-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathJigsawNet.py
138 lines (98 loc) · 3.32 KB
/
JigsawNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import torch.nn as nn
import torch
from thop import profile
from thop import clever_format
class ConvBlock(nn.Module):
def __init__(self, in_channels, out_channels):
super(ConvBlock, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=(3,3), stride=1, padding=1)
self.bn = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
return x
class Vgg16(nn.Module):
def __init__(self, in_channels):
super(Vgg16, self).__init__()
# block 1 64 * 64
self.conv1_1 = ConvBlock(in_channels, 64)
self.conv1_2 = ConvBlock(64, 64)
self.maxpool1 = nn.MaxPool2d(kernel_size=2, stride=2)
# block 2 32 * 32
self.conv2_1 = ConvBlock(64, 128)
self.conv2_2 = ConvBlock(128, 128)
self.maxpool2 = nn.MaxPool2d(kernel_size=2, stride=2)
# block 3 16 * 16
self.conv3_1 = ConvBlock(128, 256)
self.conv3_2 = ConvBlock(256, 256)
self.conv3_3 = ConvBlock(256, 256)
self.maxpool3 = nn.MaxPool2d(kernel_size=2, stride=2)
# block 4 8 * 8
self.conv4_1 = ConvBlock(256, 512)
self.conv4_2 = ConvBlock(512, 512)
self.conv4_3 = ConvBlock(512, 512)
self.maxpool4 = nn.MaxPool2d(kernel_size=2, stride=2)
# block5 4 * 4
self.conv5_1 = ConvBlock(512, 512)
self.conv5_2 = ConvBlock(512, 512)
self.conv5_3 = ConvBlock(512, 512)
self.maxpool5 = nn.MaxPool2d(kernel_size=2, stride=2)
def forward(self, x):
x = self.conv1_1(x)
x = self.conv1_2(x)
x = self.maxpool1(x)
x = self.conv2_1(x)
x = self.conv2_2(x)
x = self.maxpool2(x)
x = self.conv3_1(x)
x = self.conv3_2(x)
x = self.conv3_3(x)
x = self.maxpool3(x)
x = self.conv4_1(x)
x = self.conv4_2(x)
x = self.conv4_3(x)
x = self.maxpool4(x)
x = self.conv5_1(x)
x = self.conv5_2(x)
x = self.conv5_3(x)
x = self.maxpool5(x)
return x
class JigsawNet(nn.Module):
def __init__(self, in_channels, n_classes):
super(JigsawNet, self).__init__()
self.conv = Vgg16(in_channels)
self.fc6 = nn.Linear(2048, 512)
self.fc7 = nn.Linear(4608, 4096)
self.classifier = nn.Linear(4096, n_classes)
def forward(self, x):
B, _, _, _, _ = x.size()
res = []
for i in range(9):
p = self.conv(x[:, i, ...])
p = p.view(B, -1)
p = self.fc6(p)
res.append(p)
p = torch.cat(res, 1)
p = self.fc7(p)
p = self.classifier(p)
return p
def encode(self, x):
B, _, _, _, _ = x.size()
res = []
for i in range(9):
p = self.conv(x[:, i, ...])
p = p.view(B, -1)
p = self.fc6(p)
res.append(p)
p = torch.cat(res, 1)
p = self.fc7(p)
return p
if __name__ == '__main__':
x = torch.rand(32, 9, 1, 64, 64)
model = JigsawNet(in_channels=1, n_classes=1000)
flops, params = profile(model, inputs=(x,))
flops, params = clever_format([flops, params], "%.3f")
print(flops, params)
print(model(x).shape)