-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvgg16.py
99 lines (76 loc) · 3.53 KB
/
vgg16.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
#!/usr/bin/python
#coding:utf-8
import inspect
import os
import numpy as np
import tensorflow as tf
import time
import matplotlib.pyplot as plt
VGG_MEAN = [103.939, 116.779, 123.68]
class Vgg16():
def __init__(self, vgg16_path=None):
if vgg16_path is None:
vgg16_path = os.path.join(os.getcwd(),"E:/Python/AI/vgg/vgg16.npy")
self.data_dict = np.load(vgg16_path, encoding='latin1').item()
def forward(self, images):
print("build model started")
start_time = time.time()
rgb_scaled = images * 255.0
red, green, blue = tf.split(rgb_scaled,3,3)
bgr = tf.concat([
blue - VGG_MEAN[0],
green - VGG_MEAN[1],
red - VGG_MEAN[2]],3)
self.conv1_1 = self.conv_layer(bgr, "conv1_1")
self.conv1_2 = self.conv_layer(self.conv1_1, "conv1_2")
self.pool1 = self.max_pool_2x2(self.conv1_2, "pool1")
self.conv2_1 = self.conv_layer(self.pool1, "conv2_1")
self.conv2_2 = self.conv_layer(self.conv2_1, "conv2_2")
self.pool2 = self.max_pool_2x2(self.conv2_2, "pool2")
self.conv3_1 = self.conv_layer(self.pool2, "conv3_1")
self.conv3_2 = self.conv_layer(self.conv3_1, "conv3_2")
self.conv3_3 = self.conv_layer(self.conv3_2, "conv3_3")
self.pool3 = self.max_pool_2x2(self.conv3_3, "pool3")
self.conv4_1 = self.conv_layer(self.pool3, "conv4_1")
self.conv4_2 = self.conv_layer(self.conv4_1, "conv4_2")
self.conv4_3 = self.conv_layer(self.conv4_2, "conv4_3")
self.pool4 = self.max_pool_2x2(self.conv4_3, "pool4")
self.conv5_1 = self.conv_layer(self.pool4, "conv5_1")
self.conv5_2 = self.conv_layer(self.conv5_1, "conv5_2")
self.conv5_3 = self.conv_layer(self.conv5_2, "conv5_3")
self.pool5 = self.max_pool_2x2(self.conv5_3, "pool5")
self.fc6 = self.fc_layer(self.pool5, "fc6")
self.relu6 = tf.nn.relu(self.fc6)
self.fc7 = self.fc_layer(self.relu6, "fc7")
self.relu7 = tf.nn.relu(self.fc7)
self.fc8 = self.fc_layer(self.relu7, "fc8")
self.prob = tf.nn.softmax(self.fc8, name="prob")
end_time = time.time()
print(("time consuming: %f" % (end_time-start_time)))
self.data_dict = None
def conv_layer(self, x, name):
with tf.variable_scope(name):
w = self.get_conv_filter(name)
conv = tf.nn.conv2d(x, w, [1, 1, 1, 1], padding='SAME')
conv_biases = self.get_bias(name)
result = tf.nn.relu(tf.nn.bias_add(conv, conv_biases))
return result
def get_conv_filter(self, name):
return tf.constant(self.data_dict[name][0], name="filter")
def get_bias(self, name):
return tf.constant(self.data_dict[name][1], name="biases")
def max_pool_2x2(self, x, name):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name=name)
def fc_layer(self, x, name):
with tf.variable_scope(name):
shape = x.get_shape().as_list()
dim = 1
for i in shape[1:]:
dim *= i
x = tf.reshape(x, [-1, dim])
w = self.get_fc_weight(name)
b = self.get_bias(name)
result = tf.nn.bias_add(tf.matmul(x, w), b)
return result
def get_fc_weight(self, name):
return tf.constant(self.data_dict[name][0], name="weights")