The steps below will guide you through using Model Analyzer in Docker mode to profile and analyze a simple PyTorch model: add_sub.
1. Create a new directory and enter it
mkdir <new_dir> && cd <new_dir>
2. Start a git repository
git init && git remote add -f origin https://github.com/triton-inference-server/model_analyzer.git
3. Enable sparse checkout, and download the examples directory, which contains the add_sub model
git config core.sparseCheckout true && \
echo 'examples' >> .git/info/sparse-checkout && \
git pull origin main
1. Pull the SDK container:
docker pull nvcr.io/nvidia/tritonserver:23.02-py3-sdk
2. Run the SDK container
docker run -it --gpus all \
-v /var/run/docker.sock:/var/run/docker.sock \
-v $(pwd)/examples/quick-start:$(pwd)/examples/quick-start \
-v <path-to-output-model-repo>:<path-to-output-model-repo> \
--net=host nvcr.io/nvidia/tritonserver:23.02-py3-sdk
Replacing <path-to-output-model-repo>
with the
absolute path to the directory where the output model repository
will be located.
This ensures the Triton SDK container has access to the model
config variants that Model Analyzer creates.
Important: You must ensure the absolutes paths are identical on both sides of the mounts (or else Tritonserver cannot load the model)
The examples/quick-start directory is an example Triton Model Repository that contains a simple libtorch model which calculates the sum and difference of two inputs.
Run the Model Analyzer profile
subcommand inside the container with:
model-analyzer profile \
--model-repository <path-to-examples-quick-start> \
--profile-models add_sub --triton-launch-mode=docker \
--output-model-repository-path <path-to-output-model-repo>/<output_dir> \
--export-path profile_results
Important: You must specify an <output_dir>
subdirectory. You cannot have --output-model-repository-path
point directly to <path-to-output-model-repo>
Important: If you already ran this earlier in the container, you can use the --override-output-model-repository
option to overwrite the earlier results.
Important: The checkpoint directory should be removed between consecutive runs of
the model-analyzer profile
command.
This will perform a search across limited configurable model parameters on the
add_sub
model. This can take up to 60 minutes to finish. If you want a shorter
run (1-2 minutes) for example purposes, you can run with the below additional
options. Note that these options are not intended to find the best
configuration:
--run-config-search-max-concurrency 2 \
--run-config-search-max-model-batch-size 2 \
--run-config-search-max-instance-count 2
--run-config-search-max-concurrency
sets the max concurrency value that run config search will not go beyond.--run-config-search-max-model-batch-size
sets the highest max_batch_size that run config search will not go beyond.--run-config-search-max-instance-count
sets the max instance group count value that run config search will not go beyond.
With these options, model analyzer will test 5 configs (4 new configs as well as the unmodified default add_sub config), and each config will have 2 experiments run on Perf Analyzer (concurrency=1 and concurrency=2). This significantly reduces the search space, and therefore, model analyzer's runtime.
The measured data and summary report will be placed inside the
./profile_results
directory. The directory will be structured as follows.
$HOME
|--- model_analyzer
|--- profile_results
. |--- plots
. | |--- simple
. | | |--- add_sub
| | |--- gpu_mem_v_latency.png
| | |--- throughput_v_latency.png
| |
| |--- detailed
| |--- add_sub
| |--- gpu_mem_v_latency.png
| |--- throughput_v_latency.png
|
|--- results
| |--- metrics-model-inference.csv
| |--- metrics-model-gpu.csv
| |--- metrics-server-only.csv
|
|--- reports
|--- summaries
. |--- add_sub
. |--- result_summary.pdf
Model analyzer's report subcommand allows you to examine the performance of a
model config variant in detail. For example, it can show you the latency
breakdown of your model to help you identify potential bottlenecks in your model
performance.
The detailed reports also contain other configurable plots and a
table of measurements taken of that particular config. You can generate a
detailed report for the two add_sub
model configs add_sub_config_default
and
add_sub_config_0
using:
$ model-analyzer report --report-model-configs add_sub_config_default,add_sub_config_0 -e profile_results
This will create directories named after each of the model configs under
./profile_results/reports/detailed
containing the detailed report PDF files as
shown below.
$HOME
|--- model_analyzer
|--- profile_results
. .
. .
.
|--- reports
.
.
.
|--- detailed
|--- add_sub_config_default
| |--- detailed_report.pdf
|
|--- add_sub_config_0
|--- detailed_report.pdf