forked from daa233/generative-inpainting-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
155 lines (126 loc) · 6.84 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import os
import torch
import torch.nn as nn
from torch import autograd
from model.networks import Generator, LocalDis, GlobalDis
from utils.tools import get_model_list, local_patch, spatial_discounting_mask
from utils.logger import get_logger
logger = get_logger()
class Trainer(nn.Module):
def __init__(self, config):
super(Trainer, self).__init__()
self.config = config
self.use_cuda = self.config['cuda']
self.device_ids = self.config['gpu_ids']
self.netG = Generator(self.config['netG'], self.use_cuda, self.device_ids)
self.localD = LocalDis(self.config['netD'], self.use_cuda, self.device_ids)
self.globalD = GlobalDis(self.config['netD'], self.use_cuda, self.device_ids)
self.optimizer_g = torch.optim.Adam(self.netG.parameters(), lr=self.config['lr'],
betas=(self.config['beta1'], self.config['beta2']))
d_params = list(self.localD.parameters()) + list(self.globalD.parameters())
self.optimizer_d = torch.optim.Adam(d_params, lr=config['lr'],
betas=(self.config['beta1'], self.config['beta2']))
if self.use_cuda:
self.netG.to(self.device_ids[0])
self.localD.to(self.device_ids[0])
self.globalD.to(self.device_ids[0])
def forward(self, x, bboxes, masks, ground_truth, compute_loss_g=False):
self.train()
l1_loss = nn.L1Loss()
losses = {}
x1, x2, offset_flow = self.netG(x, masks)
local_patch_gt = local_patch(ground_truth, bboxes)
x1_inpaint = x1 * masks + x * (1. - masks)
x2_inpaint = x2 * masks + x * (1. - masks)
local_patch_x1_inpaint = local_patch(x1_inpaint, bboxes)
local_patch_x2_inpaint = local_patch(x2_inpaint, bboxes)
# D part
# wgan d loss
local_patch_real_pred, local_patch_fake_pred = self.dis_forward(
self.localD, local_patch_gt, local_patch_x2_inpaint.detach())
global_real_pred, global_fake_pred = self.dis_forward(
self.globalD, ground_truth, x2_inpaint.detach())
losses['wgan_d'] = torch.mean(local_patch_fake_pred - local_patch_real_pred) + \
torch.mean(global_fake_pred - global_real_pred) * self.config['global_wgan_loss_alpha']
# gradients penalty loss
local_penalty = self.calc_gradient_penalty(
self.localD, local_patch_gt, local_patch_x2_inpaint.detach())
global_penalty = self.calc_gradient_penalty(self.globalD, ground_truth, x2_inpaint.detach())
losses['wgan_gp'] = local_penalty + global_penalty
# G part
if compute_loss_g:
sd_mask = spatial_discounting_mask(self.config)
losses['l1'] = l1_loss(local_patch_x1_inpaint * sd_mask, local_patch_gt * sd_mask) * \
self.config['coarse_l1_alpha'] + \
l1_loss(local_patch_x2_inpaint * sd_mask, local_patch_gt * sd_mask)
losses['ae'] = l1_loss(x1 * (1. - masks), ground_truth * (1. - masks)) * \
self.config['coarse_l1_alpha'] + \
l1_loss(x2 * (1. - masks), ground_truth * (1. - masks))
# wgan g loss
local_patch_real_pred, local_patch_fake_pred = self.dis_forward(
self.localD, local_patch_gt, local_patch_x2_inpaint)
global_real_pred, global_fake_pred = self.dis_forward(
self.globalD, ground_truth, x2_inpaint)
losses['wgan_g'] = - torch.mean(local_patch_fake_pred) - \
torch.mean(global_fake_pred) * self.config['global_wgan_loss_alpha']
return losses, x2_inpaint, offset_flow
def dis_forward(self, netD, ground_truth, x_inpaint):
assert ground_truth.size() == x_inpaint.size()
batch_size = ground_truth.size(0)
batch_data = torch.cat([ground_truth, x_inpaint], dim=0)
batch_output = netD(batch_data)
real_pred, fake_pred = torch.split(batch_output, batch_size, dim=0)
return real_pred, fake_pred
# Calculate gradient penalty
def calc_gradient_penalty(self, netD, real_data, fake_data):
batch_size = real_data.size(0)
alpha = torch.rand(batch_size, 1, 1, 1)
alpha = alpha.expand_as(real_data)
if self.use_cuda:
alpha = alpha.cuda()
interpolates = alpha * real_data + (1 - alpha) * fake_data
interpolates = interpolates.requires_grad_().clone()
disc_interpolates = netD(interpolates)
grad_outputs = torch.ones(disc_interpolates.size())
if self.use_cuda:
grad_outputs = grad_outputs.cuda()
gradients = autograd.grad(outputs=disc_interpolates, inputs=interpolates,
grad_outputs=grad_outputs, create_graph=True,
retain_graph=True, only_inputs=True)[0]
gradients = gradients.view(batch_size, -1)
gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean()
return gradient_penalty
def inference(self, x, masks):
self.eval()
x1, x2, offset_flow = self.netG(x, masks)
# x1_inpaint = x1 * masks + x * (1. - masks)
x2_inpaint = x2 * masks + x * (1. - masks)
return x2_inpaint, offset_flow
def save_model(self, checkpoint_dir, iteration):
# Save generators, discriminators, and optimizers
gen_name = os.path.join(checkpoint_dir, 'gen_%08d.pt' % iteration)
dis_name = os.path.join(checkpoint_dir, 'dis_%08d.pt' % iteration)
opt_name = os.path.join(checkpoint_dir, 'optimizer.pt')
torch.save(self.netG.state_dict(), gen_name)
torch.save({'localD': self.localD.state_dict(),
'globalD': self.globalD.state_dict()}, dis_name)
torch.save({'gen': self.optimizer_g.state_dict(),
'dis': self.optimizer_d.state_dict()}, opt_name)
def resume(self, checkpoint_dir, iteration=0, test=False):
# Load generators
last_model_name = get_model_list(checkpoint_dir, "gen", iteration=iteration)
self.netG.load_state_dict(torch.load(last_model_name))
iteration = int(last_model_name[-11:-3])
if not test:
# Load discriminators
last_model_name = get_model_list(checkpoint_dir, "dis", iteration=iteration)
state_dict = torch.load(last_model_name)
self.localD.load_state_dict(state_dict['localD'])
self.globalD.load_state_dict(state_dict['globalD'])
# Load optimizers
state_dict = torch.load(os.path.join(checkpoint_dir, 'optimizer.pt'))
self.optimizer_d.load_state_dict(state_dict['dis'])
self.optimizer_g.load_state_dict(state_dict['gen'])
print("Resume from {} at iteration {}".format(checkpoint_dir, iteration))
logger.info("Resume from {} at iteration {}".format(checkpoint_dir, iteration))
return iteration