9fly5fXFwcPvzwQ7x69QqmFcZCuru7w8XFBaGhoTIfq6b3TF1p1MVe8mrSpAmaNGmilGOXlpZCKBRW+Y/Q19fHmTPnER9PF3QRUpkyaxIA+vTpgx07duDevXt47733cPPmTZw/fx4bNmxQWsyKamoXjh49j/BwuqCLNHwZGRlwdnZGYWGhSuLp6ekhJSVF5s7s33//DTc3N5iamuLbb79Fp06d0KRJE9y6dQs7duxA8+bN8fHHH0v93ZKSEuio6RyZ8+fPx/Tp08X3e/Togc8//xxTp06Vun9xcTF0dXVVlZ7SaFQTmp+fj+TkZPFfImlpaUhOTkZGRobKczE2Nkbv3r2xYsUKPHnyBEKhEFFRUbh48RISE7Pogi7SKKhTTQLAwoULMXbsWLRt2xY6Ojro2rUrAgIC4O3trZL40tqFiAhRu/DHH1l0QRdpFJ4/f66yTiwgOssnz9nfmTNnQltbG9euXcOYMWPQrl07tGzZEsOHD8evv/6KYcOGiffl8XgICwvDxx9/DENDQ6xatQoAEBYWhlatWkFXVxfOzs746aefxL/z8OFD8Hg8ibOmOTk54PF4iIuLAyA6y8nj8XD27Fm4urrCwMAAffr0QUpKikSuq1evhrW1NYyNjTFlypQaX1cjIyPY2NiIb3w+H8bGxuL7Y8eOxaxZsxAQEAALCwt4eXnVmuvDhw/x4YcfAgCaNm0KHo8HPz8/8b5lZWVYsGABzMzMYGNjg+DgYJn/HxSG1VFRURG7e/cuKykpqesh5BYbG8sAVLn5+vrK9Pu5ubkMAMvNzVVIPvfv32f9+/dnABifz2fm5j0Y4M2Atuz99xm7f18hYdRCcXExCw8PZ+Hh4ay4uLhR5qCI+Ip+D1ZENcnY3r17mZ2dHdu7dy/7448/2I8//sjMzMxYRESEQo4vi8rtgoHBu3Zh2jTG8vNVlorSNYSaZEy5ddmQvX37lt2+fZu9fftWYntSUpLUdkGZt6SkJJlyfv78OePxeCwkJESm/QEwKysrtnv3bvbgwQOWnp7OYmJimI6ODtuyZQtLSUlh69evZ3w+n/3++++MMcbS0tIYAHbjxg3xcV69esUAsNjYWMbYu7azV69eLC4ujv3111+sX79+rE+fPuLf2b9/P2vSpAnbtWsXu3v3Lvvqq6+YsbEx69Kli0y5t2jRgm3cuFF8/4MPPmBGRkYsKCiI3b17l929e7fWXEtLS9nBgwcZAJaSksKysrJYTk6O+HgmJiYsODiY3bt3j0VGRjIej8d+++23anOq7j1TH3IPLXjz5g1mz56NyH/XVL137x5atmyJ2bNno3nz5li4cKG8h5SZu7u7Sq8+rk2rVq1w7tw5xMUVwNc3DxkZtgA+Q+vWLREf37BW6GKMIT09XfxzY8yB6/jVoZp8JygoSHxWFgA6deqE9PR0hISEwNfXVyU5tGrVCnFx57BlSwEWLMjDmze20NX9DJ06tcS2bSpJQWW4rgmu4xPNc//+fTDG4OzsLLHdwsJCfLbT398fa9asET82fvx4TJo0SXx/3Lhx8PPzw8yZMwEAgYGBuHz5Mr777jvx2UtZrVq1Ch988AEA0TdKQ4YMQWFhIfT09BAaGoopU6ZgypQpAICVK1fizJkz9Trb3aZNG6xdu1Z8/+HDhzXuz+fzYWZmBgCwsrKSGCMLAJ07d8ayZcvEx968eTPOnj2LgQMH1jlHecn9xdaiRYtw8+ZNxMXFSYwD8/DwwP79+xWanDoRCoG4OGDvXtG/QqHotnIl4OFhiIwMW9jZvYKR0SkEBQ1vUJ1Yot6oJt/V5Js3b6BV6ft6Pp+PsrIyleXw4gXw6afA7NmGePvWFv37v4Ke3il8/vlwpeRACKm/q1evIjk5GR06dJC4IBUAXF1dJe7fuXMHbm5uEtvc3Nxw584dueN27txZ/HP5alflq1/duXMHvXr1kti/d+/ecseoqHv37vX6/coq5g+InkN5/qoi9xnZw4cPY//+/Xj//fcl5gPr0KEDHjx4oNDk1EVMDDB3LvD48bttNjaAjs4pPHrEADjD3f0+nj8PQvPmbSX+ciNE2agmRezsgM6dh2HVqlVwcHBAhw4dcOPGDWzYsAGTJ09WSQ4WFkBh4Snk5zNoaztj0qT7uHo1CO3aUbtAiDpo3bo1eDxelbGoLVu2BPBu9amKDOWcF6/8j+mK3xJUtwBAxQvHyttvZf3hDVR9LvLkKk3lC994PJ5S85dG7jOy//zzD6ysrKpsLygoaJCTIsfEAKNGSX5YAcDTp8CjR7ng8fyhrd0Wd+/64IMP+uLUqVNqe0UjaZioJkUyM4G4uO/h4jIKM2fORLt27TB//nxMmzYNK1asUEkOz58D+fm54PP9weO1xdGjPujbl9oFQtSFubk5Bg4ciM2bN6OgoKBOx2jXrh0uXLggse3ChQto3749AMDS0hIAkJWVJX5c2nRZssS5cuWKxLbLly/LfZyayJJr+cwGQqFQobEVRe4zsq6urvj1118xe/ZsAO/+gti1a1e9T3mrG6FQdMal+qFXY2BjMwaPHgEKWjKYELlRTYqIthkjOTkUt2+HStRkSYnopqgcZs+uvV1IT6d2gRB1tHXrVri5ucHV1RXBwcHo3LkztLS0kJiYiLt379b69XtQUBDGjBmDrl27wsPDA0ePHkVMTAzOnDkDQHRW9/3338fq1avh5OSE7OxsfP3113LnOXfuXPj5+cHV1RVubm6Ijo7GX3/9JT57rAiy5NqiRQvweDwcO3YMH330EfT19WFkZKSwHOpL7jOy3377LRYvXowZM2agtLQUmzZtgqenJ8LDw8XTUjQUCQlVz7hUlpX1br7YxiYsLAydO3eGiYkJTExM0Lt3b5w4cUJl8YODg8Hj8SRubdu2VVl8AHB0dKySA4/Hg7+/v8pyoJqUlJkJCASi6e+UcRMIRHPB1pZDY20XKlq9ejV4PJ7KV//JzMzEhAkTYG5uDn19fXTq1AnXrl1TaQ5EfbVq1Qo3btyAh4cHFi1ahC5dusDV1RXff/895s+fX+s3OCNGjMCmTZvw3XffoUOHDti+fTvCw8Ph7u4u3mf37t0oLS1F9+7dERAQgJUrV8qd52effYYlS5ZgwYIF6N69O9LT0zFjxgy5j1Ob2nJt3rw5li9fjoULF8La2hqzZs1SeA71IfcZ2b59+yI5ORmrV69Gp06d8Ntvv6Fbt264dOkSOnXqpIwcOVPhTDt0dIrx1VchAIBVqxahpERX6n4NWeWvRu3s7LB69Wq0adMGjDFERkZi+PDhuHHjBjp06KCSHDp06CD+KxgAtLWVu8ZH5fiJiYkSX7f8+eefGDhwIEaPHq3UPCqimqxak6pC7ULVmiiXmJiI7du3V7kYRNnxX716BTc3N3z44Yc4ceIELC0tkZqaiqZNmyo1D/KOhYUF9PT0VLoggoWFhVy/Y2tri++//77W5aurmw1jxowZNXYq27Vrh4sXL1Z7LGkzvri4uFTZtnjxYixevFhiW8UZFWpSeUaC8jls5c0VAJYsWYIlS5bUerzDhw/LlJsi1elTv1WrVti5c6eic1E7/15A+C8ecnIE4p+r369h0tXVrVJMFSeNBkTTiISFheHy5ctK6chKy0FbWxs2NjYKjyVr/PLxReVWr16NVq1aiadTURWqScmaPH4c6N9fOTnExwMffVR7Do21XQBEC2V4e3tj586ddToTVZ/4a9asgb29PcLDw8XbnJyclJYDqcrBwQEpKSlqvUQtaTjk7sjWtmJPQ3oz9esnuhI6MxMoKdFBaGhAlX34fEDJJwE1glAoxM8//4yCggKVjstMTU1Fs2bNoKenh969eyMkJISz92BxcTGioqIQGBio0ousqCbf4fFEj3t6Km98qqdn7e2Cnh7Qpo1y4msCf39/DBkyBB4eHkrtyEpz5MgReHl5YfTo0Th37hyaN2+OmTNnVrtMJ1EOBweHBtX2EPUldxesfExgddT1qra64POBTZtEVyfzeNIv7hAKAXd3YOlSYPHixtepvXXrFnr37o3CwkIYGRnh0KFD4is3la1Xr16IiIiAs7MzsrKysHz5cvTr1w9//vknjI2NVZJDRYcPH0ZOTo7E8n2qQDUpUv4ShIYq9yIrWdqFwkKga1dg925g6FDl5aKO9u3bh+vXryMxMZGT+H///TfCwsIQGBiIxYsXIzExEXPmzIGurq7KFsUghKiQvEuBJScnS9wSExPZjh07WNu2bdnBgwfrudCYctV1GcKDBxmzs2NM9JElutnbM/bjj4yNH/9um5sbY2lpysmdayUlJSw6OppFR0dLLIFaVFTEUlNT2bVr19jChQuZhYUF++uvv1SaQ7lXr14xExMTtmvXLk7ie3p6sqFDh9Z4DGUshUk1+a4mVfl0q8th40bGOnd+t83fn7E3b1SXlypVromMjAxmZWXFbt68Kd7ngw8+YHPnzlVJfMYY09HRYb1795bYb/bs2ez999+v9ji0RG3dKGO5UdKwqcUStV26dKmyzdXVFc2aNcO6deswcuTIeneu1c3IkcBHH5Vg69YIFBcDPXr4wd1dB3w+MHEiMHgwMHMmcOEC0KULsG0bMG4c11krVllZGVJTU8U/l9PV1UXr1q0BiFYMSUxMxKZNm7B9+3aV5VDO1NQU7733Hu7fv6/w2LXFT09Px5kzZxATE6OU2DWhmpSsSXXIYcYMYNEiYONGYMsWIDZWtPqXkq97UrnKNZGUlITs7Gx069ZNvI9QKER8fDw2b96MoqIi8BX4nyStJm1tbat8K9SuXTscPHhQYXEJIepD7um3quPs7MzZV0mqoKXF8Pr1ExQVPUG/fkziA3PCBODmTaB3byAvDxg/XtTBzcvjLl+ulJWVVVneT1Xy8/Px4MED8TJ/qhQeHg4rKysMGTJE5bGr05hrkuscmjQBNmwATp4UrQJ4+zbQo4do2IOKF71RqQEDBuDWrVtITk4W31xdXeHt7Y3k5GSFdmKr4+bmVmXVpnv37qFFixZKj00IUT25O7J5eXkSt9zcXNy9exdff/012jTiqxucnERXMy9bBmhpAVFRgIsLcOkS15kpRsVxlgkJCRAKhVi0aBHi4+Px8OFD3Lp1C4sWLUJcXBy8vb1VkkNgYCDOnTuHhw8f4uLFi/jkk0/A5/MxTkmnw6W9BoCo8x4eHg5fX1+lT/8lDdWk+vLyAv74QzROtrgYmDdPNOPB06dcZ6YYlWvCwMAAHTt2lLgZGhrC3NwcHTt2VHp8oVCIefPm4fLly/j2229x//597NmzBzt27FDp3M6EENWRuyNramqKpk2bim9mZmZo3749Ll26hLCwMGXkqDG0tYHgYFGH1tERSEsTXWX9zTdAaSnX2dVdTEyMxFd1gwcPhqOjI65evQofHx84OztjwIABSExMxKlTpzBw4ECV5LBt2zZ88skncHZ2xpgxY2Bubo7Lly9XmRJLWfEdHR3Fq7lkZGRg8uTJCo8rC6pJ9WZpCRw5AmzdKprN4NQp0RCDY8e4zqx+aqoJLuM/evQIhw4dwt69e9GxY0esWLECoaGhSvsDmxDCLblPH8XGxkrc19LSgqWlJVq3bs3J2Sh15OYGJCcD/v5AdLToLO1vv4nO0jo6cp2dfGJiYjBq1Kgq/7eZmZnIzMzEgQMHlD4Gs7ocCgsLUVhYqPQcanoNRo0ahQMHDlQ7abYqUE2qPx5PNG72gw9EQ49u3gSGDRO1EevWAfr6XGcoH1lqorwmq5uEXdnxb926pfC4hBD1I/ennKonetdUAoGo4zpokOSFYGFhog8yTSAUCjF37lypnbTybXPmzIGHh4fSxr4JhULMnj2bsxxqi1++/Obw4cNVMv5PGqpJzdG+PXDlimZfCMZ1u6AJNUlIOT8/P+Tk5IhXvHJ3d4eLiwtCQ0PrfExFHKMhkakje+TIEZkP+PHHH9c5mYZowgTRGVpvb9F4WW9v4MQJ0QeYiUn9jh0fH49169YhKSkJWVlZOHToEEaMGCF+PCYmBtu2bUNSUhJevnyJGzduwMXFRebjJyQk4HEtC9tnZmZCIBDUuI+ycZkDYwyPHj2CtbU1Xrx4UeX/oLr5XTdt2lRluT95UE1qrvILwby8AD+/dxeCrVkDzJkjGmNfH429XSivyX79+uHhw4dSXwM/Pz9ERkZykl9jkZEBqGhhL1hYAPKuvVDxPaCjowMHBwf4+Phg8eLFSv0mKyYmptplnSuLi4vDhx9+iFevXsHU1LROx2gMZPrfqtgA1ITH4zWoydcrMzAwqNPvlV8ItnIlsGKF6EzthQuiYQf1WQSroKAAXbp0weTJk6V+tV5QUIC+fftizJgxdVrVJqvCYvElJSUIDg6ue7IKwHUONcX38fHBxo0bq2yv+BoCogbI39+/3p1LqkmRutakOuRQfiHY5Mmi8bLz5olmOYiIEM10UFeNqV2oKb61tTWCgoKqHXY0aNAg8TK2r1+/xnvvvaesNBudjAzA2Vm0MIgq6OkBKSnyd2bL3wNFRUU4fvw4/P39oaOjg0WLFknsV1xcDF1dXYXkamZmphbHaFAUNiOtBlCHSa/Pn2fM0VE0UTqfz9jy5YxJmVtfbgDYoUOHpD6WlpbGALAbN27IdcwdO3YwALXejh8/zvLz8xkAtnfvXpafn1/t7cmTJwwAO3r0aI37ld+OHz8ucw7S4nt7e7OhQ4fKFKs+8WNjY2v8Pyg3ZMgQzt+D6kQdapJrZWWMbd3KmJ6eqF2wsGDs6FHFHFvR7UJZWRlbtGhRvWpSVW1CbGxsta+Br68vGz58uPg+vQ/rprrJ7ZOSJBcKUcUtKUm+3Cu/BxhjbODAgez9998XP7Zy5Upma2vLHB0dGWOMZWRksNGjRzOBQMCaNm3KPv74Y5ZWYRWk0tJSNm/ePCYQCJiZmRkLCgpiPj4+EnEqLxBSWFjIFixYwOzs7Jiuri5r1aoV27Vrl7g+K958fX2lHuPly5ds4sSJzNTUlOnr67NBgwaxe/fuiR8PDw9nAoGAnTx5krVt25YZGhoyLy8v9uTJE/leNAVQxoIICptHlsim/EIwb2/R8rbLlomWuH34kOPEKigrK8P69etrna6Gx+PB3t4enp6eMDQ0BADo6enB0NBQ6k1HRwfR0dEQCAR4//33q92v4s3T0xN2dnbVfkVfMQdp8bW1tZGQkAAnJyd069YN8+fPR2FhoUyx5Ynfr1+/Wl/XZ8+e4dSpU7XuRxqX8gvBkpJE4+ifP393Idjbt1xn905ubi68vb0REhJS43611aSq2oTaajIuLg5WVlZwdnbGvHnz6vaikAZFX18fxcXFAICzZ88iJSUFp0+fxrFjx1BSUgIvLy8YGxsjISEBFy5cgJGREQYNGiT+nfXr1yMiIgK7d+/G+fPn8fLlSxw6dKjGmD4+Pti7dy/+97//4c6dO9i+fTuMjIxgb28vXsQjJSUFWVlZ2LRpk9Rj+Pn54dq1azhy5AguXboExhg++ugjlJSUiPd58+YNvvvuO/z000+Ij49HRkYG5s+fr4iXjXN1GghSUFCAc+fOISMjQ/wfWG7OnDkKSawhK78QbPBg0QeYOl0I9uTJE/j6+uLMmTMAgJ49e+Lq1avg8XgSF1eUf4iEhobWekHFsWPHMHbsWLx58wa2trY4ffo0LCwsZMqHz+dj06ZNGDVqVJ1yGDRoEEaOHAknJyc8ePAAixcvxuDBg3Hp0iWZLgSpb/yKIiMjYWRkhJycnFr3lRfVpOarfCHY1q1AXBywZ4+ofeDS+fPnMWHCBKSnp4PP52PMmDHYu3dvnWuCyzYBqNouLFy4EAAa9DAcUj3GGM6ePYtTp05h9uzZ+Oeff2BoaIhdu3aJhxRERUWhrKwMu3btEr/PwsPDYWpqiri4OHh6eiI0NBSLFi0SD2fZtm1bjScv7t27h//7v//D6dOn4eHhAQBo2bKl+PHyIQRWVlYSY2QrSk1NxZEjR3DhwgX06dMHABAdHQ17e3scPnwYo0ePBiAahrNt2za0atUKADBr1ix88803dX3J1Iu8p3CvX7/ObGxsmImJCePz+czS0pLxeDxmaGjInJycFHaqWBnq8/VRcXExCw8PZ+Hh4ay4uFhhOf39N2O9e7/7emTCBMbq8u0WFPAV4uHDh5m5uTkDwPT19dn27dtZWVkZO3jwILOzs5P4isPe3p4drLSwfXU55Ofns9TUVHbp0iU2efJk5ujoyJ49eybX85Mlh5peg3IPHjxgANiZM2dUHt/Z2Zl9/vnnCv8Kk2pSsTWpDjmcOsWYjY2oTdDVZWzDBsaEQvmPU992oaSkhC1ZsoRpaWkxAKxly5bs0qVLjLH61YSq2oTaXoNyycnJDAD75Zdf5MqhsdP0oQV8Pp8ZGhoyXV1dpq2tzXx8fFh+fj7z9fVlHh4eEvvPnz9fvH/FG4/HY1u3bmU5OTkMADt37pzE740YMaLaoQX79+9nfD6/2rajfMjaq1evJLZXPMYvv/zCtLW1WWlpqcQ+Li4ubPny5Ywx0dACAwMDicdjYmIYj8eT5aVSKGUMLZD7jOy8efMwbNgwbNu2DQKBAJcvX4aOjg4mTJiAuXPn1qErrRkYY0hPTxf/rCjlF4KtWiVaOKH8QrCoKODfP66U7s2bNwgMDMT27dsBAF27dsWePXvQtm1bAMDIkSMxfPhwJCQkICsrC7a2tujXr5/MU9sYGhqidevWaN26Nd5//320adMGP/zwQ5UB9TWpbw7lWrZsCQsLC9y/fx8DBgxQWfyEhASkpKTghx9+wI4dO+TKuTZUk4qtSXXIwdNTdCHYlCnA0aNAYKBoIYXwcEBVKzD//fff8Pb2xuXLlwGIvgL9/vvvYfLvdCv1qQl1ahMAwMnJSfycSePx4YcfIiwsDLq6umjWrJnEbAXlw+XK5efno3v37oiOjq5ynLouwqOvwgmkK89yUPnbDE0m9xjZ5ORkfPHFF9DS0gKfz0dRURHs7e2xdu1aLF68WBk5Nnja2qKxsgkJ71YE698fWL783YpgQqHoa8a9e0X/KuobsBs3bqBbt27iTmxQUBAuXbok7sS+wwfgDmDcv//WfX7GsrIyFBUV1eE365/D48eP8eLFC9jWqTdQ9/g//PADunfvjk6dOtUhbs2oJhsmS0vgl19qXhFMGe0CYww//fQTXFxccPnyZQgEAuzduxeRkZHiTuw7imkXuGwTANF0YQBgU5/pIojGKf+DysHBodYpt7p164bU1FRYWVmJ/wgrvwkEAggEAtja2uLKlSvi3yktLUVSUlK1x+zUqRPKyspw7tw5qY+XD2uoachLu3btUFpaKhH3xYsXSElJkVj5riGT+4ysjo4OtP6d6NDKygoZGRlo164dBAIBHj16pPAEG5M+fSRXBAsOBk6fFs1Fu2oVUHHqRjs7YPXqfHTocF+8LS0tDcnJyTAzM4ODgwNevnyJjIwMPHnyBIBowDggaqytrKywYcMGLF68GCUlJWjWrBl+/PFHqWcpY2KAuXOrxt+0CfD0zMf9+9JzMDc3x6pVq/Dxxx/D1tYWz58/x5YtW5CZmSketyOr6nKo6TUwMzPD8uXL8emnn8LGxgYPHjzAggUL0Lp1a3h5eSk9vsO/c8Hk5eXh559/xvr16+WKKSuqyYaruhXBZs4E+vYFFixQbLugp6eHmTNnYu/evQCAvn37IioqCi1atKiSW11qQhVtQm3tkrR24YsvvgAAub6lIY2Lt7c31q1bh+HDh+Obb76BnZ0d0tPTERMTgwULFsDOzg5z587F6tWr0aZNG7Rt2xYbNmyo8ZoIR0dH+Pr6YvLkyfjf//6HLl26ID09HdnZ2RgzZgxatGgBHo+HY8eO4aOPPoK+vj6MjIwkjtGmTRsMHz4cU6dOxfbt22FsbIyFCxeiefPmGD58uJJfFTUh71iEgQMHsujoaMYYY//9739Zz549WVRUFPPy8mI9e/ZU2JgHZajPeLyioiIWHBzMgoODWVFRkRKykxQVxZixcfXjgXg8xoDYKtNzoMIUHeHh4VIfDwwMZB4eHuL7I0aMYM+fP5eax8GD5bGqxufxGFu+vPoc3r59yz755BPWrFkzpqury2xtbdnHH3/Mrl69KtdrUVMONb0Gb968YZ6enszS0pLp6OiwFi1asKlTp7KnT5+qJH657du3M319fZaTk6OUaX6oJlVTk1znUFjI2Lx5NY8TrE+7MGnSJNaiRQsGgPH5fLZixYoq4+7K1bUmVNEm1NYuSWsXfH19FV6XjYGmj5GtPP1WbY9lZWUxHx8fZmFhwZo0acJatmzJpk6dKn7flJSUsLlz5zITExNmamrKAgMDa51+6+3bt2zevHnM1taW6erqstatW7Pdu3eLH//mm2+YjY0N4/F4tU6/JRAImL6+PvPy8pI6/VZFhw4dYnXoAtabMsbI8hiTbZCEUCgEn8/HtWvX8Pr1a3z44YfIzs6Gj48PLl68iDZt2mD37t3owvXltTXIy8uDQCBAbm6ulK/IalZcXCyedmbRokUKmxy5JvfvAx06AJUuQpfQvLloZSBZh4UdO3YMM2fOxMuXL6Cnp4+1a9di0qRJUqeyEQqBdu2Af0/cKCS+vLjOobb4PJ7oLFBammzx6/MerJob1aSqa1IdcjhxAhg6FCgrq34feWqitLQUISEhWLt2LRgrg6OjE3bv3o2ePXtK3b+h1SSg2LpsTAoLC5GWlgYnJyfo6emJt2vKgghE9ap7z9SHzEMLmjdvDj8/P0yePBmurq4ARF9jnjx5UiGJaKLaloKsr8ePa+7EAiHIzIyBQHAXgD6APgDWAHCu4XeG/nsTNTJz5ohudZWZKZpOjEtc5sAY8OiRaHyzu7tqY1NNSqfsuqxJSEgIYmJicPfuXejr66NPnz5Ys2YNnJ1rqkn56OvX3IkFwpCZGQaB4OG/9zsAWApgcDX7awNY8u9NNKf1f/5Tvxwba00SEQcHUcdSnZeoJQ2HzB1Zf39/REZGYt26dejTpw+mTJmCMWPGqMUSkapS+aq/2paCrK+Kq5vq6BQjKOg7AMC6dfNRUqIL4BwAfwA9AJQCWAzAE8BtAIZQJB2dYnz1lejM06pVi/6Nr1pc51BT/Eor0aoE1WTVmgSUX5c15XDu3Dn4+/ujR48eKC0txeLFi+Hp6Ynbt29XuQq6rmpvF+wArAbQBqJv1CMBDAdwA6JOreJQTZLqODhQ55KoiLxjEWJjY5mPjw8zNDRkJiYm7L///S+7fPmywsY6KJMylyEEap+rUF6xsbKNDTp+nLH8fMbS0rIZAHby5DmWn89YXp6QrVoVyrS1BQwwYDY2rdjRo7+z/Hwm0+348XcxdHSKWUDARhYQsJHp6BRLja+MG9c5yBr/39Uwa6WM9yDVZPWUUZfyyM4W1WTluSXrQ952IT+fsaZNm7ItW3ax/HzGHj9+xUaP9mOAAQMMWO/eHuz27fRGW5OM0RK1daWM8Y6kYVPGe6bOI31fv37Ndu7cydzc3BiPx2Pt27dn69evV1hiyqBpHdnSUsbs7KRf1FB+YYO9vWg/xhhLTU1lANitW7dYZmamzBd0KSq+MnCdg6LjK/M9SDVZFdcd2Yo1qSjyvCdLS0vZ3r17ma6uLvvrr79YQkKCzBd0KSK+MigjPnVk64Y6skReatWRrejYsWPMzMyMaWlpKeJwSqNpHVnG3l2dW7nRLt9WvoiNUChkQ4YMYW5ubuzQoUNSV+hSZnxl4joHRcZX1Qcm1aQIlx3ZijWpaLW9Jzds+IMZGhoyPp/PBAIBO3LkSLUrdCkjvibVJGPUka0r6sgSealVR7agoICFh4ez/v37My0tLdamTRsWEhKisMSUoT6NVUlJCYuOjmbR0dGspKSkyuPK/MA8eJCxFi1K2Pjx0Wz8+GimrV3C7O0lG+vp06czBwcHNn78ePFZ2K5du7I7d+4oJL6dneQHRuX4ysZ1DoqKr8wPTKrJqpTdka0ph+nTp7MWLVqwR48eKSV2Te1CUVERS01NZdeuXWPTp09n2tra4nbBx8dHIe+/hlKTjFFHtq6oI0vkpRZL1F68eBG7d+/Gzz//jNLSUowaNQorVqxA//795T2URikrK0Nqaqr4Z1UaORIYPLgMa9eK4p88WQZ393dTy8yaNQuHDh2CgYEB9uzZA0C0QteKFSvQpEkThcT/6KMSbN0ageJioEcPP7i76yhtyi11zIHr+DWhmlR9TdaWw6xZs3Ds2DHEx8fDzs5OKbFrbhd00apVK0RFRSE6OhqlpaXQ1dVFZGQkxo4dq7D4VJOEEK7J3JFdu3YtwsPDce/ePbi6umLdunUYN24cjI2NlZkf+VfFxrlfP9F9xhhmzZqFqKgovHnzBs+ePatxha760NJieP36yb/xGScfFlznwHX8yqgm1Q9jDLNnz8ahQ4cQFxcHJycnpcaT1i4AQE5ODmbMmIF9+/YBAAQCATw8PBTWiS3HdU1wHZ8Qwj0tWXdct24dBg0ahJs3b+LKlSv4/PPPOfnA3LJlCxwdHaGnp4devXrh6tWrKolbca3jhIQECIVC5OfnIzk5GcnJyQDeLYOYkZGhkvh+fn7YsWMH8vLyUFpaikGDBuH06dPo06ePwuMT9aMuNQlwU5fSagIAp3U5c+ZMREVFYc+ePTA2NsbTp0/x9OlTvH37VuGxpcUXCoWYMGEC2rZti3379kFLSwv9+vVDXl4epk2bppQcCCGESzJ3ZJ88eYKNGzeiY8eOysynRvv370dgYCCWLVuG69evo0uXLvDy8kJ2drZS48bExKB9+/bi+4MHD4ajoyM2bNiArl27omvXrgCAwMBAdO3aFUuXLlV6fGtra/z4448oLS0Vbz958iQ6dOiA/fv3KzQ+UU/qUJMAN3VZXU3GxMTg2rVrnNXltm3bkJubC3d3d9ja2opvyqhJafGbNm2K6OhoPHv2DIDoTKyuri5OnTqFgQMHKjwHQojiREREwNTUlOs0NI7MQwukTTyuahs2bMDUqVMxadIkAMC2bdvw66+/Yvfu3Vi4cKFSYsbExGDUqFHQ1pZ8qTIzMxEcHIyDBw8qddL16uK/ePECANCyZUv8+uuvaNu2rdJyIOpJHWoSUH1d1lSTo0aNwoEDB8BkW3lb4TmUL/V84MABTtqF169fAwDc3d3xyy+/0HKrhDO5ubl48+aNSmIZGBhAIOdScn5+foiMjMS0adOwbds2icf8/f2xdetW+Pr6IiIiQoGZ1uyzzz7DRx99pLJ4DYXcF3txpbi4GElJSVi0aJF4m5aWFjw8PHDp0iWlxBQKhZg7d67UD8XybXPmzIGHhwf4ShicJRQKMXv27Bo/lIuLi9GmTRuFxyZEFqquS65rsjyH6upSXdqFBw8eKGwlMULklZubi82bN0t8Y6hM2tramDVrltydWXt7e+zbtw8bN26Evr4+AKCwsBB79uyBAwfLkunr64vzILKTa2gBl54/fw6hUAhra2uJ7dbW1nj69KnU3ykqKkJeXp7ETR4JCQl4/PhxjftkZmZCIBDAyMhI4TeBQFDr6/748WMkJCTI9bxIw8B1TQLy16Wm16Ssdcl1u/Do0SNqFwhn3rx5o7JOLACUlpbW6exvt27dYG9vj5iYGPG2mJgYODg4iIcmAaJhe3379oWpqSnMzc0xdOhQPHjwQPz4w4cPwePxsG/fPvTp0wd6enro2LEjzp07J94nLi4OPB4Pv/76Kzp37gw9PT28//77+PPPP8X7VB5aEBwcDBcXF/z0009wdHSEQCDA2LFjxd+8AKJvYby9vWFoaAhbW1ts3LgR7u7uCAgIkPv10FQyd2Q7dOggntpJU4SEhEAgEIhv9vb2cv1+VoXFuktKShAcHIzg4GCUlJQoOtVa1RQ/S0WLihsYGMDAwEAlsdQ1B67jV0Q1yW1NqkMO1C5wH59otsmTJyM8PFx8f/fu3eJhUuUKCgoQGBiIa9eu4ezZs9DS0sInn3xSZdq/oKAgfPHFF7hx4wZ69+6NYcOGiYcBVtxn/fr1SExMhKWlJYYNG1Zj2/HgwQMcPnwYx44dw7Fjx3Du3DmsXr1a/HhgYCAuXLiAI0eO4PTp00hISMD169fr85JoHJmHFqxatQrTpk3DoUOHsH37dpiZmSkzryosLCzA5/PFFzGUe/bsGWxsbKT+zqJFixAYGCi+n5eXJ9cHp62trUz7HT9+XClzdsbHx8s0Xsbc3FzhsSvT1dVFUFCQ0uOocw5cx6+M65oE5K9LTa9JQPa65LpdkPW1qg+ua4Lr+ETzTZgwAYsWLUJ6ejoA4MKFC9i3bx/i4uLE+3z66acSv7N7925YWlri9u3bEhfbzpo1S7xvWFgYTp48iR9++AELFiwQ77Ns2TLxhZeRkZGws7PDoUOHMGbMGKn5lZWVISIiQjwjzcSJE3H27FmsWrUKr1+/RmRkJPbs2SOecjM8PBzNmjWr56uiWWQ+Iztz5kz88ccfePHiBdq3b4+jR48qM68qdHV10b17d5w9e1a8raysDGfPnkXv3r2l/k6TJk1gYmIicZNHv379YGdnJ76AozIejwd7e3t4enrC0NBQ4TdPT88a45f78ssvcffuXbmeG9F8XNckIH9danpNylKX6tIu7Nq1S+6hG4Q0NpaWlhgyZAgiIiIQHh6OIUOGwMLCQmKf1NRUjBs3Di1btoSJiQkcHR0BoMqUfhXbPG1tbbi6uuLOnTvV7mNmZgZnZ+cq+1Tk6OgoMa2ira2teEaYv//+GyUlJejZs6f4cYFAAGdnZxmffcMgc0cWAJycnPD777/j66+/xsiRI9G5c2d069ZN4qZMgYGB2LlzJyIjI3Hnzh3MmDEDBQUFVb4GUBQ+n49NmzYBQJUPjfL7oaGhSruoRJb4xsbGSE5ORrdu3bB9+3alX61N1AvXNQmoti65rkl1yKGm+OW0tLQQHR0NFxcXpV0MS0hDMXnyZERERCAyMhKTJ0+u8viwYcPw8uVL7Ny5E1euXMGVK1cAiC52VbbKs9PweDzOVjJUV3J1ZAEgPT0dMTExaNq0KYYPH17lpkyfffYZvvvuOyxduhQuLi5ITk7GyZMnq1xookgjR47EgQMH0Lx5c4ntdnZ2Sp9ip7b4Bw8eREpKCgYOHIi3b99i+vTp+OSTT/D8+XOF51FSUoKIiAhERERwOh6Ryxy4jl8dLmsSUH1dcl2T6pBDdfHt7e1x8OBBxMfHo0WLFkhLS0O/fv3wzTffKOXiG65rguv4pGEYNGgQiouLUVJSAi8vL4nHXrx4gZSUFHz99dcYMGAA2rVrh1evXkk9zuXLl8U/l5aWIikpCe3atat2n1evXuHevXtV9pFVy5YtoaOjg8TERPG23Nxc3Lt3r07H01RyTb+1c+dOfPHFF/Dw8MBff/0FS0tLZeVVrVmzZmHWrFkqjTly5EgMHz4cCQkJyMrKgq2tLfr166fUsz7yxD958iRCQ0OxaNEi/PLLL7h69Sp+/PFHeHh4KCwHxph4DBFXZ325zoHr+NKoQ00Cqq9LrmtSHXKoLf7Nmzcxc+ZM7NmzB8uWLcNvv/2GqKgo8deiisB1TXAdnzQMfD5f/PV+5fpt2rQpzM3NsWPHDtja2iIjI6Pa+bG3bNmCNm3aoF27dti4cSNevXpV5QzvN998A3Nzc1hbW+Orr76ChYUFRowYUae8jY2N4evri6CgIJiZmcHKygrLli2DlpZWrUOPGhKZO7KDBg3C1atXsXnzZvj4+CgzJ7XE5/Ph7u6ulvG1tLQQGBiI//znPxg3bhzu3r2LgQMH4osvvsCqVavQpEkT1SZLVIJqktuaVIccaoovEAgQHR2NwYMHY+bMmbhw4QK6dOmCbdu2Ydy4capNlBA1V914fS0tLezbtw9z5sxBx44d4ezsjP/9739S62716tVYvXo1kpOT0bp1axw5cqTKeNvVq1dj7ty5SE1NhYuLC44ePQpdXd06571hwwZMnz4dQ4cOhYmJCRYsWIBHjx5BT0+vzsfUNDJ3ZIVCIf744w/Y2dkpMx9SDy4uLkhKSsIXX3yBbdu2Yf369Th79iz27t1LK381QFSTRBYTJkxAnz59MGHCBFy6dAnjx4/H8ePHsWXLFlr5iyiFgYEBtLW1VboggrxTsNW2Ytfhw4fFP3t4eOD27dsSj0v7BqBdu3bi8bPV6du3r8TcsRX5+fnBz89PfL98ar2KAgICJOaINTY2RnR0tPh+QUEBli9fjs8//7zGPBoSmTuyp0+fVmYeREEMDAwQFhaGQYMGYcqUKeILwTZu3IjPP/+8UX3d0NBRTRJZtWzZEvHx8Vi5ciVWrFiBqKgoXLhwAdHR0dXO+kJIXQkEAsyaNUutl6htKG7cuIG7d++iZ8+eyM3NxTfffAMAKrk+Ql1ozBK1RD7Dhw9Hz5494evri9OnT2P69Ok4ceIEdu3aVeWrDkJIw6etrY3g4GAMHDgQ3t7e4gvBli5disWLF0Nbmz4OiOKUL3pClO+7775DSkqKeDrEhISERvU5L/esBURz2Nra4uTJk1i/fj10dXXxyy+/oHPnzjhz5oxS4q1evRo8Hk+lS+NlZmZiwoQJMDc3h76+Pjp16oRr166pLL5QKMSSJUvg5OQEfX19tGrVCitWrKALT4jacnNzw82bNzF+/HgIhUIsW7YM7u7uePjwoUKOHxwcDB6PJ3FT5dAmR0fHKvF5PB78/f1VlgNpXBwdHcEYg4uLS7X7uLu7gzEmsQStInTt2hVJSUnIz8/Hy5cvcfr0aXTq1EmhMdQddWQbuPILwa5cuYK2bdsiKysLAwcOxPz581FUVCTXsXR0dKrMaVcuMTER27dvR+fOnRWRtkw5vHr1Cm5ubtDR0cGJEydw+/ZtrF+/Hk2bNlVJfABYs2YNwsLCsHnzZty5cwdr1qzB2rVr8f333ystB0Lqq/xCsJ9++gnGxsbiC8H27t0r97GktQsdOnRAVlaW+Hb+/HlFpV5r/MTERInY5UNwRo8erbQcCCEcYo1Ibm4uA8Byc3O5ToUTBQUFbPr06QwAA8BcXFzYnTt36n3c169fszZt2rDTp0+zDz74gM2dO7f+ycrgyy+/ZH379lVJrOoMGTKETZ48WWLbyJEjmbe3t9T9G/t7sDJ6Pbj34MED1rt3b3G7MGHChHr9fyxbtox16dJFcQnW09y5c1mrVq1YWVlZtfvQ+7Bu3r59y27fvs3evn3LdSpEQyjjPUNnZBuR8gvBDh8+DHNzc4WtCObv748hQ4YodN5aWRw5cgSurq4YPXo0rKys0LVrV+zcuVOlOfTp0wdnz54VT0B98+ZNnD9/HoMHD1ZpHoTUVfmFYOXzT0ZFRdV7RbDU1FQ0a9YMLVu2hLe3d5WlPFWluLgYUVFRmDx5Ml3oqkT1+fwgjYsy3ivUkW2Ehg8fjlu3bilkRbB9+/bh+vXrCAkJUUKmNfv7778RFhaGNm3a4NSpU5gxYwbmzJmDyMhIleWwcOFCjB07Fm3btoWOjg66du2KgIAAeHt7qywHQuqr/EIwRawI1qtXL0RERODkyZMICwsTH+v169dKyr56hw8fRk5OjsSURkRxyod0qGp2AqL5yt8r1Q1TrAsea0R/SuXl5UEgECA3N5fmTwRQVlYmXhGsuLgYtra21a4IVlpaiv/7v/8DAIwZMwba2tp49OgRXF1dcfr0afHYWHd3d7i4uCA0NFTh+VbOwcDAAK6urrh48aJ4nzlz5iAxMVEp68tLew327duHoKAgrFu3Dh06dEBycjICAgKwYcMG+Pr6VjkGvQcl0euhfnJzc8UrggGii8OqWxFMWk1UlpOTgxYtWmDDhg2YMmWKQnOtLb6Xlxd0dXVx9OjRGo9D78O6y8rKQk5ODqysrGBgYEBnvolUjDG8efMG2dnZMDU1ha2trcKOTfOtNGLyrAhWVlaG1NRU8c8AkJSUhOzsbHTr1k28n1AoRHx8PDZv3oyioiKFLtdZOQdbW1u0b99eYp927drh4MGDCotZU3wACAoKEp+VBYBOnTohPT0dISEhUjuyhKg7eVYEk1YTlZmamuK9997D/fv3FZ5rTfHT09Nx5swZxMTEKDwuecfGxgYAkJ2dzXEmRBOYmpqK3zOKQh1ZInVFsN9//x179uypcdqcAQMG4NatWxLbJk2ahLZt2+LLL79U+przbm5uSElJkdh27949tGjRQqlxK3rz5g20tCRH6PD5/Go/1AnRFNJWBDtx4gQ2b94s11nL/Px8PHjwABMnTlRitlWFh4fDysoKQ4YMUWncxobH48HW1hZWVlYoKSnhOh2ixnR0dJTSL6COLAFQdUWwGzduSKwIJhQKxfsmJCTA3d0dxsbG6Nixo8RxDA0NYW5uXmW7IlTOYc6cOejXrx++/fZbjBkzBlevXsWOHTuwY8cOhceWFt/d3R3Dhg3DqlWr4ODggA4dOuDGjRvYsGEDJk+erJQcCFGlyiuC/fTTTzh//rx4RTBpNfHll19i2LBhaNGiBZ48eYJly5aBz+dXOZurCNLil/8hGR4eDl9fX1roQUX4fL7ST14QIg1d7EUkSLsQrFevXnB2dhbvM3jwYDg6Oqr0K7uYmBiJYQSDBw/G6NGjERQUhL1796Jjx45YsWIFQkNDlXKhlbT4jo6OGDhwIEaNGoWZM2eiXbt2mD9/PqZNm4YVK1YoPAdCuFDdhWBjx45Fu3btxPuV18Tly5cxbtw4ODs7Y8yYMTA3N8fly5dhaWmp0Lyqq8mYmBicOXMGGRkZ9AclIY0A/alKqihfESw0NBRffvklEhMTq1xhmJmZiVGjRuHAgQMYOXKkeHtcXJzC84mJicGoUaOqnFnJzMzE6tWrq+SgyvgTJ07EgQMHlHJxGyHqpHxFsPILwfbv3y+1XcjMzOS0JsvbpUZ0HTMhjRp1ZIlUWlpamDt3LtasWSN1EH/5h8ScOXPg4eGhtK+UhEIhZs+eLfVDSRU51Ba/fEne4cOH09dqpMETCAT48ccfceLECbx69arK41SThBBVo44sqVZCQkKtV6JmZmZCIBCoKCP1y4ExhkePHonH5xHS0CUkJEjtxFZENUkIURXqyJJqZWVliX8uKSlBcHAwd8moQQ41xa/4WhHSkKlTu0A1SQihjiyplqwTFh8/fhz9+/dXSg7x8fH46KOPOMtB1viKnNyZEHXGdbtANUkIqYhW9iLVEgqFcHR0RGZmptTxaDweD3Z2dkhLS1PqGFkuc1B0fHoPSqLXQ/M0tJoE6H1IiCaj6bdItfh8PjZt2gQAVZYdLL8fGhqq1AsquM6B6/iEqBuua4Lr+IQQ9UIdWVKjkSNH4sCBA2jevLnEdjs7O6VPsaMuOXAdnxB1w3VNcB2fEKI+aGgBkYlQKERCQgKysrJga2uLfv36qfyMB9c5KCI+vQcl0euh2RpCTQL0PiREk1FHlhAVovegJHo9iDqg9yEhmouGFhBCCCGEEI1EHVlCCCGEEKKRqCNLCCGEEEI0EnVkCSGEEEKIRqKOLCGEEEII0UjUkSWEEEIIIRqJOrKEEEIIIUQjUUeWEEIIIYRoJOrIEkIIIYQQjUQdWUIIIYQQopGoI0sIIYQQQjSSxnRkV61ahT59+sDAwACmpqZcp0NIo0c1SQghhGsa05EtLi7G6NGjMWPGDK5TIYSAapIQQgj3tLlOQFbLly8HAERERHCbCCEEANUkIYQQ7mnMGVlCCCGEEEIq0pgzsnVRVFSEoqIi8f3c3FwAQF5eHlcpkUau/L3HGOM4E25QTRJ11NjrkhBNxmlHduHChVizZk2N+9y5cwdt27at0/FDQkLEX39WZG9vX6fjEaIor1+/hkAg4DqNKqgmSWOmrnVJCKkej3H4J+g///yDFy9e1LhPy5YtoaurK74fERGBgIAA5OTk1Hr8ymd/ysrK8PLlS5ibm4PH48mdb15eHuzt7fHo0SOYmJjI/fuarrE/f6D+rwFjDK9fv0azZs2gpaV+I3uoJjVPY38NFPH81b0uCSHV4/SMrKWlJSwtLZV2/CZNmqBJkyYS2xQxTZCJiUmj/MAo19ifP1C/10Cdz/hQTWquxv4a1Pf5q3NdEkKqpzFjZDMyMvDy5UtkZGRAKBQiOTkZANC6dWsYGRlxmxwhjRDVJCGEEK5pTEd26dKliIyMFN/v2rUrACA2Nhbu7u4cZUVI40U1SQghhGsaMxgoIiICjLEqN1V+YDZp0gTLli2r8tVoY9HYnz9Ar0FFVJPqobG/Bo39+RPS2HF6sRchhBBCCCF1pTFnZAkhhBBCCKmIOrKEEEIIIUQjUUeWEEIIIYRoJOrIymjLli1wdHSEnp4eevXqhatXr3KdksqEhISgR48eMDY2hpWVFUaMGIGUlBSu0+LM6tWrwePxEBAQwHUqjR7VJdVlOapLQhon6sjKYP/+/QgMDMSyZctw/fp1dOnSBV5eXsjOzuY6NZU4d+4c/P39cfnyZZw+fRolJSXw9PREQUEB16mpXGJiIrZv347OnTtznUqjR3VJdVmO6pKQxotmLZBBr1690KNHD2zevBmAaFlNe3t7zJ49GwsXLuQ4O9X7559/YGVlhXPnzqF///5cp6My+fn56NatG7Zu3YqVK1fCxcUFoaGhXKfVaFFdSqK6pLokpDGiM7K1KC4uRlJSEjw8PMTbtLS04OHhgUuXLnGYGXdyc3MBAGZmZhxnolr+/v4YMmSIxHuBcIPqsiqqS6pLQhojjVnZiyvPnz+HUCiEtbW1xHZra2vcvXuXo6y4U1ZWhoCAALi5uaFjx45cp6My+/btw/Xr15GYmMh1KgRUl5VRXVJdEtJYUUeWyMXf3x9//vknzp8/z3UqKvPo0SPMnTsXp0+fhp6eHtfpEFIF1SXVJSGNFXVka2FhYQE+n49nz55JbH/27BlsbGw4yoobs2bNwrFjxxAfHw87Ozuu01GZpKQkZGdno1u3buJtQqEQ8fHx2Lx5M4qKisDn8znMsPGhunyH6pLqkpDGjMbI1kJXVxfdu3fH2bNnxdvKyspw9uxZ9O7dm8PMVIcxhlmzZuHQoUP4/fff4eTkxHVKKjVgwADcunULycnJ4purqyu8vb2RnJxMH5YcoLqkuqS6JIQAdEZWJoGBgfD19YWrqyt69uyJ0NBQFBQUYNKkSVynphL+/v7Ys2cPfvnlFxgbG+Pp06cAAIFAAH19fY6zUz5jY+Mq4w4NDQ1hbm7eqMYjqhuqS6pLqktCCHVkZfDZZ5/hn3/+wdKlS/H06VO4uLjg5MmTVS40aajCwsIAAO7u7hLbw8PD4efnp/qECAHVJdUlIYTQPLKEEEIIIURD0RhZQgghhBCikagjSwghhBBCNBJ1ZAkhhBBCiEaijiwhhBBCCNFI1JElhBBCCCEaiTqyhBBCCCFEI1FHlhBCCCGEaCTqyBJCCCGEEI1EHVkiwc/PDyNGjOA6DUJIBVSXhBAiHS1R24jweLwaH1+2bBk2bdoEWuyNENWhuiSEkLqjJWobkadPn4p/3r9/P5YuXYqUlBTxNiMjIxgZGXGRGiGNFtUlIYTUHQ0taERsbGzEN4FAAB6PJ7HNyMioyleY7u7umD17NgICAtC0aVNYW1tj586dKCgowKRJk2BsbIzWrVvjxIkTErH+/PNPDB48GEZGRrC2tsbEiRPx/PlzFT9jQtQf1SUhhNQddWRJrSIjI2FhYYGrV69i9uzZmDFjBkaPHo0+ffrg+vXr8PT0xMSJE/HmzRsAQE5ODv7zn/+ga9euuHbtGk6ePIlnz55hzJgxHD8TQhoOqktCCKGOLJFBly5d8PXXX6NNmzZYtGgR9PT0YGFhgalTp6JNmzZYunQpXrx4gT/++AMAsHnzZnTt2hXffvst2rZti65du2L37t2IjY3FvXv3OH42hDQMVJeEEEIXexEZdO7cWfwzn8+Hubk5OnXqJN5mbW0NAMjOzgYA3Lx5E7GxsVLH9T148ADvvfeekjMmpOGjuiSEEOrIEhno6OhI3OfxeBLbyq+6LisrAwDk5+dj2LBhWLNmTZVj2draKjFTQhoPqktCCKGOLFGCbt264eDBg3B0dIS2Nr3FCFEHVJeEkIaIxsgShfP398fLly8xbtw4JCYm4sGDBzh16hQmTZoEoVDIdXqENEpUl4SQhog6skThmjVrhgsXLkAoFMLT0xOdOnVCQEAATE1NoaVFbzlCuEB1SQhpiGhBBEIIIYQQopHoz3BCCCGEEKKRqCNLCCGEEEI0EnVkCSGEEEKIRqKOLCGEEEII0UjUkSWEEEIIIRqJOrKEEEIIIUQjUUeWEEIIIYRoJOrIEkIIIYQQjUQdWUIIIYQQopGoI0sIIYQQQjQSdWQJIYQQQohGoo4sIYQQQgjRSP8PEOTOdleIkQoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_matched([ex_graphs.div_1early_end(), ex_graphs.div_1early_mid()], '1 Frame Early')" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArIAAADXCAYAAADm37JAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABTbklEQVR4nO3dd1hT5xcH8G8IQ5ZBQIYCggsXTqwDrVgVHHXUKtYFjlqrOBCrP7VVsWqBuqBVcYOts1Wwaq1WrQMHDhS1FQEtCiKKCxSQFd7fH2kigQAJJLkJnM/z5JHchHtO4j03Lzfv4DHGGAghhBBCCNEyOlwnQAghhBBCSFVQQ5YQQgghhGglasgSQgghhBCtRA1ZQgghhBCilaghSwghhBBCtBI1ZAkhhBBCiFaihiwhhBBCCNFK1JAlhBBCCCFaiRqyhBBCCCFEK1FDlhBCSLkiIiLA4/Hw8OFDrlMhhJAyqCFLCFGba9euYcaMGWjdujWMjY3h4OAALy8vJCYmyvX7AQEB4PF4Mm+bNm1Scfaaw93dvdz3oUWLFlynRwghaqPLdQKEkNojODgYFy9exMiRI9G2bVs8ffoU69evR8eOHRETE4M2bdrItZ+wsDCYmJhIbevSpYsqUtZYdnZ2CAwMLLNdIBBwkA0hhHCDGrKEELXx9/fHnj17oK+vL9k2atQouLi4ICgoCLt27ZJrPyNGjIClpaVcz83JyYGxsXGV8tVkAoEA48aNU9n+a+r7RgipWahrASFEbbp37y7ViAWAZs2aoXXr1oiPj6/2/sX9Oc+dO4fp06fDysoKdnZ2AIBHjx5h+vTpcHZ2hqGhISwsLDBy5MgyfT/F+7hw4QJmzZqF+vXrw8zMDFOnTkVBQQEyMzPh7e2NevXqoV69epg/fz4YY1L7KC4uRkhICFq3bo06derA2toaU6dOxevXr6Wed/36dXh6esLS0hKGhoZwcnLCpEmTqv0+iCn6mmW9b6X5+PjA0tIShYWFZR7z8PCAs7Oz0vInhJDK0BVZQginGGN49uwZWrduLffvvHr1Suo+n89HvXr1JPenT5+O+vXrY8mSJcjJyQEg6p976dIlfPbZZ7Czs8PDhw8RFhYGd3d33L17F0ZGRlL7nDlzJmxsbLBs2TLExMRgy5YtMDMzw6VLl+Dg4IDvvvsOx44dw6pVq9CmTRt4e3tLfnfq1KmIiIjAxIkTMWvWLCQnJ2P9+vW4efMmLl68CD09PWRkZMDDwwP169fHggULYGZmhocPHyIyMlKu90AoFOLFixdlthsaGkqupCr6mmW9b6WNHz8eP/30E06cOIGPP/5Ysv3p06f466+/sHTpUrnyJ4QQpWCEEMKhn3/+mQFg27dvr/S5S5cuZQDK3Bo1asQYYyw8PJwBYD169GBFRUVSv5ubm1tmf5cvX2YA2E8//STZJt6Hp6cnKy4ulmzv1q0b4/F47Msvv5RsKyoqYnZ2dqxXr16SbdHR0QwA2717t1Ss48ePS22PiopiANi1a9cqfd2l9erVS+b7AIBNnTq1yq9Z1vsmfiw5OZkxxphQKGR2dnZs1KhRUs9bu3Yt4/F47N9//1X49RBCSFXRFVlCCGfu3bsHX19fdOvWDT4+PnL/3sGDB1G3bl3JfUNDQ6nHp0yZAj6fL7Wt5HMKCwvx5s0bNG3aFGZmZrhx4wbGjx8v9fzJkyeDx+NJ7nfp0gWXL1/G5MmTJdv4fD5cXV0RGxsr2fbrr79CIBCgX79+UldMO3XqBBMTE5w5cwZjxoyBmZkZAODo0aNo164d9PT05H79AODo6IitW7eW2V6yS4Cir1nW+1aajo4Oxo4dix9++AFv376FqakpAGD37t3o3r07nJycFHodhBBSHdSQJYRw4unTpxg0aBAEAgEOHDhQaQOqpA8//LDCwV6yGlPv3r1DYGAgwsPDkZaWJtWvNSsrq8zzHRwcpO6LZwOwt7cvs71k39ekpCRkZWXByspKZm4ZGRkAgF69euHTTz/FsmXLsG7dOri7u2PYsGEYM2YMDAwMyn1tYsbGxujbt2+Fz1H0NcvbCPX29kZwcDCioqLg7e2NhIQExMbG1qop0AghmoEasoQQtcvKysKAAQOQmZmJ6OhoNGjQQKn7L32FFhD1eQ0PD4efnx+6desGgUAAHo+Hzz77DMXFxWWeX17DWtb2kg3E4uJiWFlZYffu3TJ/v379+gAAHo+HAwcOICYmBkeOHMGJEycwadIkrFmzBjExMWWmF6sKRV+zrPdNllatWqFTp07YtWsXvL29sWvXLujr68PLy6vaORNCiCKoIUsIUau8vDwMHjwYiYmJOHXqFFq1aqWWuAcOHICPjw/WrFkjlUtmZqZS4zRp0gSnTp2Cm5ubXA3Drl27omvXrli5ciX27NmDsWPHYt++ffj888+rnYsqX7O3tzf8/f2Rnp6OPXv2YNCgQVID7gghRB1o+i1CiNoIhUKMGjUKly9fxq+//opu3bqpLTafzy8zTdaPP/4IoVCo1DheXl4QCoVYvnx5mceKiookjcjXr1+Xyad9+/YAgPz8fKXkosrXPHr0aPB4PMyePRv//vuvSue0JYSQ8tAVWUKI2sydOxeHDx/G4MGD8erVqzILIKiyMfTxxx/j559/hkAgQKtWrXD58mWcOnUKFhYWSo3Tq1cvTJ06FYGBgYiLi4OHhwf09PSQlJSEX3/9FaGhoRgxYgR27tyJjRs34pNPPkGTJk3w9u1bbN26FXXr1sXAgQMrjZOVlVXuAhLi91GVr7l+/fro378/fv31V5iZmWHQoEHV3ichhCiKGrKEELWJi4sDABw5cgRHjhwp87gqG7KhoaHg8/nYvXs38vLy4ObmhlOnTsHT01PpsTZt2oROnTph8+bNWLRoEXR1deHo6Ihx48bBzc0NgKjBe/XqVezbtw/Pnj2DQCDABx98gN27d8s16Orx48dlZh0QE7+Pqn7N3t7eOHr0KLy8vOQaoEYIIcrGY6W/dyKEEELk8Ntvv2HYsGE4f/48evbsyXU6hJBaiBqyhBBCquTjjz9GfHw87t+/LzXnLiGEqAt1LSCEEKKQffv24fbt2/j9998RGhpKjVhCCGfoiiwhhBCF8Hg8mJiYYNSoUdi0aRN0demaCCGEG3T2IYQQohC6/kEI0RQ0jywhhBBCCNFK1JAlhBBCCCFaiRqyhBBCCCFEK1FDlhBCCCGEaCVqyBJCCCGEEK1Uq2YtKC4uxpMnT2BqakrzHhJOMMbw9u1bNGjQADo69Hck1STRBFSXhGivWtWQffLkCezt7blOgxCkpqbCzs6O6zQ4RzVJNAnVJSHap1Y1ZE1NTQGITlZ169blOBtSG7158wb29vaSY7G2o5okmoDqkhDtVasasuKvLuvWrUsfmoRT9DW6CNUk0SRUl4RoH+oMRAghhBBCtBI1ZAkhhBBCiFaihiwhhBBCCNFK1JAlhBBCCCFaiRqyhBBCCCFEK1FDlhBCCCGEaCVqyBJCCCGEEK1EDVlCCCGEEKKVqCGr5d6+fQs/Pz80atQIhoaG6N69O65du6a2+OfPn8fgwYPRoEED8Hg8HDp0SOrxyMhIeHh4wMLCAjweD3FxcWqNHxAQgBYtWsDY2Bj16tVD3759ceXKFbXFnzBhAng8nuQmEAiUFpsQWWr7OUGeHEqfF4YMGaL0HAgh6kENWS33+eef4+TJk/j5559x584deHh4oG/fvkhLS1NL/JycHLRr1w4bNmwo9/EePXogODiYk/jNmzfH+vXrcefOHVy4cAGOjo7w8PDA8+fP1RIfAPr374/09HSkp6cjMTFRKXEJKU9tPyfIk0Pp84KDgwMA4MWLFyrLiRCiIqwWycrKYgBYVlYW16koRW5uLuPz+ezo0aNS2zt27Mi+/vprtecDgEVFRcl8LDk5mQFgN2/e5CS+mPgYOHXqlFri+/j4sKFDh5aJX1OOweqi90O56JygWA5iqampDAD77bffVJoLIUT5dLlpPhNlKCoqglAoRJ06daS2Gxoa4sKFCxxlpbkKCgqwZcsWCAQCtGvXTm1xz549CysrK9SrVw89evRQW1xS+9A5QXEFBQWIiIgAALi4uHCbDCFEYdS1QIuZmpqiW7duWL58OZ48eQKhUIhdu3bh8uXLSE9P5zo9jXH06FGYmJigTp06WLduHU6ePAlLS0u1xO7fvz9++uknnD59GsHBwbh48SIAQCgUqiU+qV3onCC/kueFjRs3AgAsLCw4zooQoihqyGq5n3/+GYwxNGzYEAYGBvjhhx8wevRo6OjQf61Y7969ERcXh0uXLqF///7w8vJCRkaGWmJ/9tlnGDJkCFxcXDBs2DDs378fABAdHa2W+KT2oXOCfEqeF/r06QMASus7TwhRHzqzabkmTZrg3LlzyM7ORmpqKq5evYrCwkI0btyY69Q0hrGxMZo2bYquXbti+/bt0NXVxfbt2znJxcnJCQDw77//chKf1Hx0TpBPyfOCeFDYTz/9xHFWhBBFUR9ZLSEUAtHRQHo6YGsL9OwJ8PnvHzc2NoaxsTFev36NEydO4Pvvv1drfHVQVg7FxcXIz8/nJL545LiNjY3C8QkpraJjUtXnhMriq4Oy4xcUFCgvOUKIWlBDVgtERgKzZwOPH7/fZmcHhIYCxsYnwBiDs7Mz7t+/j3nz5qFFixaYOHGiWuJ7eGTj/v37ku3JycmIi4uDubk5HBwc8OrVK6SkpODJkycAgISEBACihpwijbnycggKykbr1rLjW1hYYOXKlRgyZAhsbW3x4sULbNiwAWlpaRg5cqRS3oOK4pubm2PZsmX49NNPYWNjgwcPHmDu3LkAIPkqk5CqKu+YnDDhBNzcVHtOqCh+RTWhjnNCZeclWeeFkJAQAMCwYcMUfyMIIdzieNYEtdLGqX4OHmSMx2MMkL7xeKKbv/9+1rhxY6avr89sbGyYr68vy8zMVFv8ZcvOMABlbj4+PowxxsLDw2U+vnTpUqXkAJQf/927d+yTTz5hDRo0YPr6+szW1pYNGTKEXb16VWnvQUXxc3NzmYeHB6tfvz7T09NjjRo1Yj4+Plp3DKqSNtakJqj4mNzPrK1Vd06oPD6354TKzkuyzgsDBw6k45AQLcVjjDEVtpM1yps3byAQCJCVlYW6detynU6lhELA0VH6ikNpDRsCd++q5us8oRBo2RL478KJ2uNrQg6VxefxRFeBkpPli69tx6Cq0fuhuNp+XlB2TQJ0HBKizahrgQaLjq74wwoA0tIALlc95To+1zkwBqSmiv6v3N25yYHULnReqBjVJCG1CzVkNRhN+yhNT68AX38dCABYuXIhCgv1NSY+/V8RdaFj7T2qSUIINWQ1mLxXNI4dAz78UPnxz58HBg7kLn7ZHHjIzBRIflZHDvLGt7VVfmxCZCkslO95NfW8QDVJCCmJ+shqqCtXgDFjgIqmG61KXzBFiPvipaWJvq5Td3xNyEHZ8bXpGFQHej/kxxiwbRvg5wfk5pb/PG2rCU2IT8chIdqLFkTQMEIhsGIF4OYmasSKV1LlSV9skNwPCVFdI5LPF01lw1V8TciB6/iEAMDLl8CnnwJffCFqxLq4iLbXxprgOj4hRLNQQ1aDpKQAvXsDixeLGrSffQYkJQEHD4pGAZdkZwccOAAMH67anIYPF8XhKr4m5MB1fFK7nT4NtG0LREUBenrAqlVAXFztPi9wHZ8Qojmoa4GG2L8fmDoVyMoCTEyADRuA8ePfX2GoaSvoVEVeXiE2boxAQQHQufMEuLvrqTUHZcTX5GOQC/R+lK+gAPjmG2D1atFX6M7OwJ49QMeO75/DdV1yHV9Z5wQ6DgnRXjTYi2Nv3wIzZwI7d4rud+0K7NoFNGki/Tw+n9upZLiODwA6Ogxv34omj+zZk6m9Ic11fFJ7JCSI+sjfuCG6P3UqsGYNYGws/Tyu65Lr+FSTmkMoFKJQ3pGIpFbS09MDXwVFqlUN2fPnz2PVqlWIjY1Feno6oqKitHpJwZIDunR0gK+/FnUr0NPjOjNC5FPTapJrpQd0mZsD27cD9JYSTcUYw9OnT5GZmcl1KkQLmJmZwcbGBrzSHdyrQasasjk5OWjXrh0mTZqE4VrcCUooBAIDgYAA0c8ODqKrsD17cp0ZIYqpKTWpCV6+BKZMEfWFBYA+fYCffgIaNOA2L0IqIm7EWllZwcjISKkNFFJzMMaQm5uLjIwMAICtEufH06qG7IABAzBgwACu06iWlBRg3DhRvzJANKArLAwwM+M0LUKqpCbUpCY4fRrw9hYtu6qnB3z3HeDvL/qmhhBNJRQKJY1YCwsLrtMhGs7Q0BAAkJGRASsrK6V1M6DTpBrt3y8afRwdLRrQtXOnaPAGNWIJqZ0KCoD584F+/USNWGdnICYG+OorasQSzSfuE2tkZMRxJkRbiI8VZfanrtGnyvz8fLx580bqpkxCoRCLFy+Gk5MTDA0N0aRJEyxfvhylJ4J4+xaYMEF09TUrSzSgKy5OdAWGvoUhtYmqa9LR0RE8Hq/MzdfXV6lxyiPvOQEQDejq1k00nRZjogFdsbHSsxIQog2oOwGRlyqOlRrdkA0MDIRAIJDc7O3tlbr/4OBghIWFYf369YiPj0dwcDC+//57/Pjjj5LnXLkCtG8vuvqqoyMazHX+fNlZCYh8jIyMOP3rn+v42k7VNXnt2jWkp6dLbidPngQAjBw5UqlxyiPPOYExYOtWUYP1xg3RgK6oKGDTprKzEpDKUU2S2iQgIADt27fnOg0AgLu7O/z8/LhOQ7v6yCpq4cKF8Pf3l9x/8+aNUj84L126hKFDh2LQoEEARFeD9u7di6tXr9KALhXQ19fHvHnzam38mkDVNVm/fn2p+0FBQWjSpAl69eqltBgVqeicANCALmWjmtRcKSkpePHihVpiWVpawsHBQaHfefr0KQIDA/H777/j8ePHEAgEaNq0KcaNGwcfHx+t/OMoICAAy5Ytq/A5VVk64OzZs+jduzdev34NMw3sC1mjG7IGBgYwMDBQ2f67d++OLVu2IDExEc2bN8etW7dw4cIFLFq0Fr1704AuQkpTdU2WVFBQgF27dsHf319tX32Wd05Yu3YtDegitUZKSgqcnZ2Rl5enlnh16tRBQkKC3I3Zf//9F25ubjAzM8N3330HFxcXGBgY4M6dO9iyZQsaNmyIIUOGyPzdwsJC6GnoHJlfffUVvvzyS8n9zp0744svvsCUKVNkPr+goAD6+vrqSk9ltOoUmp2djbi4OMTFxQEAkpOTERcXh5SUFE7yWbBgAT777DO0aNECenp66NChA3r39sPSpWNpQBepFTStJks6dOgQMjMzMWHCBLXFlHVOmDnTD7dujaUBXaTWePHihdoasQCQl5en0NXf6dOnQ1dXF9evX4eXlxdatmyJxo0bY+jQofj9998xePBgyXN5PB7CwsIwZMgQGBsbY+XKlQCAsLAwNGnSBPr6+nB2dsbPP/8s+Z2HDx+Cx+NJzosAkJmZCR6Ph7NnzwIQXeXk8Xg4ffo0XF1dYWRkhO7duyMhIUEq16CgIFhbW8PU1BSTJ0+u8H01MTGBjY2N5Mbn82Fqaiq5/9lnn2HGjBnw8/ODpaUlPD09K8314cOH6N27NwCgXr164PF4UufU4uJizJ8/H+bm5rCxsUFAQIDc/w9Kw6ooPz+f3bt3jxUWFlZ1Fwo7c+YMA1Dm5uPjI9fvZ2VlMQAsKytLKfns3buX2dnZsb1797LLl2+zHj1+YoA5AyJY166M3b+vlDDkPwUFBSw8PJyFh4ezgoICrYyv7GOwJKpJaR4eHuzjjz9W+n4rUvKccPv2bRYc/BPj80XnBICxqVMZy85Wa0o1mrLOCao8Dmuyd+/esbt377J3795JbY+NjZV5XlDlLTY2Vq6cX7x4wXg8HgsMDJTr+QCYlZUV27FjB3vw4AF79OgRi4yMZHp6emzDhg0sISGBrVmzhvH5fPbXX38xxhhLTk5mANjNmzcl+3n9+jUDwM6cOcMYe3/u7NKlCzt79iz7559/WM+ePVn37t0lv7N//35mYGDAtm3bxu7du8e+/vprZmpqytq1aydX7o0aNWLr1q2T3O/VqxczMTFh8+bNY/fu3WP37t2rNNeioiJ28OBBBoAlJCSw9PR0lpmZKdlf3bp1WUBAAEtMTGQ7d+5kPB6P/fnnn+XmVN4xUx0Kdy3Izc3FzJkzsfO/NVUTExPRuHFjzJw5Ew0bNsSCBQsU3aXc3N3dq9S/Q1XmzZuHBQsWwMnps/9W6HIBj/cI5uaBOH/eh1boUjLGGB49eiT5ubbFLw/VZFmPHj3CqVOnEBkZqda44nPCqFGfYds2YNkyFwiFj6CjE4iDB31ohS4l09SaJJrr/v37YIzB2dlZarulpaXkaqevry+Cg4Mlj40ZMwYTJ06U3B89ejQmTJiA6dOnAwD8/f0RExOD1atXS65eymvlypWSPvwLFizAoEGDkJeXhzp16iAkJASTJ0/G5MmTAQArVqzAqVOnqnW1u1mzZvj+++8l9x8+fFjh8/l8PszNzQEAVlZWZfrItm3bFkuXLpXse/369Th9+jT69etX5RwVpfAXWwsXLsStW7dw9uxZ1KlTR7K9b9++2L9/v1KT0yRCIXD2LLB3r+hfoVDUgDhxQgdubqJlZh0cgClT+DA3L6ZGLFEbqsn3NSkWHh4OKysryaArdeWQm5uL3FwdfPop8MUXomVmmzTho1GjYmrEEqLBrl69iri4OLRu3Rr5+flSj7m6ukrdj4+Ph5ubm9Q2Nzc3xMfHKxy3bdu2kp/Fq12JV7+Kj49Hly5dpJ7frVs3hWOU1KlTp2r9fmkl8wdEr0Gcv7oofEX20KFD2L9/P7p27So1gKJ169Z48OCBUpPTFJGRwOzZwOPH77fZ2ABC4WAcObISgAM+/rg1Ro26iTlz1mLSpEmc5UpqH6pJETs7IDQUGDasGOHh4fDx8YGururGs8rKwcBgMP73v5VgzAG6uq0xZsxNHDtG5wRCNEXTpk3B4/HK9EVt3LgxgPerT5VkrOC8eDr/dX4v+S1BeQsAlBw4Jj5/FxcXKxRPEaVfiyK5ylJ64BuPx1Np/rIofEX2+fPnsLKyKrM9JyenRk6KHBkJjBgh/WEFAE+fAllZP4LPHwELi+k4daolli79ClOnTsXy5cu5SZbUSlSTImlpou0BAaeQkpKi0sZjeTnk5/8IxkaAz58OPr8lLlygcwIhmsTCwgL9+vXD+vXrkZOTU6V9tGzZEhcvXpTadvHiRbRq1QrA+2kA09PTJY+XHEylSJwrV65IbYuJiVF4PxWRJ1fxzAbCkl97aRCFL1e4urri999/x8yZMwG8/wti27Zt1b7krWmEQtEVl/K7XpnCyioEqakhUNKSwYQojGpSRLxtxw4PZGUx8PlAFT+nKs1h5szyzgumAEJgYxOCR49A5wVCNNDGjRvh5uYGV1dXBAQEoG3bttDR0cG1a9dw7969Sr9+nzdvHry8vNChQwf07dsXR44cQWRkJE6dOgVAdFW3a9euCAoKgpOTEzIyMvDNN98onOfs2bMxYcIEuLq6ws3NDbt378Y///wjuXqsDPLk2qhRI/B4PBw9ehQDBw6EoaEhTExMlJZDdSl8Rfa7777DokWLMG3aNBQVFSE0NBQeHh4IDw+XTEtRU0RHl73iUlp6+vv5Ygm3goKCwOPx1L7SSFpaGsaNGwcLCwsYGhrCxcUF169fV1t8qklpaWmAQCCa/k4VN4FANI1WZTnQeYEbAQEBZZYobtGiBddpEQ3SpEkT3Lx5E3379sXChQvRrl07uLq64scff8RXX31V6Tcow4YNQ2hoKFavXo3WrVtj8+bNCA8Ph7u7u+Q5O3bsQFFRETp16gQ/Pz+sWLFC4TxHjRqFxYsXY/78+ejUqRMePXqEadOmKbyfylSWa8OGDbFs2TIsWLAA1tbWmDFjhtJzqA6Fr8j26NEDcXFxCAoKgouLC/7880907NgRly9fhouLiypy5EyJK+3Q0yvA118HAgBWrlyIwkJ9mc8jqlXeRNTXrl3D5s2by3Q8V3X8169fw83NDb1798Yff/yB+vXrIykpCfXq1VNpHiVRTZatSXWh8wL3ZJ0TWrduLbk6BkClfaVJWZaWlqhTp45aF0SwtLRU6HdsbW3x448/Si0fLUt5s2FMmzatwkZly5YtcenSpXL3JWvGl/bt25fZtmjRIixatEhqW8kZFSpSekYC8Ry2iuYKAIsXL8bixYsr3d+hQ4fkyk2ZqlTdTZo0wdatW5Wdi8b5bwDhf3jIzBRIfi7/eURV9PX1yxQ0IJqUf+zYsdi6dWuV/uqtTvzg4GDY29sjPDxcss3JyUllOZSHalK6Jo8dAz78UDU5nD8PDBxYeQ50XlC98s4Jurq6sLGx4SAjAgAODg5ISEjQ6CVqSc2hcEO2shV7atLB1LOnaCR0WhpQWKiHkBC/Ms/h8wH6Y59bvr6+GDRoEPr27avShqwshw8fhqenJ0aOHIlz586hYcOGmD59erlLAqoC1eR7PJ7ocQ8P1fVP9fCo/LxQpw7QrJlq4pPKJSUloUGDBqhTpw66deuGwMDAGlUH2sDBwYHec6IWCjfBHB0dKxwJramj2qqCzxdN5zNihOgDUtY3DEIh4O4OLFkCLFpEjVp127dvH27cuIFr165xEv/ff/9FWFgY/P39sWjRIly7dg2zZs2Cvr4+fHx81JID1aSI+C0ICVHtICt5zgt5eUCHDsCOHcDHH6suF1JWly5dEBERAWdnZ6Snp2PZsmXo2bMn/v77b5iamnKdHiFEyRQe7HXz5k3cuHFDcrty5Qo2bdqE5s2b49dff1VFjpwaPhw4cABo2FB6u7098NNPwJgxosbs0qWiBm0li2SQaigqKsKePXuwZ88eFBUVITU1FbNnz8bu3bulFgJQV3xANN9fx44d8d1336FDhw744osvMGXKFGzatEnl+YhRTYrY2Ym2Dx/OXQ729sC6dUDbtsDz58DgwcCMGcC7d6rPqTaSVZMDBgzAyJEj0bZtW3h6euLYsWPIzMzEL7/8wnG2hBBVUPj6Ybt27cpsc3V1RYMGDbBq1SoMV8eniJoNHw4MHFiIjRsjUFAAdO48Ae7ueuDzgfHjgQEDgOnTgYsXgXbtgE2bgNGjuc665ikuLkZSUpLk59jYWGRkZKBjx46S5wiFQpw/fx7r169Hfn4++Eq8NFc6PiAaMCCeO1CsZcuWOHjwoNLiVoZqUromNSGHadOAhQtFjdoNG4AzZ0Srf6l4LGKtI6smSzMzM0Pz5s1x//59daZGCFETha/IlsfZ2Zmzr3fVQUeH4e3bJ8jPf4KePZnUB+a4ccCtW0C3bsCbN6KrtOPHi34mqtOnTx/cuXMHcXFxkpurqyvGjh2LuLg4pTZiy+Pm5lZmhZjExEQ0atRI5bErU5trkuscDAyAtWuB48dFqwDevQt07izq9qDmRW9qvezsbDx48ECy/CchpGZRuCH75s0bqVtWVhbu3buHb775Bs1q8egGJyfRaOalSwEdHWDXLqB9e+DyZa4zqzlK9vWMjo6GkZER2rRpI3UzNjaGhYUF2rRpo/L4QqEQc+bMQUxMDL777jvcv38fe/bswZYtW+Dr66v0+OWhmtRcnp7A7duifrIFBcCcOaIZD54+5TqzmkFWTX711Vc4d+4cHj58iEuXLuGTTz4Bn8/HaPqajJAaSeGGrJmZGerVqye5mZubo1WrVrh8+TLCwsJUkaPW0NUFAgJEDVpHRyA5WTTK+ttvgf+6b5EqioyMlPoKf8CAAXB0dERkZCSn8VNTUxEVFYW9e/eiTZs2WL58OUJCQjB27Fi15AVQTWq6+vWBw4eBjRtFsxmcOCHqYnD0KNeZabfyajImJgajR4+Gs7MzvLy8YGFhgZiYGMlSnISQmkXhPrJnzpyRuq+jo4P69eujadOmNOn0f9zcgLg4wNcX2L1bdJX2zz9FV2kdHbnOTvtERkZixIgRZY6vtLQ0jBgxAgcOHJD0Ay1vwmdVx79z547S48qLalLz8XiifrO9eom6Ht26JRoI5usLrFoFGBpynaF2qagm09LSpM4JhJCaTeFPuV69eqkijxpHIBA1XPv3lx4IFhYm+iAj8hEKhZg9e7bM1VXE22bNmoW+ffuqpE+sUCjEzJkzy40vXhJ36NChaumTKwvVpPZo1Qq4coUGglVHZecETahJQsQmTJiAzMxMyYpX7u7uaN++PUJCQqq8T2XsoyaRqyF7+PBhuXc4ZMiQKidTE40bJ7pCO3asqL/s2LHAH3+IPsDq1q3evs+fP49Vq1YhNjYW6enpiIqKwrBhwySPM8awdOlSbN26FZmZmXBzc0NYWJhS+01WlENhYSG++eYbHDt2DP/++y8EAgH69u2LoKAgNGjQQK79R0dH4/HjxxU+Jy0tDQKBoMLnqApjDKmpqbC2tsbLly/L/B8AQHx8PP73v//h3LlzkimCUlNT0bp16yrHpZrUXuKBYJ6ewIQJ7weCBQcDs2aJ+thXB9fnBa7PCeKa7NmzJx4+fCjzPSjpyy+/xObNmxV9maQSKSmAmhb2gqUloOjaCxMmTMDOnTsBiJY5dnBwgLe3NxYtWqTSb7IiIyPLXWq9tLNnz6J37954/fo1zMzMqrSP2kCu/63yTgCl8Xi8GjX5emlGRkZV+j3xQLAVK4Dly0VXai9eFHU76Nat6vnk5OSgXbt2mDRpksyv0b7//nv88MMP2LlzJ5ycnLB48WJ4enri7t27Spt3taIccnNzcePGDSxevBjt2rXD69evMXv2bAwZMgTXr1+Xa/9PnjyR/FxYWIiAgACl5F0VFcX39vbGunXrymx/8OABevTogcmTJ2PZsmXg8Xjo0KFDtd9/qkmRqtakJuQgHgg2aZKov+ycOaJZDiIiRDMdVBXX5wVVnxPS09MlP1dUk9bW1pg3b16FXQyioqIQExMDW1tbqf2S6klJAZydRQuDqEOdOkBCguKN2f79+yM8PBz5+fk4duwYfH19oaenh4ULF0o9r6CgAPr6+krJ1dzcXCP2UaOwWiQrK4sBYFlZWZzlcOECY46OjAGM8fmMLVvGWGFh9fcLgEVFRUnuFxcXMxsbG7Zq1SrJtszMTGZgYMD27t1b/YBy5CDL1atXGQD26NGjSveXkZHBunfvzgBUejt27BgDwPbu3cuys7OlbomJiaxBgwbs6tWrzMHBgQUHB5d5Tnk38X4ru505c0bm6x81ahQbN26c5L4mHIOahN4PxoqLGdu4kbE6dUTnBUtLxo4cUc6+uT4vKPucwBhjmzZtkrsmK8rh8ePHrGHDhuzvv/9mDg4Otf44rIp3796xu3fvsnfv3kltj40VHcvqvMXGKpa7j48PGzp0qNS2fv36sa5du0oeW7FiBbO1tWWOjo6MMcZSUlLYyJEjmUAgYPXq1WNDhgxhycnJkt8vKipic+bMYQKBgJmbm7N58+Yxb29vqTi9evVis2fPltzPy8tj8+fPZ3Z2dkxfX581adKEbdu2jSUnJ5c5pn18fGTu49WrV2z8+PHMzMyMGRoasv79+7PExETJ4+Hh4UwgELDjx4+zFi1aMGNjY+bp6cmePHmi2JumBOUdM9WhtHlkiXzEA8HGjlXtimDJycl4+vQp+vbtK9kmEAjQpUsXXOZwTrCsrCzweDypr0lkOXnyJNq2bYtLly5V+Dwejwd7e3t4eHgAAOrUqQNjY2PJzdDQEFOnTsX8+fPRuXNn8Hg86OvrSz2nopuHhwfs7OzKXQJWHL9nz55lHisuLsbvv/+O5s2bw9PTE1ZWVvjoo4/ke6NIrSEeCBYbK+pH/+LF+4Fgyl4RTBPPC/KeE4qLixEcHIwZM2ZU+LyKarLkvsaPH4958+ZVq4sPqVkMDQ1RUFAAADh9+jQSEhJw8uRJHD16FIWFhfD09ISpqSmio6Nx8eJFmJiYoH///pLfWbNmDSIiIrBjxw5cuHABr169QlRUVIUxvb29sXfvXvzwww+Ij4/H5s2bYWJiAnt7e8nCOgkJCUhPT0doaKjMfUyYMAHXr1/H4cOHcfnyZTDGMHDgQBQWFkqek5ubi9WrV+Pnn3/G+fPnkZKSgq+++koZbxvnqtQRJCcnB+fOnUNKSorkP1Bs1qxZSkmsJhMPBBswQPQBpoqBYE//m6jS2tpaaru1tbXkMXXLy8vD//73P4wePRp1y+kgnJ+fj0WLFmHt2rUAgFatWmHy5MmSgmMlBniIG5chISHlDuoIDg6Grq5ulY9LPp+P0NBQjBgxAjweT6H4GRkZyM7ORlBQEFasWIHg4GAcOnQIsbGxuHDhAgYOHFilnGShmtR+pQeCbdwInD0L7NkjOj8og6adF+Q5JwDA48eP4e3tLZmho2vXroiJiVG4JsWqe14gNQtjDKdPn8aJEycwc+ZMPH/+HMbGxti2bZukS8GuXbtQXFyMbdu2SY6z8PBwmJmZ4ezZs/Dw8EBISAgWLlwo6c6yadMmnDhxoty4iYmJ+OWXX3Dy5EnJH5eNGzeWPC7uQmBlZVXuH3pJSUk4fPgwLl68iO7duwMAdu/eDXt7exw6dAgjR44EIOqGs2nTJjRp0gQAMGPGDHz77bdVfcs0isIN2Zs3b2LgwIHIzc1FTk4OzM3N8eLFCxgZGcHKyqrGnhgKCwuxe/duAMDYsWOV0tF67Fige3fVDATTNIWFhfDy8gJjrNy5Te/evYsxY8bg1q1bAIDp06dj1apVMDIygqOjI2bPni01yMPOzg4hISHl9oGLjY1FaGgobty4Ue4VVXkMHz4cBw4cUDi+eMnMoUOHYs6cOQBEJ6lly5Zhx44dSmvIUk0qrya5zkE8EKx/f8DHRzQQ7IMPgKAgYPbs6g8E0yTynBMA4ODBg5gyZQpev34NY2Nj/PDDD5g4cSKioqIUrklAeecFov2OHj0KExMTFBYWori4GGPGjEFAQAB8fX3h4uIi1S/21q1buH//PkxNTaX2kZeXhwcPHiArKwvp6eno0qWL5DFdXV24urrKnGEDgGQFyurMPBMfHw9dXV2puBYWFnB2dkZ8fLxkm5GRkaQRC4iWV8/IyKhyXE2icEN2zpw5GDx4MDZt2gSBQICYmBjo6elh3LhxmD17tipy1AiMMTx69Ejys7KIB4KtXClaOEE8EGzXLlEjt6ps/hst8uzZM6mlGZ89e4b27dtXM2vFiD+wHj16hL/++qvMlRfGGDZt2gR/f3/k5eXB0tISO3bswODBgyXPGT58OIYOHYro6Gikp6fD1tYWPXv2rPCqS3R0NDIyMuBQYgSAUCjE3LlzERISgocK9OeoSnxLS0vo6upKTdouVtlMDIqgmlRuTWpCDh4eooFgkycDR44A/v6ihRTCw4HqrLSqKeeFys4JgGhpWT8/P2zfvh0A4Orqij179khmV6hKTQLlnxcAwMXFRfL/SWq+3r17IywsDPr6+mjQoIHUbAXGxsZSz83OzkanTp0kf7iWVNXFNgzVOIF06T+yS3+boc0U/vs+Li4Oc+fOhY6ODvh8PvLz82Fvb4/vv/8eixYtUkWONZ6urqivbHT0+xXBPvwQWLbs/YpgQqHoa8a9e0X/VjYQ3cnJCTY2Njh9+rRk25s3b3DlyhV0q8JUCYrGFxN/YCUlJeHUqVOwsLCQevz58+cYNmwYpk+fjry8PHh4eOD27dtSjdj3+ADcAYz+79+KP7DGjx+P27dvIy4uTnJr0KAB5s2bV+HXPeVTLL6+vj46d+6MhISEMo/Z29tXIb5sVJM1U/36wG+/VbwimDaeFyo7JwDA9evX0bFjR2zfvh08Hg8LFizAxYsXZUwRplhNArLPC+JGvbpWCiSawdjYGE2bNoWDg0OlU2517NgRSUlJsLKyQtOmTaVuAoEAAoEAtra2uHLliuR3ioqKEBsbW+4+XVxcUFxcjHPnzsl8XHxFuKKZZ1q2bImioiKpuC9fvkRCQoLMiyg1kcJXZPX09KDz3/dbVlZWSElJQcuWLSEQCJCamqr0BGuT7t2lVwQLCABOnhTNRbtyJVDyIp6dHRAUlI3Wre9LtiUnJyMuLg7m5uZwcHCAn58fVqxYgWbNmkmm2WnQoIHcUzeJRUaKvtYsHT80FPDwyMb9+7JzsLW1xYgRI3Djxg0cPXoUQqFQ0g/P3NwcZ8+ehY+PD54+fQp9fX0EBwdj1qxZkuNLnhwqew9Kf0jq6enBxsYGzs7OSnkPKos/b948jBo1Ch9++CF69+4tmRT7888/Vyh+Ragma67yVgSbPh3o0QOYP1/zzgsVxa/snMDn87F69Wp88803KCoqQsOGDbFr1y64u7vLHb+y81J55wUASp1jm9QsY8eOxapVqzB06FB8++23sLOzw6NHjxAZGYn58+fDzs4Os2fPRlBQEJo1a4YWLVpg7dq1yMzMLHefjo6O8PHxwaRJk/DDDz+gXbt2ePToETIyMuDl5YVGjRqBx+Ph6NGjGDhwIAwNDWFiYiK1j2bNmmHo0KGYMmUKNm/eDFNTUyxYsAANGzbE0KFDVfyuaAhFpzno168f2717N2OMsc8//5x98MEHbNeuXczT05N98MEH1Z5GQZWqM9VPfn4+CwgIYAEBASw/P18F2UnbtYsxU9Pypxrh8RgDzsicdkY8RUdxcTFbvHgxs7a2ZgYGBqxPnz4sISFBoTwOHhTHKhufx2Ns2bLyc5A1fYj4NmLECMnPrVq1YnFxcVXKobL3oLRGjRqxdevWKe09kCf+9u3bWdOmTVmdOnWYi4uL0qf5oZpUT01ynUNeHmNz5lQ8BZEmnBcqil/ROeGXX35h7u7ukvuffvope/nypcLxKzsvyULTb1VNTZt+q7LH0tPTmbe3N7O0tGQGBgascePGbMqUKZLjprCwkM2ePZvVrVuXmZmZMX9//0qn33r37h2bM2cOs7W1Zfr6+qxp06Zsx44dkse//fZbZmNjw3g8XqXTbwkEAmZoaMg8PT1lTr9VUlRUFKtCE7DaVDH9Fo8x+TpJCIVC8Pl8XL9+HW/fvkXv3r2RkZEBb29vXLp0Cc2aNcOOHTvQTlnDa1XgzZs3EAgEyMrKqnCErCwFBQUIDAwEACxcuFBpkyNX5P59oHVroNQgdCkNG4oGhKhiJUahEGjZEiixJkG148fHx2PixIn4++87AIApU77AypUry51UXhU5KKKy+Dye6CpQcrJ88atzDJbNjWpS3TWpCTn88Qfw8cfAf2MJZdK288KhQ4cwY8YMZGa+hpGRMVavXo3x48fLHIyl7JoElFuXtUleXh6Sk5Ph5OQktZiGtiyIQNSvvGOmOuTuWtCwYUNMmDABkyZNgqurKwDR15jHjx9XSiLaqLKlIKvr8eOKG7FAINLSIiEQ3ANgCKA7gGAAin1tXnVhSEsLg0Dw8L/7rQEsATCggt9pCSBGcm/rVtGtOtLSRFOacYExIDVV1L9ZxrefKkU1KZuq67IigYGBiIyMxL1792BoaIju3bsjODhY4a4sFTE0rLgRW7W6VK73NRkEYCGA2QBCKviNYf/dgNxcUdeJ6dOrFpvLmiQiDg6ihqUmL1FLag65G7K+vr7YuXMnVq1ahe7du2Py5Mnw8vLSiCUi1aX0qL/KloKsrpIrJurpFWDevNUAgFWrvkJhoT6AcwB8AXQGUARgEQAPAHcBGEOZZMe3g+iDqhlE39ztBDAUwE2IPjyVS0+vAF9/Lbr6tXLlwv9yUJ+K4nOxuiXVZNmaBFRflxXlcO7cOfj6+qJz584oKirCokWL4OHhgbt375YZBV1VlZ8X1FeXsuOLXQOwGUBbpcYsHV+TapK85+BAjUuiJor2RThz5gzz9vZmxsbGrG7duuzzzz9nMTExSuvroEqqXA4TqHwpRkWdOSNf36BjxxjLzmYsOTmDAWDHj59j2dms2rdjxxSLn53NWL169diGDdsk93/77RSzsnJigBHT0zNjQUE/sjdvhFXKQU+vgPn5rWN+fuuYnl5BuTko8yZv/P9Ww6yUKo5BqsnyqaIuFZGRIarJc+fOKW2fip4XZNWl6s8Lb1mDBs3YkSMnWY8evdj06bMlv5+VVcS+/XYN4/PrMsCI2do2ZceOyX/OUnZNMkZLJVeVKvo7kppNFcdMlXv6vn37lm3dupW5ubkxHo/HWrVqxdasWaO0xFRB2xqyRUWM2dnJHtQgHthgby96HmOMJSUlMQDszp07ao9fVFTE9u7dy/T19dk///zD8vLy2Jw5cySDLCob0KWs90DZlB1flccg1WRZXDdklV2TjFWvLtUV38jIm82a5ccYkx6YkpqaKjWga8SIEeUO6FLG65cXNWSrhhqyRFEa1ZAt6ejRo8zc3Jzp6OgoY3cqo20NWcbej84tfdIWbzt4UPQ8oVDIBg0axNzc3NQaf+3a28zY2Jjx+XwmEAjY77//zv755x/Wrl07yYfV9OnTWW5urspyEL8HqqLM+Or6wKSaFOGyIauqmmSsanWprvjAXubg0EbyQSVuyB44cIDVq1ePAWDGxsZs+/btrLi4WOnxq3JOoIZs1VBDlihKoxqyOTk5LDw8nH344YdMR0eHNWvWjAUGBiotMVWozsmqsLCQ7d69m+3evZsVFhaWeVyVH5gHDzLWqFEhGzNmNxszZjfT1S1k9vbSJ+svv/ySNWrUiKWmpqo1fn5+PktKSmLXr19n//vf/5iJiQnT19dnAJilpSU7fPiw0nKws5P+0Cr9HqiSsuKr8gOTarIsVTdkK8pBlTXJmPx1uWDBAmZpaam0K7IVxbe1TWECgRW7deuW5Hk9evRgrVu3lvxh6+rqKjU1UHXiK+ucQA3ZqqGGLFGUKo4ZhRdEuHTpEnbs2IFff/0VRUVFGDFiBJYvX44PP/xQ0V1pleLiYiQlJUl+Vqfhw4EBA4rx/fei+MePF8Pd/f3UMjNmzMDRo0dx/vx52NnZqTm+Ppo2bYrnz5/j7t27yM7OBgB4eHggIiJCahnM6uYwcGAhNm6MQEEB0LnzBLi766lkeiFNjF8Rqkn112RlOai6JgH56hIAOnXqhGvXriE0NBSbN29WafysrFh8+mkGOnbsKHleyVWJ5s+fj+XLlytlmjJNrklCiPrI3ZD9/vvvER4ejsTERLi6umLVqlUYPXo0TE1NVZkf+U/Jk3PPnqL7jDHMnDkTUVFROHv2LJycnNQaX+zPP/+UrNDF4/Hg6uqKP/74Q+YKXdWho8Pw9u2T/3Jgav/A4jp+aVSTmkedNQlUXJclFRcXIz8/X+Xx8/P74M6dOxAKhQgPD8f69esBiNaU37BhAyZOnKjU+JpWk4QQ9ZO7pbFq1Sr0798ft27dwpUrV/DFF19w8oG5YcMGODo6ok6dOujSpQuuXr2qlrglrypER0dDKBQiOztbslY38H4ZxJSUFLXE9/X1xa5du7Bnzx6Ympri6dOnePr0Kd69e6eW+PPmzYOXlxc8PT3x9OlTybKPK1euVHojlpSlKTUJcFOXso5JAJzW5fTp09VWk7LiC4VCLFy4EOfPn8fDhw9x584dLFy4EGfPnsXYsWNVHt/IyAhmZmbw8/NDaGgohEIhLC0t4e3trfRGLCGEAAo0ZJ88eYJ169ahTZs2qsynQvv374e/vz+WLl2KGzduoF27dvD09ERGRoZK40ZGRqJVq1aS+wMGDICjoyPWrl2LDh06oEOHDgAAf39/dOjQAUuWLFFL/LCwMGRlZcHd3R22traS2/79+1Uev2HDhti0aRN+/fVXAKIrLm3btsWJEyfQr18/pcYnsmlCTQLc1GV5NREZGYnr169zVpebNm1SS02WF9/R0RFXr16Ft7c3nJ2d0adPH1y7dk0ldSkrvpWVFVq2bImzZ8/C2NgY27dvR+vWrZW2gg8hNVlERATMzMy4TkPryN21QNbE4+q2du1aTJkyRfKX/aZNm/D7779jx44dWLBggUpiRkZGYsSIEdDVlX6r0tLSEBAQgIMHD6p00vWK4vN4PBw4cICT+M+ePQMA1K1bF7t378bHH3+sshyIbJpQk4D667KimhgxYgQOHDgAxpjS48qTg3hJVa7qMi0tDWlpaZzFf/XqFQCgSZMm+OOPP9CsWTNMmjRJZXkQzZWVlYXc3Fy1xDIyMoJAweUdJ0yYgJ07d2Lq1KnYtGmT1GO+vr7YuHEjfHx8EBERocRMKzZq1CgMHDhQbfFqCoUHe3GloKAAsbGxWLhwoWSbjo4O+vbti8uXL6skplAoxOzZs2V+KIq3zZo1C3379gVfBZ2zhEIhZs6cqZHxxUxMTDBggPqWviSaRd11yXVNinPQ1LrkOr5Yfn4+GjdurPTYRDtkZWVh/fr1KCoqUks8XV1dzJgxQ+HGrL29Pfbt24d169bB0NAQAJCXl4c9e/bAgYNlyQwNDSV5EPnJ3ZB98uQJGjRooMpcKvTixQsIhUJYW1tLbbe2tsa9e/dk/k5+fr7UAIc3b94oFDM6OhqPHz+u8DlpaWkKF48ycR3/yZMniI6Ohjstaq52XNckoHhd1oaa1IQcuI7/+PFjOi/UYrm5uWprxAJAUVERcnNzFT7mO3bsiAcPHiAyMlLShzwyMhIODg5SAzWPHz+OFStW4O+//wafz0e3bt0QGhqKJk2aAAAePnwIJycn7N27Fz/88ANu3LiBpk2bYsOGDejVqxcA4OzZs+jduzeOHj2KhQsXIjExEe3bt8e2bdsk3cMiIiLg5+eHzMxMAEBAQAAOHTqEuXPnYvHixXj9+jUGDBiArVu3SsZDvH37Fl9++SUOHTqEunXrYv78+fjtt9/Qvn17hISEVOdt1RpyN2Rbt26NDRs2YMyYMarMR6kCAwOxbNmyKv9+eonFugsLCxEQEKCErKpGk+Onq3FRcyMjI7XF0sT4JVFNclsTmpCDJsdX13lBk2qSaJ9JkyYhPDxc0pDdsWMHJk6ciLNnz0qek5OTA39/f7Rt2xbZ2dlYsmQJPvnkE8TFxUkNbJ43bx5CQkLQqlUrrF27FoMHD0ZycrJkILT4OaGhobCxscGiRYswePBgJCYmlttV7MGDBzh06BCOHj2K169fw8vLC0FBQVi5ciUA0RiAixcv4vDhw7C2tsaSJUtw48YNtG/fXvlvloaSuyG7cuVKTJ06FVFRUdi8eTPMzc1VmVcZlpaW4PP5kr6ZYs+ePYONjY3M31m4cCH8/f0l99+8eQN7e3u5Y8o7B+qxY8dUMmfn+fPn5eovw3V8ZcwJKQ99fX3MmzdPLbE0MX5pXNckoHhdantNAtpTl1zHt7S0VHrs0jStJon2GTduHBYuXIhHjx4BAC5evIh9+/ZJNWQ//fRTqd/ZsWMH6tevj7t370oNtp0xY4bkuWFhYTh+/Di2b9+O+fPnS56zdOlSycDLnTt3ws7ODlFRUfDy8pKZX3FxMSIiIiRXYMePH4/Tp09j5cqVePv2LXbu3Ik9e/agT58+AIDw8HDOv6lTN7kbstOnT8eAAQMwefJktGrVClu3bsXgwYNVmZsUfX19dOrUCadPn8awYcMAiP6DT58+jRkzZsj8HQMDAxgYGFQ5Zs+ePWFnZ4e0tDSZ/cF4PB7s7Ozg4eGhkr5oHh4eGh1fbOrUqdDT08OQIUOUngMpH9c1CShel9pek4Dm1yXX8cUWLlyIRo0aoXnz5krPgRBlqV+/PgYNGoSIiAgwxjBo0KAyf4QlJSVhyZIluHLlCl68eCFZ/CQlJUWqIdutWzfJz7q6unB1dUV8fLzUvko+x9zcHM7OzmWeU5Kjo6PUtIq2traSGWH+/fdfFBYW4oMPPpA8LhAI4OzsrMhboPUUmuzTyckJf/31F7755hsMHz4cbdu2RceOHaVuquTv74+tW7di586diI+Px7Rp05CTk6Oy+Qn5fD5CQ0MBvB+NLCa+HxISorIPTG2I7+TkhJcvX2Lo0KGYNm2a2kapEhGuaxJQb11yXROakIM2xDcxMUFsbCw6dOiAbdu2qXwWCUKqY9KkSYiIiMDOnTtlzrIxePBgvHr1Clu3bsWVK1dw5coVAKLBrqpWussBj8fjbCVDTaXwrPWPHj1CZGQk6tWrh6FDh5a5qdKoUaOwevVqLFmyBO3bt0dcXByOHz9eZqCJMg0fPhwHDhxAw4YNpbbb2dmpfIobTY9/8OBBxMfHY+7cuQBE0y65urpKJqJXtsLCQkRERCAiIgKFhYUqiaHJ8cvDZU0C6q9LrmtCE3LQ5PgHDx7EvXv38NFHHyE3NxdTpkzBiBEjJFNzKZOm1iTRLv3790dBQQEKCwvh6ekp9djLly+RkJCAb775Bn369EHLli3x+vVrmfuJiYmR/FxUVITY2Fi0bNmy3Oe8fv0aiYmJZZ4jr8aNG0NPTw/Xrl2TbMvKykJiYmKV9qetFJp+a+vWrZg7dy769u2Lf/75B/Xr11dVXuWaMWNGuV0JVGX48OEYOnQooqOjkZ6eDltbW/Ts2VOlV320Kf7q1avh6ekJHx8fxMfHo0uXLggMDISfn59SV/hijEn6MXFxhYfr+LJoQk0C6q9LrmtCE3LQ9PgnT57EmjVr8PXXXyMyMhJXrlzBzz//jN69eystB02sSaJ9+Hy+5Ov90vVTr149WFhYYMuWLbC1tUVKSkq582Nv2LABzZo1Q8uWLbFu3Tq8fv26zBXeb7/9FhYWFrC2tsbXX38NS0tLSbcsRZmamsLHxwfz5s2Dubk5rKyssHTpUujo6JT5tqQmk7sh279/f1y9ehXr16+Ht7e3KnPSSHw+n9OpZDQ9fr9+/XD79m1MnjwZhw8fxty5c3HixAlERETIPUCHKIZqktua0IQcNDm+jo4O5s2bh48++ghjxoxBYmIi+vTpg/nz5+Pbb79V2yBRQuRRt25dmdt1dHSwb98+zJo1C23atIGzszN++OEHmcd9UFAQgoKCEBcXh6ZNm+Lw4cNl+tsGBQVh9uzZSEpKQvv27XHkyJFq1cLatWvx5Zdf4uOPP5ZMv5WamlqrVtOTuyErFApx+/Zt2NnZqTIfosUsLS1x6NAhbN68Gf7+/vjzzz/h4uKCHTt20EAwFaCaJNqgU6dOuHHjBubMmYOtW7ciODgYp06dwp49e2ggWA1lZGQEXV1dtS6IoOg0bJWt2HXo0CHJz3379sXdu3elHpf1DUDLli0l/WfL06NHD/z9998yH5swYQImTJgguR8QEFBmejs/Pz/4+flJ7puammL37t2S+zk5OVi2bBm++OKLCvOoSeRuyJ48eVKVeZAagsfj4csvv0SvXr0wZswYxMXFSQaCrV69muZ8VCKqSaItjI2NsWXLFvTv3x9TpkyRDAQLDQ3F5MmTa9XXoLWBQCDAjBkzNHqJ2pri5s2buHfvHj744ANkZWXh22+/BQC1jI/QFFqzRC3RLi1btkRMTAy+/vprrFmzBmFhYTh79iz27NlTqyZqJoS8N3z4cHTp0gXe3t7466+/MGXKFBw/fhxbtmzhZB5kojoCgaDWNi7VbfXq1UhISJBMhxgdHa2WeZw1hfJG4hBSioGBAVavXo0///wTtra2koFga9euVcr0IQEBAeDxeFK3Fi1aKCFz+Tk6OpbJgcfjwdfXV615EKItGjZsiJMnT+L777+Hnp4eDh48iLZt2+LMmTNKi5GWloZx48bBwsIChoaGcHFxwfXr15W2f0JKcnR0BGOswos07u7uYIzBzMxMqbE7dOiA2NhYZGdn49WrVzh58iRcXFyUGkPTUUOWqJx4INiQIUNQUFCAuXPnYsCAAVVawlJPT09qXr3WrVsjPT1dcrtw4YIyU680/rVr16Tii7/uHzlypErzIESbiQeCXb58Gc2bN0daWhr69OmDBQsWKDw3Z+mafP36Ndzc3KCnp4c//vgDd+/exZo1a1CvXj1lvwxCiAbgsVo0Z8mbN28gEAiQlZVV7ghFojqMMclAsHfv3sHCwqJaA8ECAgJw6NAhlc1bWxV+fn44evQokpKSZPb7o2NQGr0fJCcnRzIQDBANDqvOQLAFCxbg4sWLiI6Olvt36Dismry8PCQnJ8PJyalWjZInVaeKY4auyBK1EQ8Ei42NRfv27SUrgk2fPr3KgwKSkpLQoEEDNG7cGGPHjkVKSoqSs5ZfQUEBdu3ahUmTJtHgFULkJB4IdvDgQZibm1d7RbDDhw/D1dUVI0eOhJWVFTp06CBpJBPVqEXXw0g1qeJYoYYsUTvxQDDximBhYWFVWhGsS5cuiIiIwPHjxxEWFobk5GT07NkTb9++VUHWlTt06BAyMzOlpk8hhMhn+PDhuH37ttSKYCNHjlR4RbB///0XYWFhaNasGU6cOIFp06Zh1qxZ2Llzp4oyr73EXTpoaXIiL/GxUnrp3eqgrgWEUydPnoSPjw/S09Ohr69f4YpgRUVF+OWXXwAAXl5e0NWVnnQjMzMTjRo1wtq1azF58mSl51pZfE9PT+jr6+PIkSPl7oOOQWn0fpDSiouLJSuCFRYWomHDhuWuCCarJvX19eHq6opLly5Jnjdr1ixcu3YNly9flhmTjsOqS09PR2ZmJqysrGBkZETfRhGZGGPIzc1FRkYGzMzMlLpQEk2/RTilyIpgxcXFSEpKkvxcmpmZGZo3b4779++rJNeK4j969AinTp1CZGSkSmITUlsosiKYrJq0tbVFq1atpPbZsmVLHDx4UH0vohaxsbEBAGRkZHCcCdEGZmZmkmNGWaghSzgna0Wwtm3bYvv27QoNBMvOzsaDBw8wfvx4FWYrW3h4OKysrDBo0CC1xyakJqrqimBubm5ISEiQ2paYmIhGjRqpOuVaicfjwdbWFlZWVigsLOQ6HaLB9PT0wOfzlb5fasgSjSDPimBCoVDy/OjoaPz+++8YOnQoGjVqhCdPnmDp0qXg8/kYPXq0SnIsHd/d3R18Ph/FxcUIDw+Hj49Pme4GhJCqq2xFMFk1OWfOHHTv3h3fffcdvLy8cPXqVWzZsgVbtmzh8JXUfHw+XyWNFEIqQ4O9iEYpbyDYmjVrpL4uHDBgADZt2oRPPvkEzs7O8PLygoWFBWJiYlC/fn2l5xUZGVkmvqOjIyIjI3Hq1CmkpKRg0qRJSo9LCJE9EKx79+5SC6CIazI1NRVRUVHYu3cv2rRpg+XLlyMkJARjx47l8BUQQlSFGrJE48haEeyrr75CWlqa1PPy8vKQmZmJvXv34vHjx9i3bx+aNGmi9HwiIyMxYsSIMvHT0tIwYsQIZGdngzFW5XkvCSGVE68IFhwcDD6fj5iYmDKLqohrsqCgAHfu3EFeXh7i4+MxZcoUjrImhKgaNWSJxurXrx9u3rxZ7qTJjDEwxjBr1iy8efMGOTk5Sr+9efMGM2fOlDn3nXibn5+f1FechBDV0NHRwdy5c2FhYSHzcapJQmof6tBHNFp8fDzy8vIqfE5aWhoEAoGaMpLGGENqaqqkfx4hRLWio6MrHCFPNUlI7UINWaLRSn51WFhYiICAAM5yqSh+6a84CSGqIe85gWqSkNqBGrJEo8k7afKxY8fw4YcfKj3++fPnMXDgwEqfp8zJnQkh5ZO31qgmCakdaGUvotGEQiEcHR2RlpYms58qj8eDnZ0dkpOTVTL1i7Lj0zEojd4PoihVnBPoOCREe9FgL6LR+Hw+QkNDAaDM0ofi+yEhISqbv5Dr+IQQaVSThJCSqCFLNN7w4cNx4MABNGzYUGq7nZ0dDhw4gOHDh9fo+IQQaVSThBAx6lpAtIZQKER0dDTS09Nha2uLnj17qvWqizLi0zEojd4PUh3KOifQcUiI9qLBXkRr8Pl8TqfT4To+IUQa1SQhhLoWEEIIIYQQrUQNWUIIIYQQopWoIUsIIYQQQrQSNWQJIYQQQohWooYsIYQQQgjRStSQJYQQQgghWokasoQQQgghRCtRQ5YQQgghhGglasgSQgghhBCtRA1ZQgghhBCilaghSwghhBBCtJLWNGRXrlyJ7t27w8jICGZmZlynQ0itRzVJCCGEa1rTkC0oKMDIkSMxbdo0rlMhhIBqkhBCCPd0uU5AXsuWLQMAREREcJsIIQQA1SQhhBDuac0VWUIIIYQQQkrSmiuyVZGfn4/8/HzJ/aysLADAmzdvuEqJ1HLiY48xxnEm3KCaJJqottclIdqM04bsggULEBwcXOFz4uPj0aJFiyrtPzAwUPL1Z0n29vZV2h8hyvL27VsIBAKu0yiDapLUZppal4SQ8vEYh3+CPn/+HC9fvqzwOY0bN4a+vr7kfkREBPz8/JCZmVnp/ktf/SkuLsarV69gYWEBHo+ncL5v3ryBvb09UlNTUbduXYV/X9vV9tcPVP89YIzh7du3aNCgAXR0NK9nD9Wk9qnt74EyXr+m1yUhpHycXpGtX78+6tevr7L9GxgYwMDAQGqbMqYJqlu3bq38wBCr7a8fqN57oMlXfKgmtVdtfw+q+/o1uS4JIeXTmj6yKSkpePXqFVJSUiAUChEXFwcAaNq0KUxMTLhNjpBaiGqSEEII17SmIbtkyRLs3LlTcr9Dhw4AgDNnzsDd3Z2jrAipvagmCSGEcE1rOgNFRESAMVbmps4PTAMDAyxdurTMV6O1RW1//QC9ByVRTWqG2v4e1PbXT0htx+lgL0IIIYQQQqpKa67IEkIIIYQQUhI1ZAkhhBBCiFaihiwhhBBCCNFK1JCV04YNG+Do6Ig6deqgS5cuuHr1KtcpqU1gYCA6d+4MU1NTWFlZYdiwYUhISOA6Lc4EBQWBx+PBz8+P61RqPapLqksxqktCaidqyMph//798Pf3x9KlS3Hjxg20a9cOnp6eyMjI4Do1tTh37hx8fX0RExODkydPorCwEB4eHsjJyeE6NbW7du0aNm/ejLZt23KdSq1HdUl1KUZ1SUjtRbMWyKFLly7o3Lkz1q9fD0C0rKa9vT1mzpyJBQsWcJyd+j1//hxWVlY4d+4cPvzwQ67TUZvs7Gx07NgRGzduxIoVK9C+fXuEhIRwnVatRXUpjeqS6pKQ2oiuyFaioKAAsbGx6Nu3r2Sbjo4O+vbti8uXL3OYGXeysrIAAObm5hxnol6+vr4YNGiQ1LFAuEF1WRbVJdUlIbWR1qzsxZUXL15AKBTC2tpaaru1tTXu3bvHUVbcKS4uhp+fH9zc3NCmTRuu01Gbffv24caNG7h27RrXqRBQXZZGdUl1SUhtRQ1ZohBfX1/8/fffuHDhAtepqE1qaipmz56NkydPok6dOlynQ0gZVJdUl4TUVtSQrYSlpSX4fD6ePXsmtf3Zs2ewsbHhKCtuzJgxA0ePHsX58+dhZ2fHdTpqExsbi4yMDHTs2FGyTSgU4vz581i/fj3y8/PB5/M5zLD2obp8j+qS6pKQ2oz6yFZCX18fnTp1wunTpyXbiouLcfr0aXTr1o3DzNSHMYYZM2YgKioKf/31F5ycnLhOSa369OmDO3fuIC4uTnJzdXXF2LFjERcXRx+WHKC6pLqkuiSEAHRFVi7+/v7w8fGBq6srPvjgA4SEhCAnJwcTJ07kOjW18PX1xZ49e/Dbb7/B1NQUT58+BQAIBAIYGhpynJ3qmZqalul3aGxsDAsLi1rVH1HTUF1SXVJdEkKoISuHUaNG4fnz51iyZAmePn2K9u3b4/jx42UGmtRUYWFhAAB3d3ep7eHh4ZgwYYL6EyIEVJdUl4QQQvPIEkIIIYQQLUV9ZAkhhBBCiFaihiwhhBBCCNFK1JAlhBBCCCFaiRqyhBBCCCFEK1FDlhBCCCGEaCVqyBJCCCGEEK1EDVlCCCGEEKKVqCFLCCGEEEK0EjVkiZQJEyZg2LBhXKdBCCmB6pIQQmSjJWprER6PV+HjS5cuRWhoKGixN0LUh+qSEEKqjpaorUWePn0q+Xn//v1YsmQJEhISJNtMTExgYmLCRWqE1FpUl4QQUnXUtaAWsbGxkdwEAgF4PJ7UNhMTkzJfYbq7u2PmzJnw8/NDvXr1YG1tja1btyInJwcTJ06EqakpmjZtij/++EMq1t9//40BAwbAxMQE1tbWGD9+PF68eKHmV0yI5qO6JISQqqOGLKnUzp07YWlpiatXr2LmzJmYNm0aRo4cie7du+PGjRvw8PDA+PHjkZubCwDIzMzERx99hA4dOuD69es4fvw4nj17Bi8vL45fCSE1B9UlIYRQQ5bIoV27dvjmm2/QrFkzLFy4EHXq1IGlpSWmTJmCZs2aYcmSJXj58iVu374NAFi/fj06dOiA7777Di1atECHDh2wY8cOnDlzBomJiRy/GkJqBqpLQgihwV5EDm3btpX8zOfzYWFhARcXF8k2a2trAEBGRgYA4NatWzhz5ozMfn0PHjxA8+bNVZwxITUf1SUhhFBDlshBT09P6j6Px5PaJh51XVxcDADIzs7G4MGDERwcXGZftra2KsyUkNqD6pIQQqghS1SgY8eOOHjwIBwdHaGrS4cYIZqA6pIQUhNRH1midL6+vnj16hVGjx6Na9eu4cGDBzhx4gQmTpwIoVDIdXqE1EpUl4SQmogaskTpGjRogIsXL0IoFMLDwwMuLi7w8/ODmZkZdHTokCOEC1SXhJCaiBZEIIQQQgghWon+DCeEEEIIIVqJGrKEEEIIIUQrUUOWEEIIIYRoJWrIEkIIIYQQrUQNWUIIIYQQopWoIUsIIYQQQrQSNWQJIYQQQohWooYsIYQQQgjRStSQJYQQQgghWokasoQQQgghRCtRQ5YQQgghhGglasgSQgghhBCt9H/4E5iViUnsdwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_matched([ex_graphs.div_2early_end(), ex_graphs.div_2early_mid()], '2 Frames Early')" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArIAAADXCAYAAADm37JAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWFUlEQVR4nO3dd1xT1/sH8M8lTJEhGwQEF6KiolgLOLAiaq1i/blRQWxdqFDrblXUqjiq+K2KowrW3Va0rmrRrwM3gjjqQitoEbeAoDLC+f2RL5FAgASS3ASe9+uVV83N5T4P6X1ODjfnnsMxxhgIIYQQQgjRMFp8J0AIIYQQQkhVUEeWEEIIIYRoJOrIEkIIIYQQjUQdWUIIIYQQopGoI0sIIYQQQjQSdWQJIYQQQohGoo4sIYQQQgjRSNSRJYQQQgghGok6soQQQgghRCNRR5YQQgghhGgk6sgSQtRCTk4O5s2bh549e8LMzAwcxyEmJkbmnw8PDwfHcVIf69evV17iKlT8O758+bLax3ry5AnCw8ORnJxc/cQIIYQn2nwnQAghAPDy5UssWLAAjo6OaN26NU6dOlWl40RFRaFu3boS2zp06KCADGuWJ0+eYP78+XByckKbNm34TocQQqqEOrKEELVga2uLjIwM2NjY4MqVK2jfvn2VjjNgwABYWFjItG9ubi4MDQ2rFIcQQgj/aGgBIUQt6OnpwcbGRmnHj4mJAcdxOH36NCZMmAArKyvY29sDANLS0jBhwgS4uLjAwMAA5ubmGDhwIFJTU6Ue4+zZs5g8eTIsLS1hamqKsWPHIj8/H5mZmRg5ciTq1auHevXqYfr06WCMSRyjqKgIkZGRaNGiBfT19WFtbY2xY8fizZs3Cvk9X79+jalTp8LNzQ1169aFsbExevXqhWvXron3OXXqlPgPhVGjRomHYJQcynHp0iX07NkTJiYmqFOnDrp06YJz584pJEdCCFEUuiJLCKlRXr9+LfFcIBCgXr164ucTJkyApaUl5s6di9zcXABAQkICzp8/jyFDhsDe3h6pqamIioqCj48Pbt26hTp16kgcc9KkSbCxscH8+fNx8eJFbNy4Eaampjh//jwcHR2xePFiHDlyBMuXL0fLli0xcuRI8c+OHTsWMTExGDVqFCZPnoyHDx9izZo1uHr1Ks6dOwcdHZ1q/f7//PMP9u/fj4EDB8LZ2RnPnj3Dhg0b0KVLF9y6dQt2dnZwdXXFggULMHfuXIwZMwadOnUCAHh5eQEA/vvf/6JXr15o164d5s2bBy0tLURHR+Ozzz5DfHw8Pvnkk2rlSAghCsMIIUTNJCQkMAAsOjpa5p+ZN28eA1Dm0aBBA8YYY9HR0QwA69ixIyssLJT42Xfv3pU53oULFxgA9ssvv4i3FR+jR48erKioSLzd09OTcRzHxo0bJ95WWFjI7O3tWZcuXcTb4uPjGQC2Y8cOiVhHjx6Vur283/HFixfl7vPhwwcmFAoltj18+JDp6emxBQsWiLeV9x4XFRWxJk2alPkd3717x5ydnVn37t0rzJEQQlSJrsgSQmqUvXv3wtjYWPzcwMBA4vWvv/4aAoFAYlvJfQoKCpCdnY3GjRvD1NQUSUlJGDFihMT+o0ePBsdx4ucdOnTAhQsXMHr0aPE2gUAADw8PJCYmirf99ttvMDExQffu3SVmHmjXrh3q1q2LkydPYtiwYVX8zUX09PTE/xYKhcjMzETdunXh4uKCpKSkSn8+OTkZKSkp+P777/Hq1SuJ17p164Zt27ahqKgIWlo0Mo0Qwj/qyBJCapTOnTtXeLOXs7NzmW3v37/HkiVLEB0djfT0dIlxrVlZWWX2d3R0lHhuYmICAHBwcCizveTY15SUFGRlZcHKykpqbs+fPy83b1kVFRVh9erVWLduHR4+fAihUCh+zdzcvNKfT0lJAQAEBgaWu09WVpbEcA1CCOELdWQJIbVK6Su0gGjMa3R0NMLCwuDp6QkTExNwHIchQ4agqKiozP6lr+hWtL1kp7ioqAhWVlbYsWOH1J+3tLSU9dco1+LFizFnzhwEBwdj4cKFMDMzg5aWFsLCwqT+LqUV77N8+fJyp+UqPb0ZIYTwhTqyhJBa7/fff0dgYCB+/PFH8bYPHz4gMzNToXEaNWqE48ePw9vbW2qHWhF+//13dO3aFZs3b5bYnpmZKXGluuTQiNI5AoCxsTF8fX2VkiMhhCgKDXIihNR6AoGgzDRZP/30k8TX8oowaNAgCIVCLFy4sMxrhYWFCuk4S/tdfvvtN6Snp0tsK54/t3TMdu3aoVGjRlixYgVycnLKHP/FixfVzpEQQhSFrsgSQtTGmjVrkJmZiSdPngAADh48iH///ReA6Ov/4rGoivbFF19g27ZtMDExQfPmzXHhwgUcP35cpjGl8ujSpQvGjh2LJUuWIDk5GX5+ftDR0UFKSgp+++03rF69GgMGDKj0OCtXriwzJZiWlhZmz56NL774AgsWLMCoUaPg5eWFGzduYMeOHWjYsKHE/o0aNYKpqSnWr18PIyMjGBoaokOHDnB2dsbPP/+MXr16oUWLFhg1ahTq16+P9PR0nDx5EsbGxjh48KBC3xdCCKkq6sgSQtTGihUrkJaWJn4eGxuL2NhYAMDw4cOV1pFdvXo1BAIBduzYgQ8fPsDb2xvHjx9Hjx49FB5r/fr1aNeuHTZs2IDZs2dDW1sbTk5OGD58OLy9vWU6xpIlS8psEwgEmD17NmbPno3c3Fzs3LkTe/bsQdu2bXH48GHMnDlTYn8dHR1s3boVs2bNwrhx41BYWIjo6Gg4OzvDx8cHFy5cwMKFC7FmzRrk5OTAxsYGHTp0wNixYxXyPhBCiCJwrPR3UIQQQgghhGgAGiNLCCGEEEI0EnVkCSGEEEKIRqKOLCGEEEII0UjUkSWEEEIIIRqJOrKEEEIIIUQjUUeWEEIIIYRoJOrIEkIIIYQQjUQdWUIIIYQQopGoI0sIIYQQQjRSrVqitqioCE+ePIGRkRE4juM7HVILMcbw9u1b2NnZQUuL/o6kmiTqgOqSEM1VqzqyT548gYODA99pEILHjx/D3t6e7zR4RzVJ1AnVJSGap1Z1ZI2MjACIGitjY2OesyG1UXZ2NhwcHMTnYm1HNUnUAdUlIZqrVnVki7+6NDY2pg9Nwiv6Gl2EapKoE6pLQjQPDQYihBBCCCEaiTqyhBBCCCFEI1FHlhBCCCGEaCTqyBJCCCGEEI1EHVlCCCGEEKKRqCNLCCGEEEI0EnVkCSGEEEKIRqKOLCGEEEII0UjUkSXVcubMGfTp0wd2dnbgOA779+8Xv1ZQUIAZM2bAzc0NhoaGsLOzw8iRI/HkyROVxC9t3Lhx4DgOkZGRKo1/+/Zt9O3bFyYmJrC1tQUgWsmKkJqI7zahshxKGzduHExMTBQanxCiOtSRJdWSm5uL1q1bY+3atWVee/fuHZKSkjBnzhwkJSUhNjYWd+/eRd++fVUSv6R9+/bh4sWLsLOzU1hsWeI/ePAAHTt2RLNmzXDq1CmcO3cOAKCvr6/QPAhRF3y3CZXlUFJxu1D8ByYhRAOxWiQrK4sBYFlZWXynUiMBYPv27atwn8uXLzMALC0tTWXx//33X1a/fn128+ZN1qBBA7Zq1SqFxy4v/uDBg9nw4cPFz+kclETvR83Gd5tQUQ4l2wVHR0c6DwnRUHRFlqhUVlYWOI6DqampSuIVFRVhxIgRmDZtGlq0aKGSmCVjHz58GE2bNkWPHj1gZWWFzz77TKU5EKLuVN0mAPy2C4QQxaKOLFGZDx8+YMaMGRg6dCiMjY1VEnPp0qXQ1tbG5MmTVRKvpOfPnyMnJwcRERHo2bMn/vrrL3zxxRcAgLNnz6o8H0LUDR9tAsBvu0AIUSxtvhMgtUNBQQEGDRoExhiioqJUEjMxMRGrV69GUlISOI5TScySioqKAAD+/v745ptvAAANGzbE/PnzsWXLFnz++ecqz4kQdcFHmwDw3y4QQhSLrsgSpSv+wEpLS0NcXJzKrrzEx8fj+fPncHR0hLa2NrS1tZGWloZvv/0WTk5OSo9vYWEBbW1tNG/evMxr//77r9LjE6Ku+GoTAOntwqNHjwAAbm5uKsuDEKIYdEWWyEQoBOLjgYwMwNYW6NQJEAgq/7niD6yUlBScPHkS5ubmKsthxIgR8PX1ldjWo0cPjBgxAqNGjVJ6fF1dXbRv3x53794t85qDg4Pc8QlRN1VpF/hsEwDp7YKfnx8yMjIQGxtb5VwIIfygjiypVGwsEBoKlLyIaG8PrF4N+Pnl4P79++LtDx8+RHJyMszMzGBra4sBAwYgKSkJhw4dglAoxNOnTwEAZmZm0NXVrXYOERE5aNFCenxHR8cyH5I6OjqwsbGBi4uLQt6DyuJPmzYNgwcPRufOndG1a1fxfJZfffWVXPEJUTdVqQlVtAmVtUvltQsA0KRJE3neAkKIOuB72gRVoql+5Ld3L2Mcxxgg+eA40WP+/JMMQJlHYGAge/jwodTXALCTJ08qJAeg/PjSVGX6rerG37x5M2vcuDHT19dnbm5udA6WQDWpmapaE6poEyprl6Sh6bcI0VwcY4wprZesZrKzs2FiYoKsrCyVjsnSVEIh4OQkecWjtPr1gVu3ZBtmUNUcXF2Bihb+UWYOlcXnONFVoIcPZYtP56Akej80D9/tgqJrEqDzkBBNRkMLSLni4yv+sAKA9HSA79Ud+cyBMeDxY9F75ePDTw6EqJK6twtUk4TULtSRJeXKyPj4bx2dfHz33RIAwKJFs1BQIPtYNkXhO4eK4pd8rwipydSpXaCaJIRQR5aUy9q65DMOmZkm4n+XdOQI0LmzcnI4cwb4ON2q6nOQNT4t1U5qCyOjks+oJgkh/KIxskSqjAwgMBCIiyt/n6qMRZNX8Xi89HTRV4aqzkHR8ekclETvh2Y5fx4ICABSU8vfR9NqEqDzkBBNRgsikDIOHgRatRJ1YsubDad4QZzISOV1YgHRsVevloypyhz4jk+IOigsBObPF11hTU0FrKxE26kmCSF8o44sEXv3DpgwAejbF3j5EmjdGkhOBvbuFV3hKMneHvj9d6B/f+Xn1b+/KFb9+vzkwHd8QviUmgp06QKEh4uuhg4fDty7J2oXqCYJIXyjoQUEAHDtGjB0KHD7tuj5lCnA4sWAnp7o+YcPBVi3Lgb5+UD79kHw8dFR+RUPvnNQRHw6ByXR+6HeduwQ/XGbnQ0YGwNRUcCwYR9frwk1CdB5SIgmo5u9armiItHXdDNnAvn5gI0NsHUr4OcnuZ+WFsPbt6KJGzt1Yrx8bcd3DnzHJ0RVsrKAkBBRRxYAvLyA7dsBZ2fJ/fiuCb7jk4+EQiEKCgr4ToOoMR0dHQiUUKQa1ZE9c+YMli9fjsTERGRkZGDfvn3o168f32lprIwMICgI+Osv0fO+fYGffwYsLXlNi2gQqsmap+QNXVpawNy5wHffAdoa9WlBVIUxhqdPnyIzM5PvVIgGMDU1hY2NDbjSA9yrQaOaptzcXLRu3RrBwcHoT4OgquXgQSA4WDQW1sAAWLkSGDu27M0ThFSEarLmKCwEFi0CFi78ODPAjh2iq7GElKe4E2tlZYU6deootINCag7GGN69e4fnz58DAGwVOD+eRnVke/XqhV69evGdhkZ79w6YOlU01g0Q3dC1a5doyUdC5EU1WTOkpoquwp4/L3oeEACsXcv/qn1EvQmFQnEn1tzcnO90iJozMDAAADx//hxWVlYKG2ZAsxbUIteuAR4eHzuxU6YAly5RJ5aQ2mznTtEftOfPi27o2r5d9KBOLKlM8ZjYOnXq8JwJ0RTF54oix1PX6I5sXl4esrOzJR6KdObMGfTp0wd2dnbgOA779++XeJ0xhrlz58LW1hYGBgbw9fVFSkqKyuLHxsbCz88P5ubm4DgOHh7JuH1bdEPXsWPAjz9+nJWAEFVQdk0CwNu3bxEWFoYGDRrAwMAAXl5eSEhIUHic8mhKu2BmJmoXAgKSkZ0tGkKQnCy6GkuIPGg4AZGVMs6VGt2RXbJkCUxMTMQPBwcHhR6/eHzg2rVrpb6+bNky/Oc//8H69etx6dIlGBoaokePHvjw4YNK4ote7wgbm6UARGPg+vYFrl8vOyuBLOrUqcP7X95858B3fE2n7JoEgK+++gpxcXHYtm0bbty4AT8/P/j6+iI9PV3hsaTRhHbB0bEjtLRE7QLHieaIPX267KwEsuC7JviOT4gqhYeHo02bNnynAQDw8fFBWFgY32lo7jyyHMdVeod0Xl4e8vLyxM+zs7Ph4OCglLkCS+fDGIOdnR2+/fZbTJ06FQCQlZUFa2trxMTEYMiQIUqND5S8oSsVgDNmz76KH35oQzd08agmz1epDjX5/v17GBkZ4Y8//kDv3r3F29u1a4devXrhhx9+qHYMeahbuyB5Q1cqAGdER19FUFAbhcbVNDW5LpXpw4cPePjwIZydnaGvry/x2qNHj/Dy5UuV5GFhYQFHR0e5fubp06dYsmQJDh8+jH///RcmJiZo3Lgxhg8fjsDAQLX94yg8PBz79+9HcnKy1Nfmz59f4c9Xpct36tQpdO3aFW/evIGpqal4u4+PD9q0aYPIyEiZj1XROVNVGnWzl7z09PSgx9N35w8fPsTTp0/h6+sr3mZiYoIOHTrgwoULCv/AKqn0DV2urqKFDgYOpFkJCL+UXZOFhYUQCoVlGkgDAwOcPXtWaXFlxWe7UPqGLn9/4I8/ADW5uENqkEePHsHFxUVh3zJURl9fH3fv3pW5M/vPP//A29sbpqamWLx4Mdzc3KCnp4cbN25g48aNqF+/Pvr27Sv1ZwsKCqCjo6PI9BVm6tSpGDdunPh5+/btMWbMGHz99ddS98/Pz4dueevQaxCNGlqQk5OD5ORk8V8iDx8+RHJyMh49esRvYlI8ffoUAGBtbS2x3draWvyaMki7oWvfPqWFI7WcutWkkZERPD09sXDhQjx58gRCoRDbt2/HhQsXkJGRwUtOJfHVLki7oUuOiyiEyOXly5cq68QCoqt88lz9nTBhArS1tXHlyhUMGjQIrq6uaNiwIfz9/XH48GH06dNHvC/HcYiKikLfvn1haGiIRYsWAQCioqLQqFEj6OrqwsXFBdu2bRP/TGpqKjiOk7hqmpmZCY7jcOrUKQCiq5wcx+HEiRPw8PBAnTp14OXlhbt370rkGhERAWtraxgZGWH06NEVvq9169aFjY2N+CEQCGBkZCR+PmTIEEycOBFhYWGwsLBAjx49Ks01NTUVXbt2BQDUq1cPHMchKChIvG9RURGmT58OMzMz2NjYIDw8XOb/D4pS5Y5sfn4+7t69i8LCQkXmU6ErV67A3d0d7u7uAIApU6bA3d0dc+fOVVkO6uzAAeCTT6CUG7oKCgoQExODmJgY3lZv4TsHvuNXhmpSZNu2bWCMoX79+tDT08N//vMfDB06FFpaGvV3u8JERoquxCrjhi6+a4Lv+ETzvHr1Cn/99RdCQkJgaGgodZ/SNySFh4fjyy+/xI0bNxAcHIx9+/YhNDQU3377LW7evImxY8di1KhROHnypNz5fPfdd/jxxx9x5coVaGtrIzg4WPzar7/+ivDwcCxevBhXrlyBra0t1q1bJ3eMkrZu3QpdXV2cO3cO69evr3R/BwcH7N27FwBw9+5dZGRkYPXq1RLHMzQ0xKVLl7Bs2TIsWLAAcXFx1cpRXnIPLXj37h0mTZqErVu3AgDu3buHhg0bYtKkSahfvz5mzpyp8CSL+fj4VGl8Bx9sbGwAAM+ePZOY+PfZs2cKH6hdfKEpOlr03z59gM2bFbtCF2MMaWlp4n/zge8c+I5fHqpJSY0aNcLp06eRm5uL7Oxs2NraYvDgwWjYsCHfqam0XSgeQnD6tPJW6OK7JviOTzTP/fv3wRiDi4uLxHYLCwvx1c6QkBAsXbpU/NqwYcMwatQo8fOhQ4ciKCgIEyZMACD6A/7ixYtYsWKF+OqlrBYtWoQuXboAAGbOnInevXvjw4cP0NfXR2RkJEaPHo3Ro0cDAH744QccP368Wle7mzRpgmXLlomfp6amVri/QCCAmZkZAMDKykpijCwAtGrVCvPmzRMfe82aNThx4gS6d+9e5RzlJfclilmzZuHatWs4deqUxDg0X19f7NmzR6HJqROhEDh1SrR4wKlToucVcXZ2ho2NDU6cOCHelp2djUuXLsHT01Nh8Q8dAlq1Ev1bRwdYt0407o2Wma09qCal16ShoSFsbW3x5s0bHDt2DP7+/irPoTRVtAuFhcD8+UDnzqJ9LC2B+Hhg3jxaZpaQ8ly+fBnJyclo0aKFxA2pAODh4SHx/Pbt2/D29pbY5u3tjdu3b8sdt1XxBzg+rnZVvPrV7du30aFDB4n9q9JOlNSuXbtq/XxpJfMHRL9Dcf6qIneztn//fuzZsweffvqpxOX3Fi1a4MGDBwpNTl3ExgKhocC//37cZm8PRETkoEWL++JtxeMDzczM4OjoiLCwMPzwww9o0qQJnJ2dMWfOHNjZ2cm9Fr20+HZ2QPPmOTh+/GP8KVMewtMzGY8fi+K/fv0ajx49wpMnTwBAPPameLwMqRmoJkXs7YHVqwFDw2PiKy7379/HtGnT0KxZM4krKsrMgc92wcYGMDbOwb17H+OHhT1EnTrJePSI2gVCGjduDI7jyoxFLf7Gpnj1qZLKG4JQnuJhTCW/JShv6EvJG8eK2++ioiK54smj9O8iT67SlL7xjeM4peYvjdxXZF+8eAErK6sy23Nzc2vkpMixscCAAZIfFgCQng4MH17x+MDp06dj0qRJGDNmDNq3b4+cnBwcPXpUriknyov/5Alw/PgVAO7/ewBLl0rGP3DgANzd3cXTEA0ZMgTu7u4yjYshmoNqUiQ9XbT9r7+yEBISgmbNmmHkyJHo2LEjjh07ptA7jdW1XXj6FLh3T7Jd+O47ahcIKWZubo7u3btjzZo1yM3NrdIxXF1dce7cOYlt586dQ/PmzQEAlv/7SrTkDabSpsuSJc6lS5cktl28eFHu41REllyLZzYQVvaVE0/kviLr4eGBw4cPY9KkSQA+/gXx888/V/uSt7oRCkVXPKQNvRJt80H9+gy3bgGllwwW1QeHGTMWYMaMBVJeky3+pEnS44v4wNKSISOjbHwACAoKkri7kNRMVJMixdv27BmEW7cGlVOTismhvLpUl3bB1pbh8WNqFwiRZt26dfD29oaHhwfCw8PRqlUraGlpISEhAXfu3Kn06/dp06Zh0KBBcHd3h6+vLw4ePIjY2FgcP34cgOiq7qeffoqIiAg4Ozvj+fPn+P777+XOMzQ0FEFBQfDw8IC3tzd27NiBv//+W6Hj/WXJtUGDBuA4DocOHcLnn38OAwMD1K1bV2E5VJfcV2QXL16M2bNnY/z48SgsLMTq1avh5+eH6Oho8bQUNUV8fNkrHqWlp4vWJK9bV/EPExPRldfyLcGLF+1hZGQEKysr9OvXr8zXJaoUEREBjuNUutJHeno6hg8fDnNzcxgYGMDNzQ1XrlxRWXyhUIg5c+bA2dkZBgYGaNSoERYuXKjSG0+oJiUpsyZlq0u+24UoZGS0grGxMYyNjeHp6Yk///xT3re6ysLDw8FxnMSjWbNmKovv5ORUJj7HcQgJCVFZDkS9NWrUCFevXoWvry9mzZqF1q1bw8PDAz/99BOmTp2KhQsXVvjz/fr1w+rVq7FixQq0aNECGzZsQHR0NHx8fMT7bNmyBYWFhWjXrp14OJG8Bg8ejDlz5mD69Olo164d0tLSMH78eLmPU5nKcq1fvz7mz5+PmTNnwtraGhMnTlR4DtUh9xXZjh07Ijk5GREREXBzc8Nff/2Ftm3b4sKFC3Bzc1NGjrwpOe2kjk4+vvtuCQBg0aJZKChQ7STCOjr5mDZtBQBg+fKp/4t/GkAI5s9vDz+/QsyePRt+fn64deuW3GN6ZMuh/K9mExISsGHDhjIDv5WZw5s3b+Dt7Y2uXbvizz//hKWlJVJSUlCvXj2VxAeApUuXIioqClu3bkWLFi1w5coVjBo1CiYmJpg8ebLS8iiJapKfmlSHHKS3C/YAIrBwYRN88QXD1q1b4e/vj6tXr6JFixZKyKFsu9CiRQvx1SkA0FbiXWal4yckJEh8BXrz5k10794dAwcOVFoORJKFhQX09fVVuiCChYWFXD9ja2uLn376CT/99FOF+5V3UWL8+PEVdipdXV1xvnjqECnHkjbjS5s2bcpsmz17NmbPni2xreSMChUpPSNB8Ry28uYKAHPmzMGcOXMqPd7+/ftlyk2RqtS6NGrUCJs2bVJ0LmqnxOw4ADhkZpqI/13SkSMf7xBWpDNngM8/F/27oEAXixfPLrXHUQBA+/aiyc5jYmJgZWWFxMREdFZwQrq6umWKqVhOTg4CAgKwadMmpS4BWjqHuXPnwsHBAdHF845BdFe4quIDwPnz5+Hv7y8eb+jk5IRdu3bh8uXLSstDGqpJ1dQkIFmX6tkuiCZzb9sWaNpUNL1PVFQULl68qPCObHntgra2tkpuHJMW37LUlC0RERFo1KiReIojonyOjo64e/euWi9RS2oOuTuyla3YU5NOpk6dRHchp6cDBQU6iIwMk3id40Sv+/lJH4tWXX5+H+OX9001xwH37gFduojWbAcgnvNNVUJCQtC7d2/4+vqqdC37AwcOoEePHhg4cCBOnz6N+vXrY8KECeUux6cMXl5e2LhxI+7du4emTZvi2rVrOHv2LFauXKmyHKgmP1J2TQKSdamu7YK2tmghFKFQiN9++w25ubkqHS+dkpICOzs76Ovrw9PTE0uWLOHlPMzPz8f27dsxZcqUGnnjozpzdHSsUW0PUWNMThzHMS0trXIf6iwrK4sBYFlZWTL/zN69jHGc6CH62BA9irft3avEhCuIX/rx5ZdC1r17b+bt7a3chErZtWsXa9myJXv//j1jjLEuXbqw0NBQlcTW09Njenp6bNasWSwpKYlt2LCB6evrs5iYGJXEZ4wxoVDIZsyYwTiOY9ra2ozjOLZ48eJy96/KOVgZqknV1qQ65FB5u3CdAYZMS0vATExM2OHDh5WbUAlHjhxhv/76K7t27Ro7evQo8/T0ZI6Ojiw7O1tlORTbs2cPEwgELD09vcL9lFGXtcH79+/ZrVu3xO0/IZVRxjkjd0c2OTlZ4pGQkMA2btzImjVrxvaq4hOkGqraWO3dy5i9veQHhYODaj4wi+M3aFDAhg3bwYYN28G0tQuYgwNjv/3G2LJljOnoMAaMYwJBA7Z792Ol5FBQUMB27NjBduzYwQoKChhjjD169IhZWVmxa9euifdTZke2dA46OjrM09NTYp9JkyaxTz/9VCXxGRN15O3t7dmuXbvY9evX2S+//MLMzMzK7Uwr4wOTalL1NakOOZTXLvzyC2MDBuQxIIUBV5iDw0xmZmbB/v77b4XnIK0mSnvz5g0zNjZmP//8s8rj+/n5sS+++KLS41BHtmqoI0vkpYxzRu6hBa1bty6zzcPDA3Z2dli+fDn69+9frSvE6qh/f+Dzzwuwbl0M8vOB9u2D4OOjo7SvLqXF79WrCMuWpQAAjh4tgo/Px68tExImYt++QygsPIOhQ+2RlAQsXAjoKvC+k6KiIqSkpIj/DQCJiYl4/vw52rZtK95PKBTizJkzWLNmDfLy8iBQ4JtUOgdbW1vxvH3FXF1dxetCK5q092DatGmYOXMmhgwZAgBwc3NDWloalixZgsDAQKXkURrVpOprUh1yqKhdGD5cF7/80hgTJwKPH7eDtnYCJk9ejePHNyg0B2k1UZqpqSmaNm2K+/fvS31dWfHT0tJw/PhxxMbGKjwuIUR9yD39VnlcXFyQkJCgqMOpHS0thrdvnyAv7wk6dWIq/cAEJMfadeokes4Yw8SJE3Hu3D5cufJffP21MxgDli0DvLwAZc/E1a1bN9y4cQPJycnih4eHBwICApCcnKzQTqw03t7eZaYbu3fvHho0aKDUuCW9e/dOvDJKMYFAoPKVTaShmqz5OUhrFwDRON3AQCA5GejQASgsLMKJE3kICgLevlVtjjk5OXjw4IF4+U1ViY6OhpWVlfhGTEJIzSR3RzY7O1vikZWVhTt37uD7779HkyZNlJEjgeSKGvHx8RAKhQgJCcH27duxc+dOWFsbYcGCp9i8+Snq1XuPxETRXcs//1zRxOnVi29kZISWLVtKPAwNDWFubo6WLVtWP2glOUyePBkXL17E4sWLcf/+fezcuRMbN25U2nyR0t6DPn36YNGiRTh8+DBSU1Oxb98+rFy5El9++aVScpCGarL2knZOzpo1C2fOnEFqairevbuBzp1nATgFjgvA1q2AuzugqEk1pMWfOnUqTp8+jdTUVJw/fx5ffvklBAIBhg4dqpiglcQHRFdno6OjERgYqNSpvwgh/JO7I2tqaop69eqJH2ZmZmjevDkuXLiAqKgoZeRY68XGxkp8hd6rVy84OTkhKioKWVlZ8PHxga2tLWxtbTF6tC3mzNmDzz4D3r0Dvv5atJTlq1eKj6/Kr+yk5TBw4EBMmzYNu3btQsuWLbFw4UJERkYiICBAJfGdnJzQvXt3DBgwABMmTICrqyumTp2KsWPHVjqhtiJRTdZO5Z2Tly9fxsiRI+Hi4oJu3bohKSkBf/11DKdPd4ejI/Dggegbm0WLRKuEKTr+xYsXMXToULi4uGDQoEEwNzfHxYsXy0yLVV0VtUvHjx/Ho0ePEBwcrNCYhBD1I/efqidPnpR4rqWlBUtLSzRu3Jj+8lWC2NhYDBgwoMx7m56eDo7j8Pvvv0sdAxkaCvz4I/Ddd6J12S9dAn75BfjsM8XFHzBgQJn45U24XB0V5RAREVHue6CK+CNGjMDvv/+OyMhIpcWvDNVk7VPROZmenl5uTVy7BowbB+zZA3z/PfDXX8C2bYC8syRVNb6iyNIuMRWurkcI4Y/cn3I0qbTqCIVChIaGSm2Qi7dNnjwZvr6+UsejTpgAeHlpYdQoPaSkaMHXlyEsrABz5hTIdCOYUCjEpEmTqhxfEfjOobL4xUvy+vv7K31McHmoJmuX6rQLOjqi4UbdumljyhRdnDnDoXVrhtWr8/B//yfb5VmqSUJkFxQUhMzMTPGKVz4+PmjTpk21Ln4o4hg1iUwd2QMHDsh8wL59+1Y5GSIpPj4e/1aysHx6ejpMTEwq3AeoA2AVGBuDVat0sWrVdQABAO5VO0fZ4isXnzkwxvD48WNYW1vj1atX2LdvH/r16yd+vbxJ2FevXl1muT95UE3WXoprFxoC2IHMzE8RGKiPwMAYAJMA5FQ7R3WoyU6dOiE1NRUZGRll6jIoKAhbt27lJb/a4tEjQEULe8HCQv5vFUqeAzo6OnB0dMTIkSMxe/ZspX6TFRsbW+Fy7yWdOnUKXbt2xZs3b2BqalqlY9QGMv3fKtkAVITjOInB9zVNnTp1VBovo8TC8gUFBQgPD6/ikd4BGAvgTwA/A/AAkAQg7H/PK1e9+IrBdw4VxR85ciRWrVpVZnvJ/4eAqAEKCQmpdueSalJE1TWpDjkorl34B0AnAHMBzAYQBKAjRH/kynY3mDrXpLW1NaZNm1buEIeePXuKl7d++/YtmjZtqqw0a51HjwAXF+DDB9XE09cXzdIjb2e2+BzIy8vDkSNHEBISAh0dHcyaNUtiv/z8fOgqaD5LRay8qerVO9WdTDd7FRUVyfSoyR+Yurq6mDZtGqZNm6awE7oyf//9t0z7HTlyBDk5OTI8tuPePQN06SIEYAhgE/r0KUBamvT9jxw5Ild8ANi1a1eFOTx58gQAcPDgQZlylicHafEDAgLwxRdfyPj+VD1+eR1TGxsbiUfx8ZydnWU6bnmoJvmpSb5zyMvLE39FWRnZ2oVM5ORMwbFj+XBwKALQGALBRcydm4esLOXUpKrahNDQ0ApnD9HT0xPXpbW1tUzHJLJ5+VJ1nVhAFKsqV3+Lz4EGDRpg/Pjx8PX1xYEDBxAUFIR+/fph0aJFsLOzg4uLCwDg8ePHGDRoEExNTWFmZgZ/f3+kpqaKjycUCjFlyhSYmprC3Nwc06dPLzMExsfHB2FhYeLneXl5mDFjBhwcHKCnp4fGjRtj8+bNSE1NRdeuXQEA9erVA8dxCAoKknqMN2/eYOTIkahXrx7q1KmDXr16iedXBoCYmBiYmpri2LFjcHV1Rd26ddGzZ88yF1o0lsKWVtAAmrJ6S1ZWFhs+fDgDUOGD4zjm4ODACgsL5Tq+UFhyRTDG6tdn7MSJsvsVFhYye3t7xnGcTPEBsH379pUbNy8vjy1fvpyZmJiwFy9eyJSrPDlIix8YGMhMTEyYpaUla9q0KRs3bhx7+fKlrG9VteOX9PTpU6atra0R56CqaEpNqoNbt26xNm3aKK1dePOGscGDP65S1rkzY2lpZfdTZE0ou01gTHq7VLpdCA4OpvOwCspbpSkxseIl1ZXxSEyUL/fAwEDm7+8vsa1v376sbdu2LDAwkNWtW5eNGDGC3bx5k928eZPl5+czV1dXFhwczK5fv85u3brFhg0bxlxcXFheXh5jjLGlS5eyevXqsb1797Jbt26x0aNHMyMjI4k4pVe/HDRoEHNwcGCxsbHswYMH7Pjx42z37t2ssLCQ7d27lwFgd+/eZRkZGSwzM1PqMfr27ctcXV3ZmTNnWHJyMuvRowdr3Lgxy8/PZ4wxFh0dzXR0dJivry9LSEhgiYmJzNXVlQ0bNky+N00B1GKJWsYYy8nJYYcPH2ZRUVFs9erVEg91pgkfmufPn2fOzs4MANPS0mKDBg0SN86lG2uO46q1BGliImNNm35cI376dMb+V49ie/fuFceqLH55H1oHDx5khoaGjOM4Zmdnxy5fvixXnrLmIC3+rl272B9//MGuX7/O9u3bx1xdXVn79u3l+pCvTvySli5dykxNTZVyDlJN1lxFRUUsKiqKGRgYMADM3NyczZw5U+a6lC8WY1u3Mla3rqhdMDVlbM+esvtVtyZU1SaUl0PpdsHFxYUBYK9fv5Yrj9qupnRki4qKWFxcHNPT02NTp05lgYGBzNraWtxBZYyxbdu2MRcXF1ZUVCTelpeXxwwMDNixY8cYY4zZ2tqyZcuWiV8vKChg9vb25XZk7969ywCwuLg4qTmePHmSAWBv3ryR2F7yGPfu3WMA2Llz58Svv3z5khkYGLBff/2VMSbqyAJg9+/fF++zdu1aZm1tLdubpUBq0ZFNSkpiNjY2zNjYmAkEAmZpack4jmOGhobM2dlZYYkpQ3U+NPPz81l0dDSLjo4W/5WjSAUFBWz+/PlMIBAwAMzJyYmdPXuWMSZqtO3t7SUabAcHh2p1Yovl5DA2ZszHxqBdO8bu3JHcR9b45X1o5eTksJSUFHbhwgUWHBzMnJyc2LNnz+TKU5YcKutIMsbYgwcPGAB2/Phxlcd3cXFhY8aMUXjHjWpSOTWpDjm8ePGC+fv7i8+57t27sydPnjDGlNsu3L/PWIcOH9uFwEDGsrMl96lOTaiqTagoh5KSk5MZAPbHH3/IlUNtp+kdWYFAwAwNDZmuri7T1tZmI0eOZDk5OSwwMJD5+vpK7D916lTx/iUfHMexdevWsczMTAaAnT59WuLn+vXrV25Hds+ePUwgEJTbdsjSkf3jjz+YtrZ2mYszbdq0YfPnz2eMiTqyderUkXg9NjaWcRwny1ulUMroyMp9a94333yDPn36YP369TAxMcHFixeho6OD4cOHIzQ0VN7DaQzGGNLS0sT/VqTU1FQMHz4c586dAwAEBARg7dq14rt++/fvD39/f8THxyMjIwO2trbo1KmTQqaWMTQENmwAevYEvvoK4hXBIiNFzzmu+vENDQ3RuHFjNG7cGJ9++imaNGmCzZs3lxlQXxFFvQcNGzaEhYUF7t+/j27duqksfnx8PO7evYvNmzdj48aNcuVcGapJxdekOuQQFxeHkSNH4unTp9DV1cWSJUsQFhYmXhJZme1Co0ZAfDywYAGweDGwdStw9iywY4doydvqxlenNgH4OGb9n3/+kftniebq2rUroqKioKurCzs7O4nZCgwNDSX2zcnJQbt27bBjx44yx6nqYh8GBgZV+rmqKD3LAcdxNWauZbk7ssnJydiwYQO0tLQgEAiQl5eHhg0bYtmyZQgMDFTqJNg10c6dOzF+/HhkZ2fDyMgIUVFRUlemEggE8PHxUVoeX34JfPKJaH32EyeAMWOAP/8ENm0CzM0BQABAMfGLioqQl5dXhZ+sfg7//vsvXr16VcV136sef/PmzWjXrh3c3Nyq9PMVoZqsWfLy8jB79mysXLkSAODq6oqdO3eiTZs2ZfZVZrugowMsXAj4+QHDh4tWBPP2BubPB2bOBET9RcW0C3y2CYBoujBAdHMmqT2K/6CSRdu2bbFnzx5YWVnB2NhY6j62tra4dOkSOnfuDAAoLCxEYmIi2rZtK3V/Nzc3FBUV4fTp0/D19S3zevENpBXdtOvq6orCwkJcunQJXl5eAIBXr17h7t27Eivf1WRyL1Gro6MjviJgZWWFR48eAQBMTEzw+PFjxWZXg2VnZ2PEiBEICAhAdnY2PD09ce3aNaUsryqr+vVFK/0sWyb6ENu3D2jdWvTB5eQEdO0KDBsm+q+Tk2jFsJycHCQnJyM5ORkA8PDhQyQnJ+PRo0fIzc3F7NmzcfHiRaSlpSExMRHBwcFIT0/HwIED5cotNlZ6Djt2lB8/JycH06ZNw8WLF5GamooTJ07A398fjRs3Ro8ePZQev1h2djZ+++03fPXVV3LFlBXVZM1x+/ZtfPrpp+JO7Pjx43HlyhWpnVhV6dRJtCLYkCGiJW2//150/m/YIH9NqKJNqKxdktYuDB06FADk+paG1C4BAQGwsLAQfwvw8OFDnDp1CpMnTxbP6xwaGoqIiAjs378fd+7cwYQJE5CZmVnuMZ2cnBAYGIjg4GDs379ffMxff/0VANCgQQNwHIdDhw7hxYsX4tmBSmrSpAn8/f3x9ddf4+zZs7h27RqGDx+O+vXrw9/fXynvhdqRdyxC9+7d2Y4dOxhjjH311Vfsk08+Ydu3b2c9evRgn3zyicLGPChDdcbj5eXlsfDwcBYeHi4xALwqzp07J3FDV3h4OCsoKKjWMRWt5I1g0h4cJ3rMn39SYoxa8SMwMJC9f/+effnll8zOzo7p6uoyW1tb1rdv3yrc2CGKJS0HoPz47969Y35+fszS0pLp6OiwBg0asK+//po9ffpUJfGLbdiwgRkYGLDMzEyl3NxENVn9mqwqReVQ+oYuCwsLtRuvWfpGsPLahYpqQhVtQmXtkrR2ITAwUOF1WRto+hjZ0rMWVPZaRkYGGzlyJLOwsGB6enqsYcOG7OuvvxafNwUFBSw0NJQZGxszU1NTNmXKFDZy5MgKZy14//49++abb5itrS3T1dVljRs3Zlu2bBG/vmDBAmZjY8M4jhN/rpQ+xuvXr9mIESOYiYkJMzAwYD169GD37t0Tvx4dHc1MTEwkfpd9+/axKnQBq00ZY2Q5xmQbJCEUCiEQCHDlyhW8ffsWXbt2xfPnzzFy5EicP38eTZo0wZYtW9C6devq9q2VJjs7GyYmJsjKyir3q4Hy5OfnY8mSJQCAWbNmVWnOyMLCQixatAgLFy6EUCiEk5MTduzYIf46QN1kZwN2dkBubvn71K8P3LpV/DWj4gmFgKsr8L+pJlWeQ2XxOQ6wtwcePpQtfnXOwbK5UU1WtyarSxE5vHz5EqNHjxav1ta9e3ds3bq1isNflO/ePcDNDcjPL38fTapJQLF1WZt8+PABDx8+hLOzM/T19cXbNWVBBKJ65Z0z1SHzGNn69esjKCgIwcHB8PDwACD6GvPo0aMKSUQTnTlzBsuXL0diYqLUZRBLquyGLnWUlFRxJxYA0tMBvn8FPnNgDHj8WHRjjBKHMEtFNSmdPHWpaEuWLEFsbCzu3LkDAwMDeHl5YenSpeIJ1UsrfUNXREQEQkNDxUNF1NGTJxV3YoHaW5NExNFR1LFU5yVqSc0hc0c2JCQEW7duxfLly+Hl5YXRo0dj0KBBarFEpKqUvusvNzcXrVu3RnBwcIU31Mh6Q5e6Kbnoh45OPr77TnTladGiWSgoUP3VL75zqCg+HwukUE2WrUlA9rpURg6nT59GSEgI2rdvj8LCQsyePRt+fn64deuWxF3Q8tzQpW7UqV1Qt5okHzk6UueSqIbMHdk5c+Zgzpw5OHXqFKKjozFx4kSEhoZi0KBB+Oqrr9CheE6WGkpXVxezZ8+W2NarVy/06tWr3J/Jzs5GSEgItm/fDgDw8vLC9u3bq708qapIfrPJITPTRPzvko4cAf53k6bCnTkDfP45fznIGp+Pb4GpJsvWJFB5XSozh9JXw2NiYmBlZYXExETxncy3b9/GsGHDxDcijR8/HitWrNCYP0D4bhfUuSYJITyo6uDat2/fsk2bNjFvb2/GcRxr3rw5+/HHHxU2eFcZlLmKEEpNuq0JN3RVprCQMXt76TdVFN9Y4eAg2q+m5qDo+Mo8B6kmyypdl6qWkpLCALAbN25oxA1dsqhpNckYrTBXVcq4cYfUbGqxspc0hw4dYmZmZkxLS0sRh1MaVXRkCwoKWHh4uMQKXSWXjtM0xXcHl/7QKN6mgEWE1D4HRcZX1Qcm1aQInx1ZoVDIevfuzby9vdmLFy9Y3759xXfP+/n5iVfo0kQ1qSYZo45sVVFHlshLGedMle8oePfuHWJiYtClSxf07dsX5ubmWLRoUdUvDau5wsJC7Ny5Ezt37kRhYaHUfZ4/fw4fHx+Eh4dDKBQiICAAycnJajsrgSz69wd+/110F3JJ9vai7aqYa5/vHPiOLyuqSfXKISQkBDdv3sSECRPg5uaGAwcOQFdXFytXrsSff/6ptrMSyILvmuA7PiFEfci9stf58+exZcsW/PbbbygsLMSAAQOwcOFC8fivmqqoqAgpKSnif0sTFhaG9+/fw9jYGOvWrdOIG7pk0b8/8PnnBVi3Lgb5+UD79kHw8dFR2pRb6pgD3/ErQjVZfk3ylcPEiRNx8OBB9OzZU9wOaNINXbLguyb4jk8IUQ8yd2SXLVuG6Oho3Lt3Dx4eHli+fDmGDh0KIyMjZean9rKysjBx4kQAwPv37zXuhi5ZaWkxvH0rmrixUyfGy4cF3znwHb80qkn1wxjDpEmT8Ntvv8Hc3BybN28GAEyYMAHLly/XmBu6ZMV3TfAdnxDCP5mHFixfvhw9e/bEtWvXcOnSJYwZM4aXD8y1a9fCyckJ+vr66NChAy5fvqySuCXXOo6Pj4dQKMTx48fh6uoqnpWgR48eWL16NQTUmhIVUJeaBPipS2k1CVS8PKmycxg/fjy2bNmCzMxM3L59G2ZmZti6datGzUpACCGaROaO7JMnT7Bq1Sq0bNlSmflUaM+ePZgyZQrmzZuHpKQktG7dGj169MDz58+VGjc2NhbNmzcXP+/VqxfMzMzg5+eHjBKTFR47dgzt27fH3LlzlZoPIYB61CTAT11Kq0knJyfExsbiypUrcHd3h7u7OwBgypQpcHd3V3hdSsthw4YNeP/+PfL/t2LA69evERgYiD179ig0NiGk5omJiYGpqSnfaWgcmYcWSJt4XNVWrlyJr7/+GqNGjQIArF+/HocPH8aWLVswc+ZMpcSMjY3FgAEDoK0t+VZlZ2cDADp37owDBw6o9QpdpGZSh5oEVF+X5dVkeno6BgwYgN9//x1MtpW3FZ5DsaCgIGzevFmtV+giRJmysrLw7t07lcSqU6eO3J/BQUFB2Lp1K8aOHYv169dLvBYSEoJ169YhMDAQMTExCsy0YoMHD8bnHydJJjKS+2YvvuTn5yMxMRGzZs0Sb9PS0oKvry8uXLiglJhCoRChoaEVfig+fPgQdevWVUp8QtSdquuyopos3jZ58mT4+voqbYiPUCjEpEmTKmwXTpw4ofTONCHqKisrC2vWrFHZbCLa2tqYOHGi3J1ZBwcH7N69G6tWrYKBgQEA4MOHD9i5cycceViWzMDAQJwHkZ1cQwv49PLlSwiFQlhbW0tst7a2xtOnT6X+TF5eHrKzsyUe8oiPj8e///5b4T6PHz9GfHy8XMclRBH4rklA/rpURU2mp6fDxMQEdevWVcrDxMSk0vee2gVSm717906lU+IVFhZW6epv27Zt4eDggNjYWPG22NhYODo6iocmAaIV+zp27AhTU1OYm5vjiy++wIMHD8Svp6amguM47N69G15eXtDX10fLli1x+vRp8T6nTp0Cx3E4fPgwWrVqBX19fXz66ae4efOmeJ/SQwvCw8PRpk0bbNu2DU5OTjAxMcGQIUPw9u1b8T5v375FQEAADA0NYWtri1WrVsHHxwdhYWFyvx+aSuaObIsWLbBz505l5qJwS5YsgYmJifjh4OAg18+XHP9aUFCA8PBwhIeHo6CgoNz9arI6derwfsMK3znwHb8kqsnya1JVqF3gvyb4jk80W3BwMKKjo8XPt2zZIh4mVSw3NxdTpkzBlStXcOLECWhpaeHLL78sM+3ftGnT8O233+Lq1avw9PREnz598OrVqzL7/Pjjj0hISIClpSX69OlTYfv14MED7N+/H4cOHcKhQ4dw+vRpREREiF+fMmUKzp07hwMHDiAuLg7x8fFISkqqzluicWQeWrBo0SKMHTsW+/btw4YNG2BmZqbMvMqwsLCAQCDAs2fPJLY/e/YMNjY2Un9m1qxZmDJlivh5dna2XB+csk5YrskTm8tKV1cX06ZNq9U58B2/NL5rEpC/LlVVk0eOHFHaPLpnzpyRaRwbtQs1Pz7RfMOHD8esWbOQlpYGADh37hx2796NU6dOiff5v//7P4mf2bJlCywtLXHr1i2Jm20nTpwo3jcqKgpHjx7F5s2bMX36dPE+8+bNQ/fu3QEAW7duhb29Pfbt24dBgwZJza+oqAgxMTHiGWlGjBiBEydOYNGiRXj79i22bt2KnTt3olu3bgCA6Oho2NnZVfNd0SwyX5GdMGECrl+/jlevXqF58+Y4ePCgMvMqQ1dXF+3atcOJEyfE24qKinDixAl4enpK/Rk9PT0YGxtLPOTRqVMn2Nvbg+O4CvfbuHEjsrKy5Do2IdXFd00C8telsmuS4zg4ODjAz88PhoaGSnn4+fnJ1C4kJCTwtlADIUQ2lpaW6N27N2JiYhAdHY3evXvDwsJCYp+UlBQMHToUDRs2hLGxMZycnACgzJR+Jds8bW1teHh44Pbt2+XuY2ZmBhcXlzL7lOTk5CQxraKtra14Rph//vkHBQUF+OSTT8Svm5iYwMXFRcbfvmaQ62YvZ2dn/Pe//8WaNWvQv39/uLq6lrlrV5mXtKdMmYLAwEB4eHjgk08+QWRkJHJzc8t8DaAoAoEAq1evxoABA8BxnNSbN7S0tLBr1y6cP38eO3bsgLe3t1JyIUQavmsSUG1dVlSTxR3LyMhIpc7lLEu7AADTp09HXFwcYmJiat0VEkI0SXBwsHhho7Vr15Z5vU+fPmjQoAE2bdoEOzs7FBUVoWXLluJp9pSp9Ow0HMfRH8ilyD1rQVpaGmJjY1GvXj34+/uXO/2MMgwePBgvXrzA3Llz8fTpU7Rp0wZHjx4tc6OJIvXv3x+///47QkNDJW4ycXBwQGRkJGxtbREQEICHDx+ic+fO+P777zFnzhyVvi+qUFBQgB07dgAAAgICeJn6ie8c+I5fHj5rElB9XZZXk/b29oiMjET//v2VEleWHBwcHLBq1Sq8evUKYWFhiIuLQ6tWrbBlyxb07dtX6XmpGt81wXd8UjP07NkT+fn54DgOPXr0kHjt1atXuHv3LjZt2oROnToBAM6ePSv1OBcvXhQPaSosLERiYqK4g1xyn+IZEd68eYN79+7B1dW1Snk3bNgQOjo6SEhIEB8zKysL9+7dq/FLlJck1yfepk2b8O2338LX1xd///03LC0tlZVXuSZOnFjmxFC2/v37w9/fH/Hx8cjIyICtrS06deokvuqTnJyMiRMnYtu2bViwYAHi4uKwfft2NGzYUKV5KhNjTDyGiK9phfjOge/40qhDTQKqr8vKalIdcujcuTOGDRuGq1evwt/fH+PGjcOPP/5Yo25M4rsm+I5PagaBQCD+er90G1KvXj2Ym5tj48aNsLW1xaNHj8qdH3vt2rVo0qQJXF1dsWrVKrx58wbBwcES+yxYsADm5uawtrbGd999BwsLC/Tr169KeRsZGSEwMBDTpk2DmZkZrKysMG/ePGhpaVU69Kkmkbkj27NnT1y+fBlr1qzByJEjlZmTWhIIBPDx8ZH6mrGxMX755Rf06tUL48aNw4ULF9CmTRusW7cOw4cPV22ipNagmiy/JtUhh2bNmuHChQv4/vvvsWLFCqxfvx6nTp3Czp07Jab2IYTwr7zx+lpaWti9ezcmT56Mli1bwsXFBf/5z3+k1n1ERAQiIiKQnJyMxo0b48CBA2XG20ZERCA0NBQpKSlo06YNDh48CF1d3SrnvXLlSowbNw5ffPEFjI2NMX36dDx+/Bj6+vpVPqamkbkjKxQKcf36ddjb2yszH402dOhQeHp6YsSIETh79ixGjBiBP//8E+vWraOVv4jCUU2qPz09PSxfvhw9evTAyJEjcefOHXTo0AFLlizBN998Qyt/kRqpTp060NbWVumCCPJ+01HZil379+8X/9vX1xe3bt2SeF3aNwCurq64dOlShcft2LGjxNyxJQUFBSEoKEj8vHhqv5LCwsIk5og1MjISD68BRFOFzZ8/H2PGjKkwj5pE5o5sXFycMvOoMZycnHDy5EksWbIE8+fPx86dO3Hu3Dm6EYwoHNWk5vD19cX169fx1Vdf4Y8//sDUqVNx7NgxuhGM1EgmJiaYOHGiWi9RW1NcvXoVd+7cwSeffIKsrCwsWLAAAODv789zZqpTs+5IUhPa2tqYM2cOfH19a8WNYISQyllYWGDfvn3YtGlTrbgRjNRuxYueEOVbsWIF7t69K54OMT4+vsyQhpqMvtdSIk9PTyQnJ2PEiBEoKirCggUL0LlzZ/zzzz8KOX5UVBRatWolno/T09MTf/75p0KOLYvw8HBwHCfxaNasmcriOzk5lYnPcRxCQkJUlsPbt28RFhaGBg0awMDAAF5eXkhISFBZfKJZOI7DmDFjkJSUBHd3d7x69Qr+/v4YP368Uq5eRUREgOM4lS9XmZ6ejuHDh8Pc3BwGBgZwc3PDlStXVBJbKBRizpw5cHZ2hoGBARo1aoSFCxfSzWBEaZycnMAYQ5s2bcrdx8fHB4wxiSVoFcHd3R2JiYnIycnB69evERcXBzc3N4XGUHfUkVWy4hvBdu7cCWNjY/GNYNu3b6/2se3t7REREYHExERcuXIFn332Gfz9/fH3338rIPOydHR0ykxv06JFC2RkZIgf5U1LoowcEhISJGIXf9U+cOBAlcQHgK+++gpxcXHYtm0bbty4AT8/P/j6+iI9PV1pORDNV3wj2NSpUwEA69evR7t27XD16lWFxUhISMCGDRvQqlUrhR1TmtI18ebNG3h7e0NHRwd//vknbt26hR9//BH16tVTSfylS5ciKioKa9aswe3bt7F06VIsW7YMP/30k1LiE0J4xmqRrKwsBoBlZWXxEv/hw4esY8eODAADwIYNG8YyMzMVGqNevXrs559/VugxyzNv3jzWunVrlcSSRWhoKGvUqBErKipSSbx3794xgUDADh06JLG9bdu27LvvvpP6M3yfg+qG3g/G4uLimK2tLQPAdHR02IoVK5hQKKzWMd++fcuaNGnC4uLiWJcuXVhoaKhikpXBjBkzWMeOHVUWr7TevXuz4OBgiW39+/dnAQEB5f4MnYdV8/79e3br1i32/v17vlMhGkIZ5wxdkVWh4hvBFixYAIFAgJ07d6J169Y4d+5ctY8tFAqxe/du5ObmlrtkrzKkpKTAzs4ODRs2REBAQJkl+1QlPz8f27dvR3BwsMrmzyssLIRQKCwzzYmBgYHSr0yTmqP4RjB/f38UFBRg6tSp6NmzJ548eVLlY4aEhKB3797w9fVVYKayOXDgADw8PDBw4EBYWVnB3d0dmzZtUll8Ly8vnDhxAvfu3QMAXLt2DWfPnkWvXr1UlkNtw2jYBpGRUs4VhXWJNYA6/dV9/vx55uzszAAwLS0tNnfuXFZQUCD3ca5fv84MDQ2ZQCBgJiYm7PDhw0rIVrojR46wX3/9lV27do0dPXqUeXp6MkdHR5adna2yHIrt2bOHCQQClp6ertK4np6erEuXLiw9PZ0VFhaybdu2MS0tLda0aVOp+6vTOagO6P34qKioiG3YsIEZGBgwAMzc3Jz98ccfch9n165drGXLluIrHqq+Iqunp8f09PTYrFmzWFJSEtuwYQPT19dnMTExKokvFArZjBkzGMdxTFtbm3EcxxYvXlzhz9B5WDWFhYXs1q1b7OXLl3ynQjTEy5cv2a1bt1hhYaHCjskxVnv+lMrOzoaJiQmysrLKnfxY1fkUrwgGiG4Ok3dFsPz8fDx69AhZWVn4/fff8fPPP+P06dNo3ry5QnMtLCzEr7/+CgAYNGiQ1JkXMjMz0aBBA6xcuRKjR49WaPzKcujRowd0dXVx8OBBhcetKP6DBw8QHByMM2fOQCAQoG3btmjatCkSExPFK8WUpG7nIN/o/Sjrzp074hXBAMi1Itjjx4/h4eEhnhEBEN1k0qZNG0RGRio8V2k1oaurCw8PD5w/f1683+TJk5GQkIALFy4oPf7u3bsxbdo0LF++HC1atEBycjLCwsKwcuVKBAYGSj0OnYdVl5GRgczMTFhZWaFOnTq1akUpIjvGGN69e4fnz5/D1NQUtra2Cjs2zQPFo5Irgo0fP75KK4Lp6uqicePGAIB27dohISEBq1evxoYNGxSaa1FREVJSUsT/lsbU1BRNmzbF/fv3FRq7shzS0tJw/PhxxMbGKiVuRfEbNWqE06dPIzc3F9nZ2bC1tcXgwYNr1PLERLWqsyJYYmIinj9/jrZt24q3CYVCnDlzBmvWrEFeXp5Cl/GVVhO2trZl/pB2dXXF3r17FRa3ovjTpk3DzJkzMWTIEACAm5sb0tLSsGTJknI7sqTqbGxsAADPnz/nOROiCUxNTcXnjKJQR1YNDB06FF5eXhg+fHi1VwQrKipCXl6ekjKtWE5ODh48eIARI0aoNG50dDSsrKzQu3dvlcYtydDQEIaGhnjz5g2OHTuGZcuW8ZYL0XxVXRGsW7duuHHjhsS2UaNGoVmzZpgxY4ZCO7Hl8fb2xt27dyW23bt3Dw0aNFB6bAB49+5dmfdHIBCU+wc4qR6O42BrawsrKysUFBTwnQ5RYzo6Okppg6gjqyYaNGhQ4YpgQqEQ8fHxyMjIgK2tLTp16oTvv/8evXr1gqOjI96+fYudO3fi1KlTOHbsmMLzEwqF4n/Hx8fDx8cHM2bMQJ8+fdCgQQM8efIE8+bNg0AgwNChQxUev7wcOI5DdHQ0AgMDlb7QhLT4x48fB2MMLi4uuH//PqZNm4ZmzZph1KhRSs2F1A6VrQgmrV1o2bKlxDEMDQ1hbm5eZrsiSKuJb775Bl5eXli8eDEGDRqEy5cvY+PGjdi4caNK4vfp0weLFi2Co6MjWrRogatXr2LlypUIDg5WeHzykUAgUMkfSoSURrMWqJHiFcHi4+Ph7OyMtLQ0dO7cGYMGDUKDBg3QtWtXDBs2DF27doWTkxMuX76MkSNHwsXFBd26dUNCQgKOHTuG7t27KzSv2NhYia8Ke/XqBScnJ1y8eBFDhw6Fi4sLBg0aBHNzc1y8eBGWlpYKjV9RDuHh4Xj06JHSP6TKi//XX38hJCQEzZo1w8iRI9GxY0ccO3aszHy7hFRV8YpgGzZsgIGBgXj866xZs+Dk5FSmXVD2EJti5dXE48ePsW/fPuzatQstW7bEwoULERkZiYCAAJXE7969OwYMGIAJEybA1dUVU6dOxdixY7Fw4UKFxieEqAmF3TamATTpztSsrCw2YsQI8ZyzpR8cxzGO49jevXuVmsfevXsZx3FMR0eHhYeHs/DwcKajo6Oy+OqQgyLja9I5qAr0fsjn9u3bzN3dvda3C4qOT+chIZqLhhaoKWNjY0RHR+Pw4cN4/fp1mdfZ/yabmDx5Mnx9fZXylY5QKMSkSZOkzvumivjqkENl8YuX//T396ev1YjSNWvWDGfPnoW1tTVycnLKvK4ONcF3fKpJQmoX6siqsfj4eKmd2JLS09PlviFMkfiOz3cOjDE8fvxYPD6PEGW7fPmy1E5sSXzXJdUkIURVqCOrxjIyMvhOQaygoADh4eG1OoeK4qvT/ytSs6nTuUY1SQjhG3Vk1ZisEwYfOXIEnTt3Vnj8M2fO4PPPP+ctvjrkIGt8RU7uTEhFanu7QDVJCCmJVvZSY0KhEE5OTkhPT5c6HozjONjb2+Phw4dKG4vGZ3x1yEHR8TXtHFQ2ej/kV9NqQh3i03lIiOai6bfUmEAgwOrVqwGgzLJ/xc8jIyOV1onkO7465MB3fEJK4/ucrO3xCSFqRoUzJPBOU6dY2bt3L7O3t5eYZsfBwUElU1+pQ3x1yEFR8TX1HFQWej+qrqbUhDrEp/OQEM1FQws0hLQVfFR5xYHv+OqQgyLia/I5qAz0flRPTagJdYhP5yEhmos6soSoEJ2Dkuj9IOqAzkNCNBeNkSWEEEIIIRqJOrKEEEIIIUQjUUeWEEIIIYRoJOrIEkIIIYQQjUQdWUIIIYQQopGoI0sIIYQQQjQSdWQJIYQQQohGoo4sIYQQQgjRSNSRJYQQQgghGok6soQQQgghRCNRR5YQQgghhGgkjenILlq0CF5eXqhTpw5MTU35ToeQWo9qkhBCCN80piObn5+PgQMHYvz48XynQggB1SQhhBD+afOdgKzmz58PAIiJieE3EUIIAKpJQggh/NOYK7KEEEIIIYSUpDFXZKsiLy8PeXl54udZWVkAgOzsbL5SIrVc8bnHGOM5E35QTRJ1VNvrkhBNxmtHdubMmVi6dGmF+9y+fRvNmjWr0vGXLFki/vqzJAcHhyodjxBFefv2LUxMTPhOowyqSVKbqWtdEkLKxzEe/wR98eIFXr16VeE+DRs2hK6urvh5TEwMwsLCkJmZWenxS1/9KSoqwuvXr2Fubg6O4+TONzs7Gw4ODnj8+DGMjY3l/nlNV9t/f6D67wFjDG/fvoWdnR20tNRvZA/VpOap7e+BIn5/da9LQkj5eL0ia2lpCUtLS6UdX09PD3p6ehLbFDFNkLGxca38wChW239/oHrvgTpf8aGa1Fy1/T2o7u+vznVJCCmfxoyRffToEV6/fo1Hjx5BKBQiOTkZANC4cWPUrVuX3+QIqYWoJgkhhPBNYzqyc+fOxdatW8XP3d3dAQAnT56Ej48PT1kRUntRTRJCCOGbxgwGiomJAWOszEOVH5h6enqYN29ema9Ga4va/vsD9B6URDWpHmr7e1Dbf39Cajteb/YihBBCCCGkqjTmiiwhhBBCCCElUUeWEEIIIYRoJOrIEkIIIYQQjUQdWRmtXbsWTk5O0NfXR4cOHXD58mW+U1KZJUuWoH379jAyMoKVlRX69euHu3fv8p0WbyIiIsBxHMLCwvhOpdajuqS6LEZ1SUjtRB1ZGezZswdTpkzBvHnzkJSUhNatW6NHjx54/vw536mpxOnTpxESEoKLFy8iLi4OBQUF8PPzQ25uLt+pqVxCQgI2bNiAVq1a8Z1KrUd1SXVZjOqSkNqLZi2QQYcOHdC+fXusWbMGgGhZTQcHB0yaNAkzZ87kOTvVe/HiBaysrHD69Gl07tyZ73RUJicnB23btsW6devwww8/oE2bNoiMjOQ7rVqL6lIS1SXVJSG1EV2RrUR+fj4SExPh6+sr3qalpQVfX19cuHCBx8z4k5WVBQAwMzPjORPVCgkJQe/evSXOBcIPqsuyqC6pLgmpjTRmZS++vHz5EkKhENbW1hLbra2tcefOHZ6y4k9RURHCwsLg7e2Nli1b8p2OyuzevRtJSUlISEjgOxUCqsvSqC6pLgmpragjS+QSEhKCmzdv4uzZs3ynojKPHz9GaGgo4uLioK+vz3c6hJRBdUl1SUhtRR3ZSlhYWEAgEODZs2cS2589ewYbGxuesuLHxIkTcejQIZw5cwb29vZ8p6MyiYmJeP78Odq2bSveJhQKcebMGaxZswZ5eXkQCAQ8Zlj7UF1+RHVJdUlIbUZjZCuhq6uLdu3a4cSJE+JtRUVFOHHiBDw9PXnMTHUYY5g4cSL27duH//73v3B2duY7JZXq1q0bbty4geTkZPHDw8MDAQEBSE5Opg9LHlBdUl1SXRJCALoiK5MpU6YgMDAQHh4e+OSTTxAZGYnc3FyMGjWK79RUIiQkBDt37sQff/wBIyMjPH36FABgYmICAwMDnrNTPiMjozLjDg0NDWFubl6rxiOqG6pLqkuqS0IIdWRlMHjwYLx48QJz587F06dP0aZNGxw9erTMjSY1VVRUFADAx8dHYnt0dDSCgoJUnxAhoLqkuiSEEJpHlhBCCCGEaCgaI0sIIYQQQjQSdWQJIYQQQohGoo4sIYQQQgjRSNSRJYQQQgghGok6soQQQgghRCNRR5YQQgghhGgk6sgSQgghhBCNRB1ZQgghhBCikagjSyQEBQWhX79+fKdBCCmB6pIQQqSjJWprEY7jKnx93rx5WL16NWixN0JUh+qSEEKqjpaorUWePn0q/veePXswd+5c3L17V7ytbt26qFu3Lh+pEVJrUV0SQkjV0dCCWsTGxkb8MDExAcdxEtvq1q1b5itMHx8fTJo0CWFhYahXrx6sra2xadMm5ObmYtSoUTAyMkLjxo3x559/SsS6efMmevXqhbp168La2hojRozAy5cvVfwbE6L+qC4JIaTqqCNLKrV161ZYWFjg8uXLmDRpEsaPH4+BAwfCy8sLSUlJ8PPzw4gRI/Du3TsAQGZmJj777DO4u7vjypUrOHr0KJ49e4ZBgwbx/JsQUnNQXRJCCHVkiQxat26N77//Hk2aNMGsWbOgr68PCwsLfP3112jSpAnmzp2LV69e4fr16wCANWvWwN3dHYsXL0azZs3g7u6OLVu24OTJk7h37x7Pvw0hNQPVJSGE0M1eRAatWrUS/1sgEMDc3Bxubm7ibdbW1gCA58+fAwCuXbuGkydPSh3X9+DBAzRt2lTJGRNS81FdEkIIdWSJDHR0dCSecxwnsa34ruuioiIAQE5ODvr06YOlS5eWOZatra0SMyWk9qC6JIQQ6sgSJWjbti327t0LJycnaGvTKUaIOqC6JITURDRGlihcSEgIXr9+jaFDhyIhIQEPHjzAsWPHMGrUKAiFQr7TI6RWorokhNRE1JElCmdnZ4dz585BKBTCz88Pbm5uCAsLg6mpKbS06JQjhA9Ul4SQmogWRCCEEEIIIRqJ/gwnhBBCCCEaiTqyhBBCCCFEI1FHlhBCCCGEaCTqyBJCCCGEEI1EHVlCCCGEEKKRqCNLCCGEEEI0EnVkCSGEEEKIRqKOLCGEEEII0UjUkSWEEEIIIRqJOrKEEEIIIUQjUUeWEEIIIYRoJOrIEkIIIYQQjfT/6to9PeviYeMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_matched([ex_graphs.div_1late_end(), ex_graphs.div_1late_mid()], '1 Frame Late')" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArIAAADXCAYAAADm37JAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWC0lEQVR4nO3dd1gUV/cH8O+wVAFBOki1BLHXKFbySrDFGsUuiCZGsRCjsUWFJNhjyWs3CRgVNVFMYn/RqGDHQtSoWIJoEMUGKipl9/z+2B8rCwuysBXO53n2kZ0d5pwd58xeZu/cKxARgTHGGGOMMT1joO0EGGOMMcYYKw9uyDLGGGOMMb3EDVnGGGOMMaaXuCHLGGOMMcb0EjdkGWOMMcaYXuKGLGOMMcYY00vckGWMMcYYY3qJG7KMMcYYY0wvcUOWMcYYY4zpJW7IMsYYY4wxvcQNWcaYViQmJmL8+PFo0KABzM3N4e7ujsDAQNy4caNMvx8eHg5BEBQ+1q5dq+bsdYefnx8aNmyokm2dPHkS4eHhyMzMVMn2GGNM3Qy1nQBjrGpauHAhTpw4gQEDBqBx48Z48OABVq5ciebNm+P06dNlbpytWbMGFhYWcstat26tjpQrvZMnTyIiIgLBwcGwtrbWdjqMMfZO3JBljGnF5MmTERMTA2NjY9mygQMHolGjRliwYAE2b95cpu30798fdnZ2ZVo3Ozsb5ubm5cqXMcaY7uGuBYwxrWjbtq1cIxYA6tatiwYNGuDatWsV3n50dDQEQcCxY8cwbtw4ODg4wNXVFQCQmpqKcePGwdvbG2ZmZrC1tcWAAQNw584dhds4fvw4Jk6cCHt7e1hbW2PMmDHIzc1FZmYmRowYgRo1aqBGjRr48ssvQURy25BIJFi+fDkaNGgAU1NTODo6YsyYMXj27JnceufOnUOXLl1gZ2cHMzMzeHl5ISQkpML7AQAuXbqE4OBg1KpVC6ampnByckJISAiePHkiWyc8PBxTp04FAHh5ecm6aRTeJ5s3b0aLFi1gZmYGGxsbDBo0CPfu3VNJjowxVh58RZYxpjOICA8fPkSDBg3K/DtPnz6Vey4SiVCjRg3Z83HjxsHe3h5z5sxBdnY2AGn/3JMnT2LQoEFwdXXFnTt3sGbNGvj5+eHq1auoVq2a3DYnTJgAJycnRERE4PTp01i/fj2sra1x8uRJuLu7Y968edi3bx8WL16Mhg0bYsSIEbLfHTNmDKKjozFy5EhMnDgRKSkpWLlyJS5evIgTJ07AyMgIGRkZCAgIgL29PaZPnw5ra2vcuXMHsbGx5dmNxcTFxeGff/7ByJEj4eTkhL///hvr16/H33//jdOnT0MQBPTr1w83btzA1q1bsWzZMtlVbnt7ewBAZGQkZs+ejcDAQIwePRqPHj3Cf//7X3Ts2BEXL17krgiMMe0gxhjTEZs2bSIA9OOPP75z3blz5xKAYg8PDw8iIoqKiiIA1L59e8rPz5f73VevXhXb3qlTpwgA/fzzz7JlBdvo0qULSSQS2XJfX18SBIE+++wz2bL8/HxydXWlTp06yZYlJCQQANqyZYtcrAMHDsgt37VrFwGgxMTEd77vojp16kQNGjQodR1F73fr1q0EgOLj42XLFi9eTAAoJSVFbt07d+6QSCSiyMhIueWXL18mQ0PDYssZY0xTuGsBY0wnXL9+HaGhofD19UVQUFCZf2/nzp2Ii4uTPbZs2SL3+ieffAKRSCS3zMzMTPZzXl4enjx5gjp16sDa2hoXLlwoFmPUqFEQBEH2vHXr1iAijBo1SrZMJBKhZcuW+Oeff2TLfv31V1hZWeHDDz/E48ePZY8WLVrAwsICR44cAQDZ1cw9e/YgLy+vzO+9rAq/3zdv3uDx48do06YNACh8v0XFxsZCIpEgMDBQ7n04OTmhbt26svfBGGOaxl0LGGNa9+DBA/To0QNWVlbYsWNHsYZnaTp27FjqzV5eXl7Flr1+/Rrz589HVFQU0tLS5Pq1ZmVlFVvf3d1d7rmVlRUAwM3Nrdjywn1fb968iaysLDg4OCjMLSMjAwDQqVMnfPzxx4iIiMCyZcvg5+eHPn36YMiQITAxMSnxvZXV06dPERERgW3btsliFlD0fou6efMmiAh169ZV+LqRkVGFc2SMsfLghixjTKuysrLQrVs3ZGZmIiEhAS4uLirdfuGrkQUmTJiAqKgohIWFwdfXF1ZWVhAEAYMGDYJEIim2fkkNa0XLCzeKJRIJHBwcil0lLlDQ/1QQBOzYsQOnT5/G7t27cfDgQYSEhOC7777D6dOniw0vpqzAwECcPHkSU6dORdOmTWFhYQGJRIKuXbsqfL9FSSQSCIKA/fv3K3zPFc2PMcbKixuyjDGtefPmDXr27IkbN27g0KFDqF+/vkbi7tixA0FBQfjuu+/kclH1RAC1a9fGoUOH0K5dO4UN6qLatGmDNm3aIDIyEjExMRg6dCi2bduG0aNHlzuHZ8+e4fDhw4iIiMCcOXNky2/evFls3cLdJ4q+DyKCl5cX3nvvvXLnwhhjqsZ9ZBljWiEWizFw4ECcOnUKv/76K3x9fTUWWyQSFRsm67///S/EYrFK4wQGBkIsFuObb74p9lp+fr6s4fzs2bNi+TRt2hQAkJOTU6EcCq6gFt3+8uXLi61bMMZu0QZ9v379IBKJEBERUWw7RCQ3jBdjjGkSX5FljGnFF198gT/++AM9e/bE06dPi02AMGzYMLXF/uijj7Bp0yZYWVmhfv36OHXqFA4dOgRbW1uVxunUqRPGjBmD+fPnIykpCQEBATAyMsLNmzfx66+/YsWKFejfvz82btyI1atXo2/fvqhduzZevHiBDRs2oHr16ujevfs74zx69AjffvttseVeXl4YOnQoOnbsiEWLFiEvLw81a9bE//73P6SkpBRbv0WLFgCAWbNmYdCgQTAyMkLPnj1Ru3ZtfPvtt5gxYwbu3LmDPn36wNLSEikpKdi1axc+/fRTTJkypeI7jDHGlMQNWcaYViQlJQEAdu/ejd27dxd7XZ0N2RUrVkAkEmHLli148+YN2rVrh0OHDqFLly4qj7V27Vq0aNEC69atw8yZM2FoaAhPT08MGzYM7dq1AyBt8J49exbbtm3Dw4cPYWVlhffffx9btmxReLNaURkZGZg9e3ax5Z07d8bQoUMRExODCRMmYNWqVSAiBAQEYP/+/cX6I7dq1QrffPMN1q5diwMHDkAikSAlJQXm5uaYPn063nvvPSxbtgwREREApDe7BQQEoFevXirYU4wxpjyBin5PxBhjjDHGmB7gPrKMMcYYY0wvcUOWMcYYY4zpJW7IMsYYY4wxvcQNWcYYY4wxppe4IcsYY4wxxvQSN2QZY4wxxphe4oYsY4wxxhjTS9yQZYwxxhhjeokbsowxxhhjTC9VqSlqJRIJ7t+/D0tLSwiCoO10WBVERHjx4gVcXFxgYMB/R3JNMl3AdcmY/qpSDdn79+/Dzc1N22kwhnv37sHV1VXbaWgd1yTTJVyXjOmfKtWQtbS0BCA9WVWvXl3L2bCq6Pnz53Bzc5Mdi1Ud1yTTBVyXjOmvKtWQLfjqsnr16vyhybSKv0aX4ppkuoTrkjH9w52BGGOMMcaYXuKGLGOMMcYY00vckGWMMcYYY3qJG7KMMcYYY0wvcUOWMcYYY4zpJW7IMsYYY4wxvcQNWcYYY4wxppe4IcsYY4wxxvQSN2SZXouPj0fPnj3h4uICQRDw22+/yb0eHh6OevXqwdzcHDVq1IC/vz/OnDmjsfjBwcEQBEH2sLKyUllsxphiyp4XevXqpZ1EGWMVxg1Zpteys7PRpEkTrFq1SuHr7733HlauXInLly/j+PHj8PT0REBAAB49eqSR+ADQtWtXpKenIz09HTdu3FBJXMZYyZQ9L7i7uwMAHj9+rMk0GWMqIBARaTsJTXn+/DmsrKyQlZXF02FWQoIgYNeuXejTp0+J6xQcA4cOHULnzp3VHj84OBiZmZmyK0J8DMrj/cHUrSznhX///Rdubm74/fff+eosY3rGUNsJMKYpubm5WL9+PaysrNCkSRONxT169CgcHBxQo0YNtG/fXmNxGWPvlpubi+joaABAo0aNtJsMY0xp3JBlld6ePXswaNAgvHr1Cs7OzoiLi4OdnZ1GYnft2hX9+vWDl5cXbt++jenTpwMAxGKxRuIzxhQrfF5wcnICANja2mo5K8aYsriPLKv0PvjgAyQlJeHkyZPo2rUrAgMDkZGRoZHYgwYNQq9evdCoUSP06dMH27dvBwAkJCRoJD5jTLHC54WCbkaq6jvPGNMcbsiySs/c3Bx16tRBmzZt8OOPP8LQ0BA//vijVnLx8vICAPzzzz9aic8Ykyp8Xii4Keznn3/WclaMMWVx1wKmN8RiICEBSE8HnJ2BDh0AkUj57UgkEuTk5GglflpaGgDIvspkjJWfqs4JBXJzc1WXHGNMI7ghy/RCbCwwaRLw779vl7m6AgsWvESDBrdky1JSUpCUlAQbGxvY2toiMjISvXr1grOzMx4/foxVq1YhLS0NAwYMUHt8GxsbRERE4OOPP4aTkxNu376NL774AgBUPmICY1VNSTW5YgUQEPASt26V/bywfPlyACh1ZAPGmI6iKiQrK4sAUFZWlrZTYUrYuZNIEIgA+Yd02RECUOwRFBREr1+/pr59+5KLiwsZGxuTs7Mz9erVi86ePauR+K9evaKAgACyt7cnIyMj8vDwoKCgID4GC+GaZOVRWk0KAlFEhHLnhe7du/NxyJie4nFkmU4TiwFPT/mrLkXVrAlcvVqxrxRLi+/jA9y/r/h1QZBeBUpJKVt8Pgbl8f5gynrXOUHZmgT4OGRMn3HXAqbTEhJKb8QCQFoaoK2ZX4mAe/ekefr5aScHxqqSd50TuCYZq1q4Ict0Wnr625+NjHIxa9Z8AEBk5Azk5RlrNJfS4hfOkzGmPmU9J3BNMlY1cEOW6TT5r/QFZGZayX4ubN8+oGNH1cePjwe6d393fGdn1cdmjBXn6Fj4GdckY1Ud95FlOik3F5g1C1iypPT1ytMfThkF/fHS0qRfWVY0Ph+D8nh/MGWkpQEjRgB//lnyOtxHlrGqhSdEYDrn+nWgTZu3jdiAAOm/gvwFF9nz5cvV04gFpNtdsUJ78RljUr/9BjRuLG3EmpgoXodrkrGqhxuyTGcQAevWAc2bAxcvAra20g+vgweBnTuloxMU5uoK7NgB9Oun3rz69ZPG0VZ8xqqy7GxgzBigb1/g6VPp+eGvv6TnBFdX+XW5JhmrerhrAdMJjx8Dn3wibbgCgL8/sHEj4OLydp03b/KwenU0cnOBVq2C4ednpNGrLqqIz8egPN4frDQXLgBDhgDJydKrrVOnAt98Axj//z1dqjon8HHImP7im72Y1h06JO33lp4OGBkB8+cDn38OGBT5vsDAgPDihfTurw4dSONfHWo7PmNVhUQCfPedtJ98Xp70D9pNm4D//Ed+Pa5J3SEWi5GXl6ftNJgOMzIygkgNRapXDdn4+HgsXrwY58+fR3p6Onbt2sVTCuqxojd01asHxMQAzZppNy9WdlyTTNXS0oCgIODwYenzvn2BDRukXY2Y7iEiPHjwAJmZmdpOhekBa2trODk5QSh600kF6FVDNjs7G02aNEFISAj6cScovXb9uvQrw4sXpc/HjAGWLgWqVdNuXkw5XJNMlX77DRg1StoXtlo16U1bo0cXv9GS6Y6CRqyDgwOqVaum0gYKqzyICK9evUJGRgYAwFmF4+PpVUO2W7du6Natm7bTYBVABKxfL+068Pq19CrLDz8AfBFPP3FNMlXIzgYmT5aeGwDpDV0xMYC3t3bzYqUTi8WyRqwtXzJn72BmZgYAyMjIgIODg8q6GehVQ5bptydPpFdXSruhizFWtVy8CAweXPINXUx3FfSJrcZfpbEyKjhW8vLyVNaQrdTDb+Xk5OD58+dyD1WKj49Hz5494eLiAkEQ8FtBC+3/ERHmzJkDZ2dnmJmZwd/fHzdv3tRY/NjYWAQEBMDW1haCICApKUllscuSQ15eHqZNm4ZGjRrBzMwcDg4u+O23ETA0vI8lS6TDanEjtmpRd00CwIsXLxAWFgYPDw+YmZmhbdu2SExMVHmcklT180JZzwnm5uawsnJBixYjkJx8Hy4u0hs/Fy7kRqy+4e4ErKzUcaxU6obs/PnzYWVlJXu4ubmpdPsF/QNXrVql8PVFixbh+++/x9q1a3HmzBmYm5ujS5cuePPmjUbiZ2dno3379li4cKFK4imbw6tXr3Du3AV4es7GmzcXIJHEwtQ0GXXr9sIXXxQflaAsqlWrptW//rUdX9+puyYBYPTo0YiLi8OmTZtw+fJlBAQEwN/fH2lpaSqPpUhVPy+865xw4cIFhIbORuPGF/D8eSyIkmFt3QuXLhUflaAsuCZZVRIeHo6mTZtqOw0AgJ+fH8LCwrSdBkB6CgDt2rWr1HXevHlDWVlZsse9e/cIAGVlZak9H4lEQk5OTrR48WLZsszMTDIxMaGtW7eqPX5hKSkpBIAuXryo8ril5XDtGlGzZkTSnrFEY8YQxcefJQCUmpqq1lx0VVZWltqOQW3ThZp89eoViUQi2rNnj9zy5s2b06xZs1QSQxlV/bygKP6uXUQ2NtJzQrVqRDNnav+cUJnrUp1ev35NV69epdevXxd7LTU1lc6fP6+RR3mOnfT0dJo4cSLVrl2bTExMyMHBgdq2bUurV6+m7OxsVewetZg7dy41adKkxNcAlPoojyNHjhAAevbsmdzyTp060aRJk5TaVmnHTHlV6j6yJiYmMClpLkM1S0lJwYMHD+Dv7y9bZmVlhdatW+PUqVMYNGiQVvLShNJu6Dp0KAuCIMDa2lrbaTItUHdN5ufnQywWw9TUVG65mZkZjh8/rra4ZVWVzwsl3dB1714W5s/nc0JlcvfuXXh7e6vsW4Z3MTU1RXJyMtzd3cu0/j///IN27drB2toa8+bNQ6NGjWBiYoLLly9j/fr1qFmzJnr16qXwd/Py8mBkZKTK9FVmypQp+Oyzz2TPW7VqhU8//RSffPKJwvVzc3NhXAn68ehV14KXL18iKSlJ1qcrJSUFSUlJuHv3rnYTU+DBgwcAAEdHR7nljo6OstcqoxcvpNNDfvaZtBHr7w9cuiRtxL558wbTpk3D4MGDefacSkLXatLS0hK+vr745ptvcP/+fYjFYmzevBmnTp1Cenq6VnIqrKqeFy5eBFq0kDZiBQH48kvg1CnAw4PPCZXR48ePNdaIBaSfLY8fPy7z+uPGjYOhoSHOnTuHwMBA+Pj4oFatWujduzf27t2Lnj17ytYVBAFr1qxBr169YG5ujsjISADAmjVrULt2bRgbG8Pb2xubNm2S/c6dO3eK9T/PzMyEIAg4evQoAODo0aMQBAGHDx9Gy5YtUa1aNbRt2xbJyclyuS5YsACOjo6wtLTEqFGjSt2vFhYWcHJykj1EIhEsLS1lzwcNGoTx48cjLCwMdnZ26NKlyztzvXPnDj744AMAQI0aNSAIAoKDg2XrSiQSfPnll7CxsYGTkxPCw8PL/P+gKuVuyObm5iI5ORn5+fmqzKdU586dQ7NmzdDs/0fMnzx5Mpo1a4Y5c+ZoLAdWukmTpKMSGBlB7oauvLw8BAYGgoiwZs2acm07Ly8P0dHRiI6O1soMMtqO/y5ck1KbNm0CEaFmzZowMTHB999/j8GDB8OgPJ2yWYX99hvQurV0VILCN3QJgv6fE5j+efLkCf73v/8hNDQU5ubmCtcpekNSeHg4+vbti8uXLyMkJAS7du3CpEmT8MUXX+DKlSsYM2YMRo4ciSNHjiidz6xZs/Ddd9/h3LlzMDQ0REhIiOy1X375BeHh4Zg3bx7OnTsHZ2dnrF69WukYhW3cuBHGxsY4ceIE1q5d+8713dzcsHPnTgBAcnIy0tPTsWLFCrntmZub48yZM1i0aBG+/vprxMXFVShHZSl9Zn/16hVGjRqFatWqoUGDBrIrLxMmTMCCBQtUnmBhfn5+IKJij+joaLXGLQ8nJycAwMOHD+WWP3z4UPZaZZGbKx0yBwCePZPO0HXmDGQ3dBU0YlNTUxEXF1fuKy9EhNTUVKSmpoKIVPgO9CN+Sbgm5dWuXRvHjh3Dy5cvce/ePZw9exZ5eXmoVauW1nIqUJXOCwX31m3cKJ1mtm9fyG7oqiznBKZ/bt26BSKCd5FBiu3s7GBhYQELCwtMmzZN7rUhQ4Zg5MiRqFWrFtzd3bFkyRIEBwdj3LhxeO+99zB58mT069cPSwqmqVRCZGQkOnXqhPr162P69Ok4efKk7Krr8uXLMWrUKIwaNQre3t749ttvUb9+/fK/eQB169bFokWL4O3tXWwfKCISiWBjYwMAcHBwgJOTE6ysrGSvN27cGHPnzkXdunUxYsQItGzZEocLpuXTEKUbsjNmzMBff/2Fo0ePyvVD8/f3x/bt21WanC4Ri4GjR4GtW6X/isWlr+/l5QUnJye5/9Dnz5/jzJkz8PX1VXt8VSsp/vXrQJs2b6eZDQgAzp9/O81swQfWzZs3cejQIR40Ww24JhXXhLm5OZydnfHs2TMcPHgQvXv31ngORVWV88JvvwGNG0t/NjaWdinYuVPaX57PCUwXnT17FklJSWjQoAFycnLkXmvZsqXc82vXrqFdu3Zyy9q1a4dr164pHbdxQaHg7WxXBbNfXbt2Da1bt5ZbvzznicJatGhRod8vqnD+gPQ9FOSvKUrf7PXbb79h+/btaNOmjdzl9wYNGuD27dsqTU5XxMZKvzL/99+3y1xdgQULXqJBg1uyZQX9A21sbODu7o6wsDB8++23qFu3Lry8vDB79my4uLgoPRd9eeM/ffoUd+/exf379wFA1vemoL9MReLXrAl89BGwceNLvHlzC1ZWQFYW0LVrCm7ckObg7OyM/v3748KFC9izZw/EYrGsH6CNjU2l6GSuC7gmpVxdgRUrAHPzg7IrLrdu3cLUqVNRr149jBw5UiM5VOXzgosL4O39EkeOvI0/eXIKWrVKwr17fE5g2lenTh0IglCsL2rBNzYFs08VVlIXhJIUdGMq/C1BSV1fCt84VnD+lkgkSsVTRtH3okyuihS98U0QBLXmr5CywxyYmZnR7du3iYjIwsJC9nNSUhJVr169nIMnaEZ5hljZuZNIEN4OIVXwkC47onB4i6CgICKSDrUze/ZscnR0JBMTE+rcuTMlJycrlXNF4kdFRSl8fe7cuRWO//ZRcg4Fw/soehw5ckSp/UBElJOTQ+Hh4RQeHk45OTlK/35FqSK+Oob54Zp8WxOCQDR58naqVasWGRsbk5OTE4WGhlJmZqZK8+bzQmnnBf07J/DwW+VT0lBK58+ff+cwUKp+nD9/vsx5BwQEUM2aNenly5fFXis6pBRQfAi5tm3b0ieffCK3bMCAAdSjRw8ikg4DCID27t0re/1///uf3HGuaEirixcvEgBKSUkhIiJfX18aN26cXJw2bdqUOPxWUR4eHrRs2bIS31tZcz1x4gQBoMePH8v9rqLt9e7dW3auUUQnht9q2bIl9u7diwkTJgB4+xfEDz/8UOFL3rpGLJZecVDU9Uq6zA81axKuXgWKzrSWnQ0AAqZN+xrTpn2t4LWyxZ8wofzxBwwIxoABwQq3XZYcSotfwMrKD48eEUoajYS435racU1KFSzbvj0QV68GllCTqsmhInVZ+c8LfrC3J6SnF48vzZHPCUy7Vq9ejXbt2qFly5YIDw9H48aNYWBggMTERFy/fv2dX79PnToVgYGBaNasGfz9/bF7927Exsbi0KFDAKRXddu0aYMFCxbAy8sLGRkZ+Oqrr5TOc9KkSQgODkbLli3Rrl07bNmyBX///bdK+/uXJVcPDw8IgoA9e/age/fuMDMzg4WFhcpyqCilG7Lz5s1Dt27dcPXqVeTn52PFihW4evUqTp48iWPHjqkjR61JSJD/2kyRtDSgUL9nDZuPtLRYWFldB2AGoC2AhQDe3YFbVbKygBMnAD8/6TAhM2bMwKRJk7B8+XKNxE9LS8O0adOwf/9+vHr1CnXq1EFUVFSxPk3qIhaLER4ejs2bN+PBgwdwcXFBcHAwvvrqK41N28g1KU+7NakLOaxBWtoaWFnd+f/nDQDMAdBNQ/HD8ehRBAwLfbp4e3vj+vXrGonu6emJ1NTUYsvHjRtX4mxnrGqpXbs2Ll68iHnz5mHGjBn4999/YWJigvr162PKlCkYN25cqb/fp08frFixAkuWLMGkSZPg5eWFqKgo+Pn5ydb56aefMGrUKLRo0QLe3t5YtGgRAgIClMpz4MCBuH37Nr788ku8efMGH3/8McaOHYuDBw+W522X6F251qxZExEREZg+fTpGjhyJESNG6NZN9uW5jHvr1i0aPXo0tWrVinx8fGjo0KF06dIllV0mVhdlvz6KiXn7dZmR0duvsIyMckr5ql09DyOjHJo5M5JmzowsFL8LAVEEXCEgiYDuBLgT8FJD8aWPmBiis2fPkqenJzVu3FjpmT7KKicnhyIjIykyMpJycnLo6dOn5OHhQcHBwXTmzBn6559/6ODBg3Tr1i2NxCciioyMJFtbW9qzZw+lpKTQr7/+ShYWFrRixQqF21DXV5hck5qvSV3IQXFd/kHAXgJuEJBMwEwCjP7/PKGJ+HMJaECrV6dTerr08ejRI7UcP4pqMiMjQxY3PT2d4uLiCCi96wJ3LSifkr4mTk1NJVNTUwI0063A1NS0ys4WqW90omsBIP1rZsOGDeX5Vb3y/zcQ/j8BmZlWsp8L27cP6NhR9fHj44Hu3aU/5+UZY968mUXWOCAX/9GjaHh5OeDAgfNo377iCb07vpS19UsMHToUGzZswLffflvhuCUxNjbGzJlvc5gzZw7c3NwQFRUlW+bl5aWx+ABw8uRJ9O7dGz169AAgvRq0detWnD17Vm15KMI1qZmaBOTrQjfPCz2LxI+Em9safPvtaQQFNdBAfAAwhI+PE9Q9opiimrS3t5d7vmDBAtSuXRudOnVSbzJMxt3dHcnJyUpNUlARdnZ2ZZ7Vi1VCyrZ8U1NTS33oMmX/6s7PJ3J1LfmmBkEgcnOTrqcOysa/efMmAaDLly9rJH7Bw9t7BI0fH0ZE5Zt7ubx8fHwoLCyM+vfvT/b29tS0aVNav369RmIXiIyMJA8PD9nNOklJSeTg4ECbN29WuL46rvxwTWquJnUhB2Xi5+fn09atW8nY2Jj+/vtvjcSXXpGtRlZWzuTl5UVDhgzR2nGYk5NDtra2FBkZWep6fEW2fNRxdY1Vbuo4ZpRuyAqCQAYGBiU+dFlF7pAuetIuWLZzpxoTViK+WCymHj16ULt27TQS/+1jKwENycfnNf31l2YbsiYmJmRiYkIzZsygCxcu0Lp168jU1JSio6M1Ep9Iut+nTZtGgiCQoaEhCYJA8+bNK3F9dXxgck1qtiZ1IYd3xV+69BKZm5uTSCQiKysruTuS1Rlf+thHwC8E/EUdOhygVq18yd3dnZ4/f67SHMpi+/btJBKJKC0trdT1uCFbPtyQZcrSiYZsUlKS3CMxMZHWr19P9erVo52a+ASpgPKerHbulF6BKHyydnPTzAdmQXwPjzwaMmQLDRmyhQwN84rF/+yzz8jDw4Pu3bunsfjr1t0la2sHsrH5iwAiExOi2rU70cSJk1SeAxFRXl4ebdmyhbZs2UJ5eXlkZGREvr6+cutMmDCB2rRpo5H4RERbt24lV1dX2rp1K126dIl+/vlnsrGxKbExrY4PTK5JzdekLuRQ2nkhJyeHbt68SefOnaPp06eTnZ2dyq7Iviv+L78QzZtHZGgo3Sc1az4jc/Pq9MMPP6g0PpHimiwsICCAPvroo3duhxuy5cMNWaYsnegj26RJk2LLWrZsCRcXFyxevBj9+vUrby8HndWvH9C9ex5Wr45Gbi7QqlUw/PyMFA4to6743bpJsGjRTQDAgQMS+Pm9Hdpm/Pjx2LNnD+Lj4+Hq6qqx+Lt3n0dmZgZEouYQBCAnB7h9W4zvv4/HqlUrkZOTA5EKd5JEIsHNmzdlPzs7Oxebrs/Hx0c2L7SqFY0PSIdhmT59OgYNGgQAaNSoEVJTUzF//nwEBQWpJY+iuCY1X5O6kEPp5wVj1KlTB4B0Jp/ExESsWLEC69at01B8wN8fGDIEuHXLGsB7+PHHWxgxAiUO1VceimqyQGpqKg4dOoTY2FjVBWSM6Rylp6gtibe3NxITE1W1OZ1jYEB48eI+cnLuo0MH0ugHJiA/HmOHDtLnRITx48dj165d+PPPP9V6o5Oi+J07d8bly5eRlJSEv/5KwsyZSRCElgCGonr1JBw4oN6d1K5du2Kzs9y4cQMeHh5qjVvYq1evZDOjFBCJRJqf2UQBrsnKn4OiulREIpEUm3ZT3fFbtQIuXgSGD38J4DZOnXJGu3bArVvFNqMWUVFRcHBwkN2IyRirnJRuyD5//lzukZWVhevXr+Orr75C3bp11ZEjg3S80gIJCQkQi8UIDQ3F5s2bERMTA0tLSzx48AAPHjzA69evNRLf0tISDRs2RMOGDdGoUUNERjZEixbmsLOzxbNnDfHRR8D48YCq0imaw8SJE3H69GnMmzcPt27dQkxMDNavX4/Q0FDVBHxHfLFYjJ49eyIyMhJ79+7FnTt3sGvXLixduhR9+/ZVSw6KcE1WXYqOyRkzZiA+Ph537tzB5cuXMWPGDBw9ehRDhw7VSPwpU6bg2LFjuHPnDi5dOon09L6wtBShevXBSEwEmjYFoqKknTHUER+QNtyjoqIQFBQEQ8NyDc7DGNMTSjdkra2tUaNGDdnDxsYG9evXx6lTp7BmzRp15FjlxcbGyn2F3q1bN3h6emLNmjXIysqCn58fnJ2dZY/t27drJL6ir+zMzYGBA4GwMOnzVaukV2YuXVJ9DgMGDMDUqVOxdetWNGzYEN988w2WL1+ulg/skvbBhx9+iP79+2PcuHHw8fHBlClTMGbMGHzzzTcqz6EkXJNVU0nH5NmzZzFixAh4e3ujc+fOSExMxMGDB/Hhhx9qJP7p06cxePBgeHt7IzAwELa2trh48TSuXLFHp07S2cNCQqTniWfPVB+/YIalu3fvIiQkpCJvkTGmB5T+U/XIkSNyzw0MDGBvb486derwX75qEBsbi/79+xfbt2lpaRAEATt27FBrH8jS4vfv379Y/KNHj8p+7tIFCA4G/v4beP99YOFCYOJEQNkJr0rLYcGCBVrdB8OHD8eOHTs0NpOZIlyTVU9px2RaWppWa6K0+IcPA4sXA7NnA7/+Cpw+DWzaBCg7xGtZzkukiku+jDGdp/SnHA8qrTlisRiTJk1SeEIuWDZx4kT4+/ur9KaqwvEnTJhQ7vgdOkg/qMaNM8H+/YYICwP27s3H2rW5cHQs24dMRXOoqHfFFwQBYWFh6N27t1rilwXXZNWi7+eFCROAtm0NEBJigtu3DfDBB4QvvsjDrFl5ZboRTB9qkrECwcHByMzMxG+//QYA8PPzQ9OmTSt08UMV26hMytSQ/eOPP8q8wV69epU7GSYvISEB/75jYvm0tDRYaXFi+bLHHwdgCeLizFC79lMAIwHs03AOqkdEuHfvHhwdHfHkyRPs2rULffr0kVvn2rVrmDZtGo4dO4b8/HwAwL1799CgQflnWeKarLoqz3nBHMAKEI3CkiXGWLIkCcAQALcrFLugJjt06IA7d+4gPT1dYV0W+Oyzz1Q6mgOTunsX0NDEXrCzA5Sd2Cs4OBgbN24EABgZGcHd3R0jRozAzJkz1fpNVmxsLIzKOHTH0aNH8cEHH+DZs2ewtrYu1zaqgjL9b5V0AihKEAS5zveVTbVq1TQaLz09XfZzXl4ewsPDNRq/sIrHXw3gKIAYAE0A7AWwEsBUAG80lEPFlBZ/xIgRWLZsWbHlt2/fRvv27TFq1ChERERAEAQ0a9YMpqamFcqFa1JK0zWpCzlUnvNCNoDRkE61vR7A+wCSAEwAEF3h+I6Ojpg6dWqpXSx27dqF06dPw9nZWW6/soq5exfw9gbelO3UXmGmpkBysvKN2a5duyIqKgo5OTnYt28fQkNDYWRkhBkzZsitl5ubC2NjY5XkamNjoxPbqFRUNiKtHtC3Qa9nzZpFAN752LdvH718+VLlj3379qk8/uPHLyk0NFc2gLyPj5hOn85WSQ4AaOvWrcW2cePGDXJxcaGzZ8+Su7s7LVy4UOX74MiRIwSAdu3aJfd/OHDgQBo2bJjsub4dg+rG+0M5b968ocDAwEp3Xrh+PZvat8+XnRf69s2je/cqXpNEpLAuiYj+/fdfqlmzJl25coXc3d35OCyHkga3P3++9GnN1fE4f1653IOCgqh3795yyz788ENq06aN7LVvv/2WnJ2dydPTk4iI7t69SwMGDCArKyuqUaMG9erVi1JSUmS/n5+fT59//jlZWVmRjY0NTZ06lUaMGCEXp+jsl2/evKEvv/ySXF1dydjYmGrXrk0//PADpaSkFDumg4KCFG7j6dOnNHz4cLK2tiYzMzPq2rUr3bhxQ/Z6VFQUWVlZ0YEDB6hevXpkbm5OXbp0ofv37yu301RAJ2b20mf68qGZlZVFw4YNe+eJWhAEcnNzo3w1Teqen59Prq6uJAiCyuPv30/k6Cg9AZmYEC1fTiSRVCwHRR9YYrGYPvjgA1q+fDkREXl4eNCyZcvUsg+KxheLxWRhYUFff/01BQQEkL29PbVo0UIvjkFN0Zea1AVXr16lpk2bVtrzQn4+0fz5b2cEc3MjOnq04vHLcl7ghmz5VLaGbK9evah58+YUFBREFhYWNHz4cLpy5QpduXKFcnNzycfHh0JCQujSpUt09epVGjJkCHl7e1NOTg4RES1cuJBq1KhBO3fupKtXr9KoUaPI0tKy1IZsYGAgubm5UWxsLN2+fZsOHTpE27Zto/z8fNq5cycBoOTkZEpPT6fMzEyF2+jVqxf5+PhQfHw8JSUlUZcuXahOnTqUm5tLRNKGrJGREfn7+1NiYiKdP3+efHx8aMiQIcrtNBXQmYbsy5cvae/evbRmzRpasWKF3EOX6cOH5smTJ8nLy4sAkIGBgezqS9GTtiAIJAiC2qcg3blzpyyWquNnZBB99NHbE1HXrkTp6eXPQdEH1rx58+jDDz8kyf+3kpVtyFYkfnp6OgGgatWq0dKlS+nixYs0d+5cAkB79+5VKod34ZqsvCQSCa1Zs4bMzMwIANna2tL06dPVVpdloc7zwtmzRHXqSM8JgkA0cybR/38elyt+Wc4L3JAtn8rSkJVIJBQXF0cmJiY0ZcoUCgoKIkdHR1kDlYho06ZN5O3tLTtmiKRTQZuZmdHBgweJiMjZ2ZkWLVokez0vL49cXV1LbMgmJycTAIqLi1OYY8E3fc+ePZNbXngbN27cIAB04sQJ2euPHz8mMzMz+uWXX4hI2pAFQLdu3ZKts2rVKnJ0dCzbzlIhnWjIXrhwgZycnKh69eokEonI3t6eBEEgc3Nz8vLyUlli6lCRD83c3FyKioqiqKgo2V85qpSXl0cREREkEokIAHl6etLx48eJSHrSdnV1lTthu7m5qf3DqoA640skRKtWEZmaSk9G9vZEe/aUL4eiH1jnzp0jR0dHSktLky0rT0O2vPHT0tIIAA0ePFi2rOAY/Pjjj5XOoSRck+qpSV3I4dGjR9S7d2/ZMffhhx/Kvg6szOeFFy+IQkLeNlJatSK6ebN88ctyXuCGbPnoe0NWJBKRubk5GRsbk6GhIY0YMYJevnxJQUFB5O/vL7f+lClTZOsXfgiCQKtXr6bMzEwCQMeOHZP7vT59+pTYkN2+fTuJRKISzx1lacj+/vvvZGhoWOwbkKZNm1JERAQRSRuy1apVk3s9NjaWBEEoy65SKXU0ZJW+Ne/zzz9Hz549sXbtWlhZWeH06dMwMjLCsGHDMGnSJGU3pzeICKmpqbKfVenOnTsYNmwYTpw4AQAYOnQoVq1aJbvrt1+/fujduzcSEhKQnp4OZ2dndOjQQWNDy6gzviAA48ZJx5EcMkQ6ccJHHwGhodLxJs3Myp9DQkICMjIy4F7oDgCxWIwvvvgCy5cvx507d8qcZ3ni29nZwdDQUG7Q9gLvuutcGVyTqq9JXcghLi4OI0aMwIMHD2BsbIz58+cjLCxMNiVyZT4vWFgAP/4IdOsGfPIJZDOC/fe/0rGpBaH88Us6LwBAo0aNZP+frPL74IMPsGbNGhgbG8PFxUVutAJzc3O5dV++fIkWLVpgy5YtxbZjb29frvhmBR9wGlB0lANBELR23lQ1pRuySUlJWLduHQwMDCASiZCTk4NatWph0aJFCAoKUusg3JVRTEwMxo4di+fPn8PS0hJr1qxRODOVSCSCn5+f5hPUUPwGDYAzZ4CZM4Fly6Qzgh09CsTEAI0by7IAUPYchg8fDn9/f7llXbp0wfDhwzFy5MhyZKlcfGNjY7Rq1QrJycnFXnNzcytHfMW4JiuXnJwczJw5E0uXLgUA+Pj4ICYmBk2bNi22bmU/L/TvD7RuDYwYIT0fhIQA+/cD69YBNWoAytYkoPi8EBAQgPT0dIWzFbLKy9zcHHXq1CnTus2bN8f27dvh4OCA6tWrK1zH2dkZZ86cQceOHQEA+fn5OH/+PJo3b65w/UaNGkEikeDYsWPFjkkAspESSht5xsfHB/n5+Thz5gzatm0LAHjy5AmSk5MVXkSpjJRuyBoZGcmuCDg4OODu3bvw8fGBlZUV7t27p/IEK6vnz58jNDQUmzdvBgD4+vpiy5Yt8PLy0nJm2mNqCixdKp0RLChIfkawmjWBzz8HCl/IdHUFFix4iQYNbsmWpaSkICkpCTY2NnB3d4etra1cDCMjIzg5OcHb21up3GJjgUmTlI8/depUDBw4EB07dsQHH3wgGxR79OjRSsUvDddk5XHt2jUMGTIESUlJAICxY8diyZIlOjHMmLa4uQGHDsnPCHbqFPDpp8D69cVrcsUKICDgJW7dUu68AAB169bVyHti+mfo0KFYvHgxevfuja+//hqurq5ITU1FbGwsvvzyS7i6umLSpElYsGAB6tati3r16mHp0qXIzMwscZuenp4ICgpCSEgIvv/+ezRp0gSpqanIyMhAYGAgPDw8IAgC9uzZg+7du8PMzAwWFhZy26hbty569+6NTz75BOvWrYOlpSWmT5+OmjVronfv3mreK7rBQNlfaNasGRITEwFIZxSaM2cOtmzZgrCwMDRs2FDlCVZGJ0+eRNOmTbF582YYGBggPDwc8fHxVboRW1iXLsDly9IuBjk5QFgYMGCA/AcWAKSlAcOGnUOzZs3QrFkzAMDkyZPRrFkzzJkzR2X5xMZKrwyVJ37fvn2xdu1aLFq0CI0aNcLPP/8MQPqHi6pwTeo/IsLatWvRokULJCUlwc7ODr///jtWr15dpRuxBUQiYPp04ORJoE4daS3OmaO4Jvv3B5YuVf95gVUt1apVQ3x8PNzd3dGvXz/4+Phg1KhRePPmjewK7RdffIHhw4cjKCgIvr6+sLS0RN++fUvd7po1a9C/f3+MGzcO9erVwyeffILs7GwAQM2aNREREYHp06fD0dER48ePV7iNqKgotGjRAh999BF8fX1BRNi3b1/VmTShrJ1pCzoSJyYm0p9//klERA8fPqQuXbqQpaUlNW/enJKSklTWeVcdKnJjSU5ODoWHh1N4eLjcnYzKyMvLo/DwcLkbugrfacjkSSRE//3vuzv516xJlJVF9PKl6h9ZWUQuLiXHFgTpMEFlHWlIlXfpc01WvCYrShU5PHr0iHr16qXwhi5WXGYmUbVqqqtJIh49o7xKunEnNfXtDbyaeJiaSmMy3afVm71q1qyJ4OBghISEoGXLlgCkX2MeOHBA9a1rPREfH4/Fixfj/Pnz75wG8V03dLHiBAEoywXFtDRAW7uRCLh3D0hIADTdVZFrUjFl6lLV5s+fj9jYWFy/fh1mZmZo27YtFi5cWGJXlqI3dC1YsACTJk2SdRVhxV28CLx6VfLr2qxJJuXuLp1pS5enqGWVR5kbsqGhodi4cSMWL16Mtm3bYtSoUQgMDKxSX3sVvUyfnZ2NJk2aICQkpNQbasp6QxcrrvCskUZGuZg1az4AIDJyBvLyVDNlYFmVFl8bs1tyTRavSaDsdamOHI4dO4bQ0FC0atUK+fn5mDlzJgICAnD16lW5u6CVuaGLySvrOYFnnNUud3duXDINUfYS7pEjR2jEiBFkbm5O1atXp9GjR9Pp06dVdolYndT59RFQfNDtojN0tW3blv755x+Vx67Mjhx5+/WRkVEuhYUto7CwZWRklCv31dK+ferpWrBvX9ni//9smO+kjmOQa7JkiupSkzIyMoqNLVl0hq6xY8dSdna21nLUN2U9J5S1Jom4a0F5qeNrYla56cSECAVevHhBGzZsoHbt2pEgCFS/fn367rvvVJaYOmiyIXvixAm5GbrCw8MpLy9P5XEru/x8IldXab83VfWH02Z8dR6DXJPFabshe/PmTQJAly9fLjZDl52dHf3+++9ay01fqeOcwA3Z8uGGLFOWOo6ZcnfEsrCwwOjRo3H8+HHs3r0bDx48wNSpU8u7uUojPz8fERER6NixI1JSUuDp6YmEhATMnTtXbrBlVjYikXQ4HUDaZ7awgufLl0vXq4zxlcE1qVskEgnCwsLQrl07ODk5oU+fPhg7dixev36NgIAAXLp0Cb169dJ2mnpHn2qSMaZ+5W7Ivnr1CtHR0ejUqRN69eoFW1tbREZGqjI3nZKfn4+YmBjExMQgPz9f4ToZGRnw8/NDeHg4xGIxhg4diqSkJNkgxax8+vUDduyQjiVbmKurdLm6u0FqO35ZcU3qVg6hoaG4cuUKxo0bh0aNGuGPP/6AsbExli5div3798PZ2VkrOVcG+lKTjDH1U/oS4cmTJ/HTTz/h119/RX5+Pvr3749vvvlGNpNFZSWRSHDz5k3Zz4qEhYXh9evXqF69OlavXs03dKlQv35A9+55WL06Grm5QKtWwfDzM9LYVRdtxy8N12TJNamtHMaPH4/du3eja9eusvMA39ClWrpck4wxzSlzQ3bRokWIiorCjRs30LJlSyxevBiDBw+GpaWlOvPTeVlZWbJBil+/fo22bdti8+bNPLmBGhgYEF68uA8A6NCBNP6Bpe34RXFN6h4iwoQJE/Drr7/C1tYWP/74IwBg3LhxWLx4cZUaUUITdK0mGWOaV+auBYsXL0bXrl3x119/4cyZM/j000+18oG5atUqeHp6wtTUFK1bt8bZs2c1ErfwXMcJCQkQi8U4dOgQfHx8ZNPMdunSBStWrICIz6ZMA3SlJgHt1KWimgSAly9fIikpSTbNa8H0pHfv3lV7DmPHjsVPP/2EzMxMXLt2DTY2Nti4cWOVn2aWMcbUpcwN2fv372PZsmVanfJy+/btmDx5MubOnYsLFy6gSZMm6NKlCzIyMtQaNzY2FvXr15c979atG2xsbBAQEID0QoMVHjx4EK1ateJpEJlG6EJNAtqpS0U16enpidjYWJw7p5npSRXlsG7dOrx+/Rq5ubkAgKdPnyIoKAjbt29XaWzGWOUTHR0Na2trbaehd8rctUAX5uxdunQpPvnkE4wcORIAsHbtWuzduxc//fQTpk+frpaYsbGx6N+/f7ERB54/fw4A6NixI/744w+eoYtpnC7UJKD5uiypJtPS0tC/f3/s2LEDRKTyuGXJoUBwcDB+/PFHnqGLVVlZWVl4VdoUbCpUrVo1pT+Dg4ODsXHjRowZMwZr166Vey00NBSrV69GUFAQoqOjVZhp6QYOHIju3btrLF5loTfjQeXm5uL8+fOYMWOGbJmBgQH8/f1x6tQptcQUi8WYNGlSqR+KKSkpsLCwUEt8xnSdpuuytJosWDZx4kT4+/urrYuPWCzGhAkTSj0vHD58WO2NacZ0VVZWFlauXKmx0UQMDQ0xfvx4pRuzbm5u2LZtG5YtWwYzMzMAwJs3bxATEwN3LUxLZmZmJsuDlZ1SXQu06fHjxxCLxXB0dJRb7ujoiAcPHij8nZycHDx//lzuoYyEhAT8+++/pa5z7949JCQkKLVdxlRB2zUJKF+XmqjJtLQ0WFlZwcLCQi0PKyurd+57Pi+wquzVq1caHRIvPz+/XFd/mzdvDjc3N8TGxsqWxcbGwt3dXdY1CQAOHDiA9u3bw9raGra2tvjoo49w+/Zt2et37tyBIAjYtm0b2rZtC1NTUzRs2BDHjh2TrXP06FEIgoC9e/eicePGMDU1RZs2bXDlyhXZOkW7FoSHh6Np06bYtGkTPD09YWVlhUGDBuHFixeydV68eIGhQ4fC3Nwczs7OWLZsGfz8/BAWFqb0/tBXZW7INmjQADExMerMReXmz58PKysr2cPNzU2p3y/c/zUvLw/h4eEIDw9HXl5eiesx9apWrZpWb5rRdvzCuCZLrklN4fOC9ulSTTL9ExISgqioKNnzn376SdZNqkB2djYmT56Mc+fO4fDhwzAwMEDfvn2LDfs3depUfPHFF7h48SJ8fX3Rs2dPPHnypNg63333HRITE2Fvb4+ePXuWev66ffs2fvvtN+zZswd79uzBsWPHsGDBAtnrkydPxokTJ/DHH38gLi4OCQkJuHDhQkV2id4pc9eCyMhIjBkzBrt27cK6detgY2OjzryKsbOzg0gkwsOHD+WWP3z4EE5OTgp/Z8aMGZg8ebLs+fPnz5X64CzrgOU8sLlmGBsba3WmKm3HL0rbNQkoX5eaqsl9+/apbRzd+Pj4MvVj4/OC+ulaTTL9M2zYMMyYMQOpqakAgBMnTmDbtm04evSobJ2PP/5Y7nd++ukn2Nvb4+rVq3I3244fP1627po1a3DgwAH8+OOP+PLLL2XrzJ07Fx9++CEAYOPGjXB1dcWuXbsQGBioMD+JRILo6GjZiDTDhw/H4cOHERkZiRcvXmDjxo2IiYlB586dAQBRUVFwcXGp4F7RL2W+Ijtu3DhcunQJT548Qf369bF792515lWMsbExWrRogcOHD8uWSSQSHD58GL6+vgp/x8TEBNWrV5d7KKNDhw5wdXWFUHQexCLWr1+PrKwspbbNWEVpuyYB5etS3TUpCALc3NwQEBAAc3NztTwCAgLKdF5ITEzU2kQNjLGysbe3R48ePRAdHY2oqCj06NEDdnZ2cuvcvHkTgwcPRq1atVC9enV4enoCQLEh/Qqf8wwNDdGyZUtcu3atxHVsbGzg7e1dbJ3CPD095YZVdHZ2lo0I888//yAvLw/vv/++7HUrKyt4e3uX8d1XDkrd7OXl5YU///wTK1euRL9+/eDj41Psrl11XtKePHkygoKC0LJlS7z//vtYvnw5srOzi30NoCoikQgrVqxA//79IQiCwps3DAwMsHXrVpw8eRJbtmxBu3bt1JILY4pouyYBzdZlaTVZ0LBcvny5WsdyLst5AQC+/PJLxMXFITo6uspdIWFMn4SEhMgmNlq1alWx13v27AkPDw9s2LABLi4ukEgkaNiwoWyYPXUqOjqNIAj8B3IRSo8Nk5qaitjYWNSoUQO9e/cu9lCngQMHYsmSJZgzZw6aNm2KpKQkHDhwoNiNJqrUr18/7NixAzWLTOrt5uaGnTt34vjx4/Dy8kJqaio6duyIuXPnam3e98ouLy8P0dHRiI6O1kqfSG3HL4k2axLQfF2WVJOurq7YsWMH+vXrp5a4ZcnBzc0NO3bswLp162BmZoa4uDg0btwYf/zxh9pzqop0tSaZfunatStyc3ORl5eHLl26yL325MkTJCcn46uvvkLnzp3h4+ODZ8+eKdzO6dOnZT/n5+fj/Pnz8PHxKXGdZ8+e4caNG8XWKatatWrByMgIiYmJsmVZWVm4ceNGubanr5S6IrthwwZ88cUX8Pf3x99//w17e3t15VWi8ePHy/5y0pR+/fqhd+/eSEhIQHp6OpydndGhQwfZVZ+kpCSMHz8emzZtwtdff424uDhs3rwZtWrV0mielR0RyfoxaWNoI23HV0QXahLQfF2+qyZ1IYeOHTtiyJAhuHjxInr37o3PPvsM3333Hd+YpEK6WJNM/4hEItnX+0XPITVq1ICtrS3Wr18PZ2dn3L17t8TxsVetWoW6devCx8cHy5Ytw7NnzxASEiK3ztdffw1bW1s4Ojpi1qxZsLOzQ58+fcqVt6WlJYKCgjB16lTY2NjAwcEBc+fOhYGBwTu7PlUmZW7Idu3aFWfPnsXKlSsxYsQIdeakk0QiEfz8/BS+Vr16dfz888/o1q0bPvvsM5w6dQpNmzbF6tWrMWzYMM0myqoMrsmSa1IXcqhXrx5OnTqFr776CkuWLMHatWtx9OhRxMTEyA3twxjTvpL66xsYGGDbtm2YOHEiGjZsCG9vb3z//fcK637BggVYsGABkpKSUKdOHfzxxx/F+tsuWLAAkyZNws2bN9G0aVPs3r0bxsbG5c576dKl+Oyzz/DRRx+hevXq+PLLL3Hv3j2YmpqWe5v6pswNWbFYjEuXLsHV1VWd+ei1wYMHw9fXF8OHD8fx48cxfPhw7N+/H6tXr+aZv5jKcU3qPhMTEyxevBhdunTBiBEjcP36dbRu3Rrz58/H559/zjN/sUqpWrVqMDQ01OiECMp+0/GuGbt+++032c/+/v64evWq3OuKvgHw8fHBmTNnSt1u+/bt5caOLSw4OBjBwcGy5wVD+xUWFhYmN0aspaUltmzZInuenZ2NiIgIfPrpp6XmUZmUuSEbFxenzjwqDU9PTxw5cgTz589HREQEYmJicOLECb4RjKkc16T+8Pf3x6VLlzB69Gj8/vvvmDJlCg4ePMg3grFKycrKCuPHj9fpKWori4sXL+L69et4//33kZWVha+//hoANHJ/hK7Qmylq9YmhoSFmz54Nf39/DB06FCkpKejYsSO++uorzJ49u8T52RljlZednR127dqFDRs2ICwsTHYj2E8//YRevXppOz3GVKpg0hOmfkuWLEFycrJsOMSEhIRiXRoqM/5eS418fX2RlJSE4cOHQyKR4Ouvv0bHjh3xzz//qGT7a9asQePGjWXjcfr6+mL//v0q2XZZhIeHQxAEuUe9evU0Ft/T07NYfEEQEBoaqrEcXrx4gbCwMHh4eMDMzAxt27aVu4OUscIEQcCnn36KCxcuoFmzZnjy5Al69+6NsWPHquXq1YIFCyAIgsanq0xLS8OwYcNga2sLMzMzNGrUCOfOndNIbLFYjNmzZ8PLywtmZmaoXbs2vvnmG74ZjKmNp6cniAhNmzYtcR0/Pz8QkdwUtKrQrFkznD9/Hi9fvsTTp08RFxeHRo0aqTSGruOGrJoV3AgWExOD6tWry24E27x5c4W37erqigULFuD8+fM4d+4c/vOf/6B37974+++/VZB52TRo0ADp6emyx/Hjx9Uaz8jISDauXmJiolzsgq/aBwwYoJH4ADB69GjExcVh06ZNuHz5MgICAuDv74+0tDS15cD0X8GNYFOmTAEArF27Fi1atMDFixdVFiMxMRHr1q1D48aNVbbNsnj27BnatWsHIyMj7N+/H1evXsV3332HGjVqqCVe0ZpcuHAh1qxZg5UrV+LatWtYuHAhFi1ahP/+979qic8Y0zKqQrKysggAZWVlaSV+SkoKtW/fngAQABoyZAhlZmaqNEaNGjXohx9+UOk2SzJ37lxq0qSJRmKVxaRJk6h27dokkUg0Eu/Vq1ckEoloz549csubN29Os2bNUvg72j4GdQ3vD6K4uDhydnYmAGRkZERLliwhsVhcoW2+ePGC6tatS3FxcdSpUyeaNGmSapItg2nTplH79u01Fq+oHj16UEhIiNyyfv360dChQ0v8HT4Oy+f169d09epVev36tbZTYXpCHccMX5HVoIIbwb7++muIRCLExMSgSZMmOHHiRIW3LRaLsW3bNmRnZ5c4Za863Lx5Ey4uLqhVqxaGDh1abMo+TcnNzcXmzZsREhKisfHz8vPzIRaLiw1zYmZmpvYr06zyKLgRrHfv3sjLy8OUKVPQtWtX3L9/v9zbDA0NRY8ePeDv76/CTMvmjz/+QMuWLTFgwAA4ODigWbNm2LBhg8bit23bFocPH5YNCv/XX3/h+PHj6Natm8ZyqGqIu22wMlLLsaKyJrEe0KW/uk+ePEleXl4EgAwMDGjOnDmUl5en9HYuXbpE5ubmJBKJyMrKivbu3auGbBXbt28f/fLLL/TXX3/RgQMHyNfXl9zd3en58+cay6HA9u3bSSQSUVpamkbj+vr6UqdOnSgtLY3y8/Np06ZNZGBgQO+9957C9XXpGNQFvD/ekkgktG7dOjIzMyMAZGtrS7///rvS29m6dSs1bNhQdsVD01dkTUxMyMTEhGbMmEEXLlygdevWkampKUVHR2skvlgspmnTppEgCGRoaEiCINC8efNK/R0+DssnPz+frl69So8fP9Z2KkxPPH78mK5evUr5+fkq26ZAVHX+lHr+/DmsrKyQlZVV4uDHms6nYEYwQHpzmLIzguXm5uLu3bvIysrCjh078MMPP+DYsWOoX7++utIuUWZmJjw8PLB06VKMGjVK5dvPz8/HL7/8AgAIDAyUG/2hS5cuMDY2xu7du1Uet7T4t2/fRkhICOLj4yESidC8eXO89957OH/+vGymmMJ07RjUNt4fxV2/fl02IxgApWYEu3fvHlq2bCkbEQGQ3mTStGlTLF++XJ1pyxgbG6Nly5Y4efKkbNnEiRORmJiIU6dOqTSWoprctm0bpk6disWLF6NBgwZISkpCWFgYli5diqCgIIXb4eOw/NLT05GZmQkHBwdUq1atSs0oxcqOiPDq1StkZGTA2toazs7OKts2jwOlRYVnBBs7dmy5ZgQzNjZGnTp1AAAtWrRAYmIiVqxYgXXr1qkzdYWsra3x3nvv4datW2rZvkQiwc2bN2U/F0hNTcWhQ4cQGxurlrilxa9duzaOHTuG7OxsPH/+HM7Ozhg4cCBPT8zKrSIzgp0/fx4ZGRlo3ry5bJlYLEZ8fDxWrlyJnJwctU/j6+zsXOwPaR8fH+zcuVPlsRTV5NSpUzF9+nQMGjQIANCoUSOkpqZi/vz5JTZkWfk5OTkBADIyMrScCdMH1tbWsmNGVbghqwMGDx6Mtm3bYtiwYRWeEUwikSAnJ0dNmZbu5cuXuH37NoYPH67RuFFRUXBwcECPHj00Grcwc3NzmJub49mzZzh48CAWLVqktVyY/ivvjGCdO3fG5cuX5ZaNHDkS9erVw7Rp09TeiAWAdu3aITk5WW7ZjRs34OHhofbYAPDq1ati+0ckEsn98ctURxAEODs7w8HBAXl5edpOh+kwIyMjtZyDuCGrIzw8PEqdEUwsFiMhIQHp6elwdnZGhw4d8NVXX6Fbt25wd3fHixcvEBMTg6NHj+LgwYMqz09R/GnTpqFnz57w8PDA/fv3MXfuXIhEIgwePFjl8QtyKJCQkAA/Pz8IgoCoqCgEBQWpfaIJRfEPHToEIoK3tzdu3bqFqVOnol69ehg5cqRac2FVw7tmBFNUlw0bNpTbhrm5OWxtbYstVwVF8T///HO0bdsW8+bNQ2BgIM6ePYv169dj/fr1aolfoKAme/bsicjISLi7u6NBgwa4ePEili5dipCQEJXHZ2+JRCKN/KHEWDEq622rB/SlQ3/RG8EGDBhANWvWlA3bBYBcXV3pP//5D3l4eJCxsTHZ29tT586d6X//+5/K89m5cye5uroWi9+uXTtydnYmY2NjqlmzJg0cOJBu3bql8vgFOXh6elJ4eDiFh4eTkZERubq60uzZswkAJScnqyXuu+JPnjyZatWqRcbGxuTk5EShoaGlDqmmL8egpvD+KBtFN4JNnz5dYV3u3LlT7nfVdbNXSeeFnTt30u7du6lhw4ZkYmJC9erVo/Xr16slvqKa3Lx5M02aNInc3d3J1NSUatWqRbNmzaKcnJwSt8XHIWP6ixuyOiorK4uGDx8u9yFR+CEIAgmCUOxDS9V27txJgiBoLX7hHIyMjOQ+tDS9D1QRX5+OQU3g/aGca9euUbNmzar8eUHV5wQ+DhnTXzxqgQ4Ti8VwcHDA06dPS1ynZs2auHr1qlq+0hGLxfDx8Sl1PEt1xi+ag5GREWbNmgUAiIyMlPXH0tQ+UBRfEAS4uroiJSWlTPH17RhUN94fynv16hUcHR3x8uXLEtepzOcFVdckwMchY/qM+8jqsISEhFIbsYB0TnNlbwhTJW3H13YORIR79+7J+ucxpm5nz54ttRELaL8uuSYZY5rCDVkdlp6eru0UdEpeXh7Cw8N1Mj7/XzFN4WPtLa5Jxhg3ZHVYWQcM3rdvHzp27Kjy+PHx8ejevbvW4utCDmWNr8rBnRkrTVU/L3BNMsYK4z6yOkwsFsPT0xNpaWkK5ycuT18wfYqvCzmoOr6+HYPqxvtDeZWtJnQhPh+HjOkvxaNqM50gEomwYsUKACg27V/B8+XLl6utEant+LqQg7bjM1aUto/Jqh6fMaZjtDJWgpbo6xArisZrdHNz08jQV7oQXxdyUFV8fT0G1YX3R/lVlprQhfh8HDKmv7hrgZ5QNIOOJq84aDu+LuSgivj6fAyqA++PiqkMNaEL8fk4ZEx/cUOWMQ3iY1Ae7w+mC/g4ZEx/cR9ZxhhjjDGml7ghyxhjjDHG9BI3ZBljjDHGmF7ihixjjDHGGNNL3JBljDHGGGN6iRuyjDHGGGNML3FDljHGGGOM6SVuyDLGGGOMMb3EDVnGGGOMMaaXuCHLGGOMMcb0EjdkGWOMMcaYXtKbhmxkZCTatm2LatWqwdraWtvpMFblcU0yxhjTNr1pyObm5mLAgAEYO3astlNhjIFrkjHGmPYZajuBsoqIiAAAREdHazcRxhgArknGGGPapzdXZBljjDHGGCtMb67IlkdOTg5ycnJkz7OysgAAz58/11ZKrIorOPaISMuZaAfXJNNFVb0uGdNnWm3ITp8+HQsXLix1nWvXrqFevXrl2v78+fNlX38W5ubmVq7tMaYqL168gJWVlbbTKIZrklVlulqXjLGSCaTFP0EfPXqEJ0+elLpOrVq1YGxsLHseHR2NsLAwZGZmvnP7Ra/+SCQSPH36FLa2thAEQel8nz9/Djc3N9y7dw/Vq1dX+vf1XVV//0DF9wER4cWLF3BxcYGBge717OGa1D9VfR+o4v3rel0yxkqm1Suy9vb2sLe3V9v2TUxMYGJiIrdMFcMEVa9evUp+YBSo6u8fqNg+0OUrPlyT+quq74OKvn9drkvGWMn0po/s3bt38fTpU9y9exdisRhJSUkAgDp16sDCwkK7yTFWBXFNMsYY0za9acjOmTMHGzdulD1v1qwZAODIkSPw8/PTUlaMVV1ck4wxxrRNbzoDRUdHg4iKPTT5gWliYoK5c+cW+2q0qqjq7x/gfVAY16RuqOr7oKq/f8aqOq3e7MUYY4wxxlh56c0VWcYYY4wxxgrjhixjjDHGGNNL3JBljDHGGGN6iRuyZbRq1Sp4enrC1NQUrVu3xtmzZ7WdksbMnz8frVq1gqWlJRwcHNCnTx8kJydrOy2tWbBgAQRBQFhYmLZTqfK4LrkuC3BdMlY1cUO2DLZv347Jkydj7ty5uHDhApo0aYIuXbogIyND26lpxLFjxxAaGorTp08jLi4OeXl5CAgIQHZ2trZT07jExESsW7cOjRs31nYqVR7XJddlAa5LxqouHrWgDFq3bo1WrVph5cqVAKTTarq5uWHChAmYPn26lrPTvEePHsHBwQHHjh1Dx44dtZ2Oxrx8+RLNmzfH6tWr8e2336Jp06ZYvny5ttOqsrgu5XFdcl0yVhXxFdl3yM3Nxfnz5+Hv7y9bZmBgAH9/f5w6dUqLmWlPVlYWAMDGxkbLmWhWaGgoevToIXcsMO3guiyO65LrkrGqSG9m9tKWx48fQywWw9HRUW65o6Mjrl+/rqWstEcikSAsLAzt2rVDw4YNtZ2Oxmzbtg0XLlxAYmKitlNh4LosiuuS65KxqoobskwpoaGhuHLlCo4fP67tVDTm3r17mDRpEuLi4mBqaqrtdBgrhuuS65Kxqoobsu9gZ2cHkUiEhw8fyi1/+PAhnJyctJSVdowfPx579uxBfHw8XF1dtZ2Oxpw/fx4ZGRlo3ry5bJlYLEZ8fDxWrlyJnJwciEQiLWZY9XBdvsV1yXXJWFXGfWTfwdjYGC1atMDhw4dlyyQSCQ4fPgxfX18tZqY5RITx48dj165d+PPPP+Hl5aXtlDSqc+fOuHz5MpKSkmSPli1bYujQoUhKSuIPSy3guuS65LpkjAF8RbZMJk+ejKCgILRs2RLvv/8+li9fjuzsbIwcOVLbqWlEaGgoYmJi8Pvvv8PS0hIPHjwAAFhZWcHMzEzL2amfpaVlsX6H5ubmsLW1rVL9EXUN1yXXJdclY4wbsmUwcOBAPHr0CHPmzMGDBw/QtGlTHDhwoNiNJpXVmjVrAAB+fn5yy6OiohAcHKz5hBgD1yXXJWOM8TiyjDHGGGNMT3EfWcYYY4wxppe4IcsYY4wxxvQSN2QZY4wxxphe4oYsY4wxxhjTS9yQZYwxxhhjeokbsowxxhhjTC9xQ5YxxhhjjOklbsgyxhhjjDG9xA1ZJic4OBh9+vTRdhqMsUK4LhljTDGeorYKEQSh1Nfnzp2LFStWgCd7Y0xzuC4ZY6z8eIraKuTBgweyn7dv3445c+YgOTlZtszCwgIWFhbaSI2xKovrkjHGyo+7FlQhTk5OsoeVlRUEQZBbZmFhUewrTD8/P0yYMAFhYWGoUaMGHB0dsWHDBmRnZ2PkyJGwtLREnTp1sH//frlYV65cQbdu3WBhYQFHR0cMHz4cjx8/1vA7Zkz3cV0yxlj5cUOWvdPGjRthZ2eHs2fPYsKECRg7diwGDBiAtm3b4sKFCwgICMDw4cPx6tUrAEBmZib+85//oFmzZjh37hwOHDiAhw8fIjAwUMvvhLHKg+uSMca4IcvKoEmTJvjqq69Qt25dzJgxA6amprCzs8Mnn3yCunXrYs6cOXjy5AkuXboEAFi5ciWaNWuGefPmoV69emjWrBl++uknHDlyBDdu3NDyu2GscuC6ZIwxvtmLlUHjxo1lP4tEItja2qJRo0ayZY6OjgCAjIwMAMBff/2FI0eOKOzXd/v2bbz33ntqzpixyo/rkjHGuCHLysDIyEjuuSAIcssK7rqWSCQAgJcvX6Jnz55YuHBhsW05OzurMVPGqg6uS8YY44YsU4PmzZtj586d8PT0hKEhH2KM6QKuS8ZYZcR9ZJnKhYaG4unTpxg8eDASExNx+/ZtHDx4ECNHjoRYLNZ2eoxVSVyXjLHKiBuyTOVcXFxw4sQJiMViBAQEoFGjRggLC4O1tTUMDPiQY0wbuC4ZY5URT4jAGGOMMcb0Ev8ZzhhjjDHG9BI3ZBljjDHGmF7ihixjjDHGGNNL3JBljDHGGGN6iRuyjDHGGGNML3FDljHGGGOM6SVuyDLGGGOMMb3EDVnGGGOMMaaXuCHLGGOMMcb0EjdkGWOMMcaYXuKGLGOMMcYY00vckGWMMcYYY3rp/wBoBzFpyik5BQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_matched([ex_graphs.div_2late_end(), ex_graphs.div_2late_mid()], '2 Frames Late')" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -319,7 +516,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 43, "metadata": { "nbsphinx": "hidden" }, @@ -345,7 +542,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 44, "metadata": {}, "outputs": [ { @@ -365,7 +562,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 45, "metadata": {}, "outputs": [ { @@ -385,7 +582,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 46, "metadata": {}, "outputs": [ { @@ -405,7 +602,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 47, "metadata": {}, "outputs": [ { @@ -425,7 +622,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 48, "metadata": {}, "outputs": [ { From 73aefcc9896820ebbc36ee64668040ad519df5be Mon Sep 17 00:00:00 2001 From: Morgan Schwartz Date: Tue, 17 Dec 2024 11:59:53 -0500 Subject: [PATCH 6/8] Correct notebook header levels --- examples/test-cases.ipynb | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/examples/test-cases.ipynb b/examples/test-cases.ipynb index dce7249..0719221 100644 --- a/examples/test-cases.ipynb +++ b/examples/test-cases.ipynb @@ -300,7 +300,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Division Cases" + "## Division Cases" ] }, { @@ -407,7 +407,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Shifted Division Cases" + "## Shifted Division Cases" ] }, { From 013cc403e10c42cfb60e004b1109332a86b7a5df Mon Sep 17 00:00:00 2001 From: Morgan Schwartz Date: Wed, 18 Dec 2024 12:00:55 -0500 Subject: [PATCH 7/8] Add test cases for limits of matching in shifted division cases --- examples/test-cases.ipynb | 100 ++++++++++++++++++++++++++++---------- tests/examples/graphs.py | 37 ++++++++++++++ 2 files changed, 110 insertions(+), 27 deletions(-) diff --git a/examples/test-cases.ipynb b/examples/test-cases.ipynb index 0719221..44e45db 100644 --- a/examples/test-cases.ipynb +++ b/examples/test-cases.ipynb @@ -22,6 +22,9 @@ "metadata": {}, "outputs": [], "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "\n", "import sys\n", "\n", "import matplotlib.pyplot as plt\n", @@ -39,7 +42,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 2, "metadata": { "nbsphinx": "hidden" }, @@ -118,7 +121,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -138,7 +141,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -158,7 +161,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -178,7 +181,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -198,7 +201,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -218,7 +221,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -238,7 +241,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -258,7 +261,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -278,7 +281,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -305,7 +308,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -325,7 +328,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 13, "metadata": {}, "outputs": [ { @@ -345,7 +348,7 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 14, "metadata": {}, "outputs": [ { @@ -365,7 +368,7 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -385,7 +388,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 16, "metadata": {}, "outputs": [ { @@ -412,7 +415,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 17, "metadata": {}, "outputs": [ { @@ -432,7 +435,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 18, "metadata": {}, "outputs": [ { @@ -452,7 +455,7 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 19, "metadata": {}, "outputs": [ { @@ -472,7 +475,7 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 20, "metadata": {}, "outputs": [ { @@ -490,6 +493,49 @@ "plot_matched([ex_graphs.div_2late_end(), ex_graphs.div_2late_mid()], '2 Frames Late')" ] }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAADXCAYAAAAeJfYDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABLcElEQVR4nO3de1xM+f8H8Ndput91VbrJJZeiyDVRK7mECJGlkt3f7kpqw2LtEruU+2Ujl6Wsr0tWuecSilgWJeuaWGQTUaSbpmY+vz9mZ7Zjuk3NNJXP8/GYB3PmnPN+n+nMvOd8zjmfD0MIIaAoiqKofynIOwGKoiiqaaGFgaIoimKhhYGiKIpioYWBoiiKYqGFgaIoimKhhYGiKIpioYWBoiiKYqGFgaIoimKhhYGiKIpiaZGFgWEYhIWF1WtZKysr+Pv7SzWf5hBb2p4+fQqGYbB69epa5w0LCwPDMI2QVdV2796NTp06QUlJCbq6unLLQ8jKygojR46sdb7k5GQwDIPk5GTW9MbcnpiYGDAMg6dPn9ZreX9/f1hZWbGm1ffzW5/9SLifxsTESByvJWuyhUG4wzEMg0uXLom9TgiBubk5GIap04eIktzevXuxfv16eachUw8ePIC/vz/atWuH7du3Y9u2bfJOqUGq2p6SkhKEhYWJFRCKqo6ivBOojaqqKvbu3YsBAwawpl+4cAH//PMPVFRUxJYpLS2FomL9Ni0jIwMKCk22XjaqvXv34s6dOwgJCZFpnB9++AHz58+XaYzqJCcng8/nY8OGDWjfvr1ccqivgQMHorS0FMrKyqJpVW3PmzdvsGTJEgCAi4uLPFKVSH0/v/XZjywtLVFaWgolJSWJ47VkTf4bcMSIEfj9999RUVHBmr5371707NkTrVu3FltGVVW13oVBRUWF7iSNTFFREaqqqnKJnZubCwBSbXIpKSmR2rpqoqCgAFVVVdYPGVlsT2Or7+e3PvsRwzBQVVUFh8OROF5L1uQLg4+PD/Ly8pCYmCiaxuVycfDgQUyePLnKZT5uoxS2PT569Aj+/v7Q1dWFjo4Opk2bJvYh/ridX9ikdenSJcyaNQuGhobQ1dXFV199BS6Xi3fv3sHX1xetWrVCq1at8N133+HjDmtXr16N/v37Q19fH2pqaujZsycOHjxYr/ejctv9pk2bYG1tDXV1dbi7u+P58+cghOCnn36CmZkZ1NTU4Onpifz8fNY6jhw5Ag8PD5iamkJFRQXt2rXDTz/9BB6PJ5rHxcUFJ06cwLNnz0RNepXbgj98+ICwsDB07NgRqqqqMDExgZeXFx4/fiyW87Zt29CuXTuoqKigV69euH79Ouv1qtqGGYbBzJkzcfjwYdja2kJFRQVdu3bFqVOnxNafnJwMR0dHqKqqol27dti6dWud2putrKywePFiAIChoaHYfrN582Z07doVKioqMDU1RWBgIN69e8dah4uLC2xtbZGamoqBAwdCXV0d33//fbUxX758iWnTpsHMzAwqKiowMTGBp6dnlW30ly5dQu/evaGqqgpra2v89ttvYttd+RxDVdvj7+8PQ0NDAMCSJUtEf8vK2/ngwQOMHz8eenp6UFVVhaOjI44ePSqWz927d/HZZ59BTU0NZmZm+Pnnn8Hn86vd1o8J/5aqqqqwtbXFoUOHqpyvcn4HDx4EwzC4cOGC2Hxbt24FwzC4c+cOgKr3o8TERAwYMAC6urrQ1NSEjY0N6+9T3TmG8+fPw9nZGRoaGtDV1YWnpyfu37/PmkeS75Xa8mhqmnxTkpWVFfr164d9+/Zh+PDhAICTJ0+ioKAAkyZNwsaNG+u8Lm9vb7Rt2xbh4eFIS0vDr7/+CiMjI6xYsaLWZYOCgtC6dWssWbIEV69exbZt26Crq4s//vgDFhYWWL58ORISErBq1SrY2trC19dXtOyGDRswevRofP755+Byudi/fz8mTJiA48ePw8PDQ/I3BcCePXvA5XIRFBSE/Px8rFy5Et7e3vjss8+QnJyMefPm4dGjR/jll18wZ84c7Ny5U7RsTEwMNDU1ERoaCk1NTZw/fx6LFi3C+/fvsWrVKgDAwoULUVBQgH/++Qfr1q0DAGhqagIAeDweRo4ciXPnzmHSpEkIDg5GYWEhEhMTcefOHbRr104Ua+/evSgsLMRXX30FhmGwcuVKeHl54e+//671yOzSpUuIj4/HjBkzoKWlhY0bN2LcuHHIysqCvr4+AODmzZsYNmwYTExMsGTJEvB4PCxdulT0ZViT9evX47fffsOhQ4cQFRUFTU1NdOvWDYDgQ79kyRK4ubnhm2++QUZGBqKionD9+nVcvnyZlXteXh6GDx+OSZMmYcqUKTA2Nq425rhx43D37l0EBQXBysoKubm5SExMRFZWFqvwPnr0COPHj8f06dPh5+eHnTt3wt/fHz179kTXrl3rvD12dnbo27cvvvnmG4wdOxZeXl4AINrOu3fvwsnJCW3atMH8+fOhoaGBAwcOYMyYMYiLi8PYsWMBCAqaq6srKioqRPNt27YNampqtb7PAHDmzBmMGzcOXbp0QXh4OPLy8kQFsiYeHh7Q1NTEgQMHMGjQINZrsbGx6Nq1K2xtbatc9u7duxg5ciS6deuGpUuXQkVFBY8ePcLly5drjHn27FkMHz4c1tbWCAsLQ2lpKX755Rc4OTkhLS1N7GR5bd8r9c1DrkgTFR0dTQCQ69evk8jISKKlpUVKSkoIIYRMmDCBuLq6EkIIsbS0JB4eHqxlAZDFixeLni9evJgAIAEBAaz5xo4dS/T19VnTLC0tiZ+fn1geQ4cOJXw+XzS9X79+hGEY8vXXX4umVVRUEDMzMzJo0CDWOoV5C3G5XGJra0s+++yzGmNX5cmTJwQAMTQ0JO/evRNNX7BgAQFAunfvTsrLy0XTfXx8iLKyMvnw4UO1+RBCyFdffUXU1dVZ83l4eBBLS0uxeXfu3EkAkLVr14q9JnyPhHnq6+uT/Px80etHjhwhAMixY8dE04R/n8oAEGVlZfLo0SPRtFu3bhEA5JdffhFNGzVqFFFXVyfZ2dmiaZmZmURRUVFsnVURxn79+rVoWm5uLlFWVibu7u6Ex+OJpkdGRhIAZOfOnaJpgwYNIgDIli1bao319u1bAoCsWrWqxvksLS0JAHLx4kVWTioqKmT27NmiaUlJSQQASUpKqnF7Xr9+LfaZEBo8eDCxs7Nj/d35fD7p378/6dChg2haSEgIAUD+/PNPVk46OjoEAHny5EmN22Rvb09MTExY++yZM2cIALF97ONcfXx8iJGREamoqBBNy8nJIQoKCmTp0qVi2y60bt06sffiY8L9NDo6mpWrkZERycvLE027desWUVBQIL6+vmLxavteqUseTU2Tb0oCBBW5tLQUx48fR2FhIY4fP15tM1JNvv76a9ZzZ2dn5OXl4f3797UuO336dNZhap8+fUAIwfTp00XTOBwOHB0d8ffff7OWrfyr6u3btygoKICzszPS0tIk3gahCRMmQEdHh5UPAEyZMoXVPtunTx9wuVxkZ2dXmU9hYSHevHkDZ2dnlJSU4MGDB7XGjouLg4GBAYKCgsRe+/hQfuLEiWjVqpXoubOzMwCIvUdVcXNzYx19dOvWDdra2qJleTwezp49izFjxsDU1FQ0X/v27UVHl/Vx9uxZcLlchISEsNrvv/zyS2hra+PEiROs+VVUVDBt2rRa16umpgZlZWUkJyfj7du3Nc7bpUsX0XsFCJqGbGxs6vS+1VV+fj7Onz8Pb29v0X7w5s0b5OXlYejQocjMzBTtNwkJCejbty969+7Nyunzzz+vNU5OTg7S09Ph5+fH2meHDBmCLl261Lr8xIkTkZuby7qq6uDBg+Dz+Zg4cWK1ywnPsxw5cqTOTV7CXP39/aGnpyea3q1bNwwZMgQJCQliy9T2vVKfPOStWRQGQ0NDuLm5Ye/evYiPjwePx8P48eMlXo+FhQXrufALq7YPaVXLCndwc3Nzsekfr+/48ePo27cvVFVVoaenB0NDQ0RFRaGgoEDibahPPgB7G+/evYuxY8dCR0cH2traMDQ0xJQpUwCgTjk9fvwYNjY2dTpBKM33XLi8cNnc3FyUlpZWeTVRQ64wevbsGQDAxsaGNV1ZWRnW1tai14XatGnDujKoOioqKlixYgVOnjwJY2NjDBw4ECtXrsTLly/F5q1t26Xh0aNHIITgxx9/hKGhIeshPFchPJn97NkzdOjQQWwdH79HVRG+X/VdftiwYdDR0UFsbKxoWmxsLOzt7dGxY8dql5s4cSKcnJzwxRdfwNjYGJMmTcKBAwdq/HKu7m8PAJ07d8abN29QXFzMml7bPl6fPOStWRQGAJg8eTJOnjyJLVu2YPjw4fW66qK6Kw9IHUY3rW7ZqqZXXl9KSgpGjx4NVVVVbN68GQkJCUhMTMTkyZPrFFca+VTO6d27dxg0aBBu3bqFpUuX4tixY0hMTBS1h0p7Z5XFe96Q900W6trODgAhISF4+PAhwsPDoaqqih9//BGdO3fGzZs3WfM1xrYL/9Zz5sxBYmJilY+mcAmviooKxowZg0OHDqGiogLZ2dm4fPlyjUcLgODvcvHiRZw9exZTp07FX3/9hYkTJ2LIkCGsCy0aqra/VWPlIU3NpjCMHTsWCgoKuHr1ar2akeQlLi4OqqqqOH36NAICAjB8+HC4ubnJLZ/k5GTk5eUhJiYGwcHBGDlyJNzc3FjNPULVXdXTrl07ZGRkoLy8XNbp1sjIyAiqqqp49OiR2GtVTasrS0tLAIJ7Wirjcrl48uSJ6PX6ateuHWbPno0zZ87gzp074HK5WLNmTYPWWZPq/o7W1tYAACUlJbi5uVX50NLSAiB4TzIzM8XW8fF7VBXh+1Xf5QHBr+43b97g3Llz+P3330EIqbUwAIJLegcPHoy1a9fi3r17WLZsGc6fP4+kpKQac60qrwcPHsDAwAAaGhp1yrkhechbsykMmpqaiIqKQlhYGEaNGiXvdOqMw+GAYRjWL4OnT5/i8OHDcssHYP/y5HK52Lx5s9i8GhoaVTYtjRs3Dm/evEFkZKTYa435a57D4cDNzQ2HDx/GixcvRNMfPXqEkydP1nu9bm5uUFZWxsaNG1nbs2PHDhQUFNT7SrKSkhJ8+PCBNa1du3bQ0tJCWVlZvfOtjbq6OgCIXWprZGQEFxcXbN26FTk5OWLLvX79WvT/ESNG4OrVq7h27Rrr9T179tQa38TEBPb29ti1axdrf0pMTMS9e/fqtA1ubm7Q09NDbGwsYmNj0bt3b7Rt27bGZT6+TBsA7O3tAaDa97tyrpXfrzt37uDMmTMYMWJEnfJtaB7y1uQvV63Mz89P3ilIzMPDA2vXrsWwYcMwefJk5ObmYtOmTWjfvj3++uuvRs+nf//+aNWqFfz8/DBr1iwwDIPdu3dX+YXes2dPxMbGIjQ0FL169YKmpiZGjRoFX19f/PbbbwgNDcW1a9fg7OyM4uJinD17FjNmzICnp2ejbU9YWBjOnDkDJycnfPPNN+DxeIiMjIStrS3S09PrtU5DQ0MsWLAAS5YswbBhwzB69GhkZGRg8+bN6NWrl+h8jKQePnyIwYMHw9vbG126dIGioiIOHTqEV69eYdKkSfVaZ12oqamhS5cuiI2NRceOHaGnpwdbW1vY2tpi06ZNGDBgAOzs7PDll1/C2toar169wpUrV/DPP//g1q1bAIDvvvsOu3fvxrBhwxAcHCy6XNXS0rJO+3F4eDg8PDwwYMAABAQEID8/H7/88gu6du2KoqKiWpdXUlKCl5cX9u/fj+Li4jr1wbV06VJcvHgRHh4esLS0RG5uLjZv3gwzMzOxnhQqW7VqFYYPH45+/fph+vTpostVdXR06tWHU33zkKdmc8TQXH322WfYsWMHXr58iZCQEOzbtw8rVqwQXR/e2PT19XH8+HGYmJjghx9+wOrVqzFkyBCsXLlSbN4ZM2Zg8uTJiI6OxuTJk0VXIXE4HCQkJGDhwoX4888/ERISgrVr10JbWxt2dnaNuj09e/bEyZMn0apVK/z444/YsWMHli5disGDBzfobuqwsDBERkYiKysL3377LQ4cOID/+7//w5kzZ+p9Z7y5uTl8fHyQnJyMBQsWYMGCBXj//j0OHDiAcePG1TvXuvj111/Rpk0bfPvtt/Dx8RHdYNmlSxfcuHEDHh4eiImJQWBgILZs2QIFBQUsWrRItLyJiQmSkpLQrVs3REREYP369fD19UVwcHCd4g8bNgy///47eDweFixYgPj4eERHR8PR0bHO2zBx4kRREfH29q51/tGjR8PCwgI7d+5EYGAgNm3ahIEDB+L8+fOsq6M+5ubmhlOnTkFfXx+LFi3C6tWr0bdvX1y+fLnWoxRp5iFPDGlqZ/IoSgrGjBmDu3fvVtmuTVFUzegRA9XslZaWsp5nZmYiISGhWXQYR1FNET1ioJo9ExMT+Pv7i+4xiIqKQllZGW7evFnltfMURdWsWZ18pqiqDBs2DPv27cPLly+hoqKCfv36Yfny5bQoUFQ90SMGiqIoioWeY6AoiqJYaGGgKIqiWGhhoCiKolhoYaAoiqJYaGGgKIqiWD6py1X5fD5evHgBLS2tWscDpqi6IoSgsLAQpqamrIF9KKq5+qQKw4sXL8QGsqEoaXn+/HmtYxhTVHPwSRUGYd/yz58/h7a2tpyzoVqK9+/fw9zcXLR/UVRz90kVBmHzkba2Ni0MlNTR5kmqpaANohRFURQLLQwURVEUCy0MFEVRFAstDBRFURQLLQwURVEUCy0MFEVRFAstDBRFURQLLQwURVEUCy0MVJN28eJFjBo1CqampmAYBocPHxa9Vl5ejnnz5sHOzg4aGhowNTWFr68vXrx4IdO4HwsJCQEAbN68ucFxKaopoIWBatKKi4vRvXt3bNq0Sey1kpISpKWl4ccff0RaWhri4+ORkZGB0aNHyzRuZYcOHcKNGzcaHI+impJPqksMqvkZPnw4hg8fXuVrOjo6SExMZE2LjIxE7969kZWVBQsLC5nEFcrOzkZQUBDi4uLQt2/feseiqKaGHjFQLUpBQQEYhoGurq5M4/D5fEydOhVz585F586dZRqLohobLQxUi/HhwwfMmzcPPj4+Mu8kccWKFVBUVMSsWbNkGoei5IE2JVEtQnl5Oby9vUEIQVRUlExjpaamYsOGDUhLS6M9qlItEj1ioJo9YVF49uwZEhMTZX60kJKSgtzcXFhYWEBRURF6enoAgIULF8LKykqmsSmqMdAjBqrJ4PGAlBQgJwcwMQGcnQEOp+ZlhEUhMzMTSUlJ0NfXl3ncqVOnws3NTfS8qKgI/fr1w6xZs/D1119LHJ+imhpaGKgmIT4eCA4G/vnnv2lmZkBERBG6dn0kmvbkyROkp6dDT08PJiYmGD9+PNLS0nD8+HHweDy8fPkSAKCnpwdlZWWZxLWwsGAVoPfv3wMAjI2NYWNjU9+3gKKaDvIJKSgoIABIQUGBvFOhKomLI4RhCAHYD8G0JAJA7OHn50eePHlS5WsASFJSkszifky4X4WHh0v/zaEoOWAIIaSxi5G8vH//Hjo6OigoKKBDezYRPB5gZcX+xf6xNm2Ae/dqb1aSNG7nzkB1N0kzjODI4cmT2uPS/YpqaWhTEiVXKSk1FwUAyM4GdHQaJx8hQoDnzwX5ubg0bmyKkjdaGCi5ysn57/9KSlwsXBgOAFi2bAHKy2s/RyBrlfOjqE8FLQyUXGlpVX7G4N07HdH/K0tIAAYOlF7cixeBESNqn8/ERHoxKaq5oOcYKLm5eRMYPx74++/q55GkrV8SwnMb2dmCZqOGxKX7FdXS0BvcKLnYsQPo109QFAwNBdM+volY+Hz9eukWBUCwvg0bGj8uRTUHtDBQjaqkBAgIAL74AigrEzTnPHgAxMUJrj6qzMwMOHgQ8PKSTS5eXoL1N3ZcimrqaFMS1WgyMwVNR3/9BSgoAD/9BMyfL/g/AHz4UI7Nm2PA5QK9evnDxUWpUX6x1+eO68rofkW1NPTkM9Uo4uMBf3+gsBAwMgL27QM++4w9j4ICQWGh4MYCZ2fSaM04HE7zuSSVz+eDy+XKOw2qiVNWVoaCQv0bhJpVYbh48SJWrVqF1NRU5OTk4NChQxgzZoy806JqUF4uOCpYu1bw3MkJiI0Vb76hasflcvHkyRPw+Xx5p0I1cQoKCmjbtm2duoWpSrMqDMLhFgMCAuBFG4CbvOxsYOJE4PJlwfPZs4HwcEBJSb55NUeEEOTk5IDD4cDc3LxBvwaplo3P5+PFixfIycmBhYVFvbqGb1aFoS7DLVJNw7lzgI8P8Po1oK0NREfTk7kNUVFRgZKSEpiamkJdXV3e6VBNnKGhIV68eIGKigoo1eOXGP3ZQUkVnw8sWwa4uwuKQrduwI0btCg0FI/HA4B6Nw1QnxbhfiLcbyTVogtDWVkZ3r9/z3pIS2FhIUJCQmBpaQk1NTX0798f169fl9r6q3Px4kWMGjUKpqamYBgGhw8fZr1OCMGiRYtgYmICNTU1uLm5ITMzU+Zx4+Pj4erqDlVVffzwAwM+Px3TpgFXrwIdOjQ4PPUvOmIcVRcN3U9adGEIDw+Hjo6O6GFubi61dX/xxRdITEzE7t27cfv2bbi7u8PNzQ3Z2dlSi1EV4XmWTZs2Vfn6ypUrsXHjRmzZsgV//vknNDQ0MHToUHz48EGmcW/fLsbNmwNQXr4CALB4MbBzJ6CmJlkcdXV12lRCNQlhYWGwt7eXdxoAABcXF4SEhDRavGZ1jkFSCxYsQGhoqOj5+/fvpVIcSktLERcXhyNHjmDgvx34hIWF4dixY4iKisLPP//c4BjVqek8CyEE69evxw8//ABPT08AwG+//QZjY2McPnwYkyZNknpcQoCoKGD58qngcgELi6fIygLqc7GYsrIy5s6dW+8cP0VZWVl48+ZNo8UzMDCAhYWFRMu8fPkS4eHhOHHiBP755x/o6Oigffv2mDJlCvz8/JrlD4GwsDAsWbKkxnnqc4tYcnIyXF1d8fbtW+jq6tYzu4Zr0YVBRUUFKioqUl9vRUUFeDweVFVVWdPV1NRw6dIlqcerqydPnuDly5esYSd1dHTQp08fXLlypUGFoSpFRcBXXwF79wqejxkDLFkCdO8u1TBUNbKysmBjY9Pgo0FJqKqqIiMjo87F4e+//4aTkxN0dXWxfPly2NnZQUVFBbdv38a2bdvQpk0bjB49usply8vL63XitDHMmTOHNYxrr1698H//93/48ssvq5yfy+U2q/NDzaopqaioCOnp6UhPTwfw33CLWVlZjZqHlpYW+vXrh59++gkvXrwAj8fD//73P1y5cgU5cuynWTispbGxMWu6sbGx6DVpef4c6NNHUBQ4HGDVKsFNbPTG38bz5s2bRi0KAPDhwweJjlBmzJgBRUVF3LhxA97e3ujcuTOsra3h6emJEydOYNSoUaJ5GYZBVFQURo8eDQ0NDSxbtgwAEBUVhXbt2kFZWRk2NjbYvXu3aJmnT5+CYRjRdwIAvHv3DgzDIDk5GYDgVzjDMDh37hwcHR2hrq6O/v37IyMjg5VrREQEjI2NoaWlhenTp9f43mpqaqJ169aiB4fDgZaWluj5pEmTMHPmTISEhMDAwABDhw6tNdenT5/C1dUVANCqVSswDAN/f3/RvHw+H9999x309PTQunVrhIWF1fnvIKl6FwYul4uMjAxUVFRIM58a3bhxAw4ODnBwcAAAhIaGwsHBAYsWLWq0HIR2794NQgjatGkDFRUVbNy4ET4+Pp/M9eVz5wpGVTMxAZKSgDlzxDujk1R5eTliYmIQExOD8vJy6SRKyU1eXh7OnDmDwMBAaGhoVDnPxydJw8LCMHbsWNy+fRsBAQE4dOgQgoODMXv2bNy5cwdfffUVpk2bhqSkJInzWbhwIdasWYMbN25AUVERAQEBotcOHDiAsLAwLF++HDdu3ICJiQk2b94scYzKdu3aBWVlZVy+fBlbtmypdX5zc3PExcUBADIyMpCTk4MNwp4e/12fhoYG/vzzT6xcuRJLly5FYmJig3KsjsTfYiUlJZg+fTrU1dXRtWtX0a/1oKAgRERESD3BylxcXEAIEXvExMTING5V2rVrhwsXLqCoqAjPnz/HtWvXUF5eDmtr60bPRah169YAgFevXrGmv3r1SvRaQ5SVATNn/vd/V1cgLU3Qt5A0EELw7NkzPHv2rF7ts1TT8ujRIxBCYGNjw5puYGAATU1NaGpqYt68eazXJk+ejGnTpsHa2hoWFhZYvXo1/P39MWPGDHTs2BGhoaHw8vLC6tWrJc5n2bJlGDRoELp06YL58+fjjz/+EB0VrF+/HtOnT8f06dNhY2ODn3/+GV26dKn/xgPo0KEDVq5cCRsbG7H3oCocDgd6enoAACMjI7Ru3Ro6lYYu7NatGxYvXowOHTrA19cXjo6OOHfuXINyrI7EhWHBggW4desWkpOTWW3sbm5uiI2NlWpyTQWPByQnC/r3SU4WPBfS0NCAiYkJ3r59i9OnT4tO+so6blXatm2L1q1bs3aW9+/f488//0S/fv0aFPfZM8FAOcKLksaNA86cAaRQb6hPzLVr15Ceno6uXbuirKyM9ZqjoyPr+f379+Hk5MSa5uTkhPv370sct1u3bqL/m/w7AlNubq4oTp8+fVjzS/KZqUrPnj0btPzHKucPCLZBmL+0SXzy+fDhw4iNjUXfvn1Zh4Fdu3bF48ePpZpcUxAfDwQHs8clNjMD/P1Pw8lJ8Gvo0aNHmDt3Ljp16oRp06bJNG5ERBG6dn0kmiY8z6KnpwcLCwuEhITg559/RocOHdC2bVv8+OOPMDU1rXOfUlXFNTAASkuLUFz8CJqagpPOTk5PcOfOf3Hz8/ORlZWFFy8EneAJ22+Fba7Up6d9+/ZgGEasLV94VK1WxbXM1TU5VUfYdFv5CLO6ZsjKJ7KF312y7Hfq422RJNeqfHwinmEYmeUv8RHD69evYWRkJDa9uLi4xd18Ex8v6Cb648Hqs7OBn38ugL9/IDp16gRfX18MGDAAp0+flspVFDXFnTKl5vMs3333HYKCgvB///d/6NWrF4qKinDq1CmxK6gkifvmDVBcfAOAA4qKqo579OhRODg4wMPDAwAwadIkODg41KltlWqZ9PX1MWTIEERGRqK4uLhe6+jcuTMuCzvb+tfly5dFzTyG/47yVPmij8ondyWJ8+eff7KmXb16VeL11KQuuTb0jmVpkfiIwdHRESdOnEBQUBCA/yrvr7/+2uBDr6aExxP8cq6qqVswzRuKit54/Zrdd389939W3KCgmuK6oE0bgnv3xMcMEMRmMG/eUsybt7SK1+oXV8AFZmYET59WPVaBv78/6woKigKAzZs3w8nJCY6OjggLC0O3bt2goKCA69ev48GDB7U2t8ydOxfe3t5wcHCAm5sbjh07hvj4eJw9exaA4Kijb9++iIiIQNu2bZGbm4sffvhB4jyDg4Ph7+8PR0dHODk5Yc+ePbh7965UzxnWJVdLS0swDIPjx49jxIgRUFNTg6amptRyqDMioZSUFKKpqUm+/vproqqqSoKDg8mQIUOIhoYGuXHjhqSra1QFBQUEACkoKKh13qQkQgRfk/QBbCaAHQG0iLq6Funbty9JSEiQ+t+nrKyMhIWFkbCwMFJWVkYWL15MALAeNjY2Uo9bFUtLS7HYAMiMGTPE5pVkv6qv0tJScu/ePVJaWiqalpqaWmWOsn6kpqZKlPuLFy/IzJkzSdu2bYmSkhLR1NQkvXv3JqtWrSLFxcWi+QCQQ4cOiS2/efNmYm1tTZSUlEjHjh3Jb7/9xnr93r17pF+/fkRNTY3Y29uTM2fOEAAkKSmJEEJIUlISAUDevn0rWubmzZsEAHny5Ilo2rJly4iBgQHR1NQkfn5+5LvvviPdu3ev0zZaWlqSdevWiZ4PGjSIBAcHi81XW66EELJ06VLSunVrwjAM8fPzq3Z9np6eotc/VtX+Iol6jeD2+PFjRERE4NatWygqKkKPHj0wb9482NnZSbqqRiXJSFv79gGTJzdSYtVQUuJi4cJwAMCyZQtQXi6vG2SOAeAA6IA1awjy8nZh1apVuHnzJrp27Sq1KFwuV3S1yZw5c7B8+XIcPHhQ9OsQABQVFWFgYCC1mNV5/fo163D+zp07GDJkCJKSkuDy0ag+jTGC24cPH/DkyRO0bdtW1CzYHG5wo+Sjqv1FEvW687ldu3bYvn17fRZtNv69aKFWCQmCq3Wk5eJFwTjIAgzevdMR/b/x4n7sv5uQevQAXFyWISoqClevXpVqYVBWVsb333/PmqaoqCiXk9fC9mChiIgItGvXDoMGDWr0XKpjYWGBjIyMJt8lBtX8SFwYarvLuKXsNM7OgquAsrOrbndnGMHr7u6SjQ9cG3f3/+KWlyth/fqQRo9b3TGkmhpgZ8fD/v2/o7i4uFHOKWVmZsLU1BSqqqro168fwsPDG30f43K5+N///ofQ0NAmd4GFhYVFi/nMUU2HxIXBysqqxg+HvM+mSwuHA2zYILhKh2HYX5bCzV+/Xrpfzk01rsBtlJb2g4HBB2hpaeLQoUMNvgGoNn369EFMTAxsbGyQk5ODJUuWwNnZGXfu3IGWlpZMY1d2+PBhvHv3jp5cpz4dkp6USE9PZz2uX79Otm3bRjp16kTi4uLqdaKjsdTnJGFcHCFmZuyTsebmgumy1NTiLl1aRlq3ziTADaKoOJ9oaRmQu3fvSjV2eXk52bNnD9mzZw8pLy8Xe/3t27dEW1ub/Prrr1KNWxt3d3cycuTIal+X18lniqpOQ/cXiY8YulfRdaajoyNMTU2xatWqFjcWs5cX4OkJpKQAOTmCcw/OztL/xV5V3BEjyrF5cwy4XKBXL3+4uCg1Styqt1cZX3/dHp9/DiQm9kRh4XWMH78BaWlbUY9zW1Xi8/miQYWqunFHV1cXHTt2xKNHj8Rek5Vnz57h7NmziI+Pb7SYFCVvUut228bGplFGMJMHDgf46EKURqGgQFBYKLiT2NmZyLwoCFW3vYaGwMmTwE8/AUuW8HH/fhkGDAB+/x1o21b2eRUVFeHx48eYOnWq7IP9Kzo6GkZGRqIb9yjqUyBxYfh4eExCCHJychAWFoYOdAzHFoHH4yElJQU5OTkwMTHByZMn4eHhAQsLCxQWFqKsbC8YJhmamqeRmiq4Uum334BKPSjXO65QSkoKTpw4AU9PT1haWuLFixdYvHgxOBwOfHx8GriF4nErb6+zszM4HA74fD6io6Ph5+cHRcUWPXQJRbFIvLfr6uqKnXwmhMDc3Bz79++XWmKUfMTHxyM4OBj/VOoXQ11dHdHR0SgoKICOjg66deuG06dPw8ZmCLy9gT//BEaPBubPFxxN1Oc7ND4+HrNnzxad4B0+fDgUFRURExOD4uJiGBoaYsCAAbh69arYpaQNUdX2mpmZYcOGDdDU1ERWVhare2aK+hRI/BH+uB90BQUFGBoaon379vRXVTMXHx+P8ePHi3V5XVpaitLSUhw8eFDsHNLFi4KxGTZuBCIigKtXBTcHSnLrgTDux/vPhw8f8OHDhyrjSkN125udnY3x48fj4MGDtPtv6pMk8Td5U7rBh5IeHo+H4ODgKr8IhdNmzZoFNzc3cD462bF8OdCjBwczZ6ogOZmBgwMfu3aVwcmp9p4feTwegoKC6hW3IWqLyzAMQkJC4OnpKdW4lGz4+/vj3bt3OHz4MADB2C329vZYv359vdcpjXU0V3UqDEePHq3zCqsbv5Vq2lJSUljNKVXJzs5mDRwizgbAQbx8aYuhQ5UAzAewpsG51R5X+ggheP78OYyNjZGXl4dDhw6xui739/fHrl27WMt4eXmxuu9oDFlZgt5vG4uBASDJ/XSV3yclJSVYWFjA19cX33//vUxbGOLj4+vc03FycjJcXV3x9u1b6Orq1msdLU2d/jJ17cufYZgWc4NbU6Gurt4ocaQzVnUGgD4AtgKYAmA1ACcA0wAU1Lp0eXm5TMexrQ9fX1+sW7euyteGDRuG6OhoFBYWomPHjtixY0ej5paVBdjYAI057LOqKpCRIVlxEL5PZWVlSEhIQGBgIJSUlLBgwQLWfFwuV9TtdEMJR0KT9zqaqzqNx8Dn8+v0oEVBupSVlTF37lzMnTtXah+Y6tS1D/uEhAQUFRXV8MhFYeFYrF9fBmVlAmAsrK3z8ccfJVXOn5CQUOe4ALBv374a4wsHCjp27FiN89U1bk1HwCoqKmjdujWMjY0BCAZwb0xv3jRuUQAE8SQ9QhG+T5aWlvjmm2/g5uaGo0ePwt/fH2PGjMGyZctgamoqGv7y+fPn8Pb2hq6uLvT09ODp6YmnT5+K1sfj8RAaGgpdXV3o6+vju+++E2sSdHFxQUhIiOh5WVkZ5s2bB3Nzc6ioqKB9+/bYsWMHnj59CldXVwCCvx/DMKILID5ex9u3b+Hr64tWrVpBXV0dw4cPF913AwAxMTHQ1dXF6dOn0blzZ2hqamLYsGFS+tHVuD6NkeupapWWlmL69OlYuXJljfMxDANzc3O4u7tDQ0OjxoempgaCg1Vw+TIDS0vg778V4Oqqhv37xed1d3eHmZlZtd2sVI4LCHr3rC6ukpIS9uzZAx0dHfTt27fGHOsa17mGAa2Tk5NhZGQkGlMgPz+/Lm/5J09NTQ1cLhcAcO7cOWRkZCAxMRHHjx9HeXk5hg4dCi0tLaSkpODy5cuiL1jhMmvWrEFMTAx27tyJS5cuIT8/H4cOHaoxpq+vL/bt24eNGzfi/v372Lp1KzQ1NWFubo64uDgAglEHc3JysGHDhirX4e/vjxs3buDo0aO4cuUKCCEYMWIEaxS2kpISrF69Grt378bFixeRlZWFOXPmSONta1z1uV26qKiInDhxgkRFRZENGzawHk1ZY3Rd0JxkZmaS7t27EwBEQUGB+Pj4EACEYRhW//sMwxCGYerV5UleHiEeHv91rzFtGiGVuuAnhBASFxcnilFTXFTTX/+xY8eIhoYGYRiGmJqakmvXrtUpt4bE3bdvHzly5Aj566+/yJ49ewgA0qNHD1JRUSHxe1QXVY/HIJ/xOSQZjsHPz494enoSQgjh8/kkMTGRqKiokDlz5hA/Pz9ibGxMysrKRPPv3r2b2NjYED6fL5pWVlZG1NTUyOnTpwkhhJiYmJCVK1eKXi8vLydmZmaiOISwxy/IyMggAEhiYmKVOVY1XsPH63j48CEBQC5fvix6/c2bN0RNTY0cOHCAEEJIdHQ0AUAePXokmmfTpk3E2Ni4bm+WFDW0SwyJC0NaWhpp3bo10dbWJhwOhxgaGhKGYYiGhgZp27ZtvZJoLM2tMHC5XBIdHU2io6MJl8uV6rrj4+OJtrY2AUAMDQ3J2bNnCSGCL0szMzPWF6W5uXmD+sHi8QhZvpwQBQXBF0u3boQ8fMiepy5xqysMRUVFJDMzk1y5coUEBAQQKysr8urVqzrl1pC4QsL9CoDofZS25lwYOBwO0dDQIMrKykRRUZH4+vqSoqIi4ufnR9zc3Fjzz5kzRzR/5QfDMGTz5s3k3bt3BAC5cOECa7kxY8ZUWxhiY2MJh8Op9jNUl8Jw5MgRoqioKFb47e3tyZIlSwghgsKgrq7Oej0+Pp4wDFOXt0qqGr2vpG+//RajRo3Cli1boKOjg6tXr0JJSQlTpkxBcHCwpKujakAIwbNnz0T/l4by8nJ8//33ogFxnJycEBsbizZt2gAQXFnj6elZ5Z3A9aWgACxYAPTpA/j4AH/9BTg6AtHRgr6ZGhpXQ0MD7du3R/v27dG3b1906NABO3bsEDu5WRVpbq++vj4ePXqEwYMHS7xsS+bq6oqoqCgoKyvD1NSUdTWShoYGa96ioiL07NkTe/bsEVtPfW9sVFNTq9dy9fHxVUwMwzTLe2EkPseQnp6O2bNnQ0FBARwOB2VlZTA3N8fKlSvFBlmhmpYXL17gs88+ExWF0NBQJCUliYqCEIfDgYuLC3x8fODi4iK16/g/+wy4eRMYMAB4/x4YNw6YPRv4r4mWA8AFgM+//9YvLp/PR1lZmQRLSCdufn4+TOo6wtMnRFi4LSwsar1EtUePHsjMzISRkZGo2AsfOjo60NHRgYmJCf7880/RMhUVFUhNTa12nXZ2duDz+bhw4UKVrwsv7Kjp4pnOnTujoqKCFTcvLw8ZGRky735eHiQuDEpKSlBQECxmZGQkGrhHR0cHz58/l252lNQkJSXBwcEBly5dgra2NuLi4rBmzZpGv07b1BQ4fx4Qno9buxZwdQW2bwesrAT/nzxZ8K+VFbBnTxHS09NFV009efIE6enpyMrKQnFxMb7//ntcvXoVz549Q2pqKgICApCdnY0JEybUKZ/4eMnjFhUVYe7cubh69SqePn2K5ORkAIC1tTWGDh0qxXfr0/P555/DwMBAdBT35MkTJCcnY9asWaL7bIKDgxEREYHDhw/jwYMHmDFjBt69e1ftOq2srODn54eAgAAcPnxYtM4DBw4AACwtLcEwDI4fP47Xr1+jqKhIbB0dOnSAp6cnvvzyS1y6dAm3bt3ClClT0KZNG3h6esrkvZArSduehgwZQvbs2UMIIeSLL74gvXv3Jv/73//I0KFDSe/evevVntVYmts5hrKyMhIWFkbCwsJYJ+gkwePxyLJly4iCggIBQLp160YeftzALyfx8YRoa1ffls0whABJrPZ/4cPPz4+UlpaSsWPHElNTU6KsrExMTEzI6NGjJTj5LIwhWdySkhLi7u5ODA0NiZKSErGwsCAASGZmpszeq+Z8jqFy239dXsvJySG+vr7EwMCAqKioEGtra/Lll1+KPrfl5eUkODiYaGtrE11dXRIaGkp8fX2rPccgfP++/fZbYmJiQpSVlUn79u3Jzp07Ra8vXbqUtG7dmjAMQ/z8/KpcR35+Ppk6dSrR0dEhampqZOjQoazPUnR0NNHR0WFty6FDh0g9vmYbrKHnGBhC6tYAxuPxwOFwcOPGDRQWFsLV1RW5ubnw9fXFH3/8gQ4dOmDnzp1VjtfQVDTGoO3SxOVyER4eDgBYsGCBxPcy5Ofnw9fXFydOnAAguNxu06ZNjXbTXF1kZAB2dpWbk8S1aQPcuyfdMTB4PKBzZ+Df2x7ECIdQffKk9riNsV9VNbh7c7nBjWp8Ve0vkqjzyec2bdrA398fAQEBcHR0BCBoSjp16pTEQVuCixcvYtWqVUhNTUVOTo5YlwmyEB4ejvj4eDx48ABqamro378/VqxYIboxqLIbN25gwoQJePr0KVRUVLBp0yZMnz5dpvnVR05OzUUBEIxD3cg9YoAQ4PlzwYBF8hiLoy4sLARf0k25SwyqeapzYQgMDMSuXbuwatUq9O/fH9OnT4e3t3eT+vXZmIqLi9G9e3cEBATIdNS6yucALly4gMDAQPTq1QsVFRX4/vvv4e7ujnv37omu7iCEYOvWrQgODgaXy4W1tTUOHjwIBwcHmeXYEJVvClVS4mLhQsER0rJlC1BeLtu7veuiqd+0amFBv6gpGZC07SkpKYn4+voSDQ0Noq2tTb744gty9erVerVjNTZZnWNALde5y0pubi7rmu6ioiIyZcoUUXu4p6en2LXZTU1S0n9t10pKXBISso6EhKwjSkpcVrt2QgIhRUXSeyQk1K09PSmp9m2gYz5TTU2j3+AmVFhYSLZv306cnJwIwzCkS5cuZM2aNfVdXaNoaYUhMzOTACC3b98m9+/fJ127diUACIfDIStXrmTdPdpUVVQQYmZW9Ulg4Ylgc3PBfE01Li0MVFPT0P2l3n0laWpq4osvvsClS5dw7NgxvHz5EnPnzm3wEQxVN3w+HyEhIXBycsK9e/fQq1cv3L17F61bt8b58+cxd+7cavsBako4HEDYNc3H6Qqfr18v3RPP8oxLUc1BvQtDSUkJYmJiMGjQIIwePRr6+vpYtmyZNHP75FVUVGDv3r3Yu3cvKioqWK8FBgbizp076NixIyZOnIiioiK4uLjg5s2bGDhwoJwyrh8vL+DgQcHVR5WZmQmmy+oUjrziUlRTJ3GXGH/88Qd27tyJ33//HRUVFRg/fjx++umnZvdl1Bzw+XxRt758/n+joc2cORNHjhyBkZERoqOjAQguZ126dGmzHV7VywsYMaIcmzfHgMsFevXyh4uLksx/sXt5AZ6egquPcnIAExPA2ZkeKVCftjp/i6xcuRLR0dF4+PAhHB0dsWrVKvj4+EBLS0uW+VGVEEIQFBSE/fv3g8fj4datW9DV1cVvv/2GUaNGyTu9BlNQICgsFNxY4OxMGu3LmcNpupekUpQ81LkwrFq1ClOmTMHvv/8OW1tbWeZUo02bNmHVqlV4+fIlunfvjl9++QW9e/eWaUwejyfWyVppaSkePXokmkfYZYKenh4spHT9YOW+W1JSUnDgwAHs2rVL1A+QnZ0dfv31V9jZ2UklHkVRFCDBOYYXL15g3bp1ci0KsbGxCA0NxeLFi5GWlobu3btj6NChyM3NlVnM+Ph4WFlZwdXVFZMnT4arqyusrKywdu1aODg4iO4PCA0NhYODAxYtWiS1uJU75xo+fDi2bdvG6hzu9u3b6NOnD2JjY6USk6I+BcKR1qjq1fmIoSkMir127Vp8+eWXmDZtGgBgy5YtOHHiBHbu3In58+dLPV58fDzGjx8v1m1udnY2wsLCEBcXJ5Ob24RxqztfEBQUhI0bN0o9LtX8FBQUoKSkpNHiqaurQ0eC29D9/f2xa9cufPXVV9iyZQvrtcDAQGzevBl+fn6IiYmRcqbVmzhxIkaMGNFo8ZqjZnOmksvlIjU1ldXHvoKCAtzc3HDlyhWpx+PxeAgODq6yL3XhtFmzZsHNzU1q3VIL4wYFBdXYh/vhw4exbt06qcalmp+CggJERkaKXbEmS4qKipg5c6ZExcHc3Bz79+/HunXrRGMjfPjwAXv37pVas6sk1NTUGnWMhuZIoqYkeXrz5g14PJ5o4HUhY2NjvHz5ssplysrK8P79e9ajrlJSUkTd/FYnOzsbOjo60NTUlNpDR0en1vf6+fPnSElJqfO2UC1TSUlJoxYFQHAJtaRHKD169IC5uTni4+NF0+Lj42FhYcHqquXUqVMYMGAAdHV1oa+vj5EjR+Lx48ei158+fQqGYbB//370798fqqqqsLW1ZY2zkJycDIZhcOLECXTr1g2qqqro27cv7ty5I5rn46aksLAw2NvbY/fu3bCysoKOjg4mTZqEwsJC0TyFhYX4/PPPoaGhARMTE6xbtw4uLi4ICQmR6L1oLupcGLp27Yq9e/fKMhepCw8PFw3uoaOjA3Nz8zovm9MEOskpLy9HWFgYwsLCWAOOA00jP1lQV1f/ZPvfaskCAgJEl1YDwM6dO0VNwkLFxcUIDQ3FjRs3cO7cOSgoKGDs2LGsS7UBYO7cuZg9ezZu3ryJfv36YdSoUcjLyxObZ82aNbh+/ToMDQ0xatQosc9QZY8fP8bhw4dx/PhxHD9+HBcuXEBERITo9dDQUFy+fBlHjx5FYmIiUlJSkJaW1pC3pEmrc2FYtmwZvvrqK0yYMAH5+fmyzKlKBgYG4HA4ePXqFWv6q1ev0Lp16yqXWbBgAQoKCkQPSQYSqutIXAkJCSgqKpLaIyEhQar5NSfKysqYO3cu5s6dK3EX41TTNmXKFFy6dAnPnj3Ds2fPcPnyZUyZMoU1z7hx4+Dl5YX27dvD3t4eO3fuxO3bt3Hv3j3WfDNnzsS4cePQuXNnREVFQUdHBzt27GDNs3jxYgwZMgR2dnbYtWsXXr16hUOHDlWbH5/PR0xMDGxtbeHs7IypU6fi3LlzAARHC7t27cLq1asxePBg2NraIjo6usYR35q7OheGGTNm4K+//kJeXh66dOmCY8eOyTIvMcrKyujZs6fojwUI/pjnzp1Dv379qlxGRUUF2trarEddOTs7w8zMrNpuJRiGgbm5Odzd3aGhoSG1h7u7e41xhbHfNGZfyxTVQIaGhvDw8EBMTAyio6Ph4eEBAwMD1jyZmZnw8fGBtbU1tLW1YWVlBQCiUSKFKn/eFRUV4ejoiPv371c7j56eHmxsbMTmqczKyop1T5aJiYnoase///4b5eXlrMvidXR0quzuvqWQ6ORz27Ztcf78eURGRsLLywudO3cWu3JGlodXoaGh8PPzg6OjI3r37o3169ejuLhY7JBUGjgcDjZs2IDx48eLDegt/NJev3691E8A1xRXiBCCCRMmIDQ0FBEREU3iijGKqk1AQABmzpwJQHA/0sdGjRoFS0tLbN++HaampuDz+bC1tQWXy5V5bh9/hhiGEWvC+pRI3FfSs2fPEB8fj1atWsHT01PsIUsTJ07E6tWrsWjRItjb2yM9PR2nTp0SOyEtLV5eXjh48CDafNSZjpmZGQ4ePCizcRiqi2tubo7Y2FjM+XfA5LVr18LV1RXZ2dkyyaOxlZeXIyYmBjExMTW2B1PN07Bhw8DlclFeXi42NnZeXh4yMjLwww8/YPDgwejcuTPevn1b5XquXr0q+n9FRQVSU1PRuXPnaud5+/YtHj58KDZPXVlbW0NJSQnXr18XTSsoKMDDhw/rtb7mQKIjhu3bt2P27Nlwc3PD3bt3YWhoKKu8qjVz5kzRr47G4OXlJRqYvPKdz7K+VLSmuN7e3ujfvz/8/f1x+fJl9OjRA3v37sXgwYNlmpOsEULw7Nkz0f+ploXD4Yiacz7+/LRq1Qr6+vrYtm0bTExMkJWVVe29SZs2bUKHDh3QuXNnrFu3Dm/fvkVAQABrnqVLl0JfXx/GxsZYuHAhDAwM6j3CopaWFvz8/DB37lzo6enByMgIixcvhoKCQrPowbg+6lwYhg0bhmvXriEyMhK+vr6yzKnJ4XA4cJFDZzo1xR07dizs7Owwfvx43Lp1C+7u7li6dCkWLFgABYV6d5pLUTJV3Xk+BQUF7N+/H7NmzYKtrS1sbGywcePGKvf/iIgIREREID09He3bt8fRo0fFzldEREQgODgYmZmZsLe3x7Fjxxp0QcPatWvx9ddfY+TIkdDW1sZ3332H58+f12s85eaAIXX8aTZkyBBER0fDzMxM1jnJTGMM2t7YSktLMXPmTOzcuRMAMGLECOzevRt6enpyzkxyXC4X4eGCoT0XLFjQbK5Maoz9qqrB3ZvLDW7S8vTpU7Rt2xY3b96Evb19lfMkJyfD1dUVb9++lWm3F8XFxWjTpg3WrFnTJMdSr2p/kUSdjxgSExMlXjkle2pqatixYwecnJwQGBiIhIQE9OjRAwcPHoSjo6O806NkSEdHBzNnzmzSXWK0FDdv3sSDBw/Qu3dvFBQUYOnSpQAg8/Oq8tJsusSgahYQEIAePXpg/PjxePz4MZycnLB+/Xp8/fXXLbYdlILo5k1K9lavXo2MjAzRpfMpKSliTVgtBW2MbkHs7e2RmpqKMWPGgMvlYsaMGZg6dSqKioqkGiciIgIMwzRKdwDZ2dmYMmUK9PX1oaamBjs7O9y4cUOmMXk8Hn788Ue0bdsWampqaNeuHX766Sd6QlzOrKysQAipthkJAFxcXEAIkXozkoODA1JTU1FUVIT8/HwkJia26O7uaWFoYXR0dBAfH4/Vq1eDw+Fgz5496NOnT40390ji+vXr2Lp1K7p16yaV9X1MSUlJdE3527dv4eTkBCUlJZw8eRL37t3DmjVr0KpVK5nEFlqxYgWioqIQGRmJ+/fvY8WKFVi5ciV++eUXmcalqKaCNiW1QAzDYPbs2ejduzcmTpyIe/fuoVevXvj1118xadKkeq+3qKgIn3/+ObZv346ff/5ZihkLKCsr4/vvvxc9X7RoEczNzVl97LRt21bqcT/2xx9/wNPTEx4eHgAEv1T37duHa9euyTw2RTUF9IihBXN2dsbNmzfh6uqK4uJi+Pj4ICgoiDXYjyQCAwPh4eEBNzc3KWdataNHj8LR0RETJkyAkZERHBwcsH37dpnH7d+/P86dOye6genWrVu4dOkShg8fLvPYtaHNWVRdNHQ/oYWhhTM2NsaZM2dEv8QjIyMxcOBAsf5narN//36kpaWJLidtDH///TeioqLQoUMHnD59Gt988w1mzZqFXbt2yTTu/PnzMWnSJHTq1AlKSkpwcHBASEgIPv/8c5nGrYnwhrDG6B6Cav6E+0l9b8SlTUmfAEVFRSxbtgz9+/fH1KlTce3aNTg4OGDPnj0YNmxYrcs/f/4cwcHBSExMlOkNPRUVFThw4AAAwNvbG3w+H46Ojli+fDkAwQnAO3fuYMuWLfDz85NZHgcOHMCePXuwd+9edO3aFenp6QgJCYGpqalM49ZEUVER6urqeP36NZSUlOhNjFS1+Hw+Xr9+DXV19WpHgawNLQyfEA8PD6SlpWH8+PFITU3FiBEj8OOPP2LRokU1/rJITU1Fbm4uevToIZrG4/Fw8eJFREZGoqysTCpdhPD5fGRmZor+b2Jiwhr3GgA6d+6MuLi4Bseqydy5c0VHDQBgZ2eHZ8+eITw8XG6FgWEYmJiY4MmTJ6JuQyiqOgoKCrCwsKj3peq0MHxirKyscOnSJXz77bfYsmULli5diitXrmDPnj3V9n01ePBg3L59mzVt2rRp6NSpE+bNmyezfqOcnJyQkZHBmvbw4UNYWlrKJJ5QSUmJ2C9yDocj9942lZWV0aFDB9qcRNVKWVm5QUeVtDB8glRVVREVFQUnJyd89dVXSExMhIODAw4cOID+/fuDx+OJdd5na2vLWoeGhgb09fXFpjdE5YFPUlJSMGvWLDg7O2P58uXw9vbGtWvXsG3bNmzbtk1qMYVxK2/vyJEjsWzZMlhYWKBr1664efMm1q5dK9ZRmzwoKCi02P55qCaEfEIKCgoIAFJQUCDvVJqM27dvExsbGwKAKCoqkmnTppE2bdoQAKKHmZkZiYuLYy03aNAgEhwcLLU84uLiiJWVFQkLCyNhYWFESUmJmJmZkQULFhBbW1uioqJCOnXqRLZt2ya1mMK4ZmZmrO01NTUlHh4exMLCgqiqqhJra2uycOFCUlZWVuU66H5FtTS0MFDk/fv3xNvbm/XlWPnBMAxhGEasOEhLXFwcYRiGKCkpsQpDY8Vt6PbS/Ypqaercu2pL0BJ7V5WWiooKGBoa4t27d9XO06ZNG9y7d0+q5xR4PB46d+6MFy9eQElJCQsXLgQgGGNcOFiPrONWhWEYmJmZ4cmTJ7XGpfsV1dLQcwwUAODSpUs1FgVA0G+RPDpsk0dcQgieP3+OlJQUuYzFQVHyRAsDBQDIycmRdwooLy9HWFiYvNNgaQrvC0U1NloYKACAiYlJneZLSEjAwIEDpRb34sWLGDFiRJONW9f3haJaEnqOgQIgaHO3srJCdnZ2lf2sSNLm/qnFpfsV1dLQ++opAIIbuDZs2AAAYndLCp+vX79e6jezfWpxKao5oIWBEvHy8sLBgwfRpk0b1nQzMzMcPHgQXl5eNC5FfQJoUxIlpqo7nxvjl3NzjUv3K6qloYWBohqI7ldUS0ObkiiKoigWWhgoiqIoFloYKIqiKBZaGCiKoigWWhgoiqIoFloYKIqiKBZaGCiKoigWWhgoiqIoFloYKIqiKBZaGCiKoigWWhgoiqIolmZTGJYtW4b+/ftDXV0durq68k6HoiiqxWo2hYHL5WLChAn45ptv5J0KRVFUi9ZshvZcsmQJACAmJka+iVAURbVwzeaIgaIoimoczeaIoT7KyspQVlYmel5QUABA0H8+RUmLcH/6hIY2oVo4uRaG+fPnY8WKFTXOc//+fXTq1Kle6w8PDxc1QVVmbm5er/VRVE0KCwuho6Mj7zQoqsHkOoLb69evkZeXV+M81tbWUFZWFj2PiYlBSEgI3r17V+v6Pz5i4PP5yM/Ph76+vtgA8LV5//49zM3N8fz5809ilC66vXVHCEFhYSFMTU2hoEBbZ6nmT65HDIaGhjA0NJTZ+lVUVKCiosKa1tBLXbW1tT+JL0ohur11Q48UqJak2ZxjyMrKQn5+PrKyssDj8ZCeng4AaN++PTQ1NeWbHEVRVAvSbArDokWLsGvXLtFzBwcHAEBSUhJcXFzklBVFUVTL02waRGNiYkAIEXs0VlFQUVHB4sWLxZqmWiq6vRT16ZLryWeKoiiq6Wk2RwwURVFU46CFgaIoimKhhYGiKIpioYWhDjZt2gQrKyuoqqqiT58+uHbtmrxTkonw8HD06tULWlpaMDIywpgxY5CRkSHvtBpNREQEGIZBSEiIvFOhKLmihaEWsbGxCA0NxeLFi5GWlobu3btj6NChyM3NlXdqUnfhwgUEBgbi6tWrSExMRHl5Odzd3VFcXCzv1GTu+vXr2Lp1K7p16ybvVChK7uhVSbXo06cPevXqhcjISACCbjXMzc0RFBSE+fPnyzk72Xr9+jWMjIxw4cIFDBw4UN7pyExRURF69OiBzZs34+eff4a9vT3Wr18v77QoSm7oEUMNuFwuUlNT4ebmJpqmoKAANzc3XLlyRY6ZNQ5hb7R6enpyzkS2AgMD4eHhwfo7U9SnrNnc+SwPb968AY/Hg7GxMWu6sbExHjx4IKesGgefz0dISAicnJxga2sr73RkZv/+/UhLS8P169flnQpFNRm0MFBVCgwMxJ07d3Dp0iV5pyIzz58/R3BwMBITE6GqqirvdCiqyaCFoQYGBgbgcDh49eoVa/qrV6/QunVrOWUlezNnzsTx48dx8eJFmJmZyTsdmUlNTUVubi569Oghmsbj8XDx4kVERkairKwMHA5HjhlSlHzQcww1UFZWRs+ePXHu3DnRND6fj3PnzqFfv35yzEw2CCGYOXMmDh06hPPnz6Nt27byTkmmBg8ejNu3byM9PV30cHR0xOeff4709HRaFKhPFj1iqEVoaCj8/Pzg6OiI3r17Y/369SguLsa0adPknZrUBQYGYu/evThy5Ai0tLTw8uVLAIKxBtTU1OScnfRpaWmJnT/R0NCAvr5+iz6vQlG1oYWhFhMnTsTr16+xaNEivHz5Evb29jh16pTYCemWICoqCgDEeqyNjo6Gv79/4ydEUZRc0PsYKIqiKBZ6joGiKIpioYWBoiiKYqGFgaIoimKhhYGiKIpioYWBoiiKYqGFgaIoimKhhYGiKIpioYWBoiiKYqGF4RPm7++PMWPGyDsNiqKaGNolRgvFMEyNry9evBgbNmwAvfGdoqiP0cLQQuXk5Ij+Hxsbi0WLFiEjI0M0TVNTE5qamvJIjaKoJo42JbVQrVu3Fj10dHTAMAxrmqamplhTkouLC4KCghASEoJWrVrB2NgY27dvF/Umq6Wlhfbt2+PkyZOsWHfu3MHw4cOhqakJY2NjTJ06FW/evGnkLaYoSlpoYaBYdu3aBQMDA1y7dg1BQUH45ptvMGHCBPTv3x9paWlwd3fH1KlTUVJSAgB49+4dPvvsMzg4OODGjRs4deoUXr16BW9vbzlvCUVR9UULA8XSvXt3/PDDD+jQoQMWLFgAVVVVGBgY4Msvv0SHDh2waNEi5OXl4a+//gIAREZGwsHBAcuXL0enTp3g4OCAnTt3IikpCQ8fPpTz1lAUVR/0HAPF0q1bN9H/ORwO9PX1YWdnJ5omHIciNzcXAHDr1i0kJSVVeb7i8ePH6Nixo4wzpihK2mhhoFiUlJRYzxmGYU0TXu3E5/MBAEVFRRg1ahRWrFghti4TExMZZkpRlKzQwkA1SI8ePRAXFwcrKysoKtLdiaJaAnqOgWqQwMBA5Ofnw8fHB9evX8fjx49x+vRpTJs2DTweT97pURRVD7QwUA1iamqKy5cvg8fjwd3dHXZ2dggJCYGuri4UFOjuRVHNER3zmaIoimKhP+koiqIoFloYKIqiKBZaGCiKoigWWhgoiqIoFloYKIqiKBZaGCiKoigWWhgoiqIoFloYKIqiKBZaGCiKoigWWhgoiqIoFloYKIqiKBZaGCiKoiiW/wf5/GegCfjzkQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_matched([ex_graphs.div_shift_min_match()], \"Minimal matching for shifted divisions\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArIAAADXCAYAAADm37JAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABbj0lEQVR4nO3dd1hT59sH8O9hb1A2goKjioCiotZVsFLcYq3V2ipL60KFWnetonWvurVqBX7WLeCkjlpQtHUXR7WICy2iOJnKSJ73j7ykhARIIJPcn+vKJTk5Oc+d47nPeXLyDI4xxkAIIYQQQoiG0VF1AIQQQgghhNQEVWQJIYQQQohGooosIYQQQgjRSFSRJYQQQgghGokqsoQQQgghRCNRRZYQQgghhGgkqsgSQgghhBCNRBVZQgghhBCikagiSwghhBBCNBJVZAmRg+XLl6Nx48bQ1dWFt7c3AKC0tBTTpk2Di4sLdHR0MHDgQAAAx3GIioqSafvJycngOA7JyclyjVsblO27AwcOVLtuSEgIXF1dFR9UJSQdR6rEcRwmTJhQ7XoxMTHgOA6PHj0SWa7MzxMVFQWO42r8fj8/P/j5+QmfP3r0CBzHISYmRuZt1eQ4ohwnpGaoIks0UtmF88qVK6oOBSdPnsS0adPQpUsXREdHY9GiRQCA7du3Y/ny5Rg8eDBiY2PxzTffqDjS6i1atAgHDx5UdRhiNm7cWKMKhSap7DjSVJI+z9OnTxEVFYXU1FRVh0cIqSP0VB0AIZru999/h46ODn7++WcYGBiILG/QoAF+/PFHkfXfvXsHPT3ZUu+jjz7Cu3fvRLavCIsWLcLgwYOFd4/VxcaNG2FjY4OQkBCFlrN161bw+XyFllGZyo4jTTBixAh88cUXMDQ0FC6T9HmuXLmCefPmwdXVVS3uOFelUaNGePfuHfT19WV+b02OI2XlOCF1DVVkCaml7OxsGBsbi12AsrOzYWVlJba+kZGRzGXo6OjU6H1ENjWptMhLZcdRTTHG8P79exgbG8tle1XR1dWFrq6uyDJ5fx5l4ziuxjlXk+OIcpyQmqGmBaTOCAkJgZmZGTIzMzFw4ECYmZnB1tYWU6ZMAY/HE1l3z549aNeuHczNzWFhYQEvLy+sWbNG+Hpl7e0qtgXkOA7R0dEoKCgAx3HCNnUcxyEpKQl///23cHlZ2zdJbWQzMzMxcuRIODk5wdDQEG5ubhg3bhyKi4sBVN5+7uLFi+jVqxcsLS1hYmICX19fnD9/XmSdss9y7949hISEwMrKCpaWlggNDUVhYaFwPY7jUFBQgNjYWGHMVd0BLYtp3759mDdvHho0aABzc3MMHjwYOTk5KCoqQmRkJOzs7GBmZobQ0FAUFRWJbCM6Ohoff/wx7OzsYGhoiJYtW2LTpk0i67i6uuLvv//GmTNnhHGVb8v49u1bfPPNN3B1dYWhoSGcnZ0RFBSEly9fimyHz+dj4cKFcHZ2hpGREXr06IF79+6JrFOxbWNZO8kVK1Zgy5YtaNKkCQwNDdG+fXtcvnxZbJ/s378fLVu2hJGRETw9PZGQkCBVe8nKjiNA0Nb6hx9+EJbt6uqKWbNmie1LV1dX9OvXDydOnICPjw+MjY3x008/VVpmeno6PvvsMzg4OMDIyAjOzs744osvkJOTI7buwYMH4enpCUNDQ3h4eOD48eMir0ubF+3btwcAhIaGin1OQLrjGQDOnTuH9u3bw8jICE2aNKnyc0pS9n9pbGyMDh06ICUlRWydim1kV6xYAY7jkJGRIbbuzJkzYWBggDdv3gCQ3Ea2unNOZTm+f/9+tGvXDsbGxrCxscHw4cORmZkpso48z32EaBq6I0vqFB6Ph549e6Jjx45YsWIFfvvtN6xcuRJNmjTBuHHjAACnTp3CsGHD0KNHDyxduhQAcOfOHZw/fx4REREylbdjxw5s2bIFly5dwrZt2wAAbdq0wY4dO7Bw4ULk5+dj8eLFAAB3d3eJ23j69Ck6dOiAt2/fYvTo0WjRogUyMzNx4MABFBYWVnpH6/fff0fv3r3Rrl07zJ07Fzo6OsKKYUpKCjp06CCy/pAhQ+Dm5obFixfj2rVr2LZtG+zs7IT7YMeOHRg1ahQ6dOiA0aNHAwCaNGlS7T5YvHgxjI2NMWPGDNy7dw/r1q2Dvr4+dHR08ObNG0RFReHChQuIiYmBm5sb5syZI3zvpk2b4OHhgQEDBkBPTw9HjhzB+PHjwefzER4eDgBYvXo1Jk6cCDMzM3z33XcAAHt7ewBAfn4+unXrhjt37iAsLAxt27bFy5cvcfjwYfz777+wsbERlrVkyRLo6OhgypQpyMnJwbJly/DVV1/h4sWL1X7GXbt2IS8vD2PGjAHHcVi2bBkGDRqEBw8eCO++HTt2DEOHDoWXlxcWL16MN2/eYOTIkWjQoEG125d0HHXu3BkAMGrUKMTGxmLw4MH49ttvcfHiRSxevBh37txBQkKCyHbS0tIwbNgwjBkzBl9//TWaN28usbzi4mL07NkTRUVFmDhxIhwcHJCZmYmjR4/i7du3sLS0FK577tw5xMfHY/z48TA3N8fatWvx2Wef4fHjx7C2tpb68zRr1gzz58/HnDlzMHr0aHTr1k3kc0p7PN+8eRMBAQGwtbVFVFQUSktLMXfuXOExUZ2ff/4ZY8aMQefOnREZGYkHDx5gwIABqF+/PlxcXCp935AhQzBt2jTs27cPU6dOFXlt3759CAgIQL169SS+t6bnnJiYGISGhqJ9+/ZYvHgxnj9/jjVr1uD8+fP466+/RH7xUfa5jxC1wQjRQNHR0QwAu3z5snBZcHAwA8Dmz58vsm6bNm1Yu3bthM8jIiKYhYUFKy0trXT7c+fOZZLSo6zchw8fipRramoqtq6vry/z8PAQWw6AzZ07V/g8KCiI6ejoiHyWMnw+nzHGWFJSEgPAkpKShMubNWvGevbsKVyHMcYKCwuZm5sb++STT8Q+S1hYmMi2P/30U2ZtbS2yzNTUlAUHB4vFIUlZTJ6enqy4uFi4fNiwYYzjONa7d2+R9Tt16sQaNWoksqywsFBsuz179mSNGzcWWebh4cF8fX3F1p0zZw4DwOLj48Veq7jv3N3dWVFRkfD1NWvWMADs5s2bwmXBwcEiMT58+JABYNbW1uz169fC5YcOHWIA2JEjR4TLvLy8mLOzM8vLyxMuS05OZgDEPrckko6j1NRUBoCNGjVKZPmUKVMYAPb7778LlzVq1IgBYMePH6+2rL/++osBYPv3769yPQDMwMCA3bt3T7js+vXrDABbt26dcJm0eXH58mUGgEVHR4ssl+V4HjhwIDMyMmIZGRnCZbdv32a6uroSc7a84uJiZmdnx7y9vUWOhS1btjAAIsdY2f99+Vg7deokci5hjLFLly4xAOx///ufyGcv/38uzTmnYo6Xxerp6cnevXsnXO/o0aMMAJszZ45IefI69xGiaahpAalzxo4dK/K8W7duePDggfC5lZUVCgoKcOrUKWWHJobP5+PgwYPo378/fHx8xF6vbDih1NRUpKen48svv8SrV6/w8uVLvHz5EgUFBejRowfOnj0r1tlE0n559eoVcnNza/UZgoKCRNoEduzYEYwxhIWFiazXsWNHPHnyBKWlpcJl5dtv5uTk4OXLl/D19cWDBw8k/sRdUVxcHFq3bo1PP/1U7LWK+y40NFTk7nbZHcHyx0Zlhg4dKnK3reJ7nz59ips3byIoKAhmZmbC9Xx9feHl5VXt9iuTmJgIAJg8ebLI8m+//RaA4C5weW5ubujZs2e12y2743rixAmR5iWS+Pv7i9yZb9WqFSwsLKTab9KS9njm8Xg4ceIEBg4ciIYNGwrf7+7uLtXnvnLlCrKzszF27FiRYyEkJETkLnRlhg4diqtXr+L+/fvCZXv37oWhoSECAwMrfV9NzjllsY4fP16k7Wzfvn3RokULsf97QLPOfYTIC1VkSZ1iZGQEW1tbkWX16tUTtl0DgPHjx+ODDz5A79694ezsjLCwMLE2f8ry4sUL5ObmwtPTU6b3paenAwCCg4Nha2sr8ti2bRuKiorEKoLlL/wAhBWz8vumJiput6xCUPFnWktLS/D5fJG4zp8/D39/f5iamsLKygq2traYNWsWAEhVkb1//77U+642n7+695a1m2zatKnYeyUtk1ZGRgZ0dHTEtuHg4AArKyux9ppubm5SbdfNzQ2TJ0/Gtm3bYGNjg549e2LDhg0S93nFzw6I51RtSXs8v3jxAu/evUOzZs3EtlFZM4ryyvZXxffr6+ujcePG1b7/888/h46ODvbu3QtA0KFu//796N27NywsLCp9X03OOWWxSvpcLVq0EPu/17RzHyHyQm1kSZ1Ssee0JHZ2dkhNTcWJEyfw66+/4tdff0V0dDSCgoIQGxsLoPI7oRU7TqhK2d3W5cuXVzqMUfk7g0Dl+4YxVqtYKttudeXdv38fPXr0QIsWLbBq1Sq4uLjAwMAAiYmJ+PHHH+U+DFZtPr+i9p20pB3oX5YRClauXImQkBAcOnQIJ0+exKRJk7B48WJcuHABzs7OwvWU8dmlPZ4rdnBTNicnJ3Tr1g379u3DrFmzcOHCBTx+/FjY3rQy0pxzakte5z5CNA1VZIlWMjAwQP/+/dG/f3/w+XyMHz8eP/30E77//ns0bdpUeMft7du3Ih0qJPVYrg1bW1tYWFjg1q1bMr2v7KdeCwsL+Pv7yy2e2syMJKsjR46gqKgIhw8fFrnrl5SUJHVcTZo0kXnfKUKjRo0AQGwUhMqWybJdPp+P9PR0kc6Cz58/x9u3b4Xl1pSXlxe8vLwwe/Zs/PHHH+jSpQs2b96MBQsW1Gq7lanq/xGo/ni2tbWFsbGx8A5ueWlpadWWX7a/0tPT8fHHHwuXl5SU4OHDh2jdunW12xg6dCjGjx+PtLQ07N27FyYmJujfv3+176vunFNZrGlpaSKxli2r6f+9rHEQou6oaQHROq9evRJ5rqOjg1atWgGA8I5P2YX17NmzwvXKhqaSp7Kpa48cOSJxlrLK7nq1a9cOTZo0wYoVK5Cfny/2+osXL2oUj6mpKd6+fVuj98qq7A5S+c+Yk5OD6OhoqeP67LPPcP36dbHe+xW3q2hOTk7w9PTE//73P5H/jzNnzuDmzZs13m6fPn0ACEZuKG/VqlUABO0layI3N1ekrTIgqNTq6Ogo9K6nqakpAIj9X0p7POvq6qJnz544ePAgHj9+LHz9zp07OHHiRLXl+/j4wNbWFps3bxYObQcIRgeQ9rj/7LPPoKuri927d2P//v3o16+f8HNVRppzjqRY7ezssHnzZpF1fv31V9y5c6dG//c1iYMQdUd3ZInWGTVqFF6/fo2PP/4Yzs7OyMjIwLp16+Dt7S286xUQEICGDRti5MiRmDp1KnR1dbF9+3bY2tqKXEDlYdGiRTh58iR8fX0xevRouLu7IysrC/v378e5c+ckTqqgo6ODbdu2oXfv3vDw8EBoaCgaNGiAzMxMJCUlwcLCAkeOHJE5lnbt2uG3337DqlWr4OTkBDc3N3Ts2FEOn1JcQECA8O7QmDFjkJ+fj61bt8LOzg5ZWVlicW3atAkLFixA06ZNYWdnh48//hhTp07FgQMH8PnnnyMsLAzt2rXD69evcfjwYWzevFmqO2zysmjRIgQGBqJLly4IDQ3FmzdvsH79enh6ekqsnEmjdevWCA4OxpYtW/D27Vv4+vri0qVLiI2NxcCBA9G9e/cabff333/HhAkT8Pnnn+ODDz5AaWkpduzYAV1dXXz22Wc12qY0mjRpAisrK2zevBnm5uYwNTVFx44d4ebmJvXxPG/ePBw/fhzdunXD+PHjUVpainXr1sHDwwM3btyosnx9fX0sWLAAY8aMwccff4yhQ4fi4cOHiI6OlqqNLCD4eb579+5YtWoV8vLyMHTo0GrfI805R1KsS5cuRWhoKHx9fTFs2DDh8Fuurq41mvK6JnEQou6oIku0zvDhw7FlyxZs3LgRb9++hYODA4YOHYqoqCjo6Ah+pNDX10dCQgLGjx+P77//Hg4ODoiMjES9evUQGhoq13gaNGiAixcv4vvvv8fOnTuRm5uLBg0aoHfv3jAxMan0fX5+fvjzzz/xww8/YP369cjPz4eDgwM6duyIMWPG1CiWVatWYfTo0Zg9ezbevXuH4OBghVVkmzdvjgMHDmD27NmYMmUKHBwcMG7cONja2oqNeDBnzhxkZGRg2bJlyMvLg6+vLz7++GOYmZkhJSUFc+fORUJCAmJjY2FnZ4cePXqItPNUhv79+2P37t2IiorCjBkz0KxZM8TExCA2NhZ///13jbe7bds2NG7cGDExMUhISICDgwNmzpyJuXPn1nibrVu3Rs+ePXHkyBFkZmbCxMQErVu3xq+//ooPP/ywxtutjr6+PmJjYzFz5kyMHTsWpaWliI6Ohpubm9THc6tWrXDixAlMnjwZc+bMgbOzM+bNm4esrKxqK7IAMHr0aPB4PCxfvhxTp06Fl5cXDh8+jO+//17qzzF06FD89ttvMDc3F941r4o05xxJQkJCYGJigiVLlmD69OkwNTXFp59+iqVLl0r8gquoOAhRZxxT5u9vhBCiZby9vWFra0tDHhFCiALQVzBCCJGDkpISsXanycnJuH79usiUuoQQQuSH7sgSQogcPHr0CP7+/hg+fDicnJzwzz//YPPmzbC0tMStW7cqnc6VEEJIzVEbWUIIkYN69eqhXbt22LZtG168eAFTU1P07dsXS5YsoUosIYQoCN2RJYQQQgghGonayBJCCCGEEI1EFVlCCCGEEKKRqCJLCCGEEEI0ElVkCSGEEEKIRqKKLCGEEEII0UhaNfwWn8/H06dPYW5uDo7jVB0O0UKMMeTl5cHJyYmmhATlJFEPlJeEaC6tqsg+ffoULi4uqg6DEDx58gTOzs6qDkPlKCeJOqG8JETzaFVF1tzcHIDgZGVhYaHiaIg2ys3NhYuLi/BY1HaUk0QdUF4Sorm0qiJb9tOlhYUFXTSJStHP6AKUk0SdUF4SonmoMRAhhBBCCNFIVJElhBBCCCEaiSqyhBBCCCFEI1FFlhBCCCGEaCSqyBJCCCGEEI1EFVlCCCGEEKKRqCJLCCGEEEI0ElVkCSGEEEKIRqKKLNFoZ8+eRf/+/eHk5ASO43Dw4EHhayUlJZg+fTq8vLxgamoKJycnBAUF4enTp0opv6KxY8fC0tJSbmUToo5UnZPVxVAR5SUhmo0qskSjFRQUoHXr1tiwYYPYa4WFhbh27Rq+//57XLt2DfHx8UhLS8OAAQOUUn55CQkJuHDhAhwdHeVWNiHqSNU5WV0M5VFeEqL5OMYYU3UQypKbmwtLS0vk5OTQdJh1EMdxSEhIwMCBAytd5/Lly+jQoQMyMjLQsGFDpZSfmZmJjh074sSJE+jTpw8eP35Mx+D/o5ys21Sdk1XFQHlJSN1Ad2SJVsnJyQHHcbCyslJKeXw+HyNGjMDUqVPh4eGhlDIJ0STKzkmA8pKQuoQqskRrvH//HtOnT8ewYcOUdtdl6dKl0NPTw6RJk5RSHiGaRBU5CVBeElKX6Kk6AEKUoaSkBEOGDAFjDJs2bVJKmVevXsWaNWtw7do1cBynlDIJ0RSqyEmA8pKQuoYqsqTOK7tgZmRk4Pfff1fanZ+UlBRkZ2eLtPvj8XgAAC8vL2RkZCglDkLUjapyEqC8JKSuoYos0Rg8HpCSAmRlAY6OQLdugK5u1e8pu2Cmp6cjKSkJ1tbWSit/xIgR8Pf3F1kWEBCArKwsxMfH1zgOQtSFpuUkQHlJSF1DFVmiEeLjgYgI4N9//1vm7AwsWZIPD497wmUPHz5Eamoq6tevD0dHRwwePBjXrl3D0aNHwePx8OzZMwBA/fr1YWBgoNDyGzZsKHaR1tfXBwA0a9ZMlo9PiNpR15xcswYICMjHvXuUl4RoBaZFcnJyGACWk5Oj6lCIDOLiGOM4xgDRh2BZEgMg9ggODmYPHz6U+BoAlpSUpPDyJWnYsCEdg+VQTmomdc5JjmNs3jzKS0K0BY0jS9Qajwe4uoredamoQQPg9u3qf1Ksafnu7kBlEw9xnOAu0MOH0pVPx6Ao2h+ap67lJEDHISGajJoWELWWklL1BRMAMjMBVc0wyRjw5IkgTj8/1cRAiDJRThJC1AlVZIlay8r67299/WJ8991iAMDChTNRUiJ9ezpFKx8nIXWZOh3rVZ0T1ClOQojiUEWWqLWXL8s/4/D2raXw7/ISE4GPPpJ/+WfPAn36VL8eTdVOtIW0v7wrJycrPydQThKiHaiNLFFLpaXADz8ACxYAfH7l69WkPZwsytoDZmYKfrKsbfl0DIqi/aFZLlwAvvoKePCg8nU0LScBOg4J0WQ0RS1ROw8eCO7kzJ8vqMT6+gqWV5yEp+z56tWKuWACgu2uWaO68glRBzye4Itl166C/LS1FSynnCSEqBpVZIla+eUXwNsb+PNPwU+Yu3YByclAXJygJ3R5zs7AgQPAoEGKjWnQIEE5qiqfEFXKyBB0mpozR1ChHTYMuHuXcpIQoh6oaQFRCzk5wPjxgoorILjzs2OH4CfEMu/fl2DjxhgUFwPt24fAz09fqXddajKLUEV0DIqi/aHe9uwBxo4V5Ke5ObBxIzB8+H+vyyMnakNe5wQ6DgnRXNTZi6jc+fOCdncZGYKL4Ny5wMyZgF6Fo1NHhyEvTzB4ZLduTOk/Herq0nA+RDvk5gITJgi+TAJAp06CX0saNxZdT9U5oepzAvkPj8dDSUmJqsMgakxfXx+6CkhSjarInj17FsuXL8fVq1eRlZWFhIQEDBw4UNVhkRqq2KHLzQ3YuVNw0SSagXKy7infoUtHB5g9G/j+e/EvloQAAGMMz549w9u3b1UdCtEAVlZWcHBwAFexgXstaNSpqaCgAK1bt0ZYWBgGUSMojfbggeBieeGC4HlQELBunfRD+xD1QDlZd/B4wKJFwLx5gr8bNRJ8sezSRdWREXVWVom1s7ODiYmJXCsopO5gjKGwsBDZ2dkAAEc5jo+nURXZ3r17o3fv3qoOg9QCY4KfKMPDgbw8wew/mzcDX3yh6shITVBO1g2PHgEjRgDnzgmef/mloD2sqmbnIpqBx+MJK7HW1taqDoeoOWNjYwBAdnY27Ozs5NbMQKMqskSz5eQA48YBu3cLnnftKqjUNmqk2rgI0Wa7dws6dOXmSu7QRUhlytrEmpiYqDgSoinKjpWSkhK5VWTr9PBbRUVFyM3NFXnIU15eHiIjI9GoUSMYGxujc+fOuHz5slzLqMrZs2fRv39/ODk5geM4HDx4UOR1xhjmzJkDR0dHGBsbw9/fH+np6UqNIT4+HgEBAbC0tIaVFYfdu1OhqytoG5ucTJVYbaPonAQoL6XNyfr1rcFxHL78MhW5uYK26devUyWWyI6aExBpKeJYqdMV2cWLF8PS0lL4cHFxkev2R40ahVOnTmHHjh24efMmAgIC4O/vj8zMTLmWU5my9okbNmyQ+PqyZcuwdu1abN68GRcvXoSpqSl69uyJ9+/fKy2G3NwCFBd3RV7eUgCCcR/PnRN0IKnJlzETExP69q/BFJ2TAOVldeUXFBSgUaOu0NUV5CTHCUYKOXtW0OFS09A5gWiTqKgoeHt7qzoMAICfnx8iIyNVHYbmjiPLcVy1PaSLiopQVFQkfJ6bmwsXFxe5jBX47t07mJub49ChQ+jbt69webt27dC7d28sWLCgVtuXVcX9wRiDk5MTvv32W0yZMgUAkJOTA3t7e8TExOALBTRKrRiDaIeuRwDckJLyF7p29ZZ72ZqiLo9XqeqcBCgvqyu/tFTQoWv+fIDHewTADdHRfyEkxFuu5WqaupyXivT+/Xs8fPgQbm5uMDIyEi5//PgxXr58qbQ4bGxs0LBhQ5ne8+zZMyxevBjHjh3Dv//+C0tLSzRt2hTDhw9HcHCw2n45ioqKwsGDB5GamirxtXnz5lX5/ppU+ZKTk9G9e3e8efMGVlZWwuV+fn7w9vbG6tWrpd5WZcdMbdTpNrKGhoYwNDRUyLZLS0vB4/HE/iOMjY1xrqzHhAo9fPgQz549g7+/v3CZpaUlOnbsiD///FMhFdkykjp0/fADMGkSYGamsGKJBlBkTgKUl1V59EjQbOD8ecHzwEDg0CHBTHqEyMvjx4/RvHlzuf7yVx0jIyOkpaVJXZl98OABunTpAisrKyxatAheXl4wNDTEzZs3sWXLFjRo0AADBgyQ+N6SkhLo6+vLM3y5mTJlCsaOHSt83r59e4wePRpff/21xPWLi4thYGCgrPAURqOaFuTn5yM1NVX4TeThw4dITU3F48ePlR6Lubk5OnXqhB9++AFPnz4Fj8fDL7/8gj///BNZWVlKj6eiZ8+eAQDs7e1Fltvb2wtfU4SCAkGP56AgQSW2a1dBu7v+/RVWJFEhdcpJgPKyMrt2Aa1bCyqx5uaCL5oy3EQhRGovX75UaiUWENzlk+UO8Pjx46Gnp4crV65gyJAhcHd3R+PGjREYGIhjx46hf7kLFsdx2LRpEwYMGABTU1MsXLgQALBp0yY0adIEBgYGaN68OXaUzR4C4NGjR+A4TuSu6du3b8FxHJKTkwEI7nJyHIfTp0/Dx8cHJiYm6Ny5M9LS0kRiXbJkCezt7WFubo6RI0dWuW/NzMzg4OAgfOjq6sLc3Fz4/IsvvsCECRMQGRkJGxsb9OzZs9pYHz16hO7duwMA6tWrB47jEBISIlyXz+dj2rRpqF+/PhwcHBAVFSX1/4O81LgiW1xcjLS0NJSWlsoznipduXIFbdq0QZs2bQAAkydPRps2bTBnzhylxVDejh07wBhDgwYNYGhoiLVr12LYsGHQ0dGo7wdy9c03gmktFdGhq6SkBDExMYiJiaEZZCSgnBSgvBS1erWgiU9uLtC5s+CL5VdfqToq+aBzApHVq1evcPLkSYSHh8PU1FTiOhU7JEVFReHTTz/FzZs3ERYWhoSEBERERODbb7/FrVu3MGbMGISGhiIpKUnmeL777jusXLkSV65cgZ6eHsLCwoSv7du3D1FRUVi0aBGuXLkCR0dHbNy4UeYyyouNjYWBgQHOnz+PzZs3V7u+i4sL4uLiAABpaWnIysrCmjVrRLZnamqKixcvYtmyZZg/fz5OnTpVqxhlJfOZvbCwECNHjoSJiQk8PDyEd14mTpyIJUuWyD3A8vz8/MAYE3vExMQotNzKNGnSBGfOnEF+fj6ePHmCS5cuoaSkBI0rzuOoAg4ODgCA58+fiyx//vy58DV5KS0FyuotL14IprGsTYeuyjDGkJGRgYyMjBq186mrKCdFUV4K/Pmn4N8zZwQzdEVFCf7WxA5dlaFzApHVvXv3wBhD8+bNRZbb2NjAzMwMZmZmmD59ushrX375JUJDQ9G4cWM0bNgQK1asQEhICMaPH48PPvgAkydPxqBBg7BixQqZ41m4cCF8fX3RsmVLzJgxA3/88Yfwruvq1asxcuRIjBw5Es2bN8eCBQvQsmXLmn94AM2aNcOyZcvQvHlzsX0gia6uLurXrw8AsLOzg4ODAyzLDTDdqlUrzJ07F82aNUNQUBB8fHxw+vTpWsUoK5krsjNnzsT169eRnJws0g7N398fe/fulWtw6oTHE9xd3L1b8C+P999rpqamcHR0xJs3b3DixAkEBgYqtXxJ3Nzc4ODgIHJA5ebm4uLFi+hUgzlgKyv//n2gWzfB3VcA6N4d+Osv4MMPZS6C1BDlpOSc0Na8LC0VdObq1k2wjq0tkJIiGJmAppklRLJLly4hNTUVHh4eIh1SAcDHx0fk+Z07d9ClwpR3Xbp0wZ07d2Qut1WrVsK/y2a7Kpv96s6dO+jYsaPI+jU5T5TXrl27Wr2/ovLxA4LPUBa/ssh8Wjt48CD27t2LDz/8UOT2u4eHB+7fvy/X4NRFfDwQEQH8++9/y5ydgZCQE+jSRfDN7t69e5g6dSpatGiB0NBQpZS/ZEk+PDzuCZeVtU+sX78+GjZsiMjISCxYsADNmjWDm5sbvv/+ezg5OVXZq1za8hs0AAYNArZvz0dBwT2YmQH5+UD//g/x4MF/Mbx+/RqPHz/G06dPAUDY/qeszQ6pPcpJAWdnYM0awNT0hPCOi7blpYMDYGGRj7t3/ys/MvIhTExS8fgx5SQhTZs2BcdxYm1Ry36xKZt9qrzKmiBUpqwZU/lfCSpr+lK+41jZ+ZvP58tUniwqfhZZYpWkYsc3juMUGr8kMt+RffHiBezs7MSWFxQU1MlBkePjgcGDRS8WAJCZCSxYkIOQkHC0aNECQUFB6Nq1K06cOCHXHo1VlT98eNXtE6dNm4aJEydi9OjRaN++PfLz83H8+HGZhryoqvx164CCgisA2iA/X3IMhw8fRps2bYRDIX3xxRdo06aNVG1ziHQoJwUyMwXLT57MQXi4dubls2fA3buCnBQ8gO++o5wkpIy1tTU++eQTrF+/HgUFBTXahru7O86XDf/x/86fPy/82d/W1hYARDqYShouS5pyLl68KLLsgmA8S7mRJtaykQ141f3kpCIy35H18fHBsWPHMHHiRAD/fYPYtm1brW95qxseT3DHQ1LTK8GyIdDTG4IXL0TbgtYwNySWP3FiVeX7oUEDhtu3xduiCmLgMH36fEyfPl/Ca7Urv4ylpR+ysxkqG8EjJCREpIcjkT/KSYGyZXv3DsHt20MqyQn5xKDeeekHR0eGJ08kt1GnnCTabuPGjejSpQt8fHwQFRWFVq1aQUdHB5cvX8Y///xT7c/vU6dOxZAhQ9CmTRv4+/vjyJEjiI+Px2+//QZAcFf3ww8/xJIlS+Dm5obs7GzMnj1b5jgjIiIQEhICHx8fdOnSBTt37sTff/8t1/b+0sTaqFEjcByHo0ePok+fPjA2NoaZOo2lyWSUkpLCzMzM2NixY5mRkRGLiIhgn3zyCTM1NWVXrlyRdXNKlZOTwwCwnJwcqdZPSmJMcLmgh+THRgZ4MRMTc2Zubs4+/PBDlpiYqLD/v6KiIhYVFcWioqJYUVERmzt3LgMg8mjevLnCypekUaNGYjEAYOPHj5e4vqzHoDQoJ+mhyrysSJl5WfGcwJjsOcmYYvJSG7x7947dvn2bvXv3Trjs6tWrEve/oh9Xr16VKfanT5+yCRMmMDc3N6avr8/MzMxYhw4d2PLly1lBQYFwPQAsISFB7P0bN25kjRs3Zvr6+uyDDz5g//vf/0Rev337NuvUqRMzNjZm3t7e7OTJkwwAS0pKYowxlpSUxACwN2/eCN/z119/MQDs4cOHwmULFy5kNjY2zMzMjAUHB7Np06ax1q1bS/UZGzVqxH788Ufhc19fXxYRESG2XnWxMsbY/PnzmYODA+M4jgUHB1e6vcDAQOHrkkg6ZmoLNXnTvXv32KhRo1j79u2Zu7s7++qrr9iNGzfkFpSiyHqy2rXrv4uDvv5/J0x9/SI1uFipw+MwA46xlSvvsrS0NDZr1iymr6/Pbt26pZD/v6KiIrZw4UK2cOFCYUXWw8ODZWVlCR8vXrxQSNmVyc7OFin/1KlTYieA8hR1wdTGnFSHh3qeF5SblxUpMy8rnhMYkz0nGaOKbE1JqpRkZGQwIyMjpsxKrJGREcvIyFDhniDSUkRFtkZ9WJs0aYKtW7fW5K0a5f87EP4/Dm/fWgr/Li8xEfjoI/mXf/Ys0KdP9euprnzBoNFt2wIffCAYRmTTpk24cOECPDw85B6PgYEBZs2aJbJMT09PpR1UytoXlVmyZAmaNGkCX19fpcahnTlZOUXlBFAxL9TxvKDcvJREWXkp6ZygLjmprRo2bIi0tDS1n6KW1B0yV2Srm7GnLh1M3boJeiFnZgIlJfpYvTpS5HWOE7weECDf8VLLBAT8Vz5j4q+ruvwyO3YAbdrw8Ouv+1FQUKDUdpnp6elwcnKCkZEROnXqhMWLF6vsGCwuLsYvv/yCyZMnK7WTlbbmpCpyAhDNC3U8LwCCYbYMDQWdM/bv1968VFVOaruGDRvWqfMOUXOy3sLlOI7p6OhU+lBnNfn5KC6OMY4TPMr/fFe2LC5OgQGrcfn/PW4wwJQBuszMzJIdO3ZMsQGVk5iYyPbt28euX7/Ojh8/zjp16sQaNmzIcnNzlRZDeXv37mW6urosMzOz0nUU8RMm5aRyc0IdYpA2L3V0dJmlpfbmpTQ5yRg1LagpRfxMTOo2tWgjm5qaKvK4fPky27JlC2vRogWLU8YVpBZqerKKi2PM2Vn0QuHiopwLprqXf/JkEbO3T2fAFcZxM5ipqQ27ceNvhcRRUlLCdu7cyXbu3MlKSkrEXn/z5g2zsLBg27ZtU0j51QkICGD9+vWrch1FXDApJ5WfE+oQQ2Xl/+9/jH3+eREDBHnp4jKD1a9vw/7+WzF5WR1F5mV15wRpcpIxqsjWFFVkiazUoo1s69atxZb5+PjAyckJy5cvx6BBg2p1h1gdDRoE9OlTgo0bY1BcDLRvHwI/P32F/XQpqfzAQMHsPFlZgnaC3bop7qdT2co3wO3bTTFmDHDgQDsUFFxGz55rcOnST3B2lm8cfD4f6enpwr8rsrKywgcffIB79+6JvaZoGRkZ+O233xAfH6/0srU1J1WZE2UxqOt5YfhwA/Tr1xTh4cCTJ+2gp3cZkyatwW+//aSc4MpRZF5WdU5QZU4SQpRHbhMWNm/eHJcvX5bX5tSOjg5DXp5gJpxu3ZhSL5iA4OLk56fcMqUtv359YN8+IDoa+PprPrKyitCqFbB1K/DZZ8qLMT8/H/fv38eIESOUV+j/i46Ohp2dnXCQeXVQ13NS1TkBqO95geOAoCCgSxfgq6+Aixf5OH26CCEhgolMzM2VF6Oq8lIdc5IQIn8yV2Rzc3NFnjPGkJWVhaioKDRr1kxugRH1wuPxkJKSgqysLDg6OqJbt26YPXs2evfujYYNGyIvLw/p6bvAWDKaNTuB9HTBzEMjRwKrVwPyGDu5/KwiKSkpOHbsGAIDA9GoUSM8ffoUc+fOha6uLoYNG1b7wiopv+I+0NXVBZ/PR3R0NIKDg6GngsnsKSe1V3V5WViYh48+2oWLF5PBcScQGwucOwfs3AlUmMJdbuVPnz4d/fv3V0peVjwn+Pn5qUVOEkKUR+YMt7KyEuv9yRiDi4sL9uzZI7fAiPqIj49HREQE/i03H6azszM++OAD7N69G1lZWbC0tESrVq1w4sQJ+Pl9grlzgSVLgJ9/FgwXtHMn0L597WL49ttvhTMS9e7dG3p6eoiJiUFBQQFsbW3RtWtXXLhwQWz4HXmobB+sWbMGZmZmePz4McLCwuRerjQoJ7WTLHl58uQJGBl9guHDgfv3BXdq580DZsyoeXOMyspv1KgRdu3ahVevXik0LyWdE+zt7dUiJwkhyiNzRTYpKUnkuY6ODmxtbdG0aVP65lsHxcfHY/DgwWAVxvnJzMxEZmYmDhw4ILEN5qJFgmGCRowA0tOBzp2BH34Apk6V/cJZFkPF4+v9+/d4//59pTHIS1X7YPDgwThw4IDYa8pEOal9apqX168D48YBe/YAs2cDJ04Ihs9r1Eg55ctLZecEdclJQojyyHyVo0GltQePx0NERITEC0LZskmTJsHf3x+6Emqn7dsDf/wBTJpkiIMH9TBzJpCYyMPWrUVwdpbuIsPj8TBx4sQax1Bb1ZXPcRwiIyMRGBiokPKlQTmpXWqTl/r6grbrPXroYfJkA6SkcGjdmmH16iJ8/jlPbHuVlU85SYh0QkJC8PbtWxw8eBAA4OfnB29vb6xevbrG25THNuoSqSqyhw8flnqDAwYMqHEwRL2kpKSI/GwoSWZmJiwtLatcRyAEwDqkpJihRYv3AEYDiKt9kDLFIH+MMTx58gT29vZ49eoVEhISMHDgQOHrISEhiI2NlXu5lJPaS3556QZgJ3JyOiE01AihobEAJgDIr3WM6pCT3bp1w6NHj5CVlaW0vCQCjx8DSpzYCzY2gKzzL5Q/BvT19dGwYUMEBQVh1qxZCv0lKz4+Hvr6+lKtm5ycjO7du+PNmzewsrKq0Ta0gVT/W+VPAFXhOE6k8X1dY2JiouoQlCorK0uOW4sBcA7ATgAdABwA8DOACAAFUm2hpKQEUVFRcoxJfoKCgvDjjz9KfK1Xr16Ijo4GAOTl5eGDDz6odXmUk+pD2ecF+eXlQwAfAfgewHcAggF0BfAVgItyKkOxqjon2NvbY+rUqZU2cVBEXhJBJbZ5c+D9e+WVaWQEpKXJXpktOwaKioqQmJiI8PBw6OvrY+bMmSLrFRcXw8DAQC6x1q9fXy22UZfoSLMSn8+X6lGXL5gGBgaYOnUqpk6dKrcDWt29l/JMlJiYiPz8fCkeqXjzxgNTphSD4xiAkWjSJBdnzhRW+p7ExESpYwCA3bt3VxnD06eCoZKOHDkiVczSll/VXU9DQ0M4ODjAwcEB9vb2Um2vOpST6kHZ54WioiIkJCRIta50efkW+fnf4uTJYjRsyAfQBLq6f2L27CLk5Gh2TkZERODTTz+t9HVF5CUR3IlVZiUWEJRXkzvAZcdAo0aNMG7cOPj7++Pw4cMICQnBwIEDsXDhQjg5OaF58+YAgCdPnmDIkCGwsrJC/fr1ERgYiEePHgm3x+PxMHnyZFhZWcHa2hrTpk0TawLj5+eHyMhI4fOioiJMnz4dLi4uMDQ0RNOmTfHzzz/j0aNH6N69OwCgXr164DhO2LGx4jbevHmDoKAg1KtXDyYmJujdu7dwfGUAiImJgZWVFU6cOAF3d3eYmZmhV69ecr5ZpTrUE4SIYYxhw4YNmDJlSpXrcRwHZ2dnBAQEyNQWbflyoF8//H8Pah306GGM+fOBadPEO4IFBATA2dkZmZmZEtvElY8BAIyMjGBqaiqx3OLiYuzcuROWlpb48MMPK12vJuV369at0m0kJyfDzs4O9erVQ9euXastkxBJ7ty5gy+//BKpqalVrleTvPzkE0FHsPHjgd27OSxYYIDkZAP88ot4R7C6kJMA5SURZ2xsjFevXgEATp8+DQsLC5w6dQqA4O5/z5490alTJ6SkpEBPTw8LFixAr169cOPGDRgYGGDlypWIiYnB9u3b4e7ujpUrVyIhIQEff/xxpWUGBQXhzz//xNq1a9G6dWs8fPgQL1++hIuLC+Li4vDZZ58hLS0NFhYWMDY2lriNkJAQpKen4/Dhw7CwsMD06dPRp08f3L59W9gEobCwECtWrMCOHTugo6OD4cOHY8qUKdi5c6ec96IK1GQ6sPz8fHbs2DG2adMmtmbNGpGHOqNpCKv3/Plz1qdPHwaAAWBt2rRhABgnuIUqfHAcxziOq9UUqK9fM/b55/9Nr+nry9jjx+LrxcXFCcurKgYALCEhQez9R44cYaampozjOObk5MQuXbokU5y1KX/37t3s0KFD7MaNGywhIYE1b96cAWCvX7+WKYbqUE7WXXw+n23atIkZGxszAMzGxobNmDFDqmNS9rIY27GDMXNzQU5aWjK2e7f4epqSk5XFoKy8rOskTTd69arotMnKely9KlvswcHBLDAwkDEmyLFTp04xQ0NDNmXKFBYcHMzs7e1ZUVGRcP0dO3aw5s2bMz6fL1xWVFTEjI2N2YkTJxhjjDk6OrJly5YJXy8pKWHOzs7CchhjzNfXl0VERDDGGEtLS2MA2KlTpyTGmJSUxACwN2/eiCwvv427d+8yAOz8+fPC11++fMmMjY3Zvn37GGOMRUdHMwDs3r17wnU2bNjA7O3tpdtZcqSIKWplrsheu3aNOTg4MAsLC6arq8tsbW0Zx3HM1NSUubm5yS0wRajNRbO4uJhFR0ez6OhoVlxcrIDoVC8xMZHZ2dkxAMzQ0JCtXbuW8fl8FhcXx5wFwwwIHy4uLrWqxJbh8xnbvp0xU1PBycjKirH/zz0R0sRQ2UUzPz+fpaensz///JOFhYUxV1dX9vz5c5nirE355aWmpjIA7NChQzKVXxVtzUl1oOjzQnZ2NhswYIDwmAsICGBPnz5ljEl3TNbU/fuMffjhf5WEoCDGKv4XaUJOVhVDeYrIS22g6RVZXV1dZmpqygwMDJienh4LCgpi+fn5LDg4mPn7+4usP2XKFOH65R8cx7GNGzeyt2/fMgDszJkzIu8bOHBgpRXZvXv3Ml1d3UrPHdJUZA8dOsT09PRYaWmpyDre3t5s3rx5jDFBRdbExETk9fj4eMZxnDS7Sq4UUZGVuWnBN998g/79+2Pz5s2wtLTEhQsXoK+vj+HDhyMiIkLWzWkMxhgyMjKEf9cl79+/x/Tp07F27VoAgKenJ3bt2gUvLy8AwKBBgxAYGChxVqva4jggNFQwR/yXXwKXLwNDhgiWrV3734xgtYnB1NQUTZs2RdOmTfHhhx+iWbNm+Pnnn8Ua9FdFXvvAzc0NAPDgwQOZ3lcVbc1JdaDI88KpU6cQFBSEZ8+ewcDAAEuWLEFERAR0dARdGxSZl40bAykpgrGfFywA/ve//2YE+/BD1Lp8dcpJQDF5SdRf9+7dsWnTJhgYGMDJyUlktIKKzVzy8/PRrl07iT/F13Syj8qaCihCxVEOOI6rM3UZmSuyqamp+Omnn6CjowNdXV0UFRWhcePGWLZsGYKDgxU6CDaRv1u3bmHYsGG4desWAMH4j0uWLBFLMF1dXfgpcGL7pk2B8+cFsw0tWgRERwsupDt3Ah06CKMAUPsY+Hw+ioqKavDO2pefmZkJAHBwcKjVdsqjnKxbioqKMGvWLKxatQoA4O7ujl27dsHb21tsXUXmpZ6eIB8DAoCvvgIePAC6dgXmzgVmzSprz675OQkoJi+J+iv7QiWNtm3bYu/evbCzs4OFhYXEdRwdHXHx4kV89NFHAIDS0lJcvXoVbdu2lbi+l5cX+Hw+zpw5A39/f7HXyzqQVtVp193dHaWlpbh48SI6d+4MAHj16hXS0tLQsmVLqT6bppNq1ILy9PX1hXcE7Ozs8PjxYwCApaUlnjx5It/oiMIwxrBu3Tr4+Pjg1q1bsLOzQ2JiItasWaPUb4nl6esL7v4kJwMuLsC9e4KpNBctAvbvB1xdge7dBXduu3cXPN+5Mx+pqanCDjAPHz5EamoqHj9+jIKCAsyaNQsXLlxARkYGrl69irCwMGRmZuLzzz+XKbb4eNnLz8/Px9SpU3HhwgU8evQIp0+fFs4336NHDzntNcrJuuT27dvo2LGjsBI7fvx4XLlyRWIlVlm6dBF0BPvyS4DHA+bMAfz8gM2b1TMn4+MFd89UnZekbvnqq69gY2Mj/BXg4cOHSE5OxqRJk4TjOkdERGDJkiU4ePAg/vnnH4wfPx5v376tdJuurq4IDg5GWFgYDh48KNzmvn37AACNGjUCx3E4evQoXrx4gfx88TGemzVrhsDAQHz99dc4d+4crl+/juHDh6NBgwYIDAxUyL5QO7K2Rfjkk0/Yzp07GWOMjRo1inXo0IH98ssvrGfPnqxDhw5ya/OgCLVpj1dUVMSioqJYVFSUSANwTfTs2TPWu3dvYbuyPn36sGfPnqk6LBGvXzM2ZEjVbaI4jjEgSaSNXNkjODiYvXv3jn366afMycmJGRgYMEdHRzZgwIAadCwpK0u28gsLC1lAQACztbVl+vr6rFGjRiw4OFjubUK1NSfVgbzOC3w+n23cuJEZGRkxQNCh6/Dhw3KMVD7KdwRT15zkOMbmzVN9XmoDTW8jW77tqjSvZWVlsaCgIGZjY8MMDQ1Z48aN2ddffy08bkpKSlhERASzsLBgVlZWbPLkySwoKKjSNrJl+/Cbb75hjo6OzMDAgDVt2pRt375d+Pr8+fOZg4MD4ziOBQcHS9zG69ev2YgRI5ilpSUzNjZmPXv2ZHfv3hW+Hh0dzSwtLUU+S0JCAqtBFbDWFNFGlmNMukYSPB4Purq6uHLlCvLy8tC9e3dkZ2cjKCgIf/zxB5o1a4bt27ejdevW8qhfK0Rubi4sLS2Rk5NT6U8DlSkuLsbixYsBADNnztTYsWQTExMRGhqK7OxsGBoaYsWKFQgPDwfHcaoOTQxjgiYGo0YJ/q5MgwbA7dviQ3fJA48HuLsD/z/UpRiOA5ydgYcPpSu/NsegeGzanZPqQB7nhRcvXmDkyJE4cuQIAMHwUjExMXB0dJRrrPKSng54egLFxZWvo0k5CWj+cagq79+/x8OHD+Hm5gYjIyMAmjUhAlE+ScdMbUndRrZBgwYICQlBWFgYfHx8AAh+xjx+/LhcAtFEZ8+exfLly3H16lWJ0yAq2uLFixEfH49//vkHxsbG6Ny5M5YuXSocvLm8d+/eYfr06Vi3bh0AQducXbt2wdPTU2nxyorjBJ1OqvuqlZkJqGg2TDAGPHkiaM+rwCbEElFOSqbKvJQlJwHg5MmTCA4OFnboWrp0KSZNmiRsKqKOMjOrrsSWraONOUkElcm0NPWfopbUHVJXZMPDwxEbG4vly5ejc+fOGDlyJIYMGaJV07ZW7PVXUFCA1q1bIywsTCUdas6cOYPw8HC0b98epaWlmDVrFgICAnD79m2RHpc3b97El19+KezQVdaOR17fhhSp/MQj+vrF+O47wd2vhQtnoqREfe6Kq2KCFMpJyZSdl+XPC9LmZFFREWbMmIHVq1cDAFq2bIldu3ap9d3zMuo0GVBV5wR1ilPbNGxIFUuiRLK2RUhKSmJBQUHM1NSUWVhYsFGjRrELFy7Ira2DIimyPR6kGKtQ0bKzs0XGsePz+WzNmjXM0NCQAWD29vYsMTFRpTHKKinpvzZQ+vrFLDLyRxYZ+SPT1y8WaR+VmMhYfr78H4mJ0rXPSkqS7vMo4hiknKycqvOyYk4yxtjff//NWrVqJWy3GR4ezgoLC1UWo6zK52RVD2XkZFXnBGlzkjHNb6utKopo70jqNrWYEKFMXl4e27p1K+vSpQvjOI61bNmSrVy5Um6BKUJdr8imp6czAOzmzZsSO3TJOuC4OigtZczZWXLHjrLOHS4ugvU0oXxFHoOUk+JUnZflc5LP57MNGzaIdOg6cuSIymKrqbqWk4xRRbamqCJLZKWIY6bGDbHMzMwwatQonDt3DkeOHMGzZ88wderUmm6O1BKfz0dkZCS6dOmCjIwMeHl54ddff4WRkRHWr1+Po0ePws7OTtVhykxXF1izRvB3xf5oZc9Xr1ZMpxJ1KF8WlJPqpXxO2tvbIzAwEOHh4Xj//j169uyJmzdvol+/fqoOU2aqzglVl08IUS81rsgWFhYiJiYGvr6+GDBgAKytrbFw4UJ5xqZWSktLsWvXLuzatQulpaWqDkdMeHg4bt68iWbNmqFfv3548eIFvLy8cOXKFbUdlUBagwYBBw4IekKX5+wsWK7oZpCqLl9a2paT6qCq80J4eDhu3bqFsWPHwsvLC0eOHIGBgQFWr16NxMREjR58X9U5oeryCSHqQ+aZvf744w9s374d+/fvR2lpKQYPHowffvhBOJNFXcXn85Geni78W51MmDABCQkJsLCwQExMDADN6tAljUGDgD59SrBxYwyKi4H27UPg56evtLsugwYBgYGCntBZWYCjo2BaXXW466OtOakOKjsvTJgwAUeOHEFAQABGjBgBQNCha/fu3WjVqpVKYpU3VeeEqs8JhBD1IHVFdtmyZYiOjsbdu3fh4+OD5cuXY9iwYTA3N1dkfKQKjDFMmDABO3fuRGFhIZ4/fw57e3vExMSgV69eqg5P7nR0GPLyBINHduvGlH7B0tVVr+F8KCfVD2MMEydOxP79+1GvXj1ER0cDEFRsly1bprJZ8xRF1Tmh6nMCIUT1pG5asHz5cvTq1QvXr1/HxYsXMXr0aJVcMDds2ABXV1cYGRmhY8eOuHTpklLKLT/XcUpKCng8XpXTICqi/OTkZOzevRvJycng8XgIDQ3Fli1bkJOTg5KSEvj7++O3336Dr6+v3Msn6kddchJQTV5Kygmg6ulJFRFDmZSUFIwbNw7bt2/H27dvkZaWBmtra+zYsaNOVmIJIUQtSNsrrLi4WG49zGpqz549zMDAgG3fvp39/fff7Ouvv2ZWVlZS98avac/UuLg45urqKpyKUl9fnzk7O7N58+ZVOg2iPMXFxTFnZ2eRMqytrSWWDYBFR0fLtXx1URemCZZn72h1yEnGapeXtcnJijnh7OzM4uLiWFJS5dOTypOk84K25aSqyeucQKMW1AyNWiBfkqaSrWsUccxI3bSg4mQAqrBq1Sp8/fXXCA0NBQBs3rwZx44dw/bt2zFjxgyFlBkfH4/BgwdDT090V2VmZiIqKgpxcXEKHXS9rHxWYXqrV69eAQAaNWqEY8eOwcPDQ2ExEPWkDjkJKD8vK8uJzMxMDB48GAcOHBB7TVExVDwvlAkLC8PWrVvVeoYuQhQlJycHhYWFSivPxMQEljJOJRcSEoLY2FiMGTMGmzdvFnktPDwcGzduRHBwsLDfiTIMHToUffr0UVp5dYXMnb1Upbi4GFevXsXMmTOFy3R0dODv748///xTIWXyeDxERERIvCiWLZs0aRL8/f2hq4DGWTweDxMnTqzyoszj8dCiRQu5l02INJSdl6rOybIYqsvLU6dOKbwyTYg6ysnJwfr165U6uo+enh4mTJggc2XWxcUFe/bswY8//ihs+vP+/Xvs2rULDVUwNZmxsTE1QaoBqW8XPH36VJFxVOvly5fg8Xiwt7cXWW5vb49nz55JfE9RURFyc3NFHrJISUnBv//+W+U6mZmZsLS0hJmZmdwflpaW1e73f//9FykpKTJ9LlI3qDonAdnzUtNzUtq8fPLkCeUl0UqFhYVKH6KytLS0RneA27ZtCxcXF8THxwuXxcfHo2HDhmjTpo1w2fHjx9G1a1dYWVnB2toa/fr1w/3794WvP3r0CBzHYc+ePejcuTOMjIzg6emJM2fOCNdJTk4Gx3E4duwYWrVqBSMjI3z44YfCqeMBICYmBlZWVsLnUVFR8Pb2xo4dO+Dq6gpLS0t88cUXyMvLE66Tl5eHr776CqampnB0dMSPP/4IPz8/REZGyrw/NJXUFVkPDw/s2rVLkbHI3eLFi2FpaSl8uLi4yPT+rHKTdZeUlCAqKgpRUVEoKSmRd6i1kqVFk4qbmJjAxMRE1WGoBW3PSXVQ1XlB3WKtq+icQGojLCxMOLoIAGzfvl3YTKpMQUEBJk+ejCtXruD06dPQ0dHBp59+KjYU59SpU/Htt9/ir7/+QqdOndC/f39hM8Dy66xcuRKXL1+Gra0t+vfvX2Wd4v79+zh48CCOHj2Ko0eP4syZM1iyZInw9cmTJ+P8+fM4fPgwTp06hZSUFFy7dq02u0TjSN20YOHChRgzZgwSEhLw008/oX79+oqMS4yNjQ10dXXx/PlzkeXPnz+vdGDxmTNnYvLkycLnubm5Ml04HR0dpVovMTFRIWN2nj17Vqr2MtbW1nIvWx0ZGBjQTFXlqDonAdnzUtNzEpA+L6WNldQcnRNIbQ0fPhwzZ85ERkYGAOD8+fPYs2cPkpOThet89tlnIu/Zvn07bG1tcfv2bXh6egqXT5gwQbjupk2bcPz4cfz888+YNm2acJ25c+fik08+AQDExsbC2dkZCQkJGDJkiMT4+Hw+YmJihCPSjBgxAqdPn8bChQuRl5eH2NhY7Nq1Cz169AAAREdHw8nJqZZ7RbNIfUd2/PjxuHHjBl69eoWWLVviyJEjioxLjIGBAdq1a4fTp08Ll/H5fJw+fRqdOnWS+B5DQ0NYWFiIPGTRrVs3ODs7VzorFsdxcHFxQUBAAExNTeX+CAgIqLL8MlOmTBH5eYJoB1XnJCB7Xmp6TsqSl1evXlW7yVMIIaJsbW3Rt29fxMTEIDo6Gn379oWNjY3IOunp6Rg2bBgaN24MCwsLuLq6AoDYkH7lz3l6enrw8fHBnTt3Kl2nfv36aN68udg65bm6uooMq+jo6Ijs7GwAwIMHD1BSUoIOHToIX7e0tETz5s2l/PR1g0xdat3c3PD7779j9uzZGDRoEFq1aoW2bduKPBRp8uTJ2Lp1K2JjY3Hnzh2MGzcOBQUFYj8DyIuuri7W/P+k3hUvWmXPV69erbBOJdKUb2lpiZs3b8LHxwfr16+nDiZaRtU5CSg3L1Wdk9XFUN6UKVPQp08famJAiJoLCwtDTEwMYmNjERYWJvZ6//798fr1a2zduhUXL17ExYsXAQg6uypaxdFpOI6jL8gVyDw2TEZGBuLj41GvXj0EBgaKPRRp6NChWLFiBebMmQNvb2+kpqbi+PHjYh1N5GnQoEE4cOAAGlSY1NvZ2RkHDhxQ6NBb1ZUfFxeHtLQ09O7dG0VFRZg4cSL69esn9jNvXVFSUoKYmBjExMSoXTtlVVJlTgLKz0tV52RVMbi4uODAgQPYuHEjjIyMcOLECbRq1Uold8u1AZ0TiDz06tULxcXFKCkpQc+ePUVee/XqFdLS0jB79mz06NED7u7uePPmjcTtXLhwQfh3aWkprl69Cnd390rXefPmDe7evSu2jrQaN24MfX19XL58WbgsJycHd+/erdH2NJVMw29t3boV3377Lfz9/fH333/D1tZWUXFVasKECZgwYYJSyxw0aBACAwORkpKCrKwsODo6olu3bgq96yNL+ceOHcP69esxdepUJCYmolWrVoiOjq5z49ExxoTtmOjOs4A65CSg/LxUdU5KE4Ovry++/PJLXL9+HQMGDMC4ceOwYsUK6pgkR3ROIPKgq6sr/Hm/4jmkXr16sLa2xpYtW+Do6IjHjx9XOj72hg0b0KxZM7i7u+PHH3/EmzdvxO7wzp8/H9bW1rC3t8d3330HGxsbDBw4sEZxm5ubIzg4GFOnTkX9+vVhZ2eHuXPnQkdHp9qmT3WJ1BXZXr164dKlS1i/fj2CgoIUGZNa0tXVhZ8KJxWvqnyO4zBx4kR0794dw4YNw61bt9C3b19MnDgRy5Ytg5GRkXKDJUpBOananKwuhpYtW+LixYuYNWsWVq1ahU2bNgmn1G3durVyAyWEVKmy9vo6OjrYs2cPJk2aBE9PTzRv3hxr166VmPdLlizBkiVLkJqaiqZNm+Lw4cNi7W2XLFmCiIgIpKenw9vbG0eOHIGBgUGN4161ahXGjh2Lfv36wcLCAtOmTcOTJ0+06rovdUWWx+Phxo0bcHZ2VmQ8pBY8PT1x+fJlTJ8+HWvXrsW6deuQlJSEXbt2wcvLS9XhETmjnFR/hoaGWLlyJXr27Ing4GDcuXMHHTp0EF7MaOYvUteYmJhAT09P6RMiyPpLR3Uzdh08eFD4t7+/P27fvi3yuqRfANzd3YXtZyvTtWvXSjtnh4SEICQkRPi8bGi/8iIjI0XGiDU3N8fOnTuFzwsKCjBv3jyMHj26yjjqEqkrsqdOnVJkHEROjIyMsGbNGvTq1QshISG4desW2rdvj2XLlmHixIla9XNDXUc5qTkCAgJw48YNjBo1CocPH8bkyZNx/PhxxMTE0DBdpE6xtLTEhAkT1H6K2rrir7/+wj///IMOHTogJycH8+fPBwCl9I9QFxozRS2RTe/evXHjxg2EhYUhMTEREREROH78OKKjoxXaOY4QIpmtrS0OHjyIn376CZMnT8bJkyfRqlUr/PzzzxgwYICqwyNEbsomPCHKsWLFCqSlpQmHQ0xJSRFr0lCX0e9adZi9vT2OHj2KdevWwdDQEL/++iu8vLxw7NgxhZS3ZMkScByn1KnxMjMzMXz4cFhbW8PY2BheXl64cuWK0srn8Xj4/vvv4ebmBmNjYzRp0gQ//PADdTwhEnEch7Fjx+Lq1ato3bo1Xr58icDAQIwbN04hd7BUkZOAavOScpIom6urKxhj8Pb2rnQdPz8/MMZEpqCVhzZt2uDq1avIz8/H69evcerUKa1rSkgV2TqO4zhMmDABV65cgaenJ168eIF+/fph4sSJePfundzKuXz5Mn766Se0atVKbtuURF9fXziu3ps3b9ClSxfo6+vj119/xe3bt7Fy5UrUq1dPoTGUt3TpUmzatAnr16/HnTt3sHTpUixbtgzr1q1TWgxE85S1pSub5Wzz5s3w8fFBamqq3MpQVk5WpOy8LH9OACgnCdE6TIvk5OQwACwnJ0fVoajEu3fv2KRJkxgABoB5enqyGzdu1Hq7eXl5rFmzZuzUqVPM19eXRURE1D5YKUyfPp117dpVKWVVpm/fviwsLExk2aBBg9hXX30lcX1tPwYrov3B2IkTJ5iDgwMDwAwMDNjKlSsZj8er1TZVlZOMqT4vZc1Jxug4rKl3796x27dvs3fv3qk6FKIhFHHM0B1ZLVLWESwxMRH29vbCjmBr166t1c9u4eHh6Nu3L/z9/eUYbfUOHz4MHx8ffP7557Czs0ObNm2wdetWpcbQuXNnnD59WjgA9fXr13Hu3Dn07t1bqXEQzRUQEICbN29iwIABKC4uxrfffotevXrVakYwVeUkoPq8pJxUvtpcP4h2UcixIrcqsQagb93/ef78OevTp4/w7myvXr3Ys2fPZN7O7t27maenp/DblTLv/hgaGjJDQ0M2c+ZMdu3aNfbTTz8xIyMjFhMTo5TyGWOMx+Ox6dOnM47jmJ6eHuM4ji1atKjS9ekYFEX74z98Pp9t2rSJGRsbMwDM2tqaHTp0SObtqDInGVN9Xsqak4zRcVhTpaWl7Pbt2+zly5eqDoVoiJcvX7Lbt2+z0tJSuW2TRi3QUnZ2djh69Cg2btyIKVOm4Pjx4/Dy8kJ0dDT69u0r1TaePHmCiIgInDp1SimDL5eWlmLfvn0AgCFDhoDP58PHxweLFi0CIGj0fuvWLWzevBnBwcEKjwcA9u3bh507d2LXrl3w8PBAamoqIiMj4eTkpLQYSN1Q1hGsbEaw1NRUBAYGYuzYsVi5cqVU42QqOyclUWZeVjwn6OnpUU4qka6uLqysrJCdnQ1AMAwWDfFIJGGMobCwENnZ2bCyspLrLIxUkdViHMchPDwcfn5+GDZsGG7evIl+/fohPDwcy5cvh7GxcZXvv3r1KrKzs9G2bVvhMh6Ph7Nnz2L9+vUoKiqS68HK5/ORnp4u/NvR0REtW7YUWcfd3R1xcXFyK7M6U6dOxYwZM/DFF18AALy8vJCRkYHFixfTRZPUiLu7Oy5cuIDvvvsOK1euxObNm5GcnIxdu3ahTZs2Vb5X2TkpiTLzsuI5AaCcVDYHBwcAEFZmCamKlZWV8JiRF6rIEnh4eODSpUuYMWMG1qxZgw0bNggvnFX1eO7Rowdu3rwpsiw0NBQtWrTA9OnTFX7B7NKlC9LS0kSW3b17F40aNVJoueUVFhaKzc6kq6srvKgSUhOGhoZYsWKFcEawf/75Bx07dsTixYvxzTffVDojmKpzElB9XlJOKhfHcXB0dISdnR1KSkpUHQ5RY/r6+go5B1FFlgAQdARbvXq1cEawv//+Gx06dMDSpUsxceJEMMaQkpKCrKwsODo6olu3bjA3N4enp6fIdkxNTWFtbS22XB54PJ7w75SUFEyaNAndunXDokWLMGTIEFy6dAlbtmzBli1b5F52WfkV90H//v2xcOFCNGzYEB4eHvjrr7+watUqhIWFKSQGol0++eQT4Yxghw4dEjYDio2NhZOTk8RjUtk5WbH8b775Bp07d1ZKXlY8J/j5+VFOqoiurq5SvigRIkZurW01ADXol87z589Z3759hR3BvL29maOjo/A5AObs7Mzi4uLE3quojiVxcXHM1dWVRUVFsaioKKavr8+cnZ3ZzJkzmaenJzM0NGQtWrRgW7ZskXvZZeU7OzuL7YNffvmFRUREsIYNGzIjIyPWuHFj9t1337GioiKJ26FjUBTtD+nw+Xy2efNmkY5g06dPl3hMVsxLReZkZeUfOXJE4XlZ2TlB1pxkjI5DQjQZVWSJRHw+n61fv54ZGBiIXKjKHhzHMY7jJFZm5S0uLo5xHMf09fVFLlrKiqGsfHnsAzoGRdH+kM3t27eZt7e3xJxUZl7KMydqU768zgl0HBKiuTjGtGcAuNzcXFhaWiInJwcWFhaqDkft8Xg8NGjQAM+fP690nQYNGuD27dsK+0mJx+PB3d0dT58+hb6+Pr777jsAwMKFC4XtsRQZQ/nyJeE4Ds7Oznj48KFU5dMxKIr2h+wKCwthb2+P/Pz8StdRZU4os3xJ5wRZcxKg45AQTUZtZEmlUlJSqqzEAoI51S0tLZUUkfrFwBjDkydPhO3zCFG0S5cuVVmJBVSfl5SThBBloYosqVRtZhZShJKSEkRFRak6DInUbV+RuouOtf9UdU6g/USIdqCKLKmUo6OjVOslJibio48+UkgMZ8+eRZ8+fVQWg7TlS7uvCKktVecl5SQhRJ1QG1lSKR6PB1dXV2RmZkqcH7kmbdE0LQZ5l0/HoCjaH7KrazmhDuXTcUiI5pI8qjYhEIwLuGbNGgAQm3aw7Pnq1asVOnagqmNQdfmEVKTqY1LbyyeEqBeqyJIqDRo0CAcOHECDBg1Eljs7O+PAgQMYNGhQnY9B1eUTUpGqj0ltL58Qoj6oaQGRiqQZfJR9x0PVMcijfDoGRdH+qJ26kBPqUD4dh4RoLqrIEqJEdAyKov1B1AEdh4RoLmpaQAghhBBCNBJVZAkhhBBCiEaiiiwhhBBCCNFIVJElhBBCCCEaiSqyhBBCCCFEI1FFlhBCCCGEaCSqyBJCCCGEEI1EFVlCCCGEEKKRqCJLCCGEEEI0ElVkCSGEEEKIRqKKLCGEEEII0UgaU5FduHAhOnfuDBMTE1hZWak6HEK0HuUkIYQQVdOYimxxcTE+//xzjBs3TtWhEEJAOUkIIUT19FQdgLTmzZsHAIiJiVFtIIQQAJSThBBCVE9j7sgSQgghhBBSnsbcka2JoqIiFBUVCZ/n5OQAAHJzc1UVEtFyZcceY0zFkagG5SRRR9qel4RoMpVWZGfMmIGlS5dWuc6dO3fQokWLGm1/8eLFwp8/y3NxcanR9giRl7y8PFhaWqo6DDGUk0SbqWteEkIqxzEVfgV98eIFXr16VeU6jRs3hoGBgfB5TEwMIiMj8fbt22q3X/HuD5/Px+vXr2FtbQ2O42SONzc3Fy4uLnjy5AksLCxkfr+m0/bPD9R+HzDGkJeXBycnJ+joqF/LHspJzaPt+0Aen1/d85IQUjmV3pG1tbWFra2twrZvaGgIQ0NDkWXyGCbIwsJCKy8YZbT98wO12wfqfMeHclJzafs+qO3nV+e8JIRUTmPayD5+/BivX7/G48ePwePxkJqaCgBo2rQpzMzMVBscIVqIcpIQQoiqaUxFds6cOYiNjRU+b9OmDQAgKSkJfn5+KoqKEO1FOUkIIUTVNKYxUExMDBhjYg9lXjANDQ0xd+5csZ9GtYW2f36A9kF5lJPqQdv3gbZ/fkK0nUo7exFCCCGEEFJTGnNHlhBCCCGEkPKoIksIIYQQQjQSVWQJIYQQQohGooqslDZs2ABXV1cYGRmhY8eOuHTpkqpDUprFixejffv2MDc3h52dHQYOHIi0tDRVh6UyS5YsAcdxiIyMVHUoWo/ykvKyDOUlIdqJKrJS2Lt3LyZPnoy5c+fi2rVraN26NXr27Ins7GxVh6YUZ86cQXh4OC5cuIBTp06hpKQEAQEBKCgoUHVoSnf58mX89NNPaNWqlapD0XqUl5SXZSgvCdFeNGqBFDp27Ij27dtj/fr1AATTarq4uGDixImYMWOGiqNTvhcvXsDOzg5nzpzBRx99pOpwlCY/Px9t27bFxo0bsWDBAnh7e2P16tWqDktrUV6KorykvCREG9Ed2WoUFxfj6tWr8Pf3Fy7T0dGBv78//vzzTxVGpjo5OTkAgPr166s4EuUKDw9H3759RY4FohqUl+IoLykvCdFGGjOzl6q8fPkSPB4P9vb2Isvt7e3xzz//qCgq1eHz+YiMjESXLl3g6emp6nCUZs+ePbh27RouX76s6lAIKC8rorykvCREW1FFlsgkPDwct27dwrlz51QditI8efIEEREROHXqFIyMjFQdDiFiKC8pLwnRVlSRrYaNjQ10dXXx/PlzkeXPnz+Hg4ODiqJSjQkTJuDo0aM4e/YsnJ2dVR2O0ly9ehXZ2dlo27atcBmPx8PZs2exfv16FBUVQVdXV4URah/Ky/9QXlJeEqLNqI1sNQwMDNCuXTucPn1auIzP5+P06dPo1KmTCiNTHsYYJkyYgISEBPz+++9wc3NTdUhK1aNHD9y8eROpqanCh4+PD7766iukpqbSxVIFKC8pLykvCSEA3ZGVyuTJkxEcHAwfHx906NABq1evRkFBAUJDQ1UdmlKEh4dj165dOHToEMzNzfHs2TMAgKWlJYyNjVUcneKZm5uLtTs0NTWFtbW1VrVHVDeUl5SXlJeEEKrISmHo0KF48eIF5syZg2fPnsHb2xvHjx8X62hSV23atAkA4OfnJ7I8OjoaISEhyg+IEFBeUl4SQgiNI0sIIYQQQjQUtZElhBBCCCEaiSqyhBBCCCFEI1FFlhBCCCGEaCSqyBJCCCGEEI1EFVlCCCGEEKKRqCJLCCGEEEI0ElVkCSGEEEKIRqKKLCGEEEII0UhUkSUiQkJCMHDgQFWHQQgph/KSEEIkoylqtQjHcVW+PnfuXKxZswY02RshykN5SQghNUdT1GqRZ8+eCf/eu3cv5syZg7S0NOEyMzMzmJmZqSI0QrQW5SUhhNQcNS3QIg4ODsKHpaUlOI4TWWZmZib2E6afnx8mTpyIyMhI1KtXD/b29ti6dSsKCgoQGhoKc3NzNG3aFL/++qtIWbdu3ULv3r1hZmYGe3t7jBgxAi9fvlTyJyZE/VFeEkJIzVFFllQrNjYWNjY2uHTpEiZOnIhx48bh888/R+fOnXHt2jUEBARgxIgRKCwsBAC8ffsWH3/8Mdq0aYMrV67g+PHjeP78OYYMGaLiT0JI3UF5SQghVJElUmjdujVmz56NZs2aYebMmTAyMoKNjQ2+/vprNGvWDHPmzMGrV69w48YNAMD69evRpk0bLFq0CC1atECbNm2wfft2JCUl4e7duyr+NITUDZSXhBBCnb2IFFq1aiX8W1dXF9bW1vDy8hIus7e3BwBkZ2cDAK5fv46kpCSJ7fru37+PDz74QMERE1L3UV4SQghVZIkU9PX1RZ5zHCeyrKzXNZ/PBwDk5+ejf//+WLp0qdi2HB0dFRgpIdqD8pIQQqgiSxSgbdu2iIuLg6urK/T06BAjRB1QXhJC6iJqI0vkLjw8HK9fv8awYcNw+fJl3L9/HydOnEBoaCh4PJ6qwyNEK1FeEkLqIqrIErlzcnLC+fPnwePxEBAQAC8vL0RGRsLKygo6OnTIEaIKlJeEkLqIJkQghBBCCCEaib6GE0IIIYQQjUQVWUIIIYQQopGoIksIIYQQQjQSVWQJIYQQQohGooosIYQQQgjRSFSRJYQQQgghGokqsoQQQgghRCNRRZYQQgghhGgkqsgSQgghhBCNRBVZQgghhBCikagiSwghhBBCNBJVZAkhhBBCiEb6P6wFyMrSlufOAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_matched(\n", + " [ex_graphs.div_shift_bad_match_pred(), ex_graphs.div_shift_bad_match_daughter()],\n", + " \"Insufficient matching for shifted divisions\"\n", + ")" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -501,7 +547,7 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": null, "metadata": { "nbsphinx": "hidden" }, @@ -527,7 +573,7 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -547,7 +593,7 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -567,7 +613,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -587,7 +633,7 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -607,7 +653,7 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -627,7 +673,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -647,7 +693,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": null, "metadata": {}, "outputs": [ { diff --git a/tests/examples/graphs.py b/tests/examples/graphs.py index 737514b..6c4a08d 100644 --- a/tests/examples/graphs.py +++ b/tests/examples/graphs.py @@ -470,3 +470,40 @@ def div_2late_mid(): pred = longer_division(3, start_id=start_id, y_offset=0.75) mapping = [(1, 9), (2, 10), (3, 11), (5, 12), (7, 13), (8, 14)] return Matched(gt, pred, mapping, {}) + + +def div_shift_min_match(): + """one to one + Minimal requirements for matching in a shifted division + - Early division node is matched to a predecessor of the late division + - Daughters must be matched in the frame following the late division + """ + gt = longer_division(1) + start_id = max(gt.nodes) + 1 + pred = longer_division(2, start_id=start_id, y_offset=0.75) + mapping = [(2, 10), (6, 13), (5, 12)] + return Matched(gt, pred, mapping, {}) + + +def div_shift_bad_match_pred(): + """one to one + Division isn't corrected because the early division node isn't matched + to a predecessor of the late division node + """ + gt = longer_division(1) + start_id = max(gt.nodes) + 1 + pred = longer_division(2, start_id=start_id, y_offset=0.75) + mapping = [(1, 9), (6, 13), (5, 12)] + return Matched(gt, pred, mapping, {}) + + +def div_shift_bad_match_daughter(): + """one to one + Division isn't corrected because daughter nodes aren't matched in frame + following late division + """ + gt = longer_division(1) + start_id = max(gt.nodes) + 1 + pred = longer_division(2, start_id=start_id, y_offset=0.75) + mapping = [(2, 10), (7, 14), (8, 15)] + return Matched(gt, pred, mapping, {}) From 339595fe6cf7ed925e2113582957a14e738e597d Mon Sep 17 00:00:00 2001 From: Morgan Schwartz Date: Wed, 18 Dec 2024 12:17:50 -0500 Subject: [PATCH 8/8] Differentiate between standard test case testing and end to end tests --- tests/matchers/test_ctc.py | 70 ++++++++++---------- tests/matchers/test_iou.py | 130 +++++++++++++++++++++++-------------- 2 files changed, 119 insertions(+), 81 deletions(-) diff --git a/tests/matchers/test_ctc.py b/tests/matchers/test_ctc.py index 246a299..304555c 100644 --- a/tests/matchers/test_ctc.py +++ b/tests/matchers/test_ctc.py @@ -10,48 +10,52 @@ from traccuracy.matchers._ctc import CTCMatcher, match_frame_majority -def test_CTCMatcher(): +class TestCTCMatcher: matcher = CTCMatcher() - # shapes don't match - with pytest.raises(ValueError): - matcher.compute_mapping( - TrackingGraph(nx.DiGraph(), segmentation=np.zeros((5, 10, 10))), - TrackingGraph(nx.DiGraph(), segmentation=np.zeros((5, 10, 5))), + def test_bad_shape_input(self): + # shapes don't match + with pytest.raises(ValueError): + self.matcher.compute_mapping( + TrackingGraph(nx.DiGraph(), segmentation=np.zeros((5, 10, 10))), + TrackingGraph(nx.DiGraph(), segmentation=np.zeros((5, 10, 5))), + ) + + def test_end_to_end(self): + n_labels = 3 + n_frames = 3 + movie = get_annotated_movie( + labels_per_frame=n_labels, frames=n_frames, mov_type="repeated" ) - n_labels = 3 - n_frames = 3 - movie = get_annotated_movie( - labels_per_frame=n_labels, frames=n_frames, mov_type="repeated" - ) + # We can assume each object is present and connected across each frame + g = nx.DiGraph() + for t in range(n_frames - 1): + for i in range(1, n_labels + 1): + g.add_edge(f"{i}_{t}", f"{i}_{t+1}") + + attrs = {} + for t in range(n_frames): + for i in range(1, n_labels + 1): + attrs[f"{i}_{t}"] = {"t": t, "y": 0, "x": 0, "segmentation_id": i} + nx.set_node_attributes(g, attrs) + + matched = self.matcher.compute_mapping( + TrackingGraph(g, segmentation=movie), + TrackingGraph(g, segmentation=movie), + ) - # We can assume each object is present and connected across each frame - g = nx.DiGraph() - for t in range(n_frames - 1): - for i in range(1, n_labels + 1): - g.add_edge(f"{i}_{t}", f"{i}_{t+1}") - - attrs = {} - for t in range(n_frames): - for i in range(1, n_labels + 1): - attrs[f"{i}_{t}"] = {"t": t, "y": 0, "x": 0, "segmentation_id": i} - nx.set_node_attributes(g, attrs) - - matched = matcher.compute_mapping( - TrackingGraph(g, segmentation=movie), - TrackingGraph(g, segmentation=movie), - ) + # Check for correct number of pairs + assert len(matched.mapping) == n_frames * n_labels - # Check for correct number of pairs - assert len(matched.mapping) == n_frames * n_labels + # gt and pred node should be the same + for pair in matched.mapping: + assert pair[0] == pair[1] - # gt and pred node should be the same - for pair in matched.mapping: - assert pair[0] == pair[1] +class TestStandards: + """Test match_frame_majority against standard test cases""" -class Test_match_frame_majority: @pytest.mark.parametrize( "data", [ex_segs.good_segmentation_2d(), ex_segs.good_segmentation_3d()], diff --git a/tests/matchers/test_iou.py b/tests/matchers/test_iou.py index 81388bc..0c319aa 100644 --- a/tests/matchers/test_iou.py +++ b/tests/matchers/test_iou.py @@ -15,7 +15,9 @@ ) -class Test__match_nodes: +class TestStandards: + """Test _match_nodes against standard test cases""" + @pytest.mark.parametrize( "data", [ex_segs.good_segmentation_2d(), ex_segs.good_segmentation_3d()], @@ -172,71 +174,103 @@ def test__construct_time_to_seg_id_map(): assert time_to_seg_id_map[t][i] == f"{i}_{t}" -def test_match_iou(): - # Bad input - with pytest.raises(ValueError): - match_iou("not tracking data", "not tracking data") +class Test_match_iou: - # shapes don't match - with pytest.raises(ValueError): - match_iou( - TrackingGraph(nx.DiGraph(), segmentation=np.zeros((5, 10, 10))), - TrackingGraph(nx.DiGraph(), segmentation=np.zeros((5, 10, 5))), - ) + def test_bad_input(self): + # Bad input + with pytest.raises(ValueError): + match_iou("not tracking data", "not tracking data") - # Test 2d data - n_frames = 3 - n_labels = 3 - track_graph = get_movie_with_graph(ndims=3, n_frames=n_frames, n_labels=n_labels) - mapper = match_iou( - track_graph, - track_graph, - ) + def test_bad_shapes(self): + # shapes don't match + with pytest.raises(ValueError): + match_iou( + TrackingGraph(nx.DiGraph(), segmentation=np.zeros((5, 10, 10))), + TrackingGraph(nx.DiGraph(), segmentation=np.zeros((5, 10, 5))), + ) - # Check for correct number of pairs - assert len(mapper) == n_frames * n_labels - # gt and pred node should be the same - for pair in mapper: - assert pair[0] == pair[1] + def test_end_to_end_2d(self): + # Test 2d data + n_frames = 3 + n_labels = 3 + track_graph = get_movie_with_graph( + ndims=3, n_frames=n_frames, n_labels=n_labels + ) + mapper = match_iou( + track_graph, + track_graph, + ) - # Check 3d data - track_graph = get_movie_with_graph(ndims=4, n_frames=n_frames, n_labels=n_labels) - mapper = match_iou( - track_graph, - track_graph, - ) + # Check for correct number of pairs + assert len(mapper) == n_frames * n_labels + # gt and pred node should be the same + for pair in mapper: + assert pair[0] == pair[1] - # Check for correct number of pairs - assert len(mapper) == n_frames * n_labels - # gt and pred node should be the same - for pair in mapper: - assert pair[0] == pair[1] + def test_end_to_end_3d(self): + # Check 3d data + n_frames = 3 + n_labels = 3 + track_graph = get_movie_with_graph( + ndims=4, n_frames=n_frames, n_labels=n_labels + ) + mapper = match_iou( + track_graph, + track_graph, + ) + + # Check for correct number of pairs + assert len(mapper) == n_frames * n_labels + # gt and pred node should be the same + for pair in mapper: + assert pair[0] == pair[1] class TestIOUMatched: - def test__init__(self): + matcher = IOUMatcher() + n_frames = 3 + n_labels = 3 + track_graph = get_movie_with_graph(ndims=3, n_frames=n_frames, n_labels=n_labels) + + def test_no_segmentation(self): # No segmentation track_graph = get_movie_with_graph() data = TrackingGraph(track_graph.graph) - matcher = IOUMatcher() - with pytest.raises(ValueError): - matcher.compute_mapping(data, data) + self.matcher.compute_mapping(data, data) - def test_compute_mapping(self): - # Test 2d data - n_frames = 3 - n_labels = 3 - track_graph = get_movie_with_graph( - ndims=3, n_frames=n_frames, n_labels=n_labels + def test_e2e(self): + matched = self.matcher.compute_mapping( + gt_graph=self.track_graph, pred_graph=self.track_graph ) - matcher = IOUMatcher() - matched = matcher.compute_mapping(gt_graph=track_graph, pred_graph=track_graph) + # Check for correct number of pairs + assert len(matched.mapping) == self.n_frames * self.n_labels + # gt and pred node should be the same + for pair in matched.mapping: + assert pair[0] == pair[1] + + def test_e2e_threshold(self): + matcher = IOUMatcher(iou_threshold=1.0) + matched = matcher.compute_mapping( + gt_graph=self.track_graph, pred_graph=self.track_graph + ) + + # Check for correct number of pairs + assert len(matched.mapping) == self.n_frames * self.n_labels + # gt and pred node should be the same + for pair in matched.mapping: + assert pair[0] == pair[1] + + def test_e2e_one_to_one(self): + matcher = IOUMatcher(one_to_one=True) + matched = matcher.compute_mapping( + gt_graph=self.track_graph, pred_graph=self.track_graph + ) # Check for correct number of pairs - assert len(matched.mapping) == n_frames * n_labels + assert len(matched.mapping) == self.n_frames * self.n_labels # gt and pred node should be the same for pair in matched.mapping: assert pair[0] == pair[1]