-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathMeterAutoReader.py
392 lines (345 loc) · 19.1 KB
/
MeterAutoReader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
import colorsys
import random
import os
import numpy as np
from yolo import YOLO
from PIL import Image
import cv2
import math
#import cv2 as cv
#import argparse
import matplotlib.pyplot as plt
video_path = "D:/test.mp4"
output_path = "D:/0.mp4"
ImageDir = os.listdir("D:/test/testimages")
j = 0
a = 0
b = 0
c = 0
detected_theata = 0
detected_theata1 = 0
detected_theata2 = 0
detected_theata3 = 0
jiaodu = 0
#这一步是为了调用已经训练好的Yolov3模型参数
yolov3_args = {
"model_path": 'logs/000/trained_weights_final.h5',
"anchors_path": 'model_data/yolo_anchors.txt',
"classes_path": 'model_data/coco_classes.txt',
"score": 0.08,
"iou": 0.3,
"model_image_size": (416, 416),
"gpu_num": 1,
}
def image(pic_path):
if pic_path == 0:
yolov3 = YOLO(**yolov3_args)
for i in range(len(ImageDir)):
ImagePath = "D:/test/testimages/" + ImageDir[i]
ImageName = "D:/test/testimages/" + str(i) + ".jpg"
img = Image.open(ImagePath)
image, boxes, scores, classes = yolov3.detect_image_mul(img)
origin = np.asarray(image) #将数据转为矩阵
image_bgr = cv2.cvtColor(np.asarray(origin), cv2.COLOR_RGB2BGR)#cv2下的色彩空间灰度化
cv2.imwrite(ImageName, image_bgr)
elif pic_path != 0:
yolov3 = YOLO(**yolov3_args)
img = Image.open(pic_path)#打开图片
img2 = cv2.imread(pic_path)
image, boxes, scores, classes = yolov3.detect_image_mul(img)#yolov3检测
origin = np.asarray(image) # 将数据转为矩阵
image_bgr = cv2.cvtColor(np.asarray(origin), cv2.COLOR_RGB2BGR) # cv2下的色彩空间灰度化
cv2.imwrite("D:/git/work/keras-yolo3/kuangxuanimages/detected.jpg", image_bgr)
#boxes内返回的是yolo预测出来的边框坐标,通过该坐标可以对原图像进行裁剪
for i in range(boxes.shape[0]):
top, left, bottom, right = boxes[i]
# 或者用下面这句等价
#top = boxes[0][0]
#left = boxes[0][1]
#bottom = boxes[0][2]
#right = boxes[0][3]
top = top - 5
left = left - 5
bottom = bottom + 5
right = right + 5
# 左上角点的坐标
top = int(max(0, np.floor(top + 0.5).astype('int32')))
left = int(max(0, np.floor(left + 0.5).astype('int32')))
# 右下角点的坐标
bottom = int(min(np.shape(image)[0], np.floor(bottom + 0.5).astype('int32')))
right = int(min(np.shape(image)[1], np.floor(right + 0.5).astype('int32')))
# 记录图片的高度与宽度
a = bottom - top
b = right - left
print ('height', a)
print ('with', b)
croped_region = image_bgr[top:bottom, left:right] # 先高后宽
#cv2.imshow("cropimage", croped_region)
# 将裁剪好的目标保存到本地
j + 1
cv2.imwrite("D:/git/work/keras-yolo3/kuangxuanimages/cutted_img_"+str(j)+".jpg", croped_region)
print('cropped successed')
cv2.waitKey(0)
cv2.destroyAllWindows()
def vameterdetect(num):
if num == 1:
origin = cv2.imread("D:/git/work/keras-yolo3/kuangxuanimages/cutted_img_"+str(j)+".jpg", 0)
nor = cv2.resize(origin, None, fx=0.5, fy=0.5, interpolation=cv2.INTER_LINEAR)#图片归一化cv2.resize(输入图片,输出图片,沿x轴缩放系数,沿y轴缩放系数,插入方式为双线性插值(默认方式))
image_bgr = cv2.cvtColor(nor, cv2.COLOR_RGB2BGR)#转换为灰度图
gray = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2GRAY)
median = cv2.medianBlur(origin, 1)# 中值滤波去噪cv2.medianBlur(原图片, 当前的方框尺寸)
edges = cv2.Canny(median, 250, 350, apertureSize=3)# 边缘检测cv2.Canny(原图片, 最小阈值,最大阈值,Sobel算子的大小)
#kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5)) # 矩形结构
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5)) # 椭圆结构
# kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (5, 5)) #十字结构
# cv2.getStructuringElement(指定形状,内核的尺寸,锚点的位置 ) 返回指定形状和尺寸的结构元素。
# 霍夫直线
lines = cv2.HoughLines(edges, 1, np.pi / 180, 60)
result = edges.copy()
for line in lines[5]:
rho = line[0] # 第一个元素是距离rho
theta = line[1] # 第二个元素是角度theta
detected_theata1 = ((theta / np.pi) * 180)
print('distance:' + str(rho), 'theta:' + str(((theta / np.pi) * 180)))
lbael_text = 'distance:' + str(round(rho)) + 'theta:' + str(round((theta / np.pi) * 180 - 90, 2))
if (theta > 3 * (np.pi / 3)) or (theta < (np.pi / 2)): # 垂直直线
# 该直线与第一行的交点
pt1 = (int(rho / np.cos(theta)), 0)
# 该直线与最后一行的焦点
pt2 = (int((rho - result.shape[0] * np.sin(theta)) / np.cos(theta)), result.shape[0])
# 绘制一条白线
cv2.line(result, pt1, pt2, (255, 0, 0), 2, cv2.LINE_AA)
# print('theat >180 theta<90')
else: # 水平直线
# 该直线与第一列的交点
pt1 = (0, int(rho / np.sin(theta)))
# 该直线与最后一列的交点
pt2 = (result.shape[1], int((rho - result.shape[1] * np.cos(theta)) / np.sin(theta)))
# 绘制一条直线
cv2.line(result, pt1, pt2, (255, 0, 0), 2, cv2.LINE_AA)
# print('theat <180 theta > 90')
for line in lines[18]:
rho = line[0] # 第一个元素是距离rho
theta = line[1] # 第二个元素是角度theta
detected_theata2 = ((theta / np.pi) * 180)
print('distance:' + str(rho), 'theta:' + str(((theta / np.pi) * 180)))
lbael_text = 'distance:' + str(round(rho)) + 'theta:' + str(round((theta / np.pi) * 180 - 90, 2))
if (theta > 3 * (np.pi / 3)) or (theta < (np.pi / 2)): # 垂直直线
# 该直线与第一行的交点
pt1 = (int(rho / np.cos(theta)), 0)
# 该直线与最后一行的焦点
pt2 = (int((rho - result.shape[0] * np.sin(theta)) / np.cos(theta)), result.shape[0])
# 绘制一条白线
cv2.line(result, pt1, pt2, (255, 0, 0), 2, cv2.LINE_AA)
# print('theat >180 theta<90')
else: # 水平直线
# 该直线与第一列的交点
pt1 = (0, int(rho / np.sin(theta)))
# 该直线与最后一列的交点
pt2 = (result.shape[1], int((rho - result.shape[1] * np.cos(theta)) / np.sin(theta)))
# 绘制一条直线
cv2.line(result, pt1, pt2, (255, 0, 0), 2, cv2.LINE_AA)
# print('theat <180 theta > 90')
for line in lines[4]:
rho = line[0] # 第一个元素是距离rho
theta = line[1] # 第二个元素是角度theta
detected_theata3 = ((theta / np.pi) * 180)
print('distance:' + str(rho), 'theta:' + str(((theta / np.pi) * 180)))
lbael_text = 'distance:' + str(round(rho)) + 'theta:' + str(round((theta / np.pi) * 180 - 90, 2))
if (theta > 3 * (np.pi / 3)) or (theta < (np.pi / 2)): # 垂直直线
# 该直线与第一行的交点
pt1 = (int(rho / np.cos(theta)), 0)
# 该直线与最后一行的焦点
pt2 = (int((rho - result.shape[0] * np.sin(theta)) / np.cos(theta)), result.shape[0])
# 绘制一条白线
cv2.line(result, pt1, pt2, (255, 0, 0), 2, cv2.LINE_AA)
# print('theat >180 theta<90')
else: # 水平直线
# 该直线与第一列的交点
pt1 = (0, int(rho / np.sin(theta)))
# 该直线与最后一列的交点
pt2 = (result.shape[1], int((rho - result.shape[1] * np.cos(theta)) / np.sin(theta)))
# 绘制一条直线
cv2.line(result, pt1, pt2, (255, 0, 0), 2, cv2.LINE_AA)
# print('theat <180 theta > 90')
#cv2.imwrite("D:/git/work/keras-yolo3/kuangxuanimages/median.jpg", median)
cv2.imwrite("D:/git/work/keras-yolo3/kuangxuanimages/edge.jpg", edges)
cv2.imwrite("D:/git/work/keras-yolo3/kuangxuanimages/result.jpg", result)
#detected_theata = ((detected_theata2 - detected_theata3) / (detected_theata3 - detected_theata1)) * 800
#detected_theata = ((detected_theata1 - detected_theata3) / (detected_theata2 - detected_theata3)) * 500
#detected_theata = ((detected_theata2 - detected_theata1 + 180) / (detected_theata3 - detected_theata1 + 180)) * 2.5
#detected_theata = ((detected_theata1 - detected_theata2) / (detected_theata3 - detected_theata2 + 180)) * 120 - 10
#detected_theata = (180 - (detected_theata2 - detected_theata1)) / (360 - (detected_theata2 - detected_theata3)) * 1
detected_theata = ((180 + detected_theata3 - detected_theata1)) / (360 - (detected_theata1 - detected_theata2)) * 1.6 + 0.03
return detected_theata
def caculatejiaodu(num):
if num == 1 :
jiaodu = vameterdetect(1)
print('readnum = ', jiaodu)
image_detected = cv2.imread("D:/git/work/keras-yolo3/kuangxuanimages/detected.jpg", 0)
#image_cov = cv2.cvtColor(image_detected, cv2.COLOR_GRAY2BGR)
cv2.putText(image_detected, 'Readnum = {}'.format(jiaodu), (11, 11 + 22), cv2.FONT_HERSHEY_COMPLEX, 1, [230, 0, 0], 2)
cv2.imwrite("D:/git/work/keras-yolo3/kuangxuanimages/read_num.jpg", image_detected)
cv2.imshow("ReadNum", image_detected)
print('Read success!')
cv2.waitKey(0)
cv2.destroyAllWindows()
return jiaodu
def video():
#jiaodu = caculatejiaodu(1)
#mode = 1
yolov3 = YOLO(**yolov3_args)
video_cap = cv2.VideoCapture(video_path)
if not video_cap.isOpened():
raise IOError
video_FourCC = int(video_cap.get(cv2.CAP_PROP_FOURCC))
video_fps = video_cap.get(cv2.CAP_PROP_FPS)
video_size = (int(video_cap.get(cv2.CAP_PROP_FRAME_WIDTH)),
int(video_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))
isOutput = True if output_path != "" else False
if isOutput:
out = cv2.VideoWriter(output_path, video_FourCC, video_fps, video_size)
frame_index = 0
name = 4228
while True:
#RecDraw.clear()
return_value, frame = video_cap.read()
frame_index = frame_index + 1
if frame is None:
break
if frame_index % 2 == 1:
x, y = frame.shape[0:2]
new_image = cv2.resize(frame, (int(y / 2), int(x / 2)))
name += 1
strname = "D:/test/" + str(name) + ".jpg"
cv2.imwrite(strname, new_image)
image_new = Image.fromarray(frame)
image, boxes, scores, classes = yolov3.detect_image_mul(image_new)
origin = np.asarray(image)
image_bgr = cv2.cvtColor(np.asarray(origin), cv2.COLOR_RGB2BGR) # cv2下的色彩空间灰度化
cv2.imwrite("D:/git/work/keras-yolo3/kuangxuanimages/detected.jpg", image_bgr)
# boxes内返回的是yolo预测出来的边框坐标,通过该坐标可以对原图像进行裁剪
for i in range(boxes.shape[0]):
top, left, bottom, right = boxes[i]
# 或者用下面这句等价
# top = boxes[0][0]
# left = boxes[0][1]
# bottom = boxes[0][2]
# right = boxes[0][3]
top = top - 5
left = left - 5
bottom = bottom + 5
right = right + 5
# 左上角点的坐标
top = int(max(0, np.floor(top + 0.5).astype('int32')))
left = int(max(0, np.floor(left + 0.5).astype('int32')))
# 右下角点的坐标
bottom = int(min(np.shape(image)[0], np.floor(bottom + 0.5).astype('int32')))
right = int(min(np.shape(image)[1], np.floor(right + 0.5).astype('int32')))
# 记录图片的高度与宽度
a = bottom - top
b = right - left
print('height', a)
print('with', b)
croped_region = image_bgr[top:bottom, left:right] # 先高后宽
# cv2.imshow("cropimage", croped_region)
nor = cv2.resize(croped_region, None, fx=0.5, fy=0.5, interpolation=cv2.INTER_LINEAR) # 图片归一化cv2.resize(输入图片,输出图片,沿x轴缩放系数,沿y轴缩放系数,插入方式为双线性插值(默认方式))
image_bgr = cv2.cvtColor(nor, cv2.COLOR_RGB2BGR) # 转换为灰度图
gray = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2GRAY)
median = cv2.medianBlur(origin, 1) # 中值滤波去噪cv2.medianBlur(原图片, 当前的方框尺寸)
edges = cv2.Canny(median, 250, 350, apertureSize=3) # 边缘检测cv2.Canny(原图片, 最小阈值,最大阈值,Sobel算子的大小)
# kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5)) # 矩形结构
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5)) # 椭圆结构
# kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (5, 5)) #十字结构
# cv2.getStructuringElement(指定形状,内核的尺寸,锚点的位置 ) 返回指定形状和尺寸的结构元素。
# 霍夫直线
lines = cv2.HoughLines(edges, 1, np.pi / 180, 60)
result = edges.copy()
for line in lines[5]:
rho = line[0] # 第一个元素是距离rho
theta = line[1] # 第二个元素是角度theta
detected_theata1 = ((theta / np.pi) * 180)
print('distance:' + str(rho), 'theta:' + str(((theta / np.pi) * 180)))
lbael_text = 'distance:' + str(round(rho)) + 'theta:' + str(round((theta / np.pi) * 180 - 90, 2))
if (theta > 3 * (np.pi / 3)) or (theta < (np.pi / 2)): # 垂直直线
# 该直线与第一行的交点
pt1 = (int(rho / np.cos(theta)), 0)
# 该直线与最后一行的焦点
pt2 = (int((rho - result.shape[0] * np.sin(theta)) / np.cos(theta)), result.shape[0])
# 绘制一条白线
cv2.line(result, pt1, pt2, (255, 0, 0), 2, cv2.LINE_AA)
# print('theat >180 theta<90')
else: # 水平直线
# 该直线与第一列的交点
pt1 = (0, int(rho / np.sin(theta)))
# 该直线与最后一列的交点
pt2 = (result.shape[1], int((rho - result.shape[1] * np.cos(theta)) / np.sin(theta)))
# 绘制一条直线
cv2.line(result, pt1, pt2, (255, 0, 0), 2, cv2.LINE_AA)
# print('theat <180 theta > 90')
for line in lines[18]:
rho = line[0] # 第一个元素是距离rho
theta = line[1] # 第二个元素是角度theta
detected_theata2 = ((theta / np.pi) * 180)
print('distance:' + str(rho), 'theta:' + str(((theta / np.pi) * 180)))
lbael_text = 'distance:' + str(round(rho)) + 'theta:' + str(round((theta / np.pi) * 180 - 90, 2))
if (theta > 3 * (np.pi / 3)) or (theta < (np.pi / 2)): # 垂直直线
# 该直线与第一行的交点
pt1 = (int(rho / np.cos(theta)), 0)
# 该直线与最后一行的焦点
pt2 = (int((rho - result.shape[0] * np.sin(theta)) / np.cos(theta)), result.shape[0])
# 绘制一条白线
cv2.line(result, pt1, pt2, (255, 0, 0), 2, cv2.LINE_AA)
# print('theat >180 theta<90')
else: # 水平直线
# 该直线与第一列的交点
pt1 = (0, int(rho / np.sin(theta)))
# 该直线与最后一列的交点
pt2 = (result.shape[1], int((rho - result.shape[1] * np.cos(theta)) / np.sin(theta)))
# 绘制一条直线
cv2.line(result, pt1, pt2, (255, 0, 0), 2, cv2.LINE_AA)
# print('theat <180 theta > 90')
for line in lines[4]:
rho = line[0] # 第一个元素是距离rho
theta = line[1] # 第二个元素是角度theta
detected_theata3 = ((theta / np.pi) * 180)
print('distance:' + str(rho), 'theta:' + str(((theta / np.pi) * 180)))
lbael_text = 'distance:' + str(round(rho)) + 'theta:' + str(round((theta / np.pi) * 180 - 90, 2))
if (theta > 3 * (np.pi / 3)) or (theta < (np.pi / 2)): # 垂直直线
# 该直线与第一行的交点
pt1 = (int(rho / np.cos(theta)), 0)
# 该直线与最后一行的焦点
pt2 = (int((rho - result.shape[0] * np.sin(theta)) / np.cos(theta)), result.shape[0])
# 绘制一条白线
cv2.line(result, pt1, pt2, (255, 0, 0), 2, cv2.LINE_AA)
# print('theat >180 theta<90')
else: # 水平直线
# 该直线与第一列的交点
pt1 = (0, int(rho / np.sin(theta)))
# 该直线与最后一列的交点
pt2 = (result.shape[1], int((rho - result.shape[1] * np.cos(theta)) / np.sin(theta)))
# 绘制一条直线
cv2.line(result, pt1, pt2, (255, 0, 0), 2, cv2.LINE_AA)
# print('theat <180 theta > 90')
detected_theata = ((180 + detected_theata3 - detected_theata1)) / (360 - (detected_theata1 - detected_theata2)) * 1.6 + 0.29
cv2.namedWindow("result", cv2.WINDOW_NORMAL)
cv2.putText(origin, 'Readnum = {}'.format(detected_theata), (11, 11 + 22), cv2.FONT_HERSHEY_COMPLEX, 1, [230, 0, 0], 2)
cv2.imshow("result", origin)
if isOutput:
out.write(origin)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
if __name__ == '__main__':
# print("please input the type of your want to identify")
# m = input("pic or video? Answer: ")
# if m == "video":image
# elif m == "pic":
# pic_path = input("please input image path : ")
# image(pic_path)
#image("D:/git/work/keras-yolo3/images/6959.jpg")
#meterdetect(1)
#vameterdetect(1)
caculatejiaodu(1)
#video()
# image("D:/r.jpg")
# image(0)