-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
197 lines (152 loc) · 6.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import argparse
import torch
import os
import numpy as np
import random
import pandas as pd
import shutil
import torch.nn as nn
from Dataset import FoldDataset
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader
from JigsawNet import JigsawNet
from tqdm import tqdm
def weight_init(m):
if isinstance(m, nn.Linear):
nn.init.xavier_normal_(m.weight)
nn.init.constant_(m.bias, 0)
# 也可以判断是否为conv2d,使用相应的初始化方式
elif isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
# 是否为批归一化层
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def save_checkpoint(net, path, global_step, accuracy=None, info=''):
try:
os.makedirs(path)
print('Created checkpoint directory')
except OSError:
pass
if accuracy:
checkpoint_name = f'CP_%d_%.4f%s.pth' % (global_step, accuracy, info)
else :
checkpoint_name = f'CP_{global_step}{info}.pth'
torch.save(net.state_dict(),
os.path.join(path, checkpoint_name))
print(f'Checkpoint {checkpoint_name} saved !')
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('-b', '--batch_size', type=int, default=32, dest='batch_size')
parser.add_argument('-l', '--lr', type=float, default=1e-4, dest='lr')
parser.add_argument('-n', '--exp_name', type=str, default='exp', dest='exp_name')
parser.add_argument('-e', '--epochs', type=int, default=100, dest='epochs')
parser.add_argument('-s', '--seed', type=int, default=1, dest='seed')
return parser.parse_args()
def evaluate(model, test_loader, device):
model.eval()
all = 0
p = 0
for batch in test_loader:
_, clips, labels = batch
clips = clips.to(device)
labels = labels.to(device, dtype=torch.long).squeeze() # B * 1
# ---- forward ----
pred = model(clips) # B * 1000
pred_label = torch.argmax(torch.softmax(pred, dim=1), dim=1).long()
p += (pred_label == labels).sum().item()
all += labels.size(0)
model.train()
return p/all
def train(train_loader, test_loader, model, optimizer, epochs, device, writer):
# ----prepare ----
model.to(device)
model.train()
total_step = 0
criterion = nn.CrossEntropyLoss()
# ---- training ----
for epoch in range(1, epochs+1):
with tqdm(total=len(train_loader), desc=f'epoch[{epoch}/{epochs+1}]:') as bar:
for batch in train_loader:
# ---- data prepare ----
_, clips, labels = batch
clips = clips.to(device)
labels = labels.to(device, dtype=torch.long)
# ---- forward ----
preds = model(clips) # B * 1000
# ---- loss ----
loss = criterion(preds, labels)
# ---- backward ----
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_step += 1
# lr_ = args.lr * max(1.0 - total_step / (len(train_loader) * epochs), 1e-7) ** 0.9
# for param_group in optimizer.param_groups:
# param_group['lr'] = lr_
# ---- log ----
writer.add_scalar('info/loss', loss, total_step)
bar.set_postfix(**{'loss (batch)': loss.item()})
bar.update(1)
# ---- validation ----
accuracy = evaluate(model, test_loader, device)
writer.add_scalar('eval/ac', accuracy, total_step)
writer.add_scalar('info/lr', optimizer.param_groups[0]['lr'], total_step)
print(f"""
performance {accuracy}
""")
print('training finish')
return accuracy
if __name__ == '__main__':
# ---- init ----
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
args = get_args()
imgs_dir = ''
log_path = 'log/'
train_folds = ''
val_folds = ''
try:
os.makedirs(log_path)
except:
pass
# ---- random seed ----
seed = args.seed
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # if you are using multi-GPU.
np.random.seed(seed) # Numpy module.
random.seed(seed) # Python random module.
torch.manual_seed(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def _init_fn(worker_id):
np.random.seed(int(seed))
# ---- log & dataset ----
if not os.path.exists(os.path.join(log_path, args.exp_name)):
os.makedirs(os.path.join(log_path, args.exp_name))
if os.path.exists(os.path.join(log_path, args.exp_name, 'log')):
shutil.rmtree(os.path.join(log_path, args.exp_name, 'log'))
writer = SummaryWriter(os.path.join(log_path, args.exp_name, 'log'))
csv = pd.read_csv(train_folds)
train_pool = [item[0] for item in csv.values]
csv = pd.read_csv(val_folds)
test_pool = [item[0] for item in csv.values]
permutations = np.load('permutations.npy').tolist()
train_set = FoldDataset(imgs_dir, train_pool, permutations, in_channels=1)
test_set = FoldDataset(imgs_dir, test_pool, permutations, in_channels=1)
train_loader = DataLoader(train_set, batch_size=args.batch_size, num_workers=8, pin_memory=True, shuffle=True,
worker_init_fn=_init_fn)
test_loader = DataLoader(test_set, batch_size=args.batch_size, num_workers=8, pin_memory=True)
# ---- model ----
model = JigsawNet(1, 1000)
model.apply(weight_init)
optimizer = torch.optim.Adam(model.parameters(), args.lr, weight_decay=1e-4)
epochs = args.epochs
# train
print(f'''
training start!
train set num: {len(train_set)}
val set num: {len(test_set)}
''')
ac = train(train_loader, test_loader, model, optimizer, epochs, device, writer)
save_checkpoint(model, os.path.join(log_path, args.exp_name, 'checkpoints'), 0, ac)