-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathai_secret_sauce.py
243 lines (188 loc) · 7.04 KB
/
ai_secret_sauce.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import streamlit as st
import os
from pathlib import Path
import google.generativeai as genai
from langchain_core.messages import HumanMessage
from langchain_google_genai import ChatGoogleGenerativeAI
from clarifai.client.model import Model
from clarifai.client.input import Inputs
import image_to_code
GOOGLE_API_KEY = st.secrets["GOOGLE_API_KEY"]
inference_params = dict(temperature=0.2, max_tokens=250)
conversation = ""
gemini_conversation = []
info_prompt = """What is inside of this image? You need to give me information
about colors, padding and layout, data inside table/elements, text in the image
"""
info_prompt_0 = """What is inside of this image? You need to give me information
about colors, padding, navigation bar/hamburger menu, data inside table, text in the image"""
info_prompt_1 = """What is inside of this image? You need to give me information
about colors, padding, navigation bar/hamburger menu, data inside table, text/textsize in the image"""
def getGPT4VisionResponse(image, prompt, option):
used_info_prompt = info_prompt_1
if option == "Image URL":
r1 = chatbotImageURL(
image_url=image,
input=used_info_prompt,
)
print("r1: " + r1)
r2 = chatbotImageURL(image_url=image, input=prompt)
elif option == "Upload Image":
r1 = chatbotImageFile(image_file=image, input=used_info_prompt)
print("r1: " + r1)
r2 = chatbotImageFile(image_file=image, input=prompt)
elif option == "Write Script":
r1 = chatbotImageFromFilePath(file_path=image, input=used_info_prompt)
print("r1: " + r1)
r2 = chatbotImageFromFilePath(file_path=image, input=prompt)
return r2
def getGPT4Response(prompt):
model_prediction = Model(
"https://clarifai.com/openai/chat-completion/models/GPT-4"
).predict_by_bytes(
prompt.encode(), input_type="text", inference_params=inference_params
)
response = model_prediction.outputs[0].data.text.raw
return response
def chatbotImageFromFilePath(input, file_path):
with open(file_path, "rb") as image_file:
image_bytes = image_file.read()
global conversation
conversation += "user: " + input + "\n\n"
model_prediction = Model(
"https://clarifai.com/openai/chat-completion/models/openai-gpt-4-vision"
).predict(
inputs=[
Inputs.get_multimodal_input(
input_id="", image_bytes=image_bytes, raw_text=conversation
)
],
inference_params=inference_params,
)
response = model_prediction.outputs[0].data.text.raw
conversation += "assistant: " + response + "\n\n"
return response
def chatbotImageFile(input, image_file):
# Temporarily saves the file to directory and read in as bytes
uploaded_file = image_file
file_path = os.path.join("tmpDirUploadedImage", uploaded_file.name)
with open(file_path, "wb") as f:
f.write(uploaded_file.getbuffer())
with open('./image_feedback/input_mock_website.png', "wb") as f:
f.write(uploaded_file.getbuffer())
return chatbotImageFromFilePath(input, file_path)
def chatbotImageURL(input, image_url):
image_bytes = image_to_code.get_image_from_url(image_url)
with open('./image_feedback/input_mock_website.png', "wb") as f:
f.write(image_bytes)
global conversation
conversation += "user: " + input + "\n\n"
model_prediction = Model(
"https://clarifai.com/openai/chat-completion/models/openai-gpt-4-vision"
).predict(
inputs=[
Inputs.get_multimodal_input(
input_id="", image_url=image_url, raw_text=conversation
)
],
inference_params=inference_params,
)
response = model_prediction.outputs[0].data.text.raw
conversation += "assistant: " + response + "\n\n"
return response
def getGeminiVisionResponse(image, prompt, option):
if option == "Image URL":
r1 = getGeminiVisionResponseImageURL(image_url=image, input=prompt)
elif option == "Upload Image":
image_file_path = os.path.join("tmpDirUploadedImage", image.name)
r1 = getGeminiVisionResponseImageFile(image_path=image_file_path, input=prompt)
elif option == "Write Script":
r1 = getGeminiVisionResponseImageFile(image_path=image, input=prompt)
return r1
def getGeminiVisionResponseImageFile(input, image_path):
genai.configure(api_key=GOOGLE_API_KEY)
generation_config = {
"temperature": 0.4,
"top_p": 1,
"top_k": 32,
"max_output_tokens": 4096,
}
safety_settings = [
{"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
{
"category": "HARM_CATEGORY_HATE_SPEECH",
"threshold": "BLOCK_MEDIUM_AND_ABOVE",
},
{
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
"threshold": "BLOCK_MEDIUM_AND_ABOVE",
},
{
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
"threshold": "BLOCK_MEDIUM_AND_ABOVE",
},
]
model = genai.GenerativeModel(
model_name="gemini-pro-vision",
generation_config=generation_config,
safety_settings=safety_settings,
)
if not (img := Path(image_path)).exists():
raise FileNotFoundError(f"Could not find image: {img}")
image_parts = [
{"mime_type": "image/jpeg", "data": Path(image_path).read_bytes()},
]
prompt_parts = [
f"{input}\n",
image_parts[0],
]
response = model.generate_content(prompt_parts)
return response.text
def getGeminiVisionResponseImageURL(image_url, input):
genai.configure(api_key=GOOGLE_API_KEY)
global gemini_conversation
content = [
{
"type": "text",
"text": input,
}
]
if image_url is not None:
image_content = {
"type": "image_url",
"image_url": image_url,
}
content.append(image_content)
gemini_conversation.extend(content)
message = HumanMessage(content=gemini_conversation)
llm = ChatGoogleGenerativeAI(
model="gemini-pro-vision",
temperature=0.2,
max_output_tokens=2048,
top_k=50,
top_p=0.95,
request_timeout=120,
)
print("Generating response...")
response = llm.invoke([message])
text = str(response)
text = text.split("content='")[1]
text = text.encode().decode("unicode_escape")
gemini_response = {
"type": "text",
"text": text,
}
gemini_conversation.append(gemini_response)
return text
def getGeminiResponse(input):
gemini_inference_params = dict(
temperature=0.2, top_k=50, top_p=0.95, max_tokens=2048
)
# Model Predict
model_prediction = Model(
"https://clarifai.com/gcp/generate/models/gemini-pro"
).predict_by_bytes(
input.encode(), input_type="text", inference_params=gemini_inference_params
)
response = model_prediction.outputs[0].data.text.raw
return response