diff --git a/.gitignore b/.gitignore
index cddca21..065569f 100644
--- a/.gitignore
+++ b/.gitignore
@@ -1,3 +1,6 @@
+# Notebooks in root dir
+/*.ipynb
+
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
@@ -72,4 +75,6 @@ target/
*.pdf
# Temp
-notebooks/dm_e
\ No newline at end of file
+notebooks/dm_e
+
+!notebooks/*.png
diff --git a/.gitmodules b/.gitmodules
new file mode 100644
index 0000000..e7f2d09
--- /dev/null
+++ b/.gitmodules
@@ -0,0 +1,3 @@
+[submodule "wimprates/data/migdal/Cox"]
+ path = wimprates/data/migdal/Cox/cox_submodule
+ url = https://github.com/petercox/Migdal.git
diff --git a/notebooks/Migdal.ipynb b/notebooks/Migdal.ipynb
index 11e4f55..984c128 100644
--- a/notebooks/Migdal.ipynb
+++ b/notebooks/Migdal.ipynb
@@ -1,447 +1,927 @@
-{
- "cells": [
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {
- "ExecuteTime": {
- "end_time": "2022-07-22T19:16:26.733826Z",
- "start_time": "2022-07-22T19:16:24.834775Z"
- },
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [],
- "source": [
- "import matplotlib.pyplot as plt\n",
- "import numpy as np\n",
- "import pandas as pd\n",
- "from tqdm import tqdm\n",
- "import numericalunits as nu\n",
- "\n",
- "import wimprates as wr"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "pycharm": {
- "name": "#%% md\n"
- }
- },
- "source": [
- "### Convert Xe.dat to nicer format"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "ExecuteTime": {
- "end_time": "2022-07-22T19:16:26.776139Z",
- "start_time": "2022-07-22T19:16:26.735821Z"
- },
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [
- {
- "data": {
- "text/html": [
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " 1_0 | \n",
- " 2_0 | \n",
- " 2_1 | \n",
- " 3_0 | \n",
- " 3_1 | \n",
- " 3_2 | \n",
- " 4_0 | \n",
- " 4_1 | \n",
- " 4_2 | \n",
- " 5_0 | \n",
- " 5_1 | \n",
- " E | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 1.000000 | \n",
- " 1.013107e-14 | \n",
- " 2.538509e-13 | \n",
- " 1.417923e-12 | \n",
- " 3.745613e-12 | \n",
- " 1.931796e-11 | \n",
- " 6.875756e-12 | \n",
- " 4.272023e-11 | \n",
- " 2.097481e-10 | \n",
- " 2.115778e-09 | \n",
- " 4.937655e-10 | \n",
- " 5.173118e-07 | \n",
- " 1.000000 | \n",
- "
\n",
- " \n",
- " 1.045636 | \n",
- " 1.013389e-14 | \n",
- " 2.539291e-13 | \n",
- " 1.424572e-12 | \n",
- " 3.746781e-12 | \n",
- " 1.941191e-11 | \n",
- " 6.950745e-12 | \n",
- " 4.272690e-11 | \n",
- " 2.096290e-10 | \n",
- " 2.124282e-09 | \n",
- " 4.851036e-10 | \n",
- " 5.103404e-07 | \n",
- " 1.045636 | \n",
- "
\n",
- " \n",
- " 1.093354 | \n",
- " 1.013681e-14 | \n",
- " 2.540099e-13 | \n",
- " 1.431461e-12 | \n",
- " 3.747978e-12 | \n",
- " 1.950850e-11 | \n",
- " 7.033516e-12 | \n",
- " 4.273357e-11 | \n",
- " 2.095044e-10 | \n",
- " 2.133447e-09 | \n",
- " 4.762062e-10 | \n",
- " 5.031270e-07 | \n",
- " 1.093354 | \n",
- "
\n",
- " \n",
- " 1.143250 | \n",
- " 1.013985e-14 | \n",
- " 2.540935e-13 | \n",
- " 1.438595e-12 | \n",
- " 3.749203e-12 | \n",
- " 1.960773e-11 | \n",
- " 7.124774e-12 | \n",
- " 4.274019e-11 | \n",
- " 2.093738e-10 | \n",
- " 2.143335e-09 | \n",
- " 4.670743e-10 | \n",
- " 4.956689e-07 | \n",
- " 1.143250 | \n",
- "
\n",
- " \n",
- " 1.195423 | \n",
- " 1.014299e-14 | \n",
- " 2.541800e-13 | \n",
- " 1.445980e-12 | \n",
- " 3.750456e-12 | \n",
- " 1.970957e-11 | \n",
- " 7.225280e-12 | \n",
- " 4.274673e-11 | \n",
- " 2.092371e-10 | \n",
- " 2.154013e-09 | \n",
- " 4.577099e-10 | \n",
- " 4.879646e-07 | \n",
- " 1.195423 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " 1_0 2_0 2_1 3_0 \\\n",
- "1.000000 1.013107e-14 2.538509e-13 1.417923e-12 3.745613e-12 \n",
- "1.045636 1.013389e-14 2.539291e-13 1.424572e-12 3.746781e-12 \n",
- "1.093354 1.013681e-14 2.540099e-13 1.431461e-12 3.747978e-12 \n",
- "1.143250 1.013985e-14 2.540935e-13 1.438595e-12 3.749203e-12 \n",
- "1.195423 1.014299e-14 2.541800e-13 1.445980e-12 3.750456e-12 \n",
- "\n",
- " 3_1 3_2 4_0 4_1 \\\n",
- "1.000000 1.931796e-11 6.875756e-12 4.272023e-11 2.097481e-10 \n",
- "1.045636 1.941191e-11 6.950745e-12 4.272690e-11 2.096290e-10 \n",
- "1.093354 1.950850e-11 7.033516e-12 4.273357e-11 2.095044e-10 \n",
- "1.143250 1.960773e-11 7.124774e-12 4.274019e-11 2.093738e-10 \n",
- "1.195423 1.970957e-11 7.225280e-12 4.274673e-11 2.092371e-10 \n",
- "\n",
- " 4_2 5_0 5_1 E \n",
- "1.000000 2.115778e-09 4.937655e-10 5.173118e-07 1.000000 \n",
- "1.045636 2.124282e-09 4.851036e-10 5.103404e-07 1.045636 \n",
- "1.093354 2.133447e-09 4.762062e-10 5.031270e-07 1.093354 \n",
- "1.143250 2.143335e-09 4.670743e-10 4.956689e-07 1.143250 \n",
- "1.195423 2.154013e-09 4.577099e-10 4.879646e-07 1.195423 "
- ]
- },
- "execution_count": 2,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "SOURCE='Xe'\n",
- "df = dict()\n",
- "with open(wr.data_file(f'migdal/{SOURCE}.dat')) as f:\n",
- " header = False\n",
- " for i, line in enumerate(f.read().splitlines()):\n",
- " if 'Principal' in line:\n",
- " header = True\n",
- " continue\n",
- " if 'Energy' in line:\n",
- " header = False\n",
- " continue\n",
- " \n",
- " if header:\n",
- " n, l = [int(x) for x in line.split()]\n",
- " else:\n",
- " e, rate = [float(x) for x in line.split()]\n",
- " df.setdefault(e, dict())\n",
- " df[e]['%d_%d' % (n, l)] = rate\n",
- " \n",
- "df = pd.DataFrame(df).T\n",
- "df['E'] = df.index\n",
- "\n",
- "df.to_csv('migdal_transition_ps.csv', index=False)\n",
- "df_migdal = df\n",
- "df.head()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "pycharm": {
- "name": "#%% md\n"
- }
- },
- "source": [
- "Rows are energies, columns are (n, l) states. Data is the differential transition probabilities, at the 1 eV/c reference momentum, not divided by 2 pi."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "pycharm": {
- "name": "#%% md\n"
- }
- },
- "source": [
- "### Reproduce figure 4"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "pycharm": {
- "name": "#%% md\n"
- }
- },
- "source": [
- "To reproduce figure 4 of https://arxiv.org/pdf/1707.07258.pdf, we must\n",
- " * Convert to the other reference momentum of $m_e * .001 c$\n",
- " * Divide by 2 pi.\n",
- " * Convert eV -> keV; multiply energies by 1e3 and divide differential probabilities by 1e3."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "ExecuteTime": {
- "end_time": "2022-07-22T19:16:27.594619Z",
- "start_time": "2022-07-22T19:16:26.778591Z"
- },
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- "Text(0, 0.5, 'diff. p (keV^-1)')"
- ]
- },
- "execution_count": 3,
- "metadata": {},
- "output_type": "execute_result"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEKCAYAAAAFJbKyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABOXElEQVR4nO3dd3RU1drH8e+ekt4bpBASIPTeBBSsFJUiFlCsVxS5Coq9+6IXG/aKIooooiig0kRRwYL0XkOHBNJ7z2Rmv39MwAAJpMwkIXk+a82aOf3ZCcwvp+2jtNYIIYQQlWWo6wKEEEKcXyQ4hBBCVIkEhxBCiCqR4BBCCFElEhxCCCGqRIJDCCFElZjqugBnCAoK0lFRUXVdhhBCnFc2btyYqrUOPtd8DTI4oqKi2LBhQ12XIYQQ5xWl1JHKzCeHqoQQQlSJBIcQQogqkeAQQghRJRIcQgghqkSCQwghRJVIcAghhKgSCQ4hhBBVIsEhhBCiSiQ4hBBCVIkEhxBCiCqR4BBCCFElEhxCCCGqRIKjjILcYqwWW12XIYQQ9VqD7B23un6ftZvDO9Lw8nPFJ8gdnyC30nf7yzfYHXdvM0qpui5VCCHqjARHGe37hxPc3Ifs1AKyUwuI251BXmbiKfO4eZkJDPMkIMyLgDDP0s+euHqY66hqIYSoXRIcZUR3DiK6c9Ap40qKreSkF5KVUkBWcgHpCXmkH89lz5oELIXWk/P5hrjTJMqHkCgfmkT5ENTMC5PZWNtNEEIIp5PgOAeTixH/pp74N/U8ZbzWmtyMItKO5ZJ2LJfkwzkci81g77okAAwmRdNoX8Lb+BPRxo8mUb4YzXJKSQhx/pPgqCalFN4BbngHuBHV6d+9lNyMIpIPZ5NwIJNjezNZv+QQ6xeDyWwgNMaPqE6BRHUKwifIvQ6rF0KI6lNa67qu4ayUUi2ApwFfrfX1lVmmZ8+eur48OrYwz8LxfZkc25tB3K50MhLzAQgM9yKqcyAtu4UQ1MxLTrgLIeqcUmqj1rrnOeeri+BQSn0GDAWStdYdy4wfArwDGIEZWutXykybdz4Gx+kyk/I5tC2Vw9tSSTiQhbZp/Jt60PqCprTu1UT2RIQQdaa+B8cAIBf44kRwKKWMwF5gIBAPrAdu0lrvKp3eIIKjrMJcCwc2J7N3XRLH92UCENrKl7Z9Q4np1QSzi5xcF0LUnsoGR52c49Ba/6mUijptdG9gv9b6IIBS6htgBLCrlsurNW5eZjr0D6dD/3Cy0wrYtz6J2DWJrPhyD//M30/bvqF0HBCOXxOPui5VCCFOqk8nx8OBuDLD8cAFSqlA4EWgm1LqSa31y+UtrJQaB4wDiIyMdHatDucT6E6PIVF0H9ychP2ZbP/jGNtXxLP1tziiOgfRfXBzQlv61nWZQghRr4KjvLPDWmudBow/18Ja6+nAdLAfqnJwbbVGKUVYjD9hMf7kZRWx489jbF8Zz4LXUglt5Uv3wc1p3jFQTqYLIepMfQqOeKBZmeEI4Hgd1VIvePq6csGwFnQf1Jxdfx9ny69HWfLBNppE+9BnRAsi2gbUdYlCiEaoPgXHeiBGKRUNHANuBMbUbUn1g9nVSJfLm9HxknD2/JPAhqWH+fHtLYS38afvyJY0ifKp6xKFEI1IndzKrJT6GlgNtFFKxSulxmqtS4AJwM/AbuBbrfXOuqivvjIaDXToH87NL/ThohtiSD+ey7xXNvDb57vIyyqq6/KEEI1Evb8BsDrOl8txa6q4oISNyw6z5bc4jEYDPa5sTtfLI6VrEyFEtVT2clz5hjmPubib6DuyFTc9dwERbf1Z88NB5r64joT9mXVdmhCiAZPgaAD8Qjy46r+dufq+zliKrSx4fRN/zImlqKCkrksTQjRA9enkuKihqE5BhMX4sW7hIbatiOPw9lQuu70dzeTqKyGEA8keRwPj4mbiolExXPdYT0wuRha+vYW/v9tHicV67oWFEKISJDgaqCbRPox6uhedLg5n629xfPfyBlLjc+u6LCFEAyDB0YCZXYwMuKkNQyd2oTDXwrxXN7BrVaO+p1II4QASHI1A8w6BjH6mN6EtfVnx5R5+m7ULS7EcuhJCVI8ERyPh4ePCsPu70vPqKPasSWTeKxvITM6v1rqsWVnk/r2K3L9XYc2Vw19CNDZyVVUjYjAoLhjWgtCWvvzy6U7mvbKBweM6Vvqqq5KMDFLefJOsH35EWywAKLMZv1GjCJ70AEZvb2eWL4SoJ2SPoxGKbB/IDU/0wtPPlUXvbmXbinjO1YNA/ubNHBw+nMzvf8D3+uuI/HwmkTM/w/eaa8iYM4dD119P8ZEjtdQCIURdki5HGrHighKWz9zF4W2ptO8fxsU3tsZgPPNvidy//iL+3vswhYYS8e47uLVte8r0/I0bib9vAhiNRH01G5eoqFpqgRDCkaTLEXFOLu4mrhrfie6Dm7Prr+Msnbad4sJT7zbPXbWK+Psm4BLTiqi535wRGgAePXrQfM5XYLNx9M6xWBITa6sJQog6IMHRyCmDou/Illw8pg1Hd6bxw5ubyc8uBiBv3Tri770PlxYtiPz0U0z+/hWux7VFC5rN+ARrVhZH7xxLSUZGbTVBCFHLJDgEAB0HhHPlfzuTkZDH/KkbSNm8j/iJ92OOiCDys7OHxgnuHTrQ7KNpWOLjOTbpwZMn0IUQDYsEhzgpunMQ1zzUneKCEn74cA+5bk1o9tE0TAGV7+vKo1cvmr7wPPlr15L06lQnViuEqCsSHOIUIZGe9Mn5EUosbO76AJk23yqvw++aawi4/XYyZs8mc/58J1QphKhLEhziFMmvv4Hhz6UMGWDFxcuNH97azPFqPN8j5NFH8OzXl8TnX6BgpzzIUYiGRIJDnJQ5fwHpM2fif/PNNPvPDVz7SHc8fV1Z9O4W4nanV2ldymQi7I03MAYEcOz+B7BmZTmpaiFEbZPgEADkb9pEwuTJePbrS5MnnwDAy9+NkQ93xzfYg8UfbOXw9tQqrdPk70/E229hSU7m+ONPoG02Z5QuhKhlEhwCy7FjxE+YiEtYGOFvvYUy/dsTjYePC9c81I3AMC+WfbyDuF1V2/Nw79qVJo8/Tu7KlaRN/8TRpQsh6oAERyNnzcoibvx4tMVCxLQPMfqeeTLczdPM8Ae64tfEg6XTtnFsb9Xu0fC/eQw+V11Fyrvvkrd6taNKF0LUEQmORsxWVET8fRMoOnyEiPfexbVFiwrndfM0M2JSV7yD3Fn8wTYSDlT+nIVSitD/vYBLdDTHHn4ES1KSI8oXQtQRCY5GSlutHH/8CfI3bCDslZfx7NPnnMu4e7swYlJXvPxcWfzeFpIOZ1d6ewZPTyLefQdbYSHHHnxIbg4U4jwmwdEIaauV408+Sc6yZYQ8/ji+V19d6WU9fV0ZMakrbl5mFr27pUqPo3Vt2ZLQ/71AwaZNJL/+RnVKF0LUAxIcjcyJ0MheuIjgSZMI/M8dVV6Hl78bIx7shtnVyKJ3t5CdWlDpZX2vvhr/W24hfdYsspctq/K2hRB1T4KjEbEVF3PskUdKQ+MBgsbfU+11+QS6M2xiV6wlNha+s+Vkx4iV0eSxR3Hv0oWEp56m6OChatcghKgbEhyNhDU3l7h77iHnp2WEPPooQePH13idAWGeDJ3QhbzMIha/v5XigpJzLwQoFxfC334L5erKsQfux5ZfvUfYCiHqhgRHI2BJSODIbbeRv249oa+8TODYOx227qYtfBk8riOp8bks/Wg7VkvlbvIzh4YS9vprFO0/QMLkyed8AqEQov6Q4Gjg8jdt4tD1N2A5cpRm0z7E75prHL6NqE5BXH5bW47FZrB85k5stsqFgNeFFxI0cQLZCxeROXeuw+sSQjiHBEcDpbUm/YsvOHL7HRi8PIn6di5eAwY4bXtt+oTS77pWHNiUwj8L9ld6uaDx4/Ec0J+kF1+iYPt2p9UnhHAcCY4GqCQ9nfjx/yXppZfxuvBCor/9FteWLZ2+3a5XNKPTJRFs/TWO7SvjK7WMMhgIe/VVjMFBxD/wgDw5UIjzgARHA6K1JmvRIg5ePZS81atp8swzFXYj4gxKKS4aFUNU5yD+mru30p0imvz9iXjnHawpqRx//HHpDFGIek6Co4EoOniQuLvHcfzRxzBHNiNq3ncE3HIzSqlarcNgUAy8sz1Bzbz5ecZOUo7mVGo5906daPL0U+T9+RepH33k5CqFEDUhwXGeK0lNJfGFFzg4bDgFmzfT5JlniJozB7fWreusJhc3E1ff1xk3DxNLPthKbkZhpZbzGz0an+HDSH3vfXJXrXJylUKI6pLgOE9ZkpJIfOkl9l8xkIy53+I/ejQtl/9i38swGuu6PDx9XRk6oQvFRVYWv7+tUvd4KKUInTwZ11YtOf7wI1gSEmqhUiFEVUlwnEe0zUbeP/8QP+lBe2DM+RqfK6+kxeJFNH3uWUwBAXVd4ikCw70YMq4j6Ql5/DxjBzbruc9dGDw8CH/nXbTFQvykSejiyt+RLoSoHRIc54GiAwdInTaNA0Ou5OidY8lfvZqAm2+m5bJlhL38Eq7R0XVdYoUi2wdyyZg2HN2Zzl/f7qvUjX6uLaIJffFFCrduI2nqa7VQpRCiKkznnkXUNltxMQVbtpD39ypyfv2V4oMHAfDo2ZPgiRPxHjQQg6trHVdZee0vCiMzKZ/Ny4/i18SDLpc1O+cyPkMGU3D77aTPmoV7t65V6sFXCOFcEhz1QElKCgU7d1K4Yyf569dTsGULuqgIjEY8L+hNwK234HXZ5ZibhNR1qdXWd2RLMpPzWfXdPnyD3YnqFHTOZUIeeZiC7dtJfPY53Dt3xqXZuQNHCOF8qr73EaSUagE8Dfhqra+vzDI9e/bUGzZscG5hVaStVkoSEyk6fJjiQ4cpPmx/FcXGUpKSYp9JKVzbtsWzd288LuiNR8+eGH186rZwB7IUWfn+jU1kJuVz7aM9CIrwOvcyx45xcMQ1uLZuTfMvZp3yPHQhhGMppTZqrXuecz5nBodS6jNgKJCste5YZvwQ4B3ACMzQWr9SiXXNq0/BobXGlpePLSsTa3Y21qxsrFlZWLOzsKalU5KchCU5mZKkZEqSkihJTYUyN7YZPDxwiYrCpVVL3Dt0wK1DB1zbtsPo5enUuutabkYR815ZjzIorn+iJ56+5z7klrVoEccffay0K/ia9+orhChfZYPD2X++fQ68D3xxYoRSygh8AAwE4oH1SqmF2EPk5dOWv1NrnezkGk/K+O47ivbtQxcUYCsoxFZYgC4oxFZYiK0g/+RnnZ+PNS8PSiq+xNTg44O5SQimkCa4xsRgahKCuWkoLtFRuERFYQoOrvWb8+oDL39Xrr6vCwte38jSadsZ+VA3TC5nv3zYZ+hQclesJOX9D/C88ELcO3WqpWqFEOWp1B6HUsofCAMKgMNa60r3CaGUigIWn9jjUEr1BSZrrQeXDj8JoLU+PTROX89Z9ziUUuOAcQCRkZE9jhw5UtkST4q7bwL569ZhcHNDubtjcHPD4O7+72cPd5Rb6Wdvb4w+Phh9fTD4+GD09cPo62Mf5++Pwd29yttvTA5uSeGnj7fTslsIg+/qgDKcPUStWVkcHHENBjc3ohfMx+DhUUuVCtF41HiPQynlC9wH3AS4ACmAG9BEKbUG+FBrvaIatYUDcWWG44ELzlJHIPAi0E0p9WRFAaO1ng5MB/uhqmrURbMP3q/OYqIaWnQNpt/IVvyzYD9rF7nTZ8TZO2E0+voS9sorHP3Pf0h+/Q2aPvdsLVUqhDjd2Q5VzcN+iKm/1jqz7ASlVA/gVqVUC631p1XcZnl/Wlb4Ra+1TgPkwHYD1HVgMzKT8tj40xH8mnjQtk/oWef37HMB/rfeQsYXX+I9ZDCevXvXUqVCiLIqDA6t9cCzTNsIbKzmNuOBstdVRgDHq7kucR5TSjFgTBuyUgtZ8eUefALdCIvxP+syIZMmkbtiJQlPP0OLH3+QQ1ZC1IFq3TmulGpbg22uB2KUUtFKKRfgRmBhDdYnzmNGo4Eh4zriE+TO0o+2k5l89uePGzw8CH1xCpa4OJLffrt2ihRCnKK6XY78UpmZlFJfA6uBNkqpeKXUWK11CTAB+BnYDXyrtd5ZzTpEA+Dmaebq+zoDsOSDbRTmWc46v2fv3viPGUPGl7PJ31jdHV8hRHVVeFWVUurdipYBbtda19s70+rjDYDi3I7vy+DHt7cQ2sqPYfd3wWis+O8aW14eB4ePQJlMRP/wvVzFJoQDVPaqqrPtcfwH2IH9XEbZ1wZAuiwVDhcW48+lt7blWGwGf86JPWuHiAZPT0JfnELxkSOkvPteLVYphDjbVVXrgR1a639On6CUmuy0ikSj1rZPKJmJ+WxcdgS/Jp50GxRZ4byeffrgd+No0j//HO9BA/Ho1q0WKxWi8TrbHsf1wJbyJmit628/3uK8d8HwFrTsHsw/3+/n4JaUs84b8sijmEKbkvDU09gKK/ekQSFEzVQYHFrrdK31KZe4KKW6O78k0dgpg+LyO9oTEunN8s/O/txyo5cnYVOmUHzoECnvySErIWpDVa+qmuGUKoQ4jdnFyFX3dsbN01z63PKiCuf17NcPv1GjSJ/5OQVbttRekUI0UlXqHVcptVlrXe8PJMtVVc5XZC1iY+JGtqVuIz4nnkJrIWaDGQ+TBzH+MbQNaEuHwA6YjeYabSc1PpcFr23EN8SdkQ93x8Wt/NNy1txcDg4fjsHNnejvF5xXD7oSor5wSrfqSqlrtNY/1KSw2iDB4TxHso8wa+cslhxcQn5JPgpFsEcwHiYPLDYL2cXZ5BTbDy15u3hzWbPLuKrFVfQN7Vvt3oAPb09l6bTthMX4MnRCF0zm8nvTzV21irixdxF411hCHnmk2m0UorGqF8/jqCsSHI5XUFLA+5vfZ87uORiUgSHRQxgcNZjuId3xcvn3gUxaaxLzEtmZtpMVcStYcXQFOZYcWvm14s6Od3Jl9JWYDFXvzT92bSK/ztxFVOcgrrynI4YK7vFIePY5MufPJ+rrObh36VLt9grRGDkkOJRSJmC61vpORxbnbBIcjnUw8yAPrnyQg1kHuS7mOiZ0m0CQ+7kf/QpQbC1m2eFlzNwxk/2Z+4nyiWJS90lcFnlZlfdAtq2I56+5e2lzQVMuv71duV2xW3NzOThsOAZ3d3v3625uVdqGEI1ZjW8AVEp5AYuw388hGql1CesYs3QMmUWZTB84ncn9Jlc6NABcjC4Mbzmc+cPn8/alb2NQBiatnMRtP93G5uTNVaql86UR9B4WTezaRP6cu7fcGwSNXl6ETvkfxQcPkjhlSpXWL4SonLNdVbUSWKq1nlZLtYh6ZtWxVdz7272EeobyzdXf0Desb7XXZVAGLo+8nPnD5zO572SO5R7jtp9uY+LvE1mXsA5bJZ8N1vOqKLoOjGTHH8f485vyw8PrwgsJHH8PWfPmk/Hdd9WuWQhRvrMdbPbl1AcuiUbkz/g/mbRiEi39WjJ94HT83c7e3XllmQwmrmt9HVdGX8lXu79i5o6ZrIxbSZhnGFc0v4KuIV3pHNSZEI+Qcg9lKaXod639oU9blh9Fa7j4xtZnHLYKnjiRwm3bSfrfFNzatsO9U8cz1iWEqJ6zdXIYCnwPvKy1/rFWq6ohOcdRM1tTtjL257G08mvFxwM/xtfV12nbKigp4Pejv/Pj/h/ZmLSRYpu9GzQ/Vz9i/GNo7d+a9oHt6d20N009m55cTmvNmh8OsOnno7TvH8YlN7U5IzxKMjI4dN116GILUbO/xCUqymntEKIhcNTJcW9gjtZ6mCOLczYJjuqLy4njlqW34Gn2ZPZVswlwC6i1bVusFvak72Fb6jb2ZeyzvzL3UVBSAECUTxQXhF5Ar6a96NmkJwFuAaz58SCblh0hplcTLr+9HUbTqUdfiw4c4Mgtt6JcXGg2/WPc2rSptfYIcb5x2OW4SilT6TM0zhsSHNWTXZzNzUtuJqMog9lXzibKN6quS8KmbezL2MeahDWsTVjLxqSN5JfYe8Jp4duC7iHdidjXhcLVPoS09mT4f7vj6n7qTYeFsXuJGzcOW04OIY8/jt8N16MMles0QVssWBISsMTHU5KRAYAyGjH6+mIMCMQcForR29uxjRaijtQ4OJRSjwBztdbn3XkOCY6q01rz8B8Ps+LoCj4Z9Ak9m57z306dsNgs7E7bzYakDaxPXM/WlK3kFOfQJvkCLj4wmnSvBA70XUGzJmHE+MXQ0q8lrfxaEZirSHjiSfLXrMElOhrfkSNx79oFk78/tsIibHl5WBITsMQfwxIfjyU+nuLjxyhJTALb2U/cm5o2xbVNazy698Dzgt64deyIMlX9XhUh6pojguMt7D3kHgK+Br7TWqc6tEonkeCourl75jJl7RQe7PEgd3Y8f27b0VqTVpjGwcyDxG4+RtYSL4rd8lnZcTaHDHtOzudp9qSlTwsu3edKl9+O4LU/ofwVKoUpJARzRAQuEeGYwyMwh4djjojAFBRo36bVii0ri5K0NIrj4ijat4/CXbso3n8AAKOfH15XXI7P4CF49uuLMpZ/p7sQ9Y2jznEoYAD254KPALZiD5HvtdYVd1laxyQ4qiY2PZYxS8bQK7QXH17+IQZV3ScK173Eg1ksnbYNq8XGhbdFUxCewoHMA+zP3H/yPb0wHb9cTbMUTbDFnUC/MMKCo4lo0YVWbfsRHRSD0VD1L/uStDTy160j5/cV5P7+O7a8PMzh4fiNHo3fdddiCgx0QouFcByHdzmilDICVwCvAG201h41K9F5JDgqL9+Sz+jFo8mz5DFv+LxaPRnuLDnphSydto3U+Fz6jmxJt4GRp1zam16YfkqY7MvYx+703SdPwrub3GkX0I4OQR3oENiBriFdCfMMq9Kd7rbiYnJ//52Mr78hf+1aMJvxvfpqgsbfI1d3iXrLocGhlOqEfa9jNJAGfK21frumRTqLBEflPf330yw6sIgZg2bQO7R3XZfjMJZiK7/P2s3+jcnE9AzhklvaVtizLoDVZuVw9mF2pu1kZ+pOdqbtZE/6Hoqs9u7cm3g0oUeTHidfLXxbVDpIig4eJGPO12TOm4e2WPAdNoyg/47HpXlzh7RVCEdxxDmOGOxhcRNgBb7BHhgHHVmoM0hwVM7CAwt5+u+n+W+X/3Jv13vruhyH01qz6ecjrP3xID7B7gwZ15GgiMpfAVViK+FA5gE2JW9iY9JGNiZtJLXAfprP39WfXk17cVH4RVwYfiEhHiHnXl9qKmkzPiXj66/RJSX4jx5F0MSJmPwdc3OlEDXliOA4iP18xjda6+0Ors+pJDjO7VDWIUYvHk2HwA7MGDSjWsf0zxfH92Xwy4ydFOaVcNGoGDr0r9phpxO01sTlxLExaSMbkjaw+vhqUgrsj7Zt7d+ai8Iv4qLwi+ga0hWzoeLnkJSkpJA67SMy5s7F4OVF8P0T8R89Wq7EEnXO0YeqmgMxWutflVLugElOjp+/iqxFjFkyhpT8FL4b9h1NPJvUdUlOV5BTzK8zd3F0VzqtetgPXbm61+yLWmvN3oy9rDq+ilXHVrEpeRMlthK8Xby5tNmlDGo+iL5hfXExupS7fOHevSS99DL5a9bg2ro1oVP+h3vnzjWqSYiacOQNgHcD44AArXXL0kNYH2mtL3dMqY4nwVExrTXPrHqGhQcW8sHlHzAgYkBdl1RrtE2z6ZcjrF14CC8/V674TzvCYhx3mCjPkseahDX8fvR3VsStIKc4B0+zJxdHXMyg5oO4MPxC3EyndvOutSbn119JevElSpKTCbjjDoLvnyjdwYs64cjg2AL0BtaeeGysUmq71rqTIwp1BgmOin21+yteWfcK93a5l/92/W9dl1MnEg9msXzmLrJTC+g2MJILhrXAaHbsJcgWq4W1iWtZfmQ5vx39jayiLLzMXgyOGszwlsPpFtLtlMNl1txckl97ncy5czE3jyTspZfw6NHDoTUJcS6ODI61WusLTjxvvPThTpu01vV2n1qCo3zrEtYxbvk4BkQMOPlsjMaquLCEVfP3s+uv4wSGezHwzvYEhnude8FqsNgsrE9cz5KDS1h+ZDkFJQVEekcyrOUwrml1zSmdN+atWUvCM89gOX6coPHjCbr3v3LuQ9QaRwbHVCATuA2YCNwL7NJaP+2AOp1CguNM21O2M275OEI8Qvjqqq9OedxrY3Z4Wyq/f7mbooIS+oxoSdfLm5X7ZEFHybfks/zIcn488CPrE9djUAYuibiEG9veSJ/QPiilsObmkTRlClk//IB7166Evf4aLhERTqtJiBMcGRwGYCwwCFDAz1rrTxxSpZNIcJxqZ+pO7v7lbnxdfZk5ZOYpf+EK+4nzFbP3cGhrKmExflx2Wzt8g92dvt34nHjm7Z3Hgn0LyCjKIMonitFtRnNNq2vwcvEia/ESEidPBiD0xRfxGTzI6TWJxs2RwfGC1vq5MsNG4Aut9c01L9M5JDj+tS5hHZNWTsLHxYeZg2cS6hVa1yXVS1pr9qxO4O9v92HTcOF1rap92W5VFVmL+OXwL3wT+w3bUrbhbfZmVJtR3NL+FnzSijj28EMUbt1GwJ13EvLQg3LoSjiNI4PjcyBWa/2yUsoF+A7YrLWe7IhCnUGCw34n9Oc7P+f9ze8T6RPJtCumEeYVVtdl1Xs56YWs+HI3cbszaNbOn0tvbYd3QO1d4bQzdSef7fiM5UeWYzaYGdFqBLfHjMH1wzlkzPkaj969CX/zDUxBlX/uuxCV5cjgUMBXwHbgUuAnrfVbDqnSSRpzcGit2Zy8mdfWv8aOtB0MbD6QF/q9IOc0qkBrzc6/jrNq/n4MCi4aFUPbvqG1svdxwpHsI3y+83N+3P8jVm1laIuh3HWsFUUvv4vR15eIDz/AvUOHWqtHNA6OuHO8e5lBM/AxsAr4FEBrvckBdTpFYwyOfEs+K+NWMnv3bLanbifYPZiHej7E1dFX1+oXXkOSlVLA71/s5vi+TKI6BXLJLW3x9HWt1RpS8lOYtXMW38R+g1VbudP1MgZ9uBGdlU34a1PxvuKKWq1HNGyOCI4VZ1lOa60vq25xztYYgsNitRCbEcvWlK2sPr6aNQlrKLIW0dynOTe3u5kRLUfgYa63HRifN7RNs21FPKt/OIDJbGDATa2J6dmk1sM4KS+J6dums2DfAvzzDby4yAu/gykEP/QggXfdJX8cCIdweLfq55OGFhxaa5Lyk9ieup1tKdvYmrKVXWm7TvbcGu4VziXNLuGSZpfQu2nvRn1/hrNkJuXz6+e7SDqUTctuwVx8cxvcvcrvSsSZ4rLjmLZ1Gj/HLuL+ZUZ67yjCZ+Q1hD3/PMql9usRDYsj9jhuAb7SFcyglGoJhGqt/65RpU5wPgeHxWbhUNYhYtNj2ZO+x/6esYesoiwAzAYz7QPb0yW4C52DO9MluItcXltLbDbNluVHWbvoIO5eLgwa296hXZZUxa60Xby69hVaLtjADX9rrF3b0e6TWfL8c1EjjgiOB4A7gY2lrxTADWgFXAykAk9orfc5qmhHOR+CI9+Sz5HsIxzKOsTh7MMczjrMoexDHMg8gMVmAcDV6Epr/9a0CWhDW/+2tAtsR9uAthV2midqR8rRHH6esYPslAJ6DY2mx5VRGJx402BFtNYsO7yMlZ/+j1sWZJAd5kOrz2bRJLJtrdciGgZHPTrWCFwGXAiEAgXAbuxXVh11UK0OVx+CI9+ST0JeAgl5CRzPPX7K+7HcYyTnJ5+cV6EI8wojyjeK1n6lQRHQluY+zTEZ5Jr9+qi4sIQ/v95L7NpEwlv7MfDODnj61e6J8xPyLfn8MOd52r2+kBxPAzlTH+Sq/mPlvIeoMjnH4cDgKLGVkGfJI6c4h1xLLjnFOWQUZpBWmEZ6YTppBae9F6aRZ8k7ZR0mZaKJZxPCvMII9QyluU9zonyiiPKNItI78oxeU8X5Yc/qBP74OhaTi5Er7mhP845191zx/auXkTXhUSy6hEX3dWX8qKk0825WZ/WI80+DCQ6lVDvgASAI+E1rPe1cy1Q3OKZtncbWlK3kFueSW2wPiBxLzslnUZdbHwp/N38C3AIIdAu0v7sHEugeSKhn6MmgCHYPbtAPS2rMMhLz+PmTnaQdy6XboEj6jGiBwVg3FygUHjxA7O03Y83K4p1R7lw+chK3tL9FLpgQlVIvgkMp9RkwFEjWWncsM34I8A5gBGZorV+pxLoMwCda67Hnmre6wTFlzRR2pu7Ey8ULbxdvvMxeJz97m73tn0vf/Vz9CHQPxM/VTw4nCUqKrfz93T52/nWcsBg/Bt3Vodbv+TjBkpTEwTvvoPjIUV4bCeaL+vDiRS/KRRTinOpLcAwAcrH3bdWxdJwR2AsMBOKB9difa24EXj5tFXdqrZOVUsOBJ4D3tdZzzrXd+nCOQzROsWsSWPlVLC7uJgbd1YHw1nVz1VVJRgZHx95F4d5Y3rnWzPZ27jzX9zmGRA2pk3rE+cGRXY4EApOxnyDXwN/AC1rrtEoWEgUsLhMcfYHJWuvBpcNPAmitTw+N8ta1RGt9dQXTxmF/UiGRkZE9jhw5UpnyhHC4tGO5LJu+g6yUAvqMaEG3QZF1cqLamp3N0bvupnDnTubfHMnc8DiGtRjGUxc8JV3QiHJVNjgqc+DzGyAZuA64HvtluXNrUFs4EFdmOL50XLmUUpcopd5VSn0MLK1oPq31dK11T611z+Dg4BqUJ0TNBIZ7ccMTPWnRNYjV3x/gp4+2U5RvqfU6jD4+RH72Ke5dunDd7CNMzrmMJYeWcMOiG9idtrvW6xENR2WCI0Br/T+t9aHS1xTArwbbLO9Prwp3e7TWK7XW92ut79Faf1CD7QpRa1zcTQy+uyMX3RDDke1pfPvyBlLicmq9DqOXF5GfTMejVy/af7CcL/WdWGwWbll6C/P3zqe+Xxwj6qfKBMcKpdSNSilD6WsUsKQG24wHyl4jGAEcr8H6hKiXlFJ0ubwZ1zzcHavFxvxXN7JrVe3/Uzd4etLso2l49u2L+ZWPmWUYS48mPZi8ejLPrnr2rFcNClGeypzjyAE8AWvpKCNw4iYFrbX2OcfyUZx6jsOE/eT45cAx7CfHx2itd1azDWeQk+OivsnPLmb5ZzuJ35NB236hXHxja0wutXt5tq2ggLjx/yV//XpCX5vKV+GH+Xjrx8T4x/DmJW/S3Kd5rdYj6h+HnePQWntrrQ1aa3Ppy1A6zrsSofE1sBpoo5SKV0qN1VqXABOAn7Hfhf6tI0NDiPrIw8eFYfd3pedVUez5J4F5UzeSmZxfqzUY3N1p9uEHuHfrRsJjj3Nbahs+vOJDkvKTuGnJTaw+vrpW6xHnr3p/A2B1yB6HqM+O7Ehj+cydaKvm8tvb06Jb7V7MYc3N5ejYsRTu2k3Ee++S3TOGCb9N4FDWIR7v/Tg3trlRuitppBx5VZUQwoGadwxk1FO98GviwU8fb+efBfvRttr7A85+wvwT3Fq35tj9D+C79TCzr5pN//D+vLT2JaasmXKyo00hyiPBIUQd8Al059pHetBhQDibfznKsuk7sBRbz72ggxh9fIj8dAYu0dHET7wfw679vH3p24ztOJZv937L+OXjySzMrLV6xPlFgkOIOmI0G7hkTBsuGhXDwa0p/PDGJvKyimpv+35+NPtkOqbAQOLG3UPJwUNM6jGJly56ic3Jm7n1p1uJz4mvtXrE+aNawaGUWuzoQoRorLpc1oyrxnciPSGP+a9uJO14bq1t2xwSQuRnn4KLmaNj78Jy7BjDWg5jxqAZpBemc+tPt8rNguIMFQaHUurV0vcbypl8t9MqEqIRiu4SzMiHu2MtsbHgtU3E7U6vtW27NGtG5IwZ2PLzOTr2LkrS0ujepDtfXvklZoOZO5bdwT/H/6m1ekT9d7Y9jquUUmbgydMnaK0TnFeSEI1TSHMfrn+iJ94Brix+b2ut3izo1qYNzT7+CEtiInF3j8Oam0sLvxbMvmo2Ed4R3PfrfSw6sKjW6hH129mCYxn2x8N2Vkpll3nlKKWya6k+IRoV7wA3rn2kB+Ft/Vnx5R5W/3Cg1q648ujenYh33qZw717i770PW1ERIR4hfD7kc3o07cFTfz/FrJ2zaqUWUb+dLTie0Vr7Aku01j5lXue88U8IUX0u7iauvq8z7fuHsWnZEX75bCclltq54srr4osJe/ll8tet4/gjj6KtVrxdvJl2+TSGRA3h9Q2v88GWD6SPq0bubMFx4jZS2bsQopYZjfYrrvpe25L9G5L58a0tFOQU18q2fYcNJeSJx8lZvpzkqVMBMBvNvNL/Fa6NuZaPtn7E1PVTJTwasbM9us5FKXU70E8pde3pE7XWC5xXlhBCKUX3Qc3xCXTn1893Me/VDQyd0AX/pp5O33bgHXdgOX6c9FlfYA4LI+D22zEajEzuOxkPkwezd8+moKSAZ/s8K49EboTOFhzjgZuxd6E+7LRpGpDgEKIWtOoRgpe/K0unbWP+axsZOqELTaN9nb7dJo8/TklCAkmvvIqpaSg+gwehlOKxXo/hafbk420fk2fJ46X+L2E2mJ1ej6g/KtM77lit9ae1VI9DSF9VoiHKSsln4btbyc8q4sp7OhHZIdDp27QVFnL09jso3LOHyJkz8eje7eS0mTtm8ubGN7ki8gqmXjxVwqMBqHFfVUqpy0o/Ziilrj395bBKhRCV4hvswbWPdMc3xIMlH25j7/pEp2/T4OZGxLQPMTVtQvy991J8+PDJaf/p+B8e7/U4vx79lcf+eEz6t2pEznZy/OLS92HlvIY6uS4hRDk8fV0Z+XB3mrbwZflnu9i2Iu7cC9WQKSCAyOnTQSmOjruHkvR/b068pf0tEh6NkHSrLsR5qMRi5ZcZOzm0NZWeV0fRe2i007tCL9iyhSO334Fbu3ZEzvocg6vryWmzd83m1fWvymGr81xlD1VVGBxKqYfOtqDW+s1q1uZ0EhyiMbBZbaz8Kpbd/yTQ5fJmXHh9K6eHR/aynzk2aRI+w4cR9uqrp2zvy11fMnX9VAmP85gjnsfhXfrqCfwXCC99jQfaO6JIIUT1GYwGLr2lLZ0vjWDrb3GsnBOLzcl3mfsMGUzwA/eTvXARadM/OWXare1v5bFej/Hr0V955u9nsNpqr5t4UbsqvBxXa/08gFLqF6C71jqndHgy8F2tVCccT2uwWsBWAsoABiMYTFCbT3zTGmzWU2tQhtqtoYFQBsVFo2IwuxrZuOwIJUVWLr+9HQaj856YEDh+PEUHDpLy1lu4REfhM2jQyWm3tr+VImsR72x6Bw+zB8/1eU6eJtgAne0+jhMigbK3rBYDUU6pRti/VEsKoSjn31dxLhTl2t9Pfs6D4pwy4/P+nbc4DyyFYLOAtRisJf9+tpVUsGFV+gVuLA0TMxjNYHQpfS/72cX+Mpj+/axt9rqtxfb3kqJ/X9ai0jospa9i7LcCnV6CoXT7ptJ1l74bzOUMn5jvROiULqtUmXGl70YzmN3B5Aqm0veyw2Y3MJV5nRwuM6/ZA1y9wcWz3gWcUoo+17TE7GZkzQ8HKSm2MWhsB4xm54SHUorQF6dQHHeU448/gTk8HPcOHU5Ov6vTXeQW5/Lpjk/xNHnycM+HJTwamMoEx5fAOqXU99j/t48EpKez09msYMm3f5Gf/NLPPjUAirLLGVfOvBV+uZ/G5G7/InP1Ahdv+7tHIPg1t3/ZnfxiL/3iN5z40i/9AtY2sNlAl/71b7OWfi4dPv3L/kTwnBh/IuCsxfYvaJOr/QvX3b/0i9cVjK5gcik/bAyG02qwnlqLreTfvaMTr9OHta10OVvpnkxpfSfHWe3LWApKg6z03VJAueF1Lsrw78/a1bs0TE589ikz3sf+u/AIAPeAf9/d/ezB5gQ9hkRhcjHy97f7WPrRNobc0wmzi3O2ZXB1pdn773No1Gji772PqO++xRwScnL6A90fIM+Sx6xds/By8WJ8l/FOqUPUjUpdVaWU6g70Lx38U2u92alV1VC1T47v/RnSD5b+xV5gDwJLPhTn//vZUlA6veznAvtf1ZVhcv/3C+fky6eccWW/lMoEg4unfZyLlz0ARPWcOGRXUmDfOysp8yo7bCmwvxfnle7tlRf6OWdOqzCUlD08ToSJRyB4BIF309JXaOmrKXiF2AO/inatOs6K2XsIa+XH1fd1xsXNef9OCvfs4fCYm3Ft2ZLmX36Bwc3t5DSbtvHsqmdZeGAhj/V6jFvb3+q0OoRj1PiqqvNZtYNj9vWwf7n9szKA2dP+l7uLh/1Qhdmj4s8nhk/567OcIKjGF4E4z9hs9sOI+elQkG5/L/u5IB3y0/79nJsCecn2PaRTKPAMtoeIXyT4R9n3Jv2jSj9H2g+rlWPf+iR+nbmLoEhvhk3sgpun8/7d5fz+O/H3TcDnyiGEvfHGKYelSmwlPPbnYyw/spzn+z3PtTFy73B9JsFRneDIL72xyexhP8wix2VFbbFZIS8FchIgJ7HMK8H+yjwKGYftez9leYdCQEsIbgPBbSG4tf3dqwmHtqWy7JMd+Df1ZPj9XfHwcXFa+WkzZpD8+hsE3XcfwRMnnDKt2FrM/Svu559j//DGJW8wsPlAp9UhakaCQ+7jEA2N1pCbBBlH7CGSWfqeug9SYqEo69953XwhpANxxktZur4HXn5mRjzUE68ADyeVpkl48imyfviB8HffOeVKK4CCkgLG/TKOnWk7+Xjgx/Rq2sspdYiakeCQ4BCNyYlQSdljD5GUPZC4AxK3czw/isUZz+BuyGVEh/n4RLeEyD7QvJ/9PIqD2IqKOHLrbRTv30/Ut3NxbdXqlOlZRVnc9tNtpOSn8PmVn9Pav7XDti0cQ4JDgkMI+yGw1L0kb93JwoVemFUh1wQ8hy9H7NMDWkJkX2jeF5pfCAHRNdqcJSmJQ9ddj8HTg+jvvsPoc+rDQhNyE7hl6S0AfHnVl4R5hdVoe8KxJDgkOIQ4RWp8Dj+8tRmzi5FrxpjxzV4DR1fbXwUZ9pn8o6HVFdDqcojqb7+Sr4ryN23iyO134Nm3D82mTUMZT70keG/GXu746Q6CPIL4YsgX+Ln5OaB1whEkOCQ4hDjDyfBwNTLyoe74BLnbrwJLjYVDf8H+X+HwX/bLzQ1m++GsdsOg7VDwCa30djK++YbEyc8TeM89hDw46Yzp6xPXM375eNoGtmXGoBm4m9wd2EpRXRIcEhxClCslLocf3z4tPMoqKYKja+whEvsTpO2zj4/oZQ+R9iPslwOfhdaaxOf+j8zvviP87bfxGTL4jHmWH1nOwysfZkDEAN6+9G1MBrkvqa5JcEhwCFGhlKOl4eFWQXicMnMs7F4IuxdBwlb7uMh+0GU0tL/GfkNjOWzFxRy97XYK9+4l6puvcWt95snwuXvmMmXtFG5ofQPP9nlWuiapYxIcEhxCnNWJ8HBxM3HNQ93OHh4nZByG7fNg6zf2PRGjK7S5ErrfCi0us3cjU4YlKZlD11+Hwc2d6O++xejnd8Yq39r4Fp/t+IyHezzMHR3vcEjbRPVIcEhwCHFO1QoPsF/+e3wTbJ0LO+bZ74QPaAE9x0K3m+39lZXK37SZI7ffjmfv3jSb/vEZJ8tt2sajfzzKL0d+4c1L3pQbBOuQI57HIYRo4IIjvRkxqRvFhSX88OZmslMLKregUhDeA66aCg/thmtngGcI/PI0vNEOfrwPknYB4NG9G02ffYa8VatIefvtM1ZlUAZevOhFOgd35sm/nmRbyjYHtlA4gwSHEI1ccKQ3wx/oag+PtzaTk1547oXKMrlC5xtg7M8w/m/ociPsWADT+sKc0XB0Lf6jRuE3ejRpn8wg+6efzliFm8mNdy99lyD3ICb+PpH4nHgHtU44gwSHEIKQ5j4Mf6ArRXkWfnx7M3lZlezt+XRNO8Gwt+HBnXDp0xC3Dj4bBJ9dSdNRvXHv2pWEp5+h6MCBMxYNdA/kwys+xGKzcN9v95FVtgsVUa9IcAghAHt4DJ3YlbzMIha+s4WC3OJzL1QRjwC4+DF4cAcMeRUyj6K+u4nwCxJRZiPx9z+ALS/vjMVa+LbgnUvf4WjOUR5e+TAWq6UGLRLOIsEhhDgptKUvV93bmazkAha9u5Wigko+VKwiLp7QZzw8sAWGvYtZJxHe/RDFBw+Q8MhEyrs4p1fTXkzuO5m1iWt5ce2L5c4j6pYEhxDiFM3aBjDkno6kHctl8XtbKS6sYXiA/Tk0PW6HiRvxvPU5grtbyF6xmoyHr7R3GX+aEa1GcHenu5m/bz5z9syp+faFQ9X74FBKXaKU+ksp9ZFS6pK6rkeIxiCqUxAD7+xA0qEslk7bTkmx1TErNrtDv4kEfrIer84RJP10mPz/6wt/TLU/ebGMCd0mcGmzS5m6fir/HPvHMdsXDuHU4FBKfaaUSlZK7Tht/BClVKxSar9S6olzrEYDuYAbIJdaCFFLWvUI4fLb23EsNoNl03dgLTn9CYXVpzz8CZsxH3NYGMf+CaTkp5fhwwtgz1L7PSLYL9N9pf8rtPRrySN/PMKhrEMO276oGWfvcXwODCk7QillBD4ArgTaAzcppdorpToppRaf9goB/tJaXwk8Djzv5HqFEGW06RPKxWPacGRHGss/3YnN6rjwMPr4EPH+B1iLDRw7eDHa4Arf3ARzRkFmHAAeZg/eu+w9TAYT9/9+v1xpVU84NTi01n8C6aeN7g3s11of1FoXA98AI7TW27XWQ097JWt98kHMGYCrM+sVQpyp44BwLry+FQc2p7Bi9h6Hnqx2a9eOpv/3f+RviyWleBQMehEOr4IP+8KGz8BmI9wrnLcufYv43Hge+/MxSmwOOOciaqQuznGEA3FlhuNLx5VLKXWtUupj4Evg/bPMN04ptUEptSElJcVhxQohoOsVkfS8Ooo9qxP5Z8GZ92DUhN+1I/EbNYq0Tz4lp7A93PsPhHeHxQ/CF8Mh/RA9mvTg2T7P8s/xf3hjwxsO3b6ouroIjvK6v6zwTxit9QKt9T1a69Fa65VnmW+61rqn1rpncHCwI+oUQpTRe2g0HS8OZ8vyo2z6+YhD193k6adw69CB448/QXGOAW77EYa9A8e3wLR+sHY617YayS3tbmH27tnM3zvfodsXVVMXwREPNCszHAEcr4M6hBBVoJRiwOjWtOoZwurvD7BrleP+2xpcXQl/5x0wGOw3BxYWQo874L419kfa/vQozBnNw+3u4MKwC5mydgobEqUj07pSF8GxHohRSkUrpVyAG4GFdVCHEKKKlEFxxR3tadY+gJWz93Bwi+MOC7tEhBP+2lSKYmNJfP4F+7kU3wi4+Tu48jU4uBLTxwOY2nw4EV4RPPzHwyTmJTps+6LynH057tfAaqCNUipeKTVWa10CTAB+BnYD32qtdzqzDiGE4xhNBoaM60hIlA+/zNjJsdgMh63ba8AAgv77X7J++IGs+aWHo5SCC8bB3b+Bmw8+c8bwjlsMRdYiHlzxIEXWavarJapNnschhKiWwlwLC17fSG5mESMf6k5wpLdD1qutVuLuvpv8jZuI+vZb3NqUeXJgcR4sexI2zeK3Zp2ZZMpkZKuRPN/veXl6oAPI8ziEEE7l5mVm+ANdcfUwsei9LWQm5TtkvcpoJGzqVAw+3hybNAlrbpnOEF08Yfi7cP1MLk88wLi8Er7f/z3f7f3OIdsWlSPBIYSoNi9/N4bf3xWtYdF7W8jPrkGPumWYgoIIf/0Nio8cIXHy5DPvHel4Ldz9G/eWuHFRQSEvr3mRLclbHLJtcW4SHEKIGvFv6snQCV3Izy5m8fsO6hQR8LygN8ETJ5C9eDGZ8+adOUNIO4x3r+AV7y6EWop4aNlYUrLjzpxPOJwEhxCixppE+TD47o6kxuXw8yeO65okcNw4PPv1I2nKixTGxp45g7sfvjd9yzvNRpBrLeSh+cOxZB9zyLZFxSQ4hBAOEdUpiIvHtOHozjRWzol1SNckymgk7LWpGH18OPbAaec7TjAYiBn8Ki/E3MwWQwmvfj0EkvfUeNuiYhIcQgiH6dA/nJ5XRbF7VQIblh52yDpNgYGEvfE6xUePkvh//1dhIA256Cn+0/wq5rrB93OuhoMrHbJ9cSYJDiGEQ/UeFk3bPk1Zt+iQw+4u9+zdm+D7J5K9ZAmZ31Z8BdX9A17kgqAuTPHzYNe3N8KmLx2yfXEqCQ4hhEMppbjk1rb2u8u/iuXIzjSHrDdw3Dg8L7yQpBdfpHD37nLnMRlMvHb5e/h7hPBQaChZiyfCipdOPuNDOIYEhxDC4YxG+93lgeGeLJu+g+Qj2TVepzIYCJv6KkY/P45NehBrbm658/m7+fPGpW+SpOCZll2x/fEqLH0UbI57lkhjJ8EhhHAKFzcTQyd0wd3TzOIPtpGdWlDjdZoCAwl/43WK4+JIfO65Cs93dAnuwiO9HmFlSRqfdx4C6z+BBXeD1VLjGoQEhxDCiTx9XRk6sQtWi40lH26jqKDm93h49OpF8AMPkL30JzLnzq1wvjFtxzA4ajDv5say/sJ7YMc8+GYMFDvmDvfGTIJDCOFUAaGeDLmnI5mJ+fzyyQ6H3OMRePddePbvT9JLL1O4p/xLb5VSPN/veZp5N+OxjPWkDn4R9i2HL0dCQWaNa2jMJDiEEE7XrG0AA25qzdFd6fw1d1+N7/FQBgNhr7yM0deXYw8+hC2//L0IT7Mnb17yJrnFuTyatZGS6z+FYxvhy2ugwHG9+jY2EhxCiFrRoX843QZGsuPPY2z7Pb7G6zMFBhL22lSKDx8m8cUXK5wvxj+G5/o+x4akDbxfFAejZ0PSTvhiBOSn17iOxkiCQwhRa/qObEl0lyBWzdvH4W2pNV6fZ58+BN4zjqz5C8havKTC+Ya1HMYNrW/g0x2fstLDDUZ/Bcm7JTyqSYJDCFFrlEEx8M4OBDXz5udPd5Ian1PjdQZPmIB7t24k/t//UXz0aIXzPd77cdoFtOOpv58iPrQ93Pg1pMTCrOGQ55h7TRoLCQ4hRK0yuxq5+t7OuHmYWPLBNvIya/YEP2UyEf76a2A0cuyhh9HF5Xft7mp05c1L3gQNj/35GJYWF8NNX0PaPpg1TMKjCiQ4hBC1ztPPlavv60xRfglLPtyGpchao/WZw8MJnfI/CnfsIPmttyucL8I7ghcufIHtqdt5Z9M70OpyuOkbSD8As0dCYVaN6mgsJDiEEHUiKMKbQXd1IDUuh+Wf7UTbanallc+gQfjddCPpM2eS++efFc53RfMruLHNjczaNYs/4v6AlpfCqC8haRd8Ncr+eFpxVhIcQog6E9UpiItGxXBoayqrfzhQ4/U1efxxXFu35vgTT2JJTq5wvkd6PULbgLY8veppEvMSofUguG4GxK+z3yRoKaxxLQ2ZBIcQok51vrQZHS8OZ/MvR4ldk1CjdRnc3Ah/601sBQUcf+xxtLX8Q2CuRldeG/AaFquFx/98nBJbCXS4BkZ8YO+Ofd5/pHuSs5DgEELUuYtGxRDexo8Vs2NJPFSz8wyuLVvS9OmnyF+zhrRPZlQ4X5RvFM/1fY5NyZuYtnWafWTXMXDV6xC7FL6/B2w1O/fSUElwCCHqnNFoYMjdnfD0c+GnadvJzajZlVa+112Hz1VXkfLee+Rv2lzhfFe3uJqRrUbyybZPWH18tX1k77vhismwYz4se0K6ZC+HBIcQol5w8zJz1b2dsRRZ+emjbZQUV/+vfaUUTZ+fjDk0lGOPPIw1q+K9mCd6P0EL3xY8+deTpBaU3pR40YPQdwKsmw5/vVHtOhoqCQ4hRL0RGObFwLEdSD6aw+9f7K5Rn1ZGb2/C33yDkuQUEp6tuAt2D7MHr1/8OnmWPJ7860lsurQTxoH/g06j4Pf/yZMETyPBIYSoV6I7B9FnRAv2bUhm089HarQu986dCXnwQXJ++eWsXbC38m/Fkxc8yZqENXy6/VP7SIPBfrK85WWw6AGIXVajWhoSU10XUJ88uWA76w/b+60p+9fJGX+n6HI/nnUZfcoyuvzxZ/njqqJ1n75Mhes+yzJUYpnK1lDeX3UGg8KgFAZlP4RgUJQOK9TJz5w2XOaz4cS0sstWZl1lphtOzF/ets62/tJxhirOf/r6DWfObzQYMBsVRoPCVOaz2WgofbePP2Oc0YDJoOyv0s9mo315pdQZP//zUffBzUk7lseaHw8SEOpJdJfgaq8r4D93kLdmDUkvv4JHjx64xsSUO9/IViNZk7CG97e8T/cm3enRpAeYXOz3eMwaCt/dAbcvhGa9q11LQ6Fq2r1xfdSzZ0+9YcOGKi/3wYr97Dpe5hGXqtyP9uEy/0HVKeOrvsyp2zl1qYrWpyq7TAUbOv37pTLrPvsyFX9haa2xabCVvtuH/x2ny0yzD2tstsrMX3Z6OfPbzpz/zG2dZV22s8+vqV/nTQ0K3MxGXE0G3MzGk59dzUbcTo4z4Gqyv5+Yx8PFiJerCS9XE56l715uJjxdTHi72cd5uhpxNRlrtT0lxVa+f2MTGYn5XPdYDwLDvaq/rtRUDo64BlNQEFHfzsXg6lrufLnFuYxePJoiaxHzh8/H19W3dEIKfDbI3hX72F8hqFW1a6nPlFIbtdY9zzmfBIcQ1aerGkal0602jdWmsVhtpe+aEpuNEpumxKopsZZ+ttmwWP+dt+TEZ5v9s31+G8UlNopKbBRarCffC0tsFJW+F1qsFJWdZrFRVGJ/L7BU7iS0i9GAp6sRH3cz/h4u+HvY3/1KP/t5uhBw4rOHCyE+rgR4uGAwVH8vKDejiO9eWY/JbOD6J3ri7uVS/XX98Qdx94wn4PbbaPLkkxXOtzNtJ7csvYVLIi7hzUve/PePovSDMOMKcPO1h4dnYLVrqa8kOCQ4hKgUq02TV1xCXlEJuYUl5BaVkFdkJbfIQm6RldxCC3nFVnJLp2cVWMjILyYz3/6ekVdMXgVXQJkMimBvV0J83Gji7UoTHzea+NiHm/q4ERngQZifOy6mik+3Jh3K5vs3NtG0hQ/DHuiK0Vj9U7OJ/5tCxldf0eyT6Xj171/hfDN3zOTNjW8yue9krmt93b8Tjq61d4gY1g1u+xHMbtWupT6S4JDgEKLWFJVYycq3kFEmTFJyi0jKLiQp2/6enF1EUk4hmfmn3pFtUBDq605kgIf9FWh/bxXiRXSQJ25mI7FrE/l15i46XxpB/9Gtq12nrbCQwzeMoiQjgxY//oApsPy9Bpu2MW75OLalbGPu0LlE+0b/O3HHAvud5R2vt3dT0kDOK4EEhwSHEPVUocVKSk4RxzILiEvPJy49n6MnXwWk5v57859BQVSgJ61CvOiQZMV0II9O17bgoiuaV/sQWGHsXg7fcAOe/foRMe3DCs/PJecnc93C6wj1DGX2VbNxMZY5TPbXm/Db8zDgUbjsmWrVUR9JcEhwCHFeyi8u4UhaPvuSc9mflMPepFz2JudwNDWf63LMhJYY+CGghKZRPnSO8KNTuC+dI3yJDPCo9FVl6V98SdJLL9Hk2WcIuPnmCudbcXQF96+4nzs63MHDPR/+d4LWsHAibP4SRnwI3Spex/lEgkOCQ4gGpajEyu5Dmaz+aCcWq40/o01sS86h2Gq/YS/Y25Xe0QFcEB3ABdGBxIR4VbhXorUm7p57yF+7juh531V4iS7AlDVTmBs7l48Hfky/sH7/TrBa4Kvr4fAquGMxRPZxaHvrggSHBIcQDVLykWwWvLaJpi19GXJvJ/an5rE1PpP1h9JZeyidhCx7l+j+HmZ6RwdwUUwwl7YJJsLf45T1nLxENzCQqO++rfAS3YKSAm5afBNZxVnMHz6fALeAMhMz4JPLoSgb7l4Bfs2c1u7aIMEhwSFEg7X7nwR+/2I3Xa9oxoXX/7u3oLUmLr2AtYfSWHsonTUH04jPKACgdRMvLm0TwiVtQugV5Y/JaDh5ia7/bbfS9KmnKtxebHosNy25iX5h/XjvsvdOPSSWshdmXA7+zeHOn8HF02ntdjYJDgkOIRq0P7/Zy/aV8Qwc257WvZqWO4/WmgMpeayMTWZFbDLrDqVjsWoCPV0Y3LEpQzuFEj1nGplz5pzzEt3Zu2bz6vpXefqCp7mx7Y2nTty3HL66AdqPgBs+P2+vtJLgkOAQokGzWm38+NZmUo7kcN3jPQiK8D7nMjmFFv7al8rS7Qn8tjuZAouVUDd4c8U7+BbnEbPoR8xBQeUuq7Xm3t/uZX3ier6++mti/E87L7LqXVj+LFz6DFz8qCOaWOskOCQ4hGjw8rOL+fal9RhNihue7IWbp7nSyxYUW1kZm8zi7QnsW7OZ1359m30R7ch85mVGdo8g0OvMcx6pBalct/A6AtwC+Prqr3EzlbkBUGv7w5+2zYXRs6HdMEc0sVZVNjjqfe+4Sqn+SqmPlFIzlFL/1HU9Qoj6w8PHhSH3dCQ3s4hfPt2JzVb5P4TdXYxc2SmUD8Z0Z/7U20geczcdjm5ny/uf0ufl37j3q42sO5R+SsedQe5BTLlwCvsz9/PWxrdOXaFSMOxdCO8BC+6BpJ2Oama949TgUEp9ppRKVkrtOG38EKVUrFJqv1LqibOtQ2v9l9Z6PLAYmOXMeoUQ55+m0b5cfGMb4nals/bHg9Vah7ebmSuenohn//7ct2cp97U0sWp/GqM+Xs2ID1bxw+ZjWEov++0f0Z9b2t3CnD1z+DP+z1NXZHaD0V+Bqzd8fSPkp9e0efWSUw9VKaUGALnAF1rrjqXjjMBeYCAQD6wHbgKMwMunreJOrXVy6XLfAndprbM5BzlUJUTjs+KrPez66zhXju9Ei67V64bdkpzMoeEjMIeH0+SL2SzYnsRnqw5xMCWPJj6u3NEvmlv7NsdssjJmyRhSC1JZMHwBge6ndV0SvwFmXgnRA2DMt2Co3Z6Fq6venONQSkUBi8sER19gstZ6cOnwkwBa69NDo+w6IoFntdZ3n2WeccC40sE2QCJQ9nmRvmcZLvs5CEitTNsq4fRt1mTeiqaXN/5sbT19WNpuVx/bXtVplW1r2eH62O6zTa9Mu08fdz79zs82vTb+vTfXWp87dXXp8w+c9QKigB1lhq8HZpQZvhV4/xzreB7oV8XtTq/s8GmfNziw7dMdNW9F08sbL21vGG2v6rTKtrXscH1sd01/5+f4Pdfr33lN215b/97r4gmA5V3gfNbdHq31/1VjO4uqMHz6NEepynrPNW9F08sbL22v3HB9b3tVp1Wlrc5oe335nZ8+7nz6nZ9ter35935eHKqqTUqpDboSx/gaIml742t7Y203SNtr0va6uBx3PRCjlIpWSrkANwIL66COikyv6wLqkLS98Wms7QZpe7U5+6qqr4FLsJ+ISQL+T2v9qVLqKuBt7FdSfaa1ftFpRQghhHCoBnnnuBBCCOep93eOCyGEqF8kOIQQQlSJBEcVKKXalfabNU8p9d+6rqc2KaWuUUp9opT6USk1qK7rqS1KqRZKqU+VUvPqupbaoJTyVErNKv1dN4znoVZSY/tdl1XV/9+NJjgc1G/Wbm3vN2sUcN5cxuegtv+g7Xfu3wGMdmK5DuOgdh/UWo91bqXOVcWfw7XAvNLf9fBaL9bBqtL2hvC7LquKba/a/29H3TlZ31/AAKA7p97FbgQOAC0AF2Ar0B7ohL1TxbKvkNJlhgP/AGPquk213fbS5d4Autd1m+qg3fPquj219HN4EuhaOs+cuq69NtveEH7XDmh7pf5/18Wd43VCa/1n6c2IZfUG9mutDwIopb4BRmj7zYhDK1jPQmChUmoJMMeJJTuMI9qu7M/KfAX4SWu9ycklO4Sjfufnu6r8HLB3PBoBbKEBHJGoYtt31XJ5TlWVtiuldlOF/9/n/T+MGgoH4soMx5eOK5dS6hKl1LtKqY+Bpc4uzsmq1HZgInAFcL1SarwzC3Oyqv7OA5VSHwHdTvRy0EBU9HNYAFynlJqG87rnqGvltr0B/67Lquj3XqX/341mj6MCVeo3S2u9EljprGJqWVXb/i7wrvPKqTVVbXcacD4HZUXK/TlorfOA/9R2MbWsorY31N91WRW1vUr/vxv7Hkc80KzMcARwvI5qqW2Nte2Ntd2na8w/B2n7v6rV9sYeHPW93yxnaqxtb6ztPl1j/jlI22vY9kYTHKX9Zq0G2iil4pVSY7XWJcAE4GdgN/Ct1rrBPSi4sba9sbb7dI355yBtd07bpa8qIYQQVdJo9jiEEEI4hgSHEEKIKpHgEEIIUSUSHEIIIapEgkMIIUSVSHAIIYSoEgkOIYQQVSLBIUQlKaWsSqktZV7lPstDKfW2UmpA6efDSqmgSqzbUymVppTyPW38D0qpUUqpoUqp5x3TEiFqRm4AFKKSlFK5Wmuvc8wTACzVWvcpHT4M9NRap1Zi/V8Dy7TWs0qHfbE/OyESKAA2ARdqrfNr1BAhakj2OIRwrOuBZaePVEq5K6WWKaXuLt27+EwptV4ptVkpNaJ0tq+x9x10wkjsQZKv7X/hraSBPjNEnF8kOISoPPfTDlWV94jNC4GNp43zwv5sizla60+Ap4Hftda9gEuB15RSntgDp4dSKrB0uRuxh8kJG4D+DmyPENXS2J/HIURVFGitu55jnlAg5bRxPwJTtdZflQ4PAoYrpR4pHXYDIrXWu5VSC7E/TGc+0BX4pcx6koGwGtQvhENIcAjhWAXYg6CsVcCVSqk5pYecFHCd1jq2nOW/Bp4pnedHrbWlzDS30vULUafkUJUQjrUbaHXauOeANODD0uGfgYmlz3FHKdWtzLwrgBjgPk49TAXQGtjh6IKFqCoJDiEq7/RzHK+UM88S4JJyxk8C3JRSU4H/AWZgm1JqR+kwAFprGzAfCAT+PG0dl5auX4g6JZfjCuFgSqm/gaFa60wHrrMJ9pPrlztqnUJUlwSHEA6mlLoA+4n0bQ5cZy/AorXe4qh1ClFdEhxCCCGqRM5xCCGEqBIJDiGEEFUiwSGEEKJKJDiEEEJUiQSHEEKIKvl/dL2cQLUc9BAAAAAASUVORK5CYII=\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- }
- ],
- "source": [
- "import wimprates\n",
- "\n",
- "scale = ((nu.me * 1e-3 * nu.c0)/(nu.eV / nu.c0))**2 / (2 * np.pi)\n",
- "df2, _ = wimprates.migdal.read_migdal_transitions(SOURCE)\n",
- "for n in df.keys():\n",
- " x = df_migdal[n].values.copy()\n",
- " if not n.endswith('0'):\n",
- " continue\n",
- " for c in df2.keys():\n",
- " if c.startswith(str(n).split('_')[0]) and not c.endswith('0'):\n",
- " x += df[c]\n",
- " \n",
- " plt.plot(df['E'] / 1e3, x * scale * 1e3)\n",
- "#plt.plot(df['E'] / 1e3, df['2_0']**0.5 + df['2_0'])\n",
- "plt.xscale('log')\n",
- "plt.yscale('log')\n",
- "plt.ylim(1e-7, 1e2)\n",
- "plt.xlabel(\"E (keV)\")\n",
- "plt.ylabel(\"diff. p (keV^-1)\")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "pycharm": {
- "name": "#%% md\n"
- }
- },
- "source": [
- "### Compare with spectrum from LUX talk"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "pycharm": {
- "name": "#%% md\n"
- }
- },
- "source": [
- "To verify we have the correct spectrum, let's compare to a curve trace from slide 10 of a [recent LUX talk](https://indico.cern.ch/event/699961/contributions/3043408/attachments/1692619/2723656/JLIN_Sub_GeV_DM_Talk_IDM2018_V4.pdf)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {
- "ExecuteTime": {
- "end_time": "2022-07-22T19:16:47.277779Z",
- "start_time": "2022-07-22T19:16:27.599861Z"
- },
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 100/100 [00:19<00:00, 5.09it/s]\n"
- ]
- }
- ],
- "source": [
- "es = np.logspace(np.log10(5e-2), np.log10(2), 100) * nu.keV\n",
- "rs = wr.rate_migdal(\n",
- " w=es,\n",
- " mw=0.5 * nu.GeV/nu.c0**2,\n",
- " sigma_nucleon=1e-35 * nu.cm**2,\n",
- " progress_bar=True)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "ExecuteTime": {
- "end_time": "2022-07-22T19:16:47.750262Z",
- "start_time": "2022-07-22T19:16:47.282805Z"
- },
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- "Text(0, 0.5, 'dr/dE (keV kg day)^-1')"
- ]
- },
- "execution_count": 5,
- "metadata": {},
- "output_type": "execute_result"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEOCAYAAACXX1DeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAyFElEQVR4nO3dd3hU1dbA4d9KQoAkdEIHKSJVSgiC2EBR4V7E+qmI5SLXjl4RuyIoIiCWa0EpilgpdqUKKKL03kWKUULvARJIW98fM3hjTCaTZGbOTGa9zzNPMmfO7LMCyVmz195nH1FVjDHGmPxEOB2AMcaY4GaJwhhjjEeWKIwxxnhkicIYY4xHliiMMcZ4ZInCGGOMR5YojDHGeGSJwhhjjEdBnyhEpJmIjBaRz0TkHqfjMcaYcONIohCR8SKyT0TW59reTUQ2i8hWEXkcQFU3qerdwPVAohPxGmNMOBMnlvAQkQuB48AHqtrSvS0S+BW4FEgGlgG9VHWjiPQEHgfeVNVPCmq/atWqWr9+fX+Fb4wxJdKKFSsOqGp87u1RTgSjqvNFpH6uzecAW1V1O4CITAKuBDaq6jfANyIyDcgzUYjIncCdAPXq1WP58uX+Ct8YY0okEfk9r+2OJIp81AZ25HieDHQQkc7ANUBpYHp+b1bVscBYgMTERFvp0BhjfCSYEoXksU1VdR4wL7ChGGOMOS2YZj0lA3VzPK8D7HIoFmOMMW7BlCiWAY1FpIGIRAM3At84HJMxxoQ9p6bHTgQWAU1EJFlE+qpqJtAPmAVsAqao6gYn4jPGGPM/Ts166pXP9ul4GLA2xhgTeMFUejK5bdkCu2yYxhjjLEsUQUZV+eS1yWxt3BrOOov0hmfy27iPnA7LGBPGLFEEmU+/W0vXp+6h/P7dvHl5XzZVqUuDO29h7yNPgQNX0RtjTDBdRxH2tu8/TulHBlD5ZAoRS5fRL6Ete/cdYebl/0e3l14g9fftxEz8CCIjnQ7VGBNGrEcRJDKysvlw0GiuXDeXkwMeIyKhLQDVq1WkwfTPeaPzrcR8Oon0PrdDdrbD0RpjwokliiDx5twtXPXlWE7Ua0DckEF/ea1JzfIkjHuZ18+/iegPPyD7gQesDGWMCRhLFEFg99E0Vkz4gtZ7thD71OMQHf23fc47sypVR77AuPZXETFqFAwZ4kCkxphwZIkiCExYkMSdiz8lq1o1uPXWfPfr1aEemwY8w+ctL0YHD4bvvgtckMaYsGWJwmHHTmaw8qvvufC3VUT27w9lyuS7r4gw9OpWfHDLY2yLr0dW75vtOgtjjN9ZonDY5GU7uOXnKWTFlYO77y5w/7LRkbzapxMPXfsU6SnHyb7hBsjMDECkxphwZYnCQRlZ2cz6diE9fvmZyHvuhooVvXpfw/g47rvvCp647F4ifv4ZHTjQv4EaY8KaJQoHTV+3myvmTIKoKHjwwUK99/IWNWj80N1MbHUZMnw4zJjhnyCNMWHPEoVDVJVJM1dxw7rZyC03Q61ahW7j3s6NWP7QYDbF1yf9pt6QlOTzOI0xxhKFQxZuO0jrmZ9TOjMdeeihIrUhIgy96Rxeu2cYaSczSOv+Tzh2zMeRGmPCnSUKh4yZu5l/rZ5GVpcu0KJFkdspUyqS5x6+imd7DyR68y+k3nCTXbltjPEpSxQOWJt8hJiZ06hxdD+R//lPsdurVq4M/Ybdyyvd7iJmxlROPPakD6I0xhgXSxQOGP3jNvqumkr2GfWhRw+ftNkwPo6ubz/PlDaXE/vSCFI/sKXJjTG+YYkiwLbvP07S3IW0/30dEf3u8+lKsG3PqEz8++NYWrcFkf/uS9rCxT5r2xgTvixRBNjY+dvps3IqGhMDffv6vP0ureqS8uEk9petSOo/e3Lyj2SfH8MYE14sUQRQ8uFUfpy/lqs2/YjcfDNUquSX43S9qCWbx35EmRPH2Nm5GyeP2kwoY0zRWaIIoJGzNnPn4s+JysqERx7x67EuueFSVg59nfpJm9je6RJOHTvu1+MZY0ouSxQBsnrHERb+vJ6bV89AbrkFzjzT78e84JE7WDJwJE03LmdLp66kH0/1+zGNMSWPJYoAUFWen7qRh1Z84epNPP10wI7d6dmHWPzUCJqvX8pmSxbGmCKwRBEAM9fvYcf6LVy/cgZy223QqFFAj9/p+UdY/MQwzl63iF/Ov4z0E2kBPb4xJrRZovCzkxlZDJvxC0+t+ZqI7KyA9iZy6vTCYyx6dCit1ixg4/mXcyrVkoUxxjuWKPwoK1vpP3k1GUm/02PpNKRPH2jQwLF4zh3xJEseGUKb1T+x4fxunEw96VgsxpjQYYnCT1SVZ7/dwA+rkvhsyVgiUHjqKafDosOLT7Ps4edIWDWfdRd0t2RhjCmQJQo/eWveNqbM38zMuSOpvWoxvPsunHGG02EB0H7kQFb2H0T7lfNYe+E/LVkYYzyyROEHm3an8MbUNXwzawRnrF0K778Pt9zidFh/kfDKYFb3f4ZzVnzPuvO7kXbcxiyMMXkL+kQhIg1F5F0R+czpWLx1cN9h3v38ORpvXI4EYZI4rc0rz7L64Wdpv+pHNp53GanHTjgdkjEmCDmSKERkvIjsE5H1ubZ3E5HNIrJVRB4HUNXtqur7RZH8qNl//s25v68j6ZW3gjZJnNZm5DOsfmIo7db+zK/ndiXVlvswxuTiVI9iAtAt5wYRiQRGAd2B5kAvEWke+NCKKS2NKj/OYew5V3Po6uudjsYrbV54klUDX6TVhiVs7XgJJw6nOB2SMSaIOJIoVHU+cCjX5nOAre4eRDowCbjS2zZF5E4RWS4iy/fv3+/DaAtp714AtlWp41wMRdD2uUdY89wrtPxlOb917MKJg0ecDskYEySCaYyiNrAjx/NkoLaIVBGR0UBbEXkivzer6lhVTVTVxPj4eH/Hmj93ojgQ65+VYf2p7cAHWT30dZptWc0fHTtz4sBhp0MyxgSBKKcDyEHy2KaqehC4O9DBFNmePQDsD8FEAZDwZD+WR0XR5vH72NbhQuosmkdstSpOh2WMcVAw9SiSgbo5ntcBdjkUS9H9mSgqOhtHMSQ+ejerR46mYdImdnW4kNS9DpbyjDGOC6ZEsQxoLCINRCQauBH4xuGYCs9dejoYU9HZOIopccAdrHx5HGf88St7z7mAtN37nA7JGOMQp6bHTgQWAU1EJFlE+qpqJtAPmAVsAqao6gYn4iuWPXvIqFiZzMhgquoVTYcH+7D8v+9Sa+d29nU4n5O79jgdkjHGAY6czVS1Vz7bpwPTAxyOb+3ZQ3p8Naej8JlO99/KTxGRtH/wdg6270TVhfMofUY9p8MyxgRQMJWeSoY9e0iv6uCsKz+44L7eLHztfSoc2MPxdh3I2LjJ6ZCMMQFkicLX9u4lo0rJShQAF997I/NGT0bT0jjZsROZS5Y6HZIxJkAsUfiSaokrPeXUo88VfD/uc45ElCazcxeyvpvtdEjGmACwROFLx49DairpVUtmogC4/qZLmPvO5/xWrhr6j3+QPWmy0yEZY/zMEoUv7XNNIc2oXNXhQPzrX9edx/xxn7Gy5llwUy+yR41yOiRjjB9ZovCljAwAsqOjHQ7E/+66sh1LR09ibqP2RPTrR/Yzg1yltzwcTEljy4wfyU6zGyQZE4osUfhSdjYAGhHpcCCB0e+fZ/PLqAl82rIrEUOeI+ueeyEr6y/7ZGUr7z0wnMb/6ExqpSqsP+9yNo18i5Sdex2K2hhTWKF/VVgwOX2SjAif/Hv/Zc14960xjH7kUe4eM5rMAweI+vgjKF0agPcXJnHW0nmcqFCZVQkX0XTZPOIXfkfmY/ezumErkjpdwtFLu1Px7KbUqxxD1bjSVImLJia6+L+amUm/s3HfcY5XqkbV8mWoGleaSjGlEMlrWTFjTH4sUfjSnz2K8DoR9b2gIVPeeJWhj1Xgqc/Hk37wINHffM2urChenbmRRX+sJua6q7lgwgTSTmaweuoPZHz1FTXnfUebD1+GD19mS5W6JFeoRnJ0DMdKx5BWJpb0mDjSY+PIjI3jVGwcGTHlyIiLIzO2HJlx5ciKi0Ni4yhdOorSUZGUjY4kplQkcadO0OjVoZw/53NaoaRFleaPitVZXqkWyZVqcqRWPVLr1YeGjYhr3IBa8RWoWzmGBlVjqV6+tCUSY3IpUqIQkXWqeravgwl57kRBmJSecrq+fV1mvv48jz5ZiRemvcrJCy7i5X8Pp8XOzcSdSIHu3QEoW6YUba67DK67zPXG7dtJ//Jrak2fQfW9e5FjyUTuPUap1OOUOlXwmEa2CKnRZTleOoZj0TEciy5L3aN7qZyawsLuN1Kx7dlU3rOD8tu30f73JLqsWU2ppf9rN1Mi2FmhGr9XrMnsSjXZVaUW6fUaENWkMeVbt6BR7Uo0qVGeepVjiAyzDwDGnJZvohCRa/J7Cajhn3BCnLv0pGFUesqpW8ua1Bj1NAMqVGL4pCHc90wf0juc6yrFXXpp3m9q2JDoAf2JHtD/769lZMCxY5CSku8jIiWFOPejRkoK2UePklWqETJ4MOef0/7vbWZnu1b43boVtm1Dtmyl6i+/UnnLVjpsXUDpVUf/3PVkVDRra5zJd7WasrFuU461bkf1Fo1pUas8LWtXoGmNcpQpFX4fCkz48dSjmAx8DOQ1laWMf8IJcadLT5Hhe/JoU7cij7zenycrV2LIuMeIm/k5dOoElSsXvrFSpVzvK8R7IyhghkZEBNSq5XpceCGRQGzO1w8fhm3b4NdfiVyylBYLFtJu9TQil34Bn8PeclVZUfMsptdqwog6Tclok0DTRtVpW7cSCWdUon6VGCtdmRLHU6JYC7ykqutzvyAiXf0XUgg7XXqS8OxRnFanUgwvv3oPWbefD71uhL59nQ7Je5UqQWIiJCZS6qabKAWQng5r1sDixVRbvJjLFi7iH/MWApD1SSS/VG/Ayhpn8UatJmxvdDbxCS1p36Ay7etXpmXtCpSKDO/fBxP6PCWKB4GUfF672vehlAB/znqyT5QREUJE61awcaPToRRfdDS0bw/t2yP33+/6o9m/H5YsIXLxYpovXkzTJT9xyyrXwsdHY8qzqnpj5tVqwttnNCeyYwdand2ATo2q0LJ2BRvrMCEn30Shqj95eG25f8IJcVZ6Ch/x8dCjB/TogQCRWVnwyy+weDEVFi/m/EWLuWjhRGSBwiewpkZjfmiUyPBmHalwfkfOa1KdixrHU69KjNM/iTEFKtSsJxFZqaoJ/gom5J0ezA7z0lNYioyEFi1cj759XX9YKSmwfDksWEDzadNptXASsmAiBydVYm6DdrzQqD1/JHSifav6dG5ajXMbVrHBcROUCjs91vrMnvx5HcXpRGH/XGGtfHm4+GK4+GJKDRwIBw7AzJlUnjqVa2fO4vp1c8j8NoqldVsyt2Eiw5t2oE771nRtXp1LmlajWvmSM2fk2zW7eG/Bb0y8syOloywZhprCJoppfomipPhbojAmh6pV4eabkZtvJjIzExYuJGrqVDpOnUan79+B799hR9XafFc/kQcbtefUuedxcas6XN6iBmdWi3M6+qI7dIi2V3dl3AV3MK3jGVyTUMfpiEwhFSpRqOrT/gqkRAjDJTxMEUVFwYUXwoUXEvHii/DbbzBtGnWmTaPPDzPpu/xrUr+O4cd6bRjTKJGkcy6iY6cWdG9Zk2Y1y4XWFNxt26jz2yaezBzPkIR2XN22dmjFbwpOFCLyL1WdEIBYQt9fBrOzPO9rTE4NGkC/fki/fsiJEzB3LjHTpnHZ1Kl0n7EQZrzO6ppnMblFF9ac143zz23GFa1r0aRGOacjL1h6OgAdd6ynwqKfWNazJec0KMJ1NcYxHhOFiDwDnAVMCEg0oe4v11FYojBFFBsLPXtCz55EqsLatTB1Ki2nfEqbOWPI/OEdfqyfwOstLibpvIv5R/uG9Gxdi7qVg3MGVdqxVMoC2RERPLbgY97+6XJLFCEm3xqJiIwFmgG3Bi6cEBfmS3gYPxCB1q3hqaeIWrMa1q0jasAAOqfuZNQ3I/h00DVUfvA+Btz/BteN+pmPl/zO0dQMp6P+i70HXJdj7er5f7RO3kTGt1PZcSjV4ahMYXg6o90EDFHV7EAFE/L+LD1ZojB+0rIljBhB5I4/YPZsYq6/lhu2LWDKJ4/z5sDrONT/Ma5/aAL3fLSC73/ZS2aW83+++w8dAyCj751k1m9A/58+4sOftzkclSkMT2e0HsAUEWkUqGBCni3hYQIlMhK6doX33ydi71746COqt29NvyWfMmvMndz3eG/m3T+I7gO/ZNiMTWzff9yxUA8edCWKGnWqEDX0eVru3Ubrp/7Dtt1HHIvJFE6+ZzRVnQfcCHwUsGhCnZWejBNiY6F3b2TWLCQ5GV56ieZVyvDcnDHMePEG2j/wL166Yyi935zHl6uSOZkR2PGzQ4ddiaJsbAzcdBOHnhrEP9f/wPZLr+TX5EMBjcUUjcczmntBwGsDFEvoO92jsCU8jFNq1oQBA4hYsxrWrCGqf3+6nNjBW18PZ8wjPTj673u49pGPGDJ1I9sC1Ms4fOSE6xv3veQrPz+YA8++wKUb5rPz0h5s/G1fQOIwRVfgR19V3RWIQEoEW8LDBJNWrWDkSCJ37IDvviP22qu4dd0svn39dhIfuZMBA8bS+53FzFy/x69jGSlH3QnJfXtcgKrPPMHBYS/R5ZdFHLi8Bz+s/t1vxzfF5/GMJiJlROQ6EXlNRD4VkQ9E5FERaRGoAEPKn3e4s0RhgkhkJFx6KfLRR0QkJRHx2KNcvmcDX304gEef/zdfPPMmnYfP4a15Wzl8It2nhz5+KhNNcZWeiPvr1eVVHh/A4Vfe4Pyty4m66iqGf7aC9EznB9/N33maHjsYWACcCywBxgBTgExguIjMFpFW/g5QRBqKyLsi8pm/j1VsNuvJBLtatWDYMCJ27IDXXqOVnGDsl0P59PV/s2vYq3QZMo0nvljH1n3HfHK4pAMnqJR2jKxS0a6xlFwq9e9H5rh3OW/HWi4a0IdbXpvD7wdP+OTYxnc8ndGWqWo7VR2gqp+o6hxVnaqqr6jqFUBvINpT4yIyXkT2icj6XNu7ichmEdkqIo97akNVt6tqaNz5xkpPJlTExcEDDyBbtsDkydQ8owbPf/cWC966ndqvDueGId/Q572lLNx6ANW8bnLpnd8PplLh5DGyK1VyXROSh+i+fYj46CM67NzIY6/15/qRs/h69c4iH9P4nqdZT9MARKRlPq/v8+K+FBOAbjk3iEgkMAroDjQHeolIcxE5W0Sm5npUK8TP4jwbzDahJioKrr8eliyB+fOJ7XIh9y2YyJIxt3PFW4MZOOIzrnjzZ75ds6tI4xhJB109isiqVT3v2KsXEZMn03b3r3w4eSCDx//II5+uITU9s4g/mPElbz76jhaRpSJyr4hULEzjqjofyD3/7Rxgq7unkA5MAq5U1XWq2iPXI7SmQ9jqsSZUicAFF8DXXyObNhF1ex+uXv8Dc9+5hydHP85HIz7g4pfm8eHi3ws1vTbpwAmqpR8nomqVgne+9lrkiy9ovHsbP04cwLZvZ3Plmwv4da9vymCm6LyZ9XQ+rjJTXWC5iHwiIpcW45i1gR05nie7t+VJRKqIyGigrYg84WG/O0VkuYgs379/fzHCK4bTq8da6cmEsiZNYPRo5I8/YPBgzt33K5MnPsG7b93HghFjuGj4XMbN386JUwV/2k86eIKqGSegspdrO11xBbJwIeXLleWziU/Qfc4ker7xE5OX/VGsEpgpHq/OaKq6BXgaeAy4CHhdRH4RkWuKcMy8CpX5/gao6kFVvVtVG6nqMA/7jVXVRFVNjI+PL0JYPmCD2aYkiY+HQYNcCWP0aM4sncXor4bx+dt3sfHFUXQe5popddxDwkg6mErF1BSo4kWP4rSEBFi5kogePXhoxmg+nDaCoR8v4qEpVopySoFnNBFpJSKvApuAi4ErVLWZ+/tXi3DMZFy9k9PqACXjWo3TicJ6FKYkKVsW7roL2bQJJk2iTtVyvDrtFaaN6kvy8P9y8dCZjPph6996GMdPZbI/5SSxx48WLlEAVKwIX3wBr7xC4vqF/DT5YbbO/JGrRi1g6z7nliMJV96c0d4EVgKtVfU+VV0Jf16IV5QbGS0DGotIAxGJxrVMyDdFaCf42I2LTEkWGQk33ACrV8PXX1OtYR1emDWKWW/czqHnR3DZ89N556ftf45hJB04QdmMU0RlpHtfespJBPr3R+bPp0IUfP3xo3T+4Qt6vvETU9eWjM+WocKbMYoLVfVDVU3L47UPPb1XRCYCi4AmIpIsIn1VNRPoB8zC1UuZoqobihZ+kPnLjYuMKaEiIlz3y1i8GGbPplKbFgz8/h1m/Pc2Dj81mH8+9y2fLPmDbfuPU/GkeyC6sD2KnM49F1atIqLrJTz57euMmfkqj723gOenbgyK1XHDgTd3uGsMDMM1lfXPu72rasOC3quqvfLZPh2Y7n2YIcIGs004EXGtYNu1KyxcSPmhQ3lk+ofcu+wL3pv7T14752qqpPkgUYDrfuNTp8Lw4Zw/cCDzdm/h5pSHWbfzKG/elEB8udIFt2GKzJsz2nvA27iuyO4CfAB47EmErT+nx9r9gE2Y6dQJpk2DFSuI+Wc37lv8KT++3YfBSz52vV6U0lNuERHw5JPI3LnEZ51k2icP03Dap/R882fWJh8pfvsmX94kirKqOhcQVf1dVQfjGsg2uVnpyYS7hATks8+QDRsofcP/0f5X9zW51Xx47WznzrBqFVHnnsuwb1/lyS9e4pY3fuCrVXY1t78UWHoCTopIBLBFRPoBO4HQumI6UKz0ZIxLs2bIBx/A4MGwfDk0berb9mvUgNmzYfBgegwdSqvdW+hz6BG+PLctlzSrRpcm1YL2HuKhyJsz2oNADPAA0A64BbjNjzGFLnePIttmPRnj0rCha4mQfNZ5KpbISBgyBJk+nXonjzDz44eo9dNsnvl6Axe8+AN3fLDc4zUexnsF9ihUdZn72+NAH/+GE+JyLTPuj78NY0wu3bohq1YRffXVDHt/IAO7dOXXctV5+Y9mXHcolXduS6ROJetdFEe+iUJEvsXzFdM9/RJRKPuz9GQZwpiAqlsX5s+Hxx4jZsEC2ixbzAfHP+b5o/dx1fF0xt3ajrb1KjkdZcjy1KN4yf31GqAG/7t3di8gyY8xha7sbFs51hinxMTAG2+4vk9NRW64gYFT36TuqaP0OpnOGze149Lm1Z2NMUTlmyhU9UcAERmiqhfmeOlbEZnv98hCUXa2XZVtTDCIiYEvv4S77uJf48dTM+0I92b8m0FXt+bmjmc4HV3I8WbWU7yINFTV7QAi0gBwaNW9IJeVZYnCmGARFQXvvAO1anH5888zJfUoN2b+hz1HTzLgsrMQKxF7zZtE0R+YJyLb3c/rA3f6LaJQZqUnY4KLCAwZAjVq0Ob++5mVlsKVmY9xJC2d53q2JMIujvWKN7OeZrqX8Tg9EfoXVT3l37BClPUojAlO992HVK/OGb17M+erp+mROZCUtExevr41pey2AAXy9n4Up1R1jfthSSI/NkZhTPC67jpk1iziD+9j1teDWPrTWu74YLlXN2AKd3ZW8yUrPRkT3Dp3hu++o+Kxw8z+5hm2LtvA/41exJ6jJ52OLKhZovAlKz0ZE/w6doTZsyl3/Cizvx1M+rbtXDVqARt3pTgdWdDy5g53CXk8GomINwPh4cV6FMaEhnPOgTlzKHs8helfPUPNw3u4YcwiW4U2H958/H0LWAyMBcbhuhHRJOBXEbnMj7GFHhujMCZ0JCbCnDlEHz/Gp5OeoOnJA9w6fim/7LGeRW7enNWSgLaqmqiq7YC2wHqgK/CiH2MLPVZ6Mia0tGsHc+YQdeI4Ez9+nAYpe7n5naVs32/35c7Jm7Na05y3KlXVjbgSx3YP7wlPVnoyJvQkJMD33xOVlsqUyU9R5egBer+zhF1H/nb357DlTaLYLCJvi8hF7sdbuMpOpYEMP8cXWqz0ZExoatMGZs+m1JHDfD39BfToUW4bv5SjqXaKA+8Sxb+ArbjuS9Ef2O7eloHr1qjmNCs9GRO6EhLgs88os3kjM39+g537Urjjg+WczMhyOjLHeXNWa66qL6vq1ap6laq+BFyiqtmqaoW8nKz0ZExou/xyGDeOigvmMWvjhyz97SAPTlpNVna+d1wIC94kinEicvbpJyJyI/C0/0IKYdajMCb09ekDzz5L3W8/5cu93zFzwx5enPWL01E5yptrIa4DPhOR3sD5wK2ATYvNi41RGFMyDBwIO3bQ9p03+O89lXjwR2hcrRzXtavjdGSO8GZRwO3uXsRXwA7gMlW16QB5sdKTMSWDCLz9NuzaxZVjnmfLvSN48osIGlSNod0ZlZ2OLuDy/fgrIutEZK2IrAU+AyrjWmJ8iXubyc1KT8aUHFFRMHky0rYtD48fRJdjSdz5wQp2Hw2/z8mezmo9gCtyPDrgKjmdfm5ysx6FMSVLXBxMm4ZUr86oT56h6r5k+n2yioysbKcjC6h8E4Wq/u7pEcggQ4aNURhT8lSvDjNmEJWdxcSf3mJl0kFGzAivwW07q/mSlZ6MKZmaNIH//pfKa5bz+tGlvPPzb8xcv8fpqALGzmq+5C49hfeMa2NKqFtuga5d6THxdbrEpfPIZ2vYcSjV6agCwtNg9psi0imQweQTRzMRGS0in4nIPU7H45GVnowpuURg9GgkPZ1RiyeAwoApa8LiYjxPZ7UtwMsikiQiI0SkTWEbF5HxIrJPRNbn2t5NRDaLyFYRedxTG6q6SVXvBq4HEgsbQ0DlKj3ZbduNKWEaNYLBg4mZ9g1jyv3B0qRDjP/5N6ej8jtPg9mvqeq5wEXAIeA9EdkkIs+IyFletj8B6JZzg4hEAqOA7kBzoJeINBeRs0Vkaq5HNfd7egI/A3ML+wMGlM16Mqbke+ghaN2ac18dzJX1Yxk5azOb9xxzOiq/KrBO4p7lNEJV2wI3AVcDm7xpXFXn40oyOZ0DbFXV7aqajusmSFeq6jpV7ZHrsc/dzjeq2gnond+xROROEVkuIsv379/vTXi+Z4PZxpR8pUrBuHHInj0MXzmJcmWi6D95NemZJXfKrDe3Qi0lIleIyMfADOBX4NpiHLM2riu8T0t2b8vv+J1F5HURGQNMz28/VR3rvrlSYnx8fDHCKwYbozAmPLRvDw88QNl3xvJWg5Ns3J3CmB+3OR2V33gazL5URMbjOpHfiesk3UhVb1DVr4pxzLxK9/mOBqnqPFV9QFXvUtVRxTiu/1npyZjwMWQI1K1Lh2GPc0WzKrz5w9YSOwvK08ffJ3HdH7uZql6hqh+r6gkfHDMZqJvjeR1glw/adZ6VnowJH3FxrvWgNm5k6G+ziYwQBn2zAdWSNwvK02B2F1Udp6qHROR8EekDICLxItKgGMdcBjQWkQYiEg3cCHxTjPaCh/UojAkv//gH9OxJ+VdG8kRiFb7/ZR+zN+51Oiqf82aMYhDwGPCEe1Mp4CNvGheRibh6JU1EJFlE+qpqJtAPmIVrUHxKzntyhzQbozAm/IwYAamp3DRrAk2ql+PZbzeSmp7pdFQ+5c1Z7WqgJ3ACQFV3AeW8aVxVe6lqTVUtpap1VPVd9/bpqnqWqjZS1aFFDT7oWOnJmPDTtCncdReRY8bwUqvS7DySxpgftzsdlU95c1ZLV1fRTQFEJNa/IYUwKz0ZE54GDYKYGM5+czjdWtTg3Z9/49CJdKej8hlvEsUU99TUiiJyBzAHeMe/YYUoKz0ZE56qVYPHH4evvuKp8gc4kZ7J6BI0XdabC+5ewnXjos+BJsAzwBg/xxWarPRkTPh68EGoXZu6QwdyTauavL8wib0pJ52Oyie8Gcwer6qzVfURVX0Y1+B0vhe+hTUrPRkTvmJiYOhQWLaMJ46vIytbeeP7LU5H5RPefPzdKSJvA4hIJeA7vJz1FHasR2FMeLv5ZmjThqovDKZ32+pMWrqDPw6G/kV43pSeBgIpIjIaV5J4WVXf83tkocjGKIwJb5GRMHIkJCXx8K+ziYgQRs8P/bEKT0t4XHP6ASwFOgKrAHVvM7lZ6ckY07UrdO9OuZdG0KtRLF+u3MnR1AynoyoWTx9/r8jx6IErSZTK8dzkZqUnYwzAiy/CkSPct2k2aRlZTFm+o+D3BLGo/F5Q1T6BDKREsB6FMQagZUvo3JlqX02mw0PdeX9REref34DIiNC8nZmn0tPT7sHr/F6/WESsZ5GTjVEYY0679VbYsoUHyx0i+XAaczaF7hpQns5q64CpIjJXREaKyKPuu9t9KCLrcJWglgQmzBBhpSdjzGnXXgtly9Lh52nUrliWCQuSnI6oyDytHvu1qp4H3A1sACKBFFxTY89R1f6q6tCt5IKUlZ6MMaeVLw9XX03E5Mnc1q4Gi7Yf5Jc9KU5HVSTeTI/doqoTVHWYqv5XVWepalogggs5VnoyxuR0661w+DC9D6ynTKkIPlnyh9MRFYmd1XzJSk/GmJwuuQRq1CB2ykS6NKnGzPV7yM4OvRsb2VnNl6z0ZIzJKSoKeveGadPoWTuafcdOsfKPw05HVWiWKHzpdI8i9D4wGGP85dZbISODLmt+IDoyghnr9zgdUaF5mh47Jcf3I3K99p0/gwpZuXoUIqE5Z9oY40OtWkHr1pSZ+DEXnlWVmev3hNx9tT31KBrn+P7SXK/F+yGW0GeD2caYvNxyCyxdyrUV09l5JI21yUedjqhQPJ3VPKW80EqHgWKD2caYvHTtCsBFh7cTFSFMX7/b4YAKx9NZLUZE2opIO6Cs+/uE088DFF9oscFsY0xemjeH0qWJ2bCWTmeGXvnJU6LYA7wCvJTj+5dzPDc5nf5Ptx6FMSa3UqVcYxUrV9K9ZQ1+P5jKpt3HnI7Ka54WBewcwDhCX1aW66slCmNMXhISYPJkLmtWjacEZqzfTfNa5Z2Oyiv5JoqC7jmhql/4PpwQlp3t+mqlJ2NMXhISYMwYquzfRas6FVny2yGnI/JavokC16J/ANWATsD37uddgHmAJYqcTicK61EYY/LSrp3r68qVtKnbjMnLdpCZlU1UZPCfMzwtCtjHfU8KBZqr6rWqei3QImDRhRIrPRljPGnZ0nWl9ooVtK5bgbSMLLbuP+50VF7x5qxWX1VzzuXaC5zlp3hCl5WejDGelC7tShYrV9KqTkUA1u4IjespvEkU80Rkloj8S0RuA6YBP/g5rtBjPQpjTEHatYOVK2lQOYZyZaJYnXzE6Yi84s0y4/2AMUBroA0wVlXv93Ncocd6FMaYgiQkwIEDROxMpnWdiqzZccTpiLziadbTLGAmMMM9w8kGrz2xwWxjTEESElxfV66kdd2mjP5xOyczsihTKrg/YHo6q90GHAYGi8hKEXlbRK4UkbgAxQaAiHQWkZ9EZLSIdA7ksQvFSk/GmIK0bu2qOrjHKbKylQ27gv+ud55mPe1x39nuRiAR+ABoB8wSkTki8mhBjYvIeBHZJyLrc23vJiKbRWSriDxeQDMKHAfKAMkFHdMxVnoyxhSkbFlo1gxWrKBN3YoAIVF+8vjxV0QiRaS/qmar6iJVfcZ9H+0bgZ1etD8B6Ja7TWAU0B1oDvQSkeYicraITM31qAb8pKrdgceAZwv/IwaIlZ6MMd5ISICVK6levgw1ypdhTQgMaHs8q6lqFnBlHtsPqOrHBTWuqvOB3JcfngNsVdXtqpoOTAKuVNV1qtoj12OfqrrPwBwGSud3LBG5U0SWi8jy/fv3FxSa71npyRjjjXbtYM8e2L2b1nUrhH6Pwm2BiLwpIhe4V49NEJGEYhyzNrAjx/Nk97Y8icg1IjIG+BB4M7/9VHWsqiaqamJ8vAO3y7DSkzHGG6cHtFesoFWdiiQdTOVIarqzMRXA0xIep3Vyf30uxzYFLi7iMfO67Vu+6+2GzIwrKz0ZY7zRpg2IuJbyuKkjAGuTj3LhWcF7P7gCE4WqdvHxMZOBujme1wF2+fgYgWelJ2OMN+LioEkTWLGCsx+tALgGtEMyUYjIQ57eqKqvFPGYy4DGItIA14D4jcBNRWwreFjpyRjjrcREmDOH8qWjaFg1lvW7gnspD08ff8u5H4nAPbjGEWoDd+OarVQgEZkILAKaiEiyiPRV1UygHzAL2ARMUdUNRf8RgoT1KIwx3urY0TWgvWMH1cqX5tCJEB2jUNVnAUTkOyBBVY+5nw8GPvWmcVXtlc/26cD0wgYb1KxHYYzxVocOrq9LllChbAN+O3DC2XgK4M3H33pAznSXDtT3SzShzAazjTHeatUKypSBxYupULYUR9MynI7II2/Oah8CS0VksIgMApYA7/s3rBBkpSdjjLeio13XU5SURKGqQ4E+uC54OwL0UdVhfo4r9OQoPWn+s32NMcalY0dYsYJKUcrJjGxOZWY5HVG+vPr4q6orVfU192OVv4MKSXmUnvK6YMQYYwBXojh1ijN2bgMgJS3T4YDyZ3USX7HSkzGmMNwD2nV/XQsQ1OUnO6v5is16MsYURp06UKsW1TeuBixRhAeb9WSMKQwR6NiRimtXApBiiSIMWOnJGFNYHTtS+vffqJR61HoUYcFKT8aYwuroWhSwze5fLVGEBetRGGMKq1UrABod3GGJIixYj8IYU1hxcQBUzEq3RBEWbDDbGFNYkZFQtiwV1RJFeLDSkzGmKGJjqZBtiSI8WOnJGFMUcXGUzzpliSIsWOnJGFMUsbHEZZ6y6yjCgpWejDFFERtLbKb1KMKDlZ6MMUURF0dMepolirBgpSdjTFHExlIm/SSp6VlkZGU7HU2e7KzmK1Z6MsYURWwspU+lAsG7MKCd1XzFSk/GmKKIiyP6ZBoQvAsDWqLwFetRGGOKIjaWKHeisB5FSWc9CmNMUcTGEpV6AlQtUZR4NphtjCmKuDgkK4vorExLFCWelZ6MMUURGwtATEaajVGUeFZ6MsYUhXsF2ZiMk9ajKPGs9GSMKQp3jyKYV5C1s5qvWOnJGFMU7kRRTWyMouSz0pMxpijcpaeqkhG0iSLK6QAKIiIXAL1xxdpcVTs5HFLecpSeVJ0NxRgTQtw9iipkkhykicKvPQoRGS8i+0Rkfa7t3URks4hsFZHHPbWhqj+p6t3AVOB9f8ZbLHmUnkQcisUYEzrciaKypnM0LdPhYPLm7x7FBOBN4IPTG0QkEhgFXAokA8tE5BsgEhiW6/23q+o+9/c3Af/2c7xFZ6UnY0xRuEtPFTQ9aKfH+jVRqOp8Eamfa/M5wFZV3Q4gIpOAK1V1GNAjr3ZEpB5wVFVT/BlvsbRvDw8/DKVKOR2JMSaUxMfDu++yP706R3cHZ6JwYjC7NrAjx/Nk9zZP+gLvedpBRO4UkeUisnz//v3FDLEIOneGkSMhOjrwxzbGhK6yZeH228k6szHHT2WSGYRLjTuRKPKq3Hsc/lXVQaq6sIB9xqpqoqomxsfHFytAY4wJtAplXdWIlJPBN07hRKJIBurmeF4H2OVAHMYYEzROJ4pgnCLrRKJYBjQWkQYiEg3cCHzjQBzGGBM0/uxRhFuiEJGJwCKgiYgki0hfVc0E+gGzgE3AFFXd4M84jDEm2AVzj8Lfs5565bN9OjDdn8c2xphQEsyJwpbwMMaYIGCJwhhjjEflLVEYY4zxpEypSKKjIsJvMNsYY4z3KpQtZT0KY4wx+bNEYYwxxiNLFMYYYzyKiY4kLSPL6TD+xhKFMcYYjyxRGGOM8cgShTHGGI8sURhjjPHIEoUxxhiPLFEYY4zxyBKFMcYYjyxRGGOM8cgShTHGGI9EVZ2OwedEZD/wexHfXgE4GsD3FuY93u5b0H5VgQNeHjNUFef/0Zf8HYev2rff+5KhuL8PZ6hq/N+2qqo9cjyAsYF8b2He4+2+Be0HLHf63zmY/x9DKQ5ftW+/9yXj4a/fNys9/d23AX5vYd7j7b7F+RlKimD5N/B3HL5q337vSwa//BuUyNKT8UxElqtqotNxGBNI9ntfdNajCE9jnQ7AGAfY730RWY/CGGOMR9ajMMYY45ElCmOMMR5ZojDGGOORJQpjjDEeWaIwfyEiDUXkXRH5zOlYjPEnEYkVkfdFZJyI9HY6nmBmiaIEEZHxIrJPRNbn2t5NRDaLyFYRedxTG6q6XVX7+jdSY/yjkH8D1wCfqeodQM+ABxtCLFGULBOAbjk3iEgkMAroDjQHeolIcxE5W0Sm5npUC3zIxvjUBLz8GwDqADvcu2UFMMaQE+V0AMZ3VHW+iNTPtfkcYKuqbgcQkUnAlao6DOgR4BCN8avC/A0AybiSxWrsQ7NH9o9T8tXmf5+awPXHUTu/nUWkioiMBtqKyBP+Ds6YAMjvb+AL4FoReRtbJ8oj61GUfJLHtnwvx1fVg8Dd/gvHmIDL829AVU8AfQIdTCiyHkXJlwzUzfG8DrDLoViMcYL9DRSTJYqSbxnQWEQaiEg0cCPwjcMxGRNI9jdQTJYoShARmQgsApqISLKI9FXVTKAfMAvYBExR1Q1OxmmMv9jfgH/Y6rHGGGM8sh6FMcYYjyxRGGOM8cgShTHGGI8sURhjjPHIEoUxxhiPLFEYY4zxyBKFMV4SkSwRWZ3jkeeS7SLyXxG50P19kohU9aLtWBE5KCIVcm3/SkSuF5EeIvKsb34SYwrHrqMwxksiclxV4wrYpzIwXVU7up8nAYmqesCL9icCM1X1fffzCsA2oB6QBqwEzlPV1GL9IMYUkvUojPGt64CZuTeKSFkRmSkid7h7D+NFZJmIrBKRK927TcS1vMRpV+NKHKnq+kQ3D1sa3jjAEoUx3iubq/R0Qx77nAesyLUtDtcy1p+o6jjgKeB7VW0PdAFGikgsrgTTTkSquN93I67kcdpy4AIf/jzGeMWWGTfGe2mq2qaAfWoC+3Nt+xp4UVU/dj+/DOgpIg+7n5cB6qnqJhH5BrhORD4H2gDf5WhnH1CrGPEbUySWKIzxrTRcJ/6cFgDdReQTdwlJgGtVdXMe758IPO3e52tVzcjxWhl3+8YElJWejPGtTcCZubY9AxwE3nI/nwXcLyICICJtc+z7A9AYuI+/lp0AzgLW+zpgYwpiicIY7+Ueoxiexz7TgM55bH8QKCMiLwJDgFLAWhFZ734OgKpmA58DVYD5udro4m7fmICy6bHG+JiI/Az0UNUjPmyzOq7B8Et81aYx3rJEYYyPiUgHXAPfa33YZnsgQ1VX+6pNY7xlicIYY4xHNkZhjDHGI0sUxhhjPLJEYYwxxiNLFMYYYzyyRGGMMcaj/wfbJTA4BXTx4AAAAABJRU5ErkJggg==\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- }
- ],
- "source": [
- "ref_curve = pd.read_csv('migdal_0.5gev_curvetrace_lux.csv', index_col=False)\n",
- "plt.plot(es / nu.keV, \n",
- " rs * (nu.kg * nu.day * nu.keV))\n",
- "plt.plot(10**ref_curve['logE'], 10**ref_curve['logR'], color='red', label='Curve trace')\n",
- "plt.xscale('log')\n",
- "plt.yscale('log')\n",
- "plt.xlabel('E (keV)')\n",
- "plt.ylabel('dr/dE (keV kg day)^-1')"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "pycharm": {
- "name": "#%% md\n"
- }
- },
- "source": [
- "Looks good! The remaining deviations look like curve tracing artifacts."
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3 (ipykernel)",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.10.4"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
\ No newline at end of file
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Migdal Tutorial\n",
+ "Tutorial to compute Migdal rates according to different models.\n",
+ "Models from two sources are currently implemented:\n",
+ " - **Ibe**: https://link.springer.com/article/10.1007/JHEP03(2018)194\n",
+ " - **Cox**: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.107.035032\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2022-07-22T19:16:26.733826Z",
+ "start_time": "2022-07-22T19:16:24.834775Z"
+ },
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "------------------------------------------\n",
+ "Migdal ionisation probabilities\n",
+ "P. Cox, M. Dolan, C. McCabe, H. Quiney (2022)\n",
+ "arXiv:2208.12222\n",
+ "------------------------------------------\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/home/loren/projects/wimprates/wimprates/__init__.py:6: UserWarning: Default WIMP parameters are changed in accordance with https://arxiv.org/abs/2105.00599 (github.com/JelleAalbers/wimprates/pull/14)\n",
+ " warnings.warn(\n",
+ "/home/loren/projects/wimprates/wimprates/utils.py:11: TqdmExperimentalWarning: Using `tqdm.autonotebook.tqdm` in notebook mode. Use `tqdm.tqdm` instead to force console mode (e.g. in jupyter console)\n",
+ " from tqdm.autonotebook import tqdm\n"
+ ]
+ }
+ ],
+ "source": [
+ "import matplotlib.pyplot as plt\n",
+ "import numericalunits as nu\n",
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "import seaborn as sns\n",
+ "\n",
+ "import wimprates as wr\n",
+ "\n",
+ "sns.set_theme()\n",
+ "sns.set_style('ticks')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ "### Convert Xe.dat to nicer format (Ibe)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2022-07-22T19:16:26.776139Z",
+ "start_time": "2022-07-22T19:16:26.735821Z"
+ },
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " 1_0 | \n",
+ " 2_0 | \n",
+ " 2_1 | \n",
+ " 3_0 | \n",
+ " 3_1 | \n",
+ " 3_2 | \n",
+ " 4_0 | \n",
+ " 4_1 | \n",
+ " 4_2 | \n",
+ " 5_0 | \n",
+ " 5_1 | \n",
+ " E | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 1.000000 | \n",
+ " 1.013107e-14 | \n",
+ " 2.538509e-13 | \n",
+ " 1.417923e-12 | \n",
+ " 3.745613e-12 | \n",
+ " 1.931796e-11 | \n",
+ " 6.875756e-12 | \n",
+ " 4.272023e-11 | \n",
+ " 2.097481e-10 | \n",
+ " 2.115778e-09 | \n",
+ " 4.937655e-10 | \n",
+ " 5.173118e-07 | \n",
+ " 1.000000 | \n",
+ "
\n",
+ " \n",
+ " 1.045636 | \n",
+ " 1.013389e-14 | \n",
+ " 2.539291e-13 | \n",
+ " 1.424572e-12 | \n",
+ " 3.746781e-12 | \n",
+ " 1.941191e-11 | \n",
+ " 6.950745e-12 | \n",
+ " 4.272690e-11 | \n",
+ " 2.096290e-10 | \n",
+ " 2.124282e-09 | \n",
+ " 4.851036e-10 | \n",
+ " 5.103404e-07 | \n",
+ " 1.045636 | \n",
+ "
\n",
+ " \n",
+ " 1.093354 | \n",
+ " 1.013681e-14 | \n",
+ " 2.540099e-13 | \n",
+ " 1.431461e-12 | \n",
+ " 3.747978e-12 | \n",
+ " 1.950850e-11 | \n",
+ " 7.033516e-12 | \n",
+ " 4.273357e-11 | \n",
+ " 2.095044e-10 | \n",
+ " 2.133447e-09 | \n",
+ " 4.762062e-10 | \n",
+ " 5.031270e-07 | \n",
+ " 1.093354 | \n",
+ "
\n",
+ " \n",
+ " 1.143250 | \n",
+ " 1.013985e-14 | \n",
+ " 2.540935e-13 | \n",
+ " 1.438595e-12 | \n",
+ " 3.749203e-12 | \n",
+ " 1.960773e-11 | \n",
+ " 7.124774e-12 | \n",
+ " 4.274019e-11 | \n",
+ " 2.093738e-10 | \n",
+ " 2.143335e-09 | \n",
+ " 4.670743e-10 | \n",
+ " 4.956689e-07 | \n",
+ " 1.143250 | \n",
+ "
\n",
+ " \n",
+ " 1.195423 | \n",
+ " 1.014299e-14 | \n",
+ " 2.541800e-13 | \n",
+ " 1.445980e-12 | \n",
+ " 3.750456e-12 | \n",
+ " 1.970957e-11 | \n",
+ " 7.225280e-12 | \n",
+ " 4.274673e-11 | \n",
+ " 2.092371e-10 | \n",
+ " 2.154013e-09 | \n",
+ " 4.577099e-10 | \n",
+ " 4.879646e-07 | \n",
+ " 1.195423 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 1_0 2_0 2_1 3_0 \\\n",
+ "1.000000 1.013107e-14 2.538509e-13 1.417923e-12 3.745613e-12 \n",
+ "1.045636 1.013389e-14 2.539291e-13 1.424572e-12 3.746781e-12 \n",
+ "1.093354 1.013681e-14 2.540099e-13 1.431461e-12 3.747978e-12 \n",
+ "1.143250 1.013985e-14 2.540935e-13 1.438595e-12 3.749203e-12 \n",
+ "1.195423 1.014299e-14 2.541800e-13 1.445980e-12 3.750456e-12 \n",
+ "\n",
+ " 3_1 3_2 4_0 4_1 \\\n",
+ "1.000000 1.931796e-11 6.875756e-12 4.272023e-11 2.097481e-10 \n",
+ "1.045636 1.941191e-11 6.950745e-12 4.272690e-11 2.096290e-10 \n",
+ "1.093354 1.950850e-11 7.033516e-12 4.273357e-11 2.095044e-10 \n",
+ "1.143250 1.960773e-11 7.124774e-12 4.274019e-11 2.093738e-10 \n",
+ "1.195423 1.970957e-11 7.225280e-12 4.274673e-11 2.092371e-10 \n",
+ "\n",
+ " 4_2 5_0 5_1 E \n",
+ "1.000000 2.115778e-09 4.937655e-10 5.173118e-07 1.000000 \n",
+ "1.045636 2.124282e-09 4.851036e-10 5.103404e-07 1.045636 \n",
+ "1.093354 2.133447e-09 4.762062e-10 5.031270e-07 1.093354 \n",
+ "1.143250 2.143335e-09 4.670743e-10 4.956689e-07 1.143250 \n",
+ "1.195423 2.154013e-09 4.577099e-10 4.879646e-07 1.195423 "
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "SOURCE='Xe'\n",
+ "df = dict()\n",
+ "with open(wr.data_file(f'migdal/Ibe/{SOURCE}.dat')) as f:\n",
+ " header = False\n",
+ " for i, line in enumerate(f.read().splitlines()):\n",
+ " if 'Principal' in line:\n",
+ " header = True\n",
+ " continue\n",
+ " if 'Energy' in line:\n",
+ " header = False\n",
+ " continue\n",
+ " \n",
+ " if header:\n",
+ " n, l = [int(x) for x in line.split()]\n",
+ " else:\n",
+ " e, rate = [float(x) for x in line.split()]\n",
+ " df.setdefault(e, dict())\n",
+ " df[e]['%d_%d' % (n, l)] = rate\n",
+ " \n",
+ "df = pd.DataFrame(df).T\n",
+ "df['E'] = df.index\n",
+ "\n",
+ "df.to_csv('migdal_transition_ps.csv', index=False)\n",
+ "df_migdal = df\n",
+ "df.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ "Rows are energies, columns are (n, l) states. Data is the differential transition probabilities, at the 1 eV/c reference momentum, not divided by 2 pi."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ "### Reproduce figure 4"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ "To reproduce figure 4 of https://arxiv.org/pdf/1707.07258.pdf, we must\n",
+ " * Convert to the other reference momentum of $m_e * .001 c$\n",
+ " * Divide by 2 pi.\n",
+ " * Convert eV -> keV; multiply energies by 1e3 and divide differential probabilities by 1e3."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2022-07-22T19:16:27.594619Z",
+ "start_time": "2022-07-22T19:16:26.778591Z"
+ },
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/tmp/ipykernel_29500/1628684340.py:2: DeprecationWarning: Call to deprecated function read_migdal_transitions (Use get_migdal_transitions_probability_iterators instead).\n",
+ " df2, _ = wr.migdal.read_migdal_transitions(SOURCE)\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAG6CAYAAADZHEiPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC8wElEQVR4nOzdd3wU1drA8d/29N57CJBCCL33IkVBRUABC3rFjvqq2BEEUVTU61UUr4IiKooFvICAgDQp0ltIAiEkgfSeTds+7x8JkRhKSDaV8/184u7OnJnzbCTZJ2fOPEcmSZKEIAiCIAiC0OjkzR2AIAiCIAjCjUIkXoIgCIIgCE1EJF6CIAiCIAhNRCRegiAIgiAITUQkXoIgCIIgCE1EJF6CIAiCIAhNRCRegiAIgiAITUQkXoIgCIIgCE1E2dwB3Kh69uyJwWDA09OzuUMRBEEQBKGOcnNzUavVHDp0qF7Hi8Srmej1esxmc3OHIQiCIAjCdTCZTDRk0R+ReDUTLy8vAP74449mjkQQBEEQhLoaMWJEg44Xc7wEQRAEQRCaiEi8BEEQBEEQmohIvARBEARBEJqISLwEQRAEQRCaiEi8BEEQBEEQmoi4q1EQBEEQhMsym80YjcbmDqPJqFQqFApFo/YhEi9BEARBEGqQJImsrCyKioqaO5Qm5+Ligo+PDzKZrFHOLxIvQRAEQRBquJh0eXl5YWdn12hJSEsiSRLl5eXk5OQA4Ovr2yj9iMRLEARBEIRqZrO5Oulyd3dv7nCalK2tLQA5OTl4eXk1ymVHMbleEARBEIRqF+d02dnZNXMkzePi+26suW0i8RIEQRAEoZYb4fLi5TT2+xaJlyAIgiAIQhMRc7wEQRAEQWiTUlNTWbZsGcePHycxMZF27dqxfv36Zo1JJF5tjCRJZKVrMZstODrZ4OCoQaEUA5uCIAjCjScxMZGdO3fSpUsXLBYLkiQ1d0j1T7xOnTpVr+Pat2+PRqOpb7fCNaSlFPLV4r01ttk5qHF01ODgbIOjU+WXg5MGZ1dbXNzscHG1Ra0RObggCILQtgwfPpyRI0cC8NJLLxEbG9vMETUg8Zo4cWK9JqD9/PPPdOrUqb7dCtfg5mlP+0gvcrNKKNHqsJglyksNlJcayM4sueJxdg5qXNzscHWzw9nVFlf3ykd3TwecXW2Ry2/MSZaCIAhC6yWXt7wrPg0a5nj00UcJCgqqU1uz2cxrr73WkO6EOrB30DBtRm8AJItERbmREq2OEq2OUq2+8nlx5VdxYQVFhRXoKozVyVnG+aJa51Qq5bh72uPu5YCHtwMeXpVf7l4OqFSNu7SCIAiC0DJIkoTeYG6WvjVqRZu5y7JBidewYcOIiYmpU1uz2czs2bMb0p1wnWRyGXYOauwc1Hj7OV2xna7CSGF+OcWF5RQWVFBcUE5hQTlF+eUU5JVjMlnIziypNWImk8vw8HLAx88Jbz8nfPyd8PFzxs5B3dhvTRAEQWhCkiTx4uLdxKcUNEv/kSFuvDNzYJtIvuqdeC1evJjQ0NA6t1coFCxevJjg4OD6dik0EhtbFb4BzvgGONfaZ7FIFBWUk5dTSl52Kfk5pZXPc0qpKDeSm1VCblYJJ4+kVx/j5GyDT4AzgSGuBIS44hfoIkbGBEEQBIEGJF4XJ6s19jFC85LLZbh52OPmYU/HKO/q7ZIkUaLVkZWuJTtDS1Z6MVnpWgrzy9EW69AW6zhzKrv6HD7+TgSGuBEQ4kpgiCtOLrbN9ZYEQRCE6ySTyXhn5kBxqdEKxK1sQr3IZDKcnG1xcratkZDpdUayMrRkXCgmLaWAC8mFlJboybhQTMaFYvb/mQyAm4c9oR08CO3gTkh7D+zsxeVJQRCElkwmk2Ej7oBvMKt9By0WC2vXruX222+31imFVkhjoyK4nTvB7dxhSDskSaK4sIK0lEIupBSSllpIVnoxBXllFOSVcXhfKsjA19+ZduGedIz0wj/YVdxFKQiCILRJVku8TCYTL7/8ski8hBpkMlllrTA3O6K7+wOVk/lTk/JJPptHcmI+uVklZKYVk5lWzJ4/zmJnr6Z9pBcdo7xo19ETG1tVM78LQRAEoTWqqKhg586dAKSnp1NaWsqmTZsA6N27N25ubk0e03UlXosXL77iPpPJ1OBghBuDja2K8GgfwqN9ACjR6khOzCMxLoek07mUlxk4cSiNE4fSkCtkhIV70qmLHx07eYskTBAEQaiz/Px8nn766RrbLr5esWIFffr0afKYrivx+uyzzxg5ciQODg619pnNzTPhTmj9HJ1siOkRQEyPAMxmCxdSCkmMy+bMqWzyc8tIjMshMS4HhUJOWLgnUV19iYj2EdX2BUEQhKsKCAjg9OnTzR1GDdf1ydWxY0duv/12hg4dWmufXq9nzZo11opLuEEpFHJCwtwJCXPnpvFR5GSVEHc8g7jjmeRll3ImLpszcdmo1AqiYnzp0iuA4HbuyMScMEEQBKEVuK7Ea/LkyVcc2VIqlcycOdMqQQnCRV4+jnj5hDN0dHhlEnYsg9ijGRTklXH8UBrHD6Xh4mZHl54BdOkVgIubXXOHLAiCIAhXJJNawlLdN6ARI0YA8McffzRzJK2PJEmkpRRy/FAasUczMOir5hfKoEOkF70GhBDW0VOMggmCINSDTqcjOTmZ0NBQbGxsmjucJnet99/Qz+8GT5L56KOPeOqppxp6GkGoM5lMRmCoG4Ghboy+rRMJJzM5djCteoJ+YlwObh529OwfQpdeAdjaiRphgiAIQsvQ4GW7ly1bZo04BKFeVGoFnXsEcO+jfXn8xaH0GRSKxkZJQV45m9fG8eEbf7BxdSxFBeXNHaogCIIgNHzES1ypFFoKDy8HRt/eiWFjwzl5JJ2De1LIySzh4J4UDu1LpVMXX/oPb4/PVRYMFwRBEITG1ODEq62snSS0HWqNkh79guneN4jkxHz2bj/LuTN5xB6tnJgfFuHJwBHtK6vrC4IgCEITEoWQhDZLJpPRrqMH7Tp6kJlWzN7tScQdzyApIZekhFxCO3gwbGw4AcGuzR2qIAiCcIMQiZdwQ/ANcGbivd0ZfnM4e7cncfTABZIT80hOzKN9pBdDR3fEL9ClucMUBEEQ2jgxx0u4obi623PLpBgGDG/Pri2JHD+Uxtn4HM7G5xDR2YfhN0fg4VV7ZQZBEASh9dm4cSPr1q3j1KlTFBcXExgYyNSpU5kyZQpyeYPvL6yXBide3bt3t0YcgtCkXNzsuPWuLgwYHsauLYmcPJJOwskszpzKpke/YIaM6oidgyhDIQiC0Jp99dVX+Pn58cILL+Du7s7+/ft58803uXDhAi+++GKzxNTgxGv58uVWCEMQmoe7pwMTpnVj4PD2/PFbAmfisjm4J4UTh9MYNLIDvQeGoFQpmjtMQRAEoR4+++wz3Nzcql/37duX8vJyvvvuO5555hnU6qb/A7ve42wFBQXWjEMQmpWnjyNTHuzFvY/2xcfPCb3OxNb18Xz67g7iT2SKS+qCIAit0KVJ10WRkZHo9XqKioqaPiAakHgNHjyYp556ip07d4oPJaHNCO3gwYxnBnHrXV1wdNJQVFDBT18fZuXSAxTklTV3eIIgCEIDHT58GBcXF9zdm6ekUL0vNY4ePZo//viDLVu24OnpyYQJE5g4cSJBQUHWjE8QmpxcLqNr70CiuviyZ1sSe7cnkZSQy5JFOxkwLIwBI9qjaoTLj5LFgmSqXHdS3gzD34IgCFcjSRKSUd8sfctUGqvUDT158iSrV6/miSeeQKFonmkkDVoku7S0lHXr1rF69WpOnjyJTCajZ8+eTJo0iTFjxqDRaKwZa5siFsluPfJzS9m4+hTnzuQC4Opux5gJ0XSI9Grwuc06HTl/bKfgwEGKT8UhGY0A2AYE4BwTje8tY7ELCGhwP4IgCHV1uUWiJUkiY8Wr6NNON0tMmoAI/O5b0KDkKzc3lzvvvBNvb2+++eYbVCrVZds19iLZDUq8LpWUlMTPP//MunXryMvLw8HBgVtuuYWJEycSExNjjS7aFJF4tS6SJBF/IpPf/xdHSbEOgM49/Bl9Wyfs7K9/dMpiMpG57jfSVv+KSau9ckOZDI8B/Qmd8QBqV1HoVRCExnflxGs2+rSEZompoYlXSUkJ9957L3q9npUrV+J6ld+nrSbxushsNrNjxw5++eUXdu3ahdlspn379qxbt86a3bR6IvFqnfQ6Ezs3n2H/rnNIEtg7qLl5YmciY3zrfI7SpHOc/fgTypJTALDx8cZn7Bhcu3dD7eGBxWCgJCGBnG07KNh/AAClowNhjz+KR/9+jfG2BEEQql0p8Witlxr1ej0PPvggKSkprFq1Cn9//6u2b+zEy+qV6xUKBSNGjKBLly4sXbqUr7/+mrNnz1q7G0FoFhobJaNujSKqiy/rVh0nN7uUn74+TGSML2PviMbB8cqX1yVJIvO3jaR89TWSyYTS0ZGQ++/Fa9hQZJfONbCzxb1vH9z79qH03DnOfvwpZeeSOf3Oe5TfNZnAKXcia6bCf4Ig3LhkMhkyde1EpCUzmUw8/fTTJCQk8O23314z6WoKVk28zGYz27Zt45dffmH37t2YTCbCw8OZNGmSNbsRhGYXEOzKQ88O4s8tZ9m97SzxJzJJOZvHzRM706mrX632FoOBs4uXkLtzFwBufXrT/olHUTk7X7Ufh3btiFn0NqnffEfGr2u5sOonytPS6PD0kyjEHEpBEISrmj9/Ptu3b+f5559Hp9Nx7Nix6n3t27fHwaHpVyqxSuKVmJjIL7/8wtq1ayksLMTBwYFJkyYxadIkoqOjrdFFi5CUlMQLL7xAaWkp3t7evPfee3h5NXyCtdA6KZUKho0NJ6KzD+tWHScrQ8sv3xwhMS6bsXdEo7GpnLhpLC4mbsFCSs8kglxO6APT8R1/S52HzeVKJaEPTMcuMJCkJf8lf88+dFk5RL76Ehr32jVqBEEQhEq7d+8GYNGiRbX2rVixgj59+jR1SPWf43XxjsZffvmFU6dOAbT5Oxrvuece7r33XkaPHs2XX37J6dOneeedd+p1LjHHq20xmy3s2pLI7q2JSBK4uNly+9RueDtJnJrzOhXpGSgdHAh/cRYuMZ3r3U/xqTgSFr6LqaQEGx9vOs1/HRtvkfwLgmA915rj1Na12Mn1Xbp0wWAwtPgaXqmpqSxbtozjx4+TmJhIu3btWL9+fa12ycnJLFiwgMOHD2Nra8stt9zCrFmzqr/peXl5jB8/nr179yKTySgtLWXQoEEcPXq0XnGJxKttOp9cwK8rj1FUUI5MBu10iQRd2IuNhxud5s3BLqDh8wt0WVmcmjsfXVY2ag8Pot+Yi61f7cubgiAI9SESr8ZNvOo9Q3fQoEEsWbKEHTt28Mwzz7TIpAsqL4Pu3LmT4OBgwsLCLttGq9Uyffp0ysrK+Oijj3jxxRdZt24ds2fPrm6TlZWFr69v9eUhBwcHVCoVhYWFTfI+hNYhKNSNR54bRKdIVyQJkjQdOBJ6G0EvzbZK0gVg4+ND9FtvYBvgjyEvj5Mvv0ZZ6nmrnFsQBEFoXPVOvBYvXszQoUORX3J3VUlJCX/++Sdr166luLjYKgE21PDhw9m5cycfffQRnTp1umybH374Aa1Wy6effsrgwYO5/fbbmT17NuvWrSMpKQngissiWaOSrtC2GFKTCdj+OdGZ21BJRooVLixffoqEk5lW60Pj7k70m29gFxKMsaiI2FfnVJenEARBEFouq92T/sknnzBo0CAeeughXnzxRdLS0gCYPn06n3/+ubW6uW7yOtx2v2vXLvr161djMc3Ro0ejVqvZuXMnAL6+vmRlZVUnYKWlpRiNRlxcXBolbqF1Kjpxktg58zCVltI+wIaHnx1EQLArep2JH5cfZtOvsZhMZqv0pXZxJnrBPBw6tMdUUkLsa69TlpJilXMLgiAIjcMqidd3333HJ598wqRJk/jvf/9bY3Ro2LBh7NixwxrdNJqkpKRalyHVajVBQUHVI14eHh6EhoaydetWAH7++Wduuummq553xIgRV/zKzLTe6IfQMuTvP0jc/Dex6HQ4d4mh07zXcA/wYPoT/eg3tB0AB/5MYfnivRTml1ulT5WjI51en3NJ8jWPspRUq5xbEARBsD6rJV73338/s2fPZuDAgTX2BQcHk5rasj8ItFotTk5OtbY7OTnVuGT6+uuvs2TJkuoFwp977rmmDFNowXJ27CLh7XeRjEbc+vYh6rVXUNjaAqBQyLlpfBRTHuyFrZ2KjAvFfP7BLs7EZVulb6WDfWXy1T4Mk1ZbOfIl5nwJgiC0SFap43XhwgUGDRp02X329vZor7YWXQsmSVKNOVwdOnRg9erVdT7+anc8XLwrQmj9Mjdu4tx/l4Ik4TlsKB2efLxmJfoqHaO8efjZwfzyzRHSUgv5YdlBhozqyOCbOiCTN2yuoNLBnk7z5hA7Zz5lSUmcem0und6Yh31wy7zpRRAE4UZllREvR0dH8vLyLrsvPT0dd3d3a3TTaJycnC6bHJaUlFx2JEwQoDIxP//Dj5z77AuQJHxvGUuHp564bNJ1kbOrLdMf70evAcEA7Nx8hlVfHUJXYWxwPEoHB6Lnz8E+rB3GYi2nXptL+Xkx8iUIgtCSWCXx6tevH0uXLqW8/O95KzKZDJPJxPfff1/r8mNLExYWVj2X6yKDwcD58+evWIJCuLFZjEbOfvQJF75fBUDAnZMIfejBOq2hqFDKGXtHZ269qwsKpZwzcdks+89ucrNKGhyX0sGBTvPmYN8uFGOxltjZr1N+/kKDzysIgiBYh1USr6eeeoqMjAxuueUW3n77bWQyGd9++y2TJ08mNTWVxx9/3BrdNJrBgwfz119/1ajJtWXLFgwGA0OGDGnGyISWyFRWRtwbb5GzbTvI5YQ9/gjBd0+97tIiXXsH8sDM/ji52JCfW8ayj3ZbpeSEytGRTvPnYh8airG4mNjXXqf8QlqDzysIgiA0nFUSr+DgYL7//nvatWvH999/jyRJ/O9//8PV1ZWVK1fi14xVtSsqKti0aRObNm0iPT2d0tLS6tcFBQUATJkyBUdHRx5//HH+/PNPfv31V9544w3Gjx8vRryEGirSMzj50qsUHz+B3MaGqNkv4zN6VL3P5xfowkPPDCI4zB2D3syPyw+z+4+zV6wbV1d/J18hlXW+Zs+lPE0kX4Ig3Fj+/PNP7rnnHvr27Ut0dDQjRoxg4cKFlJQ0/ApDfdV7yaArMRgMFBYW4uzs3CKWGkhLS7viRPZLF8i8dMkgGxsbxo0bV2PJIGsTSwa1Pvn79pP40WLM5eWoXF2JmvMKDu3aWeXcFrOF3/8Xx8E9KQDE9Axg3OTOKJVXni9WF8aquxzLU1JRuboQvWC+1SroC4LQNrWlJYPWr1/P6dOniYmJwcnJicTERD7++GM6derEl19+edljWuxajZcqKCioUXz0n06dOnXFqvE3KpF4tR6S2Uzqd9+T/ssaAJyiIgl//jnUbq5W7+vgnhQ2/XoKySIRGOrGnff3wN6hYQvO10y+XIleME8kX4IgXFFbSrwu58cff+S1115j165deHt719rfYtdqvNRjjz2GXq+/7L7ExEQefPBBa3QjCE1Ol53NyVfnVCddfreOo9MbrzdK0gXQa0AI02b0RmOj5EJyAcv+s6fBk+5VTk5Ev/E6dsFBGAsLiZ09l4r0DCtFLAiC0LpcXHHGZDI1S/9WSbzy8vKYNWtWre2pqak88MADYp6U0OpIkkTO9h0ce/o5SuITUNja0nHWs4Q++ABypVXK311RWLgn/3pqAK7udhQVlPPlx3s4m5DToHNeNvnKEMmXIAg3BrPZjF6v59SpU3zyyScMGzYMf//mGfm3SuL1+eefc+DAARYuXFi9LSMjg/vvvx8vLy/++9//WqMbQWgShqJiTi/6gMQPP8ZcUYFjZARd//M+noMGNFkMnt6OPPj0QILauaHXmfh+6QEO7E5u0DlVzs50mv86dkGBGAoKKpMvsXSVIAh1JEkSOpO+Wb4aOitq2LBhxMTEcMcdd+Dp6ckHH3xgpe/K9bPa5PoDBw7w4IMP8vzzz3PzzTczbdo01Go13377rVhI+jLEHK+WR5IkcrZtJ+WrrzGVlCJTKAiccicBEydctShqYzKbLPz280mOHaysxdVvaDtG3hLZoEr3hqJiYmfPoeJCGmp3N6LfnI+tr6+1QhYEoZW73BwnSZKY88d7nM4/1ywxhXuEMX/4c9ddtueihIQEysvLOXv2LJ9++ilBQUF89dVXKC7zu71VzPEC6N27NwsWLOCdd97hzjvvBOCrr74SSZfQKlRkZHBqzjzOfvQJppJS7END6PzOWwTeOanZki6oLLY6/q4Yht8cAcC+HedYs/IoJpO53udUuzgTvWAetoEBGPILiH11LhWZWdYKWRCEtqqeSU9LEBERQffu3bnzzjtZvHgx+/fvZ8uWLc0SS70nqxQVFdXaNmTIEO655x7WrVvH0qVLUalU1e1EAia0RMaSEi6s+pmsjZuQTCbkajWBU+/C79ZxjT6Xq65kMhkDR7THydmGtauOE3s0g9ISPXfe3xMbW1W9zql2cSF6wbzKpCstjdjZc+n85jxsfHysHL0gCG2BTCZj/vDn0JsNzdK/RqGu92jXP0VGRqJQKDjfTEuq1fuTpW/fvlf8JkiSxMSJE2tsi4+Pr29XgmB1FqORrE2/c+GHnzCVlgLg2qMboQ/NwNa3ZSYfMT0DsHfU8NPXh0k5m8/yxXuZ9lBvnFxs63W+yuTr9cq5XmnpxM6eS/Sb87G5zO3VgiAIMpkMG2XDytu0BEePHsVsNhMQENAs/dc78XriiSesln0KQlOxGAxkb9lK2i9rMORXrlxgFxxEyAPTce3WtXmDq4OwcE/uf6IfK5ceICerhC8/2sO0h3rj5Vu/xdzVrq5EvzGvcs5Xegaxr84RyZcgCG3GzJkziY6OJjw8HBsbGxISEli6dCnh4eGMHDmyWWKyeuV6oW7E5PqmZSotI3vrH6T/uhZj1Zqcanc3Au+ajPfIEc06j6s+igrKWfnFAfJyStHYKLnrgZ6EtPeo9/kMBYWcfHUOuowMNF6eRC+Yj423lxUjFgShtWhLBVQ///xzNmzYwPnz55EkCX9/f2666SYefPBBHBwcLntMq6hcL1w/kXg1jfK0NDJ/20jOth1YdDoANJ4e+E+8A++Rw5Gr6jdHqiWoKDfww7KDXEgpRKGQc8c93YiMqf/difr8yhITlcmXF9FvzsPGSyRfgnCjaUuJV3202Lsax48fz5kzZ+rc3mKxMH78eJKSkurbpSDUibmigpxt2zn56hyOPvE0WRs2YdHpsAsKpP3Mx+i+ZDG+Y0e36qQLwNZOzT2P9iWisw9ms4WfVxzmyF/1nyyqcXcjesE8bPx80efkEPvqXPS5uVaMWBAEQaj3HK/ExER0VSMIdSFJ0nUfIwh1ZTEaKTp2nLw9+8jf91f16BYyGW69euI7/hacO0e3uXmJKpWCSff14LefT3B0/wXW/3SCinIDA4a3r9f5LiZfsa/OQZeZxclX59D5zfloPD2tHLkgCMKNqUH3yz/xxBOo1eo6t29rH3pC8zJqSyg6foKCAwcoPHgYc0VF9T4bXx+8hg/Da9iQNp80yOUyxk2Owc5ezZ5tSfzxWwLlZQZGjous18+cxt2d6AXzK5OvrKzKux0XzEfjWf85ZIIgCEKleideEyZMqNdxrq6Ns7iw0PaZyisoPXOG4lNxFB09TunZs3DJFEW1mxvu/frgMXAAjpERN1SiL5PJGHFLJLZ2arauj2ffjnNUlBkZN7kzcsX1zyjQeLhXjnzNnoMuK5tTc+fReeECVM7OjRC9IAjCjaPeidel6zIKgrVJFgu6rCxKE5PQxidQknCastRUsFhqtLMLDsK1ezfc+/XFoUN7ZHKrLcbQKvUfFoadvZp1Px7n2MELVFQYmHhPd5Sq679rU+PpQfSC+Zx8+VUq0jM4Ne9NohfMQ2lXv7phgiAIQgMvNQpCQ0mShLGwiIqMDMpTz1OWkkJZSirlqeex6PW12mu8vHCMCMelSwwu3bqgcXdvhqhbtq69A7GxVfHLt0c4HZvNd18cYMq/eqKxuf6bCTSeHkS9PoeTL8+mLCmJhIXvEPXaK8ivY4qBIAiC8DeReAmNSrJYMGq1GPLy0ecXYMjPR5+biy4zC11WFhWZWX9PhP8HuVqNXXAQjhHhOEVG4BgRgcbdrYnfQesU0dmHaQ/1ZtWXh0hNymfFkr+YNqM39o7XX3XaLsCfqDmvEjt7LsUnTnL6/Q+JeOG5Vlf7TBAEoSUQiZdQZ5IkYTEYMFdUYC4vx1RahlGrxaQtwVhS9ajVYtSWYCwqwpCfj6GwCMlkuvqJ5XI0nh7YBQZiHxKMXUgI9qHB2Pr6ig/3Bght78F9j/Vl5RcHyEwrZvkne7n74T64uNld97kcO7Qn8tWXiJu3gIK/9nP20//SfuZjN9Q8OkEQBGsQiVcbZNRqMRQWYTEYkIxGLAYDFqMRi8GIxWjAYjAiVT1aauw3YNHpKxOrS75M5X8//+ccqzqRyVC5uKDxcEft5obGwx0bXx9sfH2x9fVF4+XZ6mtqtVR+gS7cP7M/332+n/zcMpYv3svdj/TB09vxus/lEtOZ8FnPkPDu++Rs/QOVkyMh0+9thKgFQRDaLpF4tTGl585xYtZLSGZz43Uik6GwsUHpYI/SyQmVo2Plo5MjKicnlE6OqJycqxMtlasLcqX4p9ZcPLwceGBmf779737yckork6+H++AX6HLd53Lv15f2jz/C2cVLSF/9KxpPT3xvHmP9oAVBENoo8WnYxigdHLDx9cFUUopcrUKmUiNXq5BXP6qQqVT/2KauaqtCodGgsLVFYWdb9WhX+Vj1pbSzRa7R3PB3D7Y2Ti623P9Ef1Yu3U/GhWJWLNnHXf/qRWg91nf0vmkkhsIizn/3Pee+WIbGwx233r0aIWpBEATrKSsrY+zYsWRnZ/Pzzz/TuXPnZonDKolXbGws0dHR1jiV0EA2Xl50/+Sj5g5DaIHsHNTc+2g/Vn11kJSz+az84gAT7+lORGef6z5XwOSJ6HNyyd6yldPv/ZvoN+fj2KF+1fIFQRCawqeffoq5Ma8G1ZFVhi0mTZrEXXfdxdq1azEajdY4pSAIjUBjo2TajN6ER3tjNln46etDHDtw4brPI5PJaPfoQ7h064pFryd+wUJ02TmNELEgCELDJSUlsXLlSp588snmDsU6idfbb7+NxWLhhRdeYOjQoXz44YdkZWVZ49SCIFiZUqVg8n096NIrAEmCtauO89fOc9d9HrlSSfgLz2EXEoyxqIi4+W9iKi1rhIgFQRAa5s0332TKlCmEhoY2dyjWSbxuv/12fvrpJ3788UcGDBjAl19+yciRI3nyySfZv3+/NboQBMGK5Ao5t97Zhb5D2gGweW0c2zYmIF2yBFNdKO3siHrtVdTublSkpRG/8B0sYtRbENokSZIw63TN8nW9v5sutWnTJhISEnjiiSes+N2oP6tOro+JieHdd9/lpZde4scff2TVqlXcf//9hIWFcc899zBhwgQ0musv4CgIgvXJ5DJuGh+JrZ2K7RtPs3vrWXTlRsZOiEYmr3t9Lo2HO1GvvcrJl2ejjT1F0qef0f6pmaLGlyC0IZIkcfKlVylJON0s/TtGRtB54YLr/r1SUVHB22+/zbPPPouDg0MjRXd9GuXWNLVajY2NDSqVCkmSqKio4PXXX2fUqFEcO3asMboUBKEeZDIZg0Z24OaJ0SCDQ3tTWf3dUcym66vXZh8aQvgLz4FcTs62HaT9vLqRIhYEodm0wj+mlixZgru7O3fccUdzh1LNqiNeCQkJrFy5knXr1mE0GhkzZgzvvfceMTExJCQkMGfOHObMmcPatWut2a0gCA3Us38INrYqfl15jFPHMtDrjEye3hOVuu4rB7h270a7hx/k3GdfcP7bldj6+eIxoH8jRi0IQlORyWR0XrjgsmvoNgW5RnPdo13p6el8+eWXfPLJJ5SWlgJQXl5e/VhWVoa9vb3VY70WqyReGzZs4LvvvuPIkSO4ubnxwAMPMHXqVDw9PavbRERE8MwzzzBjxgxrdCkIgpVFd/NHY6Pip68PcTYhl2//+xdTZ/TGxrbuqwr4jh1DRXommevWk/jhx2g8PHAM79iIUQuC0FRkVcWzW4u0tDSMRiMPP/xwrX333XcfXbp04ccff2zyuKySeD377LNERUXx1ltvccstt6BWqy/bLiAggFtvvdUaXQqC0Ag6RHpxzyN9+X7pAS6kFLJ88V6mPdQbJxfbOp8j9IH70GVlUnjwMPFvvk3Me29j4+XViFELgiDUFhkZyYoVK2psi4+PZ+HChcybN6/ZCqhaZY7XU089xYoVK5gwYUKtpKusrIyDBw8CEBgYyMKFC63RpSAIjSQo1I37n+iPg6OGnKwSvvxoDzmZ2jofL1Mo6PjsM9iHhmAsLiZ+wUJMVcP7giAITcXJyYk+ffrU+IqMjASgU6dOdOrUqVniskri9fHHH3Pu3OXrACUnJ3PfffdZoxtBEJqIt58T/3pqAB5eDmiLdXy1eC8pZ/PqfLzSzpbIV19G5epKeep5Ti/6oHHXDxUEQWglrJJ4Xa2+hslkQi7W9ROEVsfFzY4HnuxPYKgbep2J7z4/QOzR9Dofr/H0IPLVl5Cr1RQdOUrysq8aMVpBEIRr69OnD6dPn262y4zQgDlepaWlaLV/X37Izc0lIyOjRhudTseaNWvw8Lj+hXgF4UZmMBnILsujSKel3FiB2WJBKVdgq7LBw84NL3t3FPK633FYX7Z2au59pA9rVh4l/kQWq789irZIR7+h7ep0h5Fjh/Z0fPZpEt5eROZvG7Hx88Nv3M2NHrcgCEJLVe/Ea/ny5XzyySdA5Z0OM2fOvGw7SZJ45JFH6tuNINwQSg1lHE4/SWzOaU7nJZFdmofElUeSFTI53g6eBDj5EuXVgWivcAKd/RqlaKlSpWDivT3YvPYUB/5MYev6eAryyhh7RzQKxbVHs9379SV4+r2kfv0Nycu+wsbHG7eePawepyAIQmtQ78RrwIAB2NnZIUkSixYt4p577sHPz69GG7VaTceOHendu3eDAxWEtkaSJE5mJ7ApcQdHs05httScA2WvssXV1gV7lS0KuQKTxUy5sYKcsjwMZiMZJdlklGRzIP0YAM4aR7r5RjMwuBfRXuFWvcQvl8sYfVsnXFzt2LwujiN/nSc/t4zJ03tgZ3/5u5gv5T/hNirSM8jZ+genF31AzDtvYh8SYrX4BEEQWot6J17dunWjW7duQGVJ/smTJ+Pt7W21wAShrZIkiRPZ8aw8/ivJRReqtwc5+9PdL5ooz46EuAbgrHG87AiWRbJQUFFEhjab5MILxOacJj43kWJ9CTtS9rEjZR+uts4MDOrFiHYD8HPysUrcMpmMvkPa4eZpz+pvj5CalM+y/+xm6oO98fC++lIcMpmMsEcfQp+dTfHJWOLeWEiXRW+jdnO1SmyCIAithUxqyMqTQr2NGDECgD/++KOZIxGaUk5ZPssO/8DRzFgANEoNw0L6Mar9YAKcfet9XqPZyJn8ZPaeP8TeC4cpM/xdvqGLTySj2w+lu2+01UbBcjK1/PDlQYoKKtDYKJl0Xw/Cwj2veZyptJQTL7xMRXoGDh3aE71gXqsqyCgINwKdTkdycjKhoaHY3IA/n9d6/w39/K534pWRkYGnpycqlarWpPrL+edlyBudSLxuLJIk8ce53Xx99Gf0ZgMKuYLR7YdwR9RYnDTWXbjVaDZyNPMU25L3cjQjtnqumJe9O6PaD2F4aH8cNA1fJqOsVM+Pyw9zIbkAmQxGjo+i7+DQa84zq8jM5MTzL2EqKcW5SwxRs19GfoWiy4IgND2ReLXQxCsyMpJVq1YRExNDRETENX/ZxsfH1yvAtkokXjcOnVHH54dWsvt8ZSHhSM8OPNxzGv5WugR4NTmleWxO2sUf5/ZUj4KpFCoGBvVieLv+dHAPRS6r/yiYyWTmt59PcvxgGgCRMT7celcXNDZXX2ao5PQZYufMw6LT4dqrJxEvzkKuqvvSRIIgNB6ReLXQxGvNmjUMHToUV1dXVq9efc3Ea8KECfUKsCUpLCzk+eefJy0tDZVKRUxMDHPnzr3iEklXIxKvG8P5onT+vXcp6SVZyGVypna+jfERIxuU7NSH3mRgz/lDbErcTkpRWvV2VxtnOnmHE+7ejnCPdgQ5+1/35UhJkji4J4XNa+OwmCXcPOyZfH8PvH2drnpc8clY4ua/icVgwKVrFyJeeRGFRlOv9ycIgvWIxKuFJl43oqKiIhITE+nVqxcWi4VZs2YRFRVVr4W/ReLV9h3JiOXfe79AbzbgauvMM/1mEOHZvlljkiSJM/nn2HL2Tw5mHKfCqKuxX6VQ4evgha+jF36O3tWPfo7e17w8mZZayM8rDqMt0qFUyRk3KYaYngFXPabo+Ani33oHi06HY3hHIl5+AbWrmHAvCM1JJF6Nm3jV+67GuszrulRjzfFKTU1l2bJlHD9+nMTERNq1a8f69etrtUtOTmbBggUcPnwYW1tbbrnlFmbNmnVd/6hcXFzo1asXAHK5nOjoaNLS0q5xlHAj2n5uL/899B0WyUJn73Ce7vsgTjaOzR0WMpmMcI8wwj3CMJqNxOee5XReEqfzzpGYn0yFScf54nTOF9euUO+otsfX0Rt/Jx9CXQMJcwsm2NkftbJyxDcg2JWHnxnM6u+Ocu5MLr9+f4zzyQWMvq0TKvXli726dImh0+uvEffGW5ScPsPx514k4uUXcOzQvAmqIAhtw+rVq3n55ZdrbX/ooYeYNWtWM0TUgMRr+PDh11WssbHmeCUmJrJz5066dOmCxWK57PJFWq2W6dOn4+fnx0cffURBQQELFy6kqKiI9957r1796vV61qxZw/PPP9/QtyC0IZIksSZ+Ez+cXAvA4JA+PNrrXpRNUGX+eqkUKmJ8IonxqVw01mKxkFOWR0ZJDpkl2WSW5JBZmk2GNof8ikJKDGWU5J/jTP45tidXnkMukxPo5EuoWxBhrsG0cwti0gNd+WtbCru2JnLkr/OkJuUz4e5u+AW6XDYOp8gIuix6m/g3F1KRnsGJF14mYNIdBE6eKCbdC4JgFUuXLsXR8e8/fpuz/FW9E6+33nqrUapkX6/hw4czcuRIAF566SViY2Nrtfnhhx/QarX8+uuvuLm5AaBQKJg1axaPPfYYYWFhAEydOpXs7Oxax4eFhfHFF19Uv7ZYLLz44ov07duXwYMHN8bbElohSZL45tgvrD9TOfx8e+Ropna+rUX8nNSFXC7Hx9ELH0cvILrGPp1JT1ZJLpml2aQWpZNceJ5zBecp1peQWpxOanE6O5L3VZ5HJsff0RuPfgGYj3qQn1vGso9202WwD0NvisDJpvZdnLb+fsS8+zZJn/2XvD/3kPbjz+T8sY2AyRPxHDIYpZ3ddb8fi8GAPi8PfW4ehsJCzGVlmMrKMZWVXbJgtwyZXIbCzg6lgwNKBwfULs7Y+Hij9vBArqz3r0hBEFqQTp06VX/+N7d6/1a54447rBlHvdVlIvCuXbvo169fjW/66NGjeeWVV9i5c2d14vX999/Xqc958+ahVCp55ZVX6he00Catil1bnXTd320yN3cc3swRWY+NUkOIawAhrgH0C6xc7keSJAoqikgqSOVc4XnOVT1q9aVc0GZygUwUESr8UjrjXOjLsR1Z7DkUR354Aq7u9njZu+Np745X9ZcHwU8/jnu/viQvW44hP59zn31Bypdf49KtC44REdgF+KNycUGuUiGZzRhLSjAWF2MsLsaQX4A+Nw99bi763DyMRUUNe9NyORpPD+yDg7EPa4dDWDscwsJE0VdBEBrkhvhzLikpiYkTJ9bYplarCQoKIikp6brO9e6775Kdnc3ixYtbzUiG0Ph+jf+d1XGbAHiw+xRGdxjSzBE1PplMhrudK+52rvQO6ApUJmP5FYWkFWeSU5ZPblk+OaH5FCSmoYjzwb7UDZujvcgKSiDV8zhc5kfIUW2Pz6QQOp31wu94Oqo8LQX7D1Kw/+B1xyjXaNB4eqJ2d0PpYI/Szh6FvV2NkSzJbMZUXo6ppBRTaSmGgkJ02dlIRiP67Bz02TkUHPi7bxs/X5w7R+McHY1Ll86onJ2vOy5BEJrWuHHjKCwsxM/PjzvvvJMZM2agUDTPFJAGTa5vLQVUtVotTk61b213cnKiuLi4zudJTExk2bJltGvXrjqR69+/Py+++OJl21+88+FyMjMz8fWtf6VyoeXYlLiDlSd+BeCeLhNuiKTrSmQyGR52bnjY/WNIfwAU5pezeuUR0lOK8E/pTIS+C069dBQp88gpyyO3rIBSQ1nlXDJDGYnewE0avApcCcg24JNvwqnMgoMBlJIMuVyBzMEOlbMT9m4eOHp4Y+PlhcbTA42XJxoPT5SODvX6A0myWDAUFqLLyKQsJYXSpGTKzp2j/EIauoxMdBmZZP++BWQyHCPCcevdC7fevbAL8LfON1IQWiBJkjAazNdu2AhUakW9fpY9PT158skn6dKlCzKZjG3btvHhhx+SnZ3NnDlzGiHSa6t34jVixIjqAqp1mWjfEguoSpJ0Xf8jO3TowOnTpxsxIqG12ZG8jy+PrAJgYtTN3Boxqpkjarlc3e144IkBHNydzLaNpynJNFP+mw2DbhrKgOHtUSjllBsqyCnLJ6esMhnLKs0lpzSPzOA8jpfn11pIvFIZUIZSno6v0hN/sy/+ZT74K3wIMPvg5+hdfedlXcnkcjTu7mjc3XHu/Pd8N1NpGdq4OIpPxlJ8Mpay5BRK4hMoiU8g9etvsA8NwWPwIDwHD0Lj4d6wb5ggtCCSJPHV4r2kpRQ2S/+BIa7cP7P/dSdfgwYNYtCgQdWvBw4ciEaj4euvv+bRRx/Fy8vL2qFeU4Mm1wcGBlY/b8mX3ZycnNBqtbW2l5SUVM/vagxXq/FxtdEwoXXYd+EwSw5+A8DNHYdzZ/S4Zo6o5ZPLZfQZ3I7waB82/HKSswm57Nh0hlPHMhk3qTOBoW6EqCvnkv2TxWIhv6KQ7NI8sktzyS7LI7s0j6ySHNJLsjCYjZVzy7SZNY6TIcPL3p1gl8rzhrgEEOISiLud63X/3lI62FePbgHoc/MoOHCQggMHKY49RVlyCmXJKaSu+BbnztH4jBmFW5/eYpK+0Ca03E/56zN27Fi+/PJL4uPjW1fidWkl+pYy0f5KwsLCas3lMhgMnD9/vtbcL0GoiyMZJ/lo35dIksTwdgOY3nVSi/7jo6VxcbNj6ozenDqawab/nSI3q4SvFu8lpoc/I8ZF4uhUu76eXC7Hs2pCfrR3eI19FslCXnkh6dpM0rVZpGmzSK/6KjWUVSZpZXkcSD9WfYy92q46CQt28SfUNZAAJ18U11H6Q+Ppge8tY/G9ZSxGbQn5e/eRu3MX2rh4ik+cpPjESVSuLnjfNBKf0aPEKJjQaslkMu6f2b/VXWpsiW6IP8MGDx7MkiVLKCwsxLWqKvaWLVswGAwMGXLjzscR6ic2O4H393yOWbIwMKgXD/eY1mZ+ITQlmUxGdHd/2oV7snV9PMcOXODE4XQSYrMYfFNH+gwKRaGs2/JFcpm8+u7Ibr41S2FodSWcL04npSidlKILpBamkabNpMxQzqmcM5zKOVPdVqPUEOYaRHv3UDq6h9LePQQ3W5c6xaBycsRnzCh8xoxCl51D9tY/yN68FWNhEWk//kzaz6tx69UTv9vG49wpqs7fJ0FoKWQyGWpN608bNmzYgEKhICqqeX4OrfYdNJvNbNy4kf3791NUVISLiwt9+vRhzJgxKBtxmL2iooKdO3cCkJ6eTmlpKZs2Vd5d1rt3b9zc3JgyZQrffvstjz/+OI8//jj5+fm8/fbbjB8/vlEvNQptz5m8c7yz+zOMFhM9/bvweJ/p1722oVCTnb2aW+/qQo9+QWxcc4qM80VsXR/P0f3nGXVbJzpENuxSgJONI9E2EUR7R1RvM5qNpGuzSClKI6XwAilFaSQXXqDCpCMuN5G43MTqtu62rnRwDyXCM4wozw51Ws/SxtuL4LunEnjnJAr2HyBz4+9oY09RsP8ABfsP4BgZQcDECbj27CGSdkFoRA8++CB9+/alY8eOQOUUoB9//JH77rsPT0/PZonJKms1FhQUMGPGDOLi4lAqlbi4uFBUVITJZCIqKoqlS5c2WuGytLS0K86XWrFiBX369AFqLhlkY2PDuHHjrnvJIGsSazW2PsmFF5i3/d+UGyuI8Y7khUGPoVaomjusNkWySBw/lMYfv8VTVmoAoF1HT24aH4m339UX3W4oi8VCekkWifkpJOYnczY/mfPajFqrYdirbAn3bE+UZ3siPTsQ6hpUp5UJys9fIGP9b+T8sR3JZALALjiIgIl34DGwP7JmurVdEP6pLa3VuGDBAv7880+ysrKwWCyEhIQwefJk7r333iv+0dMqFsl+/vnn2bp1K2+88QZjx45FoVBgNpvZsGEDc+fOZcSIESxatKih3bQpIvFqXc4VpLJg58eUGsqI8AjjlSFPYqPUNHdYbZauwsiuLYkc2J2MxSyBDLr0DGDYmHCcXGybLg6jjqTC85zOSyIh9ywJeUnoTPoabTRKDVGe7YnxjqSLTxT+Tj5XHcUyFBSSsXYdmRt/x6KrXKTcxteHoGlT8Bg4AJkYQRWaWVtKvOqjVSRePXv25Mknn2T69Om19i1fvpzFixdz6NChhnbTpojEq/U4k3eON3d9TIVRRwe3EF4d8hR26qb78L+RFeSVsW1DAnHHK+9UVKrk9B3SjgHDwtDYNP1oo9liJqUojfjcROJyzxKfm0iZobxGG3dbV2J8IuniE0m0dwROmtpLJAGYSkvJ3LCJjHW/Yaq669ouJJjge6aJS5BCsxKJV+MmXlaZfCVJEh06dLjsvo4dO1524WpBaA3ichJ5+89P0Jn0RHq256VBT2CruvF+ETUXNw97Jt3Xg7TUQrasi+dCcgG7t57lyF/nGTKqI937BqFQNN0IkUKuIMwtmDC3YMaFj8QiWThflMHJ7AROZMcRl3uW/IpCtifvZXvyXmTICHMLpqd/DD39Ygh09qtOqJQODgTeOQm/8beQse430tf8j/KUVOIXLMQxMoLge6fh3KlTk703QRCahlVGvJ588kmCg4OZNWtWrX2LFi3i3LlzLFmypKHdtClixKvlO5R+gg/3LcVgNtLZO5znBz4mLi82I0mSOB2bzdb18RTklQGVRVmHju5Ip27+yOXNP0JkMBmIzzvL8ax4TmTFc744vcZ+L3t3evp3oadfDJGe7WuUrjBqS0hf8yuZ6zdgMVTOb3Pr05uQB6Zj6+vTpO9DuLGJEa8Weqmx6JIFaDMzM5k5cyajRo1i/PjxeHh4kJeXx7p169i8eTOLFy8mMjKyXgG2VSLxarkkSWLd6S18d/xXJCS6+Xbiuf4PX3f1c6FxmM0Wjuw7z64tZ6on4Hv6ODJsTDjh0d4t6hJdQUURRzJOcij9BCezEzBaTNX77NV2dPeNpn9QT7p4R6JUVF6A0OcXkPbjT2Rt3goWCzKlEr9bxxEweRJKO3GJW2h8IvFqoYlXREREjV9wF09zpW0tccmg5iQSr5apVF/GkoPfcDD9OAAjwwbxr+531emuNaFpGfQmDuxOYe/2JHQVRgD8Ap0ZNjaCdh09WlQCBqAz6TmRFc+h9BMczjxJib60ep+92o4+/l3pH9STTl4dUcgVlJ+/QPKyryg6VvlvUeXqQvA9d+M1fKiYgC80KpF4tdDE6+OPP76uX2wzZ86sTzdtlki8Wp5D6SdYevh7CiqKUMqV3Nd1IqPbD2lxH+BCTboKI3t3JLF/V3J1Ve3gMDeGjY0gKLRxytg0lMVi4Uz+Of66cIR9F45QqCuu3uekcaBvYHcGBPUk3D2MosNHSP5yObqMyhsMHDp0IOzxR3BoF9pc4Qtt3MXEIyQkBFvbG2+UtaKigpSUlJaXeAkNIxKvliNDm8V3J36tHuXydfDi6X4P0s4tqJkjE65HWYme3dvOcmhPKmazBYD2kV4MGxOOb4BzM0d3ZRaLhfi8s+w5f4j9F45QYiir3uft4Mmw0H4MDuiJfts+Lqz6CXN5Ocjl+I2/haCpd6G4AT8YhcZlNps5c+YMXl5euLvfeMtc5efnk5OTQ8eOHVFcpr6eSLxaKZF4Nb/UojTWJWxl9/mDWCQLcpmc8eEjmdzpFjGfqxUrLqxg15YzHDuYhmSp/PUWGePL0DEd8fR2bObors5kMRObfZq95w+xP+0oFabKOl8ymYyuPlEMde2My4aDFOzdB4Daw4N2Dz+Ie5/ezRm20AZlZmZSVFSEl5cXdnZ2N8TIvyRJlJeXk5OTg4uLC76+vpdt12ISr5SUFFatWkVSUhK6qqKA1Z3IZHz99dfW6KbNEIlX88gty+dIRiy7UveTmJ9cvb2HX2fujplAgPPlf9CE1ic/t5Sdv58h9lgGSCCTQeceAQwZ1QFXd/vmDu+adCY9+y8cZVvyXuIvWcLIUePAaEMgwZtjMeXmA+DWpxftHnkYjXvLvLQqtD6SJJGVlVXjRrobhYuLCz4+Vy6E3CISrzNnznDXXXfh5eXF+fPnCQ8Pp7CwkOzsbHx9fQkMDGTFihUN7aZNEYlX45MkibzyApILLxCfe5ZjmadIL8mq3i+XyekT0I1bI24izC24GSMVGlN2ppYdm05zOjYbALlcRve+QQwZ3RF7h9ZRHiSzJIcdyfvYkbKPworK+WBKk8QtyTaEHE4HiwWFvT3tZjyA57ChN8TohNA0zGYzRqOxucNoMiqV6rKXFy/VIhKvRx99FJVKxb///W+io6P55Zdf6NSpEzt27OCVV15h8eLFdO/evaHdtCki8bIuvclARkk26drM6gWPkwsvUHrJfBmoTLY6uofSy78rg0J642LTuOv/CS1H+vlCtm88zbkzeQBobJQMHNGePoNCUapax12rZouZ41nxbE36k8OZJ5EkCfciE2MPlOOeV3mlwbVHd8KeeBTNDTg3RxCaQotIvAYPHszcuXMZNmwYUVFR/PTTT3Tu3BmApUuXsmPHDr799tuGdtOmiMSrfrS6EtK0WWSUZFU+arNI12aRW15w2fYKmZxAZz/auQXT1SeKzt4R2KvtmjhqoSVJPpvHlrVxZKVXLtPj4mbLiJsjierq26pGinLK8tl8dhfbzu2hTFdKj/hy+p4sQ2EBuZ0t7R78F14jhrWq9yQIrUGLWDJIq9Xi7OyMXC5HqVSirVp3DCA6OppPPvnEGt0INwBJkigxlJFTmkd2WS7ZpXlkl+aRUZJNhjarxh1f/+SgtsffyYdgZ39CXANp5xpIoLMfKkXTr+kntFyh7T146P8GceJwGts2JFBUUMEv3x5h/5+ujLotioBg1+YOsU687N25p8sE7ux0C3vOH2Kj23ZWBqRw019afPIrOPvxJ1zYtZ2YZ2ehdmm5d3UKwo3GKomXt7d39QS84OBgDh48yIABAwA4ffo09vYtfyKr0DQskoUSfSn55UUUVBSSX15Ebnk+WaW5VclWHhVG3VXP4Wnvjr+jN/5Ovvg7eePv5IO/ow9ONi37jjWh5ZDJZXTpFUhkjC/7dp5j7/Yk0lIL+fKjPXTq6seIWyJwcWsdI6NqpZph7fozNLQfsTmnWdfhdxJ3HKbfiTI4Hsfuxx7B5cGpdBtxqxj9EoQWwCqJV/fu3Tly5AgjR45k/PjxfPzxx+Tm5qJSqVizZg233nqrNboRWjCTxUyJvhStvoRiXUn1Y6GumPzyQgoqiqoeizFdsmzKlbjZuuDt4IGXvQfeDp74OHgS4OSDr6M3GlHqQbAStUZZudh2nyC2bzrNsYMXOHUsg4TYLPoMCmXQyA5obKzya7LRyWQyOntH0Nk7gpSuaWz58xe8ft6LR7GRio9X8P3O34l66BG6BMaIBEwQmpFV5nidP3+enJwcevbsidlsZuHChaxbtw6AYcOGMXv2bBwcHBocbFvSUud4WSwWyk0VlBsqKDWUU24sp8xYQZmhgnJjOaWGckoNZWh1pRTrS9DqSijWl9SaxH41MmS42DjhZueCu60rHnaueDt4ViZaDh542bmLOlpCs8hKL2bz2jhSzlaWaXBw0jDylkg6d/dH1gIW4b5eOYXZ7F/yb9z2V5ajyHdSEHdzJKOHTqarTyeRgAlCPbSIyfXC9WvMxCupIJXs0jz0Jj06kx692YDOpENnMlS+vrj9ktcVJj1lxvJrXua7GplMhpPaAScbR5w1jjhpHHCxccLdzg13OxfcbF1xt3PB1dZFrH0otFiSJHHmVDab18ZRmF8OgH+wC2Nuj8Y/yKV5g6un83/tJvnjJShLdZjlsLeLAyX9I5nW9Q46eXVs7vAEoVVpMYmX2Wxm48aN7N+/n6KiIlxdXenduzdjxoxBqWwdQ/VNqbESr4Tcs8zZ9n6Dz6NRqLFT22KvssNebYe9yha7qkd7tR0uNk44VSVXzlWJloPaHrlYvFdoI0wmM3/tTObPrYmVa0DKoGuvQIbfHIGDY+uo/3Upo1ZL/EcfUXLwKADnfVT83s+ZDqHRTO18m1giSxDqqEUkXgUFBcyYMYO4uDiUSiUuLi4UFRVhMpmIiopi6dKluLmJisqXaqzEq0RfypKD31JuKMdGqUGj1FQ9qrG5+FyhrrHPRqnGRmnzd4KlskWpEMmyIACUFOvY+ls8Jw+nA5X1vwaP6kjvASEolK3rDw1Jksje8gfnli5D0hsos5Wzsb8T6d5q+gX24K7O4/Fz9G7uMAWhRWsRidfzzz/P1q1beeONNxg7diwKhQKz2cyGDRuYO3cuI0aMYNGiRQ3tpk1pqXO8BEG4vAsphWxaE0tmWmXleHdPe0bf3on2EV7NHNn1Kz9/gYR336PiQhqSDPbFOHAwyhaFXMFN7QczudMtOGrEvFxBuJwWkXj17NmTJ598kunTp9fat3z5chYvXsyhQ4ca2k2bIhIvQWh9JIvEsYMX+GNDAuWlBgA6Rnkz6rYo3DxaV9kcs05H0mdfkLt9BwAFIW781F2OzkaOvdqOyZ1uYVT7IWI+piD8Q0M/v60yTi5JEh06dLjsvo4dOyLm7wuC0BbI5DK69Qli5kvD6DM4FLlcxpm4bJa8u5M/fovHoL92qZSWQmFjQ4enZ9L+yceRq9W4pRTw6HYDXSucKTOUs/zoTzy3aT6HM06K3+GCYEVWSbz69+/P3r17L7tvz5499O7d2xrdCIIgtAg2tipG39aJR2YNpl1HT8xmC3u2JbH47e2cOJzWahIVmUyG98gRxCxaiI2fH1KhlqFrz/F4aThOansyS3J4589PeWvXYjJLcpo7XEFoE+p9qfFipXqAzMxMZs6cyahRoxg/fjweHh7k5eWxbt06Nm/ezOLFi4mMjLRWzG2CuNQoCG3D5cpPBAS7MmZCJ/wCXZo3uOtgKq8g6dMl5P25BwCXfn04NiKU31J2YbKYUMqV3BYxigmRo0WdPeGG1mxzvCIiImoU37t4mitti4+Pr1eAbZVIvAShbTEZzfy1q2b5iW5V5SfsW0n5CUmSyNr4O8lLv0Qym7ELDsLt6Rl8m/YHx7Mqf4d72rvzQLc76ekf08zRCkLzaLbE6+OPP76uqsczZ86sTzdtlki8BKFt0hZX8MdvCdXlJ2xsVYwcF0m3PoGtplK8Ni6ehHfew1hUhNLBgQ7P/R9nPCW+Pvoz+RWFAPTw68yDPabgYSdKBQk3lhZxV6Nw/UTiJQht24XkAjauiSUrXQtAcJgbt0yKwcOrdZRp0Ofnk/D2IkrPJIJcTvA903AfP4bV8ZtYf3orZsmCrdKGu7vczsiwQchlraummSDUl0i8WimReAlC22cxW9i/O4Udm05jNJhRKOUMGtmBAcPCWkXxVYvRSNJnX5CztfL3lPuAfnR48gkyDUV8dvBbzuSfAyDSsz2P9LwbPyef5gxXEJpEi0u8kpOTq5cMCgkJseap2xSReAnCjaMwv5wNv5wk6XQuAJ4+jtx6Vwz+Qa7NHNm1SZJE1qbNlfO+TCbsgoOIfPUl1J6ebDq7g+9PrkVv0qOSK5nY6WZujRglan8JbVqLSbw2btzIu+++S1ZWVvU2Hx8fXnzxRcaMGWONLtoUkXgJwo1FkiRij2bw+/9OUV5qQCaD/sPCGDK6I0ply09UtPEJJLyzCGNhEUonJyJffgGnqEhyy/L5/NBKjmfFARDsEsBjve6hnVtwM0csCI2jRSReO3fu5NFHH6V9+/bcdttteHl5kZ2dzdq1a0lKSmLJkiUMGTKkod20KSLxEoQbU3mZgU1rYok9mgGAp7cDt07pin+QS/MGVgf6/Hzi33ybsqRzyJRK2j/xGF7DhyJJEn+mHmD50Z8oNZQhk8m4I3IsEzvdLEa/hDanRSReU6ZMwcHBgc8//xy5/O95C5IkMWPGDMrKyvjhhx8a2k2bIhIvQbixJZzM5LefT1JWakAml1WOfo3q0OJHv8w6HYkffkT+vv0A+E+cQPA905DJ5RTrtHx55Ef2XTgMQDvXIGb2vZ8AJ9/mDFkQrKpFLBmUkJDAtGnTaiRdUFm/a9q0aZw+fdoa3QiCILQZEZ19eez5oXTq6odkkdjzx1m++PduMi4UNXdoV6WwsSH8hVkETJ4IQPova0h4exHmigqcbZx4pv8M/q/fg9ir7ThXeJ4XNy9kw5ltWCRLM0cuCC2DVRIvuVyO0Wi87D6TydRqatcIgiA0JTsHNRPv7c7k6T2wc1CTm1XCso/2sG1jAiaTubnDuyJZVXmJDs88hUyppGD/AU6+/Br63DwA+gf15P3Rr9HFJxKj2cjyoz/x5s6PyCsvaObIBaH5WSXx6ty5M0uXLkWn09XYbjAY+PLLL+nSpYs1uhEEQWiTImN8efyS0a/dW8+y9N+7yUwrbu7Qrspr6BCi35yPytmZsuRkjj//IiWJZwFws3PhlcFP8mD3KagVKk5mn2bWpgXsStnfatayFITGYJU5XocOHeL+++/HxcWFMWPG4OHhQW5uLps3b6aoqIivv/6a7t27WyPeNkPM8RIE4XLijmewYXVs5Z2PchkDh7dn8E0dWnTdL11ODvELFlKeeh65RkP488/i1qtn9f4MbRaL93/N2YIUAAYE9eShntOwU9k2U8SCUH8tYnI9wMGDB3nvvfc4ceIEkiQhl8uJiYnhueeeo1evXtbook0RiZcgCFdSVqpn4+pY4o5nAuDl68htU7riG+DczJFdmam8nNPvvk/R0WMgl9Pu4QfxHft3KSGzxcya+E38fGoDFsmCj4Mn/9fvQVF2Qmh1mj3x0ul03HTTTcybN4/hw4dTUVGBVqvFyckJW1vx18yViMRLEIRriTuewYZfYikvMyCXyxg4oj2DRrbc0S+LyUTSks+rK93733E7wffejeySG68ScpP4z1/LyC8vRCFXcG+XOxjbYZiYCyy0Gs1+V6ONjQ16vb46ybK1tcXb21skXYIgCA0U1cWPx54fQmSMLxaLxK4tiSz7z25yMrXNHdplyZVK2s98jKC7pwKQvvpXznzwIZZLbr6K8Axj0ahX6eXfBbPFzPKjP/Hu7iWU6EubK2xBaFJW+bOpb9++7Nu3zxqnEgRBEC5h76hh8vQeTLy3O7Z2KrIytHzx4W7+2nkOydLyJqnLZDIC75xEh6efRKZQkPfnHk7NnY+xpKS6jYPGnlkDHuFf3e9CKVdyOOMkL/z+FvG5ic0YuSA0DavM8YqLi+PJJ59kwoQJjBo1Ck9Pz1rDxi4uLg3tpk0RlxoFQbhepVoda388wdn4HABC2rtz25SuOLu2zCsMRcdPVNb4Ki/HNsCfqDmvYuPtXaNNcuEFPty7lMzSHGQyGXdFj+f2yNHIZS3zcqogNPscL4CIiIi/T3iF6/Tx8fEN7abFePXVV/n55585deoUSqWyXucQiZcgCPUhSRJH/jrP5rVxGA1mNDZKxt4RTefu/i1ynlRZSipx89/EkJ+PytWFTq+/hn1ISI02FUYdyw7/wK7Uymr4Pfw6M7PP/dir7ZohYkG4uoZ+ftcva/iHJ554okX+wDeGffv2YTa33MKGgiC0bTKZjB79ggnt4MGalUdJTy3i15XHSErI5eaJ0WhsVM0dYg32IcHELFpI3LwFlKee5+QrrxH56ks4d+pU3cZWZcPMvvcT6dmeL4+s4nDGSV7a8jazBjxMsEtAM0YvCNZntXISzSE1NZVly5Zx/PhxEhMTadeuHevXr6/VLjk5mQULFnD48GFsbW255ZZbmDVrFjY2NtfVX3l5OdOnT+fzzz+nb9++YsRLEIRmZTFb2L3tLDs3JyJZJFzd7bjjnm74B7k2d2i1mErLiH9zIdq4eGQqFeHPP4t7n9612p0rSOX9PZ+TW16AWqHi4Z53MzikTzNELAiX1+x3NTanxMREdu7cSXBwMGFhYZdto9VqmT59OmVlZXz00Ue8+OKLrFu3jtmzZ193fx988AH33Xcfrq4t75eaIAg3HrlCzuCbOnL/4/1wdrWlML+crz7ey55tZ1vcxHulgz1Rr7+GW+9eSEYjCW8vInvL1lrt2rkF8/aol+niE4XBbGTx/uUsPfw9JrOpGaIWBOuzyqVGALPZzMaNG9m/fz9FRUW4uLjQp08fxowZU+9RoWsZPnw4I0eOBOCll14iNja2VpsffvgBrVbLr7/+ipubGwAKhYJZs2bx2GOPVSdsU6dOJTs7u9bxYWFhfPHFFxw5coTz58/XK2ETBEFoTIGhbjzy3GDW/3SCuOOZ/PFbAsmJedw+tSsOTtc3st+YFBoNES89z9lPPyNn6zbOLl6CsViL/8QJNaarOGoceHnQE/wc9xs/n9rA5rO7SC44z7MDHsbdTvzhK7RuVrnUWFBQwIwZM4iLi0OpVOLi4kJRUREmk4moqCiWLl1anfQ0louJ1z8vNd5zzz04OjqyZMmS6m0Gg4EePXrwzDPP8K9//atO5//8889ZsWIFarUagPT0dPz9/Vm5ciU+Pj7XHa+41CgIgrVJksTR/efZ9OspTEYL9g5qbpvalfYRXs0dWg2SJJH6zXek/7IGAN/xtxD6r/trFFq96EjGST7+6yvKjBU4axx5bsDDRHi2b+qQBaFai5hcv3DhQpKTk3nvvfcYO3YsCoUCs9nMhg0bmDt3LgsXLmTRokXW6Oq6JSUlMXHixBrb1Go1QUFBJCUl1fk8Dz/8MA8//HD16/DwcDZv3nzV0byL/3MuJzMzE19f3zr3LwiCcC0ymYzufYMJDHHjl2+PkJNZwsovDtB3SDtG3BzRYirey2QyQu67B7WLC8nLviJz3W8Yi7V0eOoJ5KqaNwd09+vM26Ne5r09n5NalMa8HR8yo/sURoQNbKboBaFhrJJ4bd++nf/7v/9j3Lhx1dsUCgXjx48nPz+fxYsXW6Oberm4fNE/OTk5UVxc3AwRCU1NkixIRgOSUY/FqEcy6pBMJiSLCclsAosZyVz5XLKYwGy+5LmJv8eEpUtPWqMPmVwBCgUyuRKZQlnjefU+haryuVxRc7tchUyhqHqtrPyrX6qMG0mq+rIgVT2XLJfEbDFXxvvP93Lp9hptKvcjmQEZyOSV/cnlyGTyytjkVY9XfK2obC9XVB1f+RqZvPJy0SVfMpm8qp+qL2RVbeSXtKnad/H7Iuo3NZinjyMznh7IlnVxHNyTyl87z5GalM8d93TD3dOhucOr5nfrOJROTpz9aDF5u/7EVFJCxEvPo/jHjU/eDp68MWIWn+5fwV9pR/jvoe9ILUrnvm6TUMoVzRS9INSPVRIvSZLo0KHDZfd17NiRlnjjpCRJDSqBcfr06Wu2udow5NVGw240ktmIxWhAMuiQTHosBv3fj0b93wlTjW26ymOMuqpk6pJ2/3xuMjT3WxSux8WEVamsTF6VqqpktvJRdvHxkv1cur36seq5svJYuUqDTKWpfrz0+aXbZEp1myiPo1QpGHtHZ9p19GTtquNkphXzxb//5OY7OhPTs+WUaPAaOhiVowMJ77xH0dFjnJozj6g5r6J0qJkg2ig1PNN/Br/EbeTH2HVsOruDC9oMnu3/EI6alpNMCsK1WCXx6t+/P3v37qV///619u3Zs4fevWvfMtxUnJyc0Gprr2tWUlJyxTshhb9JkgXJZEQyGZCMhn8kNrq/ExyDDslkwGLQ1Uh6LraRjH8nTTW2GfVgabq6aDKluurDVXXJ6FTl6NPFD+tLX1eP9NQ60aXfpKrRKbOpelSp5iiaGapGpKr3XRyhMpsr90uW63sjcuU/RskuiffiaNrV2lSNElT3bbEgWSwgmaseLVVxV223mJGki7FfbF/1WqrcjyRVj8pVfVOqRu34+/3V5X1aqr6Pxms3bSz/TMxkSg1ylRqZyga5xha5xq7qq/K5TG1b47VcY4dcfXGfpllH8cKjfXgkwJk1K4+SmlTAr98fI+lMLjff0RmNTePc+HS9XHt0J/qN14mb/yYlp88QO3suUa/PQe3iXKOdTCZjUqebCXL2Y/H+5ZzKOcPLW97mhYGPEeTi30zRC8L1scpP3eOPP87MmTMxm82MHz8eDw8P8vLyWLduHZs3b2bx4sUUFRVVt2/K5YPCwsJqzeUyGAycP3++1tyvtkCymCk/cwiTNrcyEbqYNJmMlV/mqudGw9/Pa7Qx/D0CZTKCpQlv4ZbJkaltkCvVlY9VH3RXGpmove1ax6hb7GWsysTt78uEtS/HyS+5hCdv1SMy0iWJGVWJ2cXkrfLfqAnJbPw7cTWb4OJrk/GSfRe3mSqTtVrH/r1fMhuqkv1//vFQOZIqGQ01Rkar91vlHcuQaWxR2Ngjt3VEYetQ+WhT+Si3dUBh64ii6nl1Gxv76gS5oZxcbLn30X7s/iORnb+f4eThdNJTC5l0Xw98/J2vfYIm4Bjekeg353Nq7nzKklOIfWU2nebNRePpUatt74CuLHB4nnd3LyGnLJ/ZfyxiZp/76R3QtekDF4Tr1KhLBl089T8/JBpj+aAr3dX4+eefs2TJErZt21Zdf+u3337j2WefZcOGDc026tVYdzVWpJwk87vXrXrOahcToxoJjQ1ydeWIgEytQa6yQaZSVz1e0k5tg7y6zaWJ0t9tUChbdUIhtG6SxfyPkd2Ll7MveW6owGLQYdGXYzFUYNGVYzGUI+krKrfpK7AYqh715Q0bzZXJUdg5obB3QeFQ9WXvgtLBFYWDa/V2pb0LMo1dnX92zp8rYPV3R9AW6VAo5Yy5vRPd+wa1mJ+9iowMYl+bhyEvD42XJ53mv46t7+XvHC/Rl/LB3i84lXMGgLtjJnBrxE0t5r0IbVOLWKvx448/vq5/6DNnzmxolwBUVFSwc+dOAL777jsuXLjASy+9BEDv3r1xc3NDq9Uybtw4/P39efzxx8nPz+ftt99m4MCBvPfee1aJoz4aK/Gy6Cso2P4tZl0pMoUauVJVeVlNqb7k8eLzqteKyke56u/nNY+pei4msQpCnUmSVDnqfDEp05ViqSjBXHHxsQRLReklj39vlwwV19WXTKVB6eSO0skTpZMHSmePqsfK1wond+RKdXX78jID//v+GIlVi21Hd/Nj3OQY1JqWcelRn5tL7Jx56DIyUbm6Ej1/DnZBQZdta7KYWX70Rzaf3QXA8ND+zOg5TUy6FxpNi0i8mktaWtoVJ6mvWLGCPn0ql5m4dMkgGxsbxo0bV68lg6xJ1PESBOFKJLMJc3kJ5rKiyq/SQsxlRZhKL74uwlxWiLm0qHJkrQ4U9i6o3HxRuvqicvNB6eLN0bNqdu7ORbJIeHg5MOm+7nj51r4LvDkYCgs5NXc+5annUTo6EDX3NRw7XLl+14Yz2/j62M9IkkS0VzjPDngIB7V9E0Ys3Chu6MSrNROJlyAI1mAx6jGXFGDS5lV+FVc9anOrn0tG/RWPzzF6sbt8OOVmW5RyC0O7Q9fegag9g1A4ujXrZTtjSQlx896kNDERha0tka+9gnOnqCu2P5xxkg/3LUNv0uPv6MNLgx/H28GzCSMWbgQi8WqlROIlCEJTkCQJi64UU2E2xsKsyq+CTIyFmRgLMrGUa9FZNOwpG0ymsbLMRDt1Ir3t96G2tUHtGYTKszIRU3sGofYKQmHr2GTxm8orKhfXjj2FXK0m4uUXcO3e7YrtUwrTeOfPT8mvKMRR48ALAx8l3EPcwS5Yj0i8WimReAmC0BJYdGUYC7MwFGSyb28O+xNUSMhwVeQz2GEbjorSWsconb3Q+Iah8Q1D7dsOjU8YCtvGq6Vl1us5/c57FB4+gkypJHzWM7j363vF9gUVRbzz56ckF15AJVfyWO/7GBjcq9HiE24sIvFqpUTiJQhCS5R8No9fvjlCeakBjUbO2EE2BNhkYsg9jyH3PKainMsep3TxRuMbhk1AODYBEah9Qq16Q47FaOTMv/9D/p59IJfT8dn/w3PQgCu215n0fPzXVxxMPw7A1M63cXvkaHHHo9BgIvFqpUTiJQhCS6UtquCnFYdJTy0CYPBNHRg8qiNyuQyzrgxD1jn0mUmVX1nnMBVm1TqHTGWDxr9DZSIWGImNf0fkGrsGxSWZzZxd/Ck523aAXE6Hp2fiNXTIFdtbJAvfHl/D+tNbARgVNph/db8L+WUW4xaEuhKJVyslEi9BEFoys8nC5rWnOLgnFYCwcE8m3N0NO3t17bYVJeizzqHPOIvuQgL69NNYdGU1G8nkaHzaYRsag21oDJqA8BolLupKslg4+8ln5Gz9A2Qy2j/5ON4jhl/1mA1ntvH10Z+RkOjl34Wn+/4LdT36FgRogYlXQUEBOp2u1nY/Pz9rdtPqicRLEITW4MShNNb/fAKT0YKzqy2Tp/fAL9DlqsdIkgVjbhq6tAR0F+LRpSXUukQpU6qxCYysTMRCYlD7hNR5ZQnJYuHcf78ga9NmAMIefwSf0aOuesxfF47w8V9fYbSY6OjejhcHPSbWeBTqpUUkXqWlpSxcuJDffvsNvf7yty03RrX61kwkXoIgtBbZGVp+XH6IwvxyFEo5N98RTbc+ly9oeiUmbT4VKSepSDlBRfIJzKWFNfbL7Zywa98T+449sQ3tglx99TqLkiSRvPRLMtdvAKDdwzPwvWXsVY+Jz03k3T+XUGaswM/Rm1cGz8TLofaSRIJwNS0i8XrllVdYv349kyZNIjw8HLW69hDuhAkTGtpNmyISL0EQWhNdhZFfVx7jTFw2AN37BjHm9k4oVdc/gV6SJIx5adVJWEXqqRrV+mUKFTYhnbHv0BO7Dj1ROrlf8Twpy1eQ8etaAEIffAC/W8ddte+04kze2rWYvPICnG2ceHnQE7Rzu74kUrixtYjEa8CAATz88MNMnz69oae6YYjESxCE1kaySOzedpbtm06DBL4Bzkye3gMXt4ZOmjehuxBP2ZmDlCcerHVZUuMbhn3UABwi+6N0rlkQVZIkzn+7krSfVwMQPP1eAu64/ar9FVQUsXDnYlKL07FRanhuwMN08blyYVZBuFSLSLx69uzJxx9/TL9+/Rp6qhuGSLwEQWitkk7nsvrbI1SUG7G1U3HHPd0JC7dOhfjK0bALlJ05RHniIfTpZ4C/P6Y0ARE4RA3APrI/SgeX6mMu/PAjF374EYCgu6cSeOekq/ZTbqjg/b3/5WT2aRQyOY/2upchoVeuDSYIF7WIxOu5554jNDTUaotf3whE4iUIQmtWVFDOzysOk3GhGGQwbEw4A0e0t3qdLFNpEeWn/6I0bg+68/FUJ2EyObbBnbCPGohDZD/kNvZc+PFnzn/3PQCBU+4kcMqdV43HZDbx6cFv2J16AIC7YyZwW+TVJ+kLQotIvM6ePctTTz3F5MmTGTZsGC4uLrXaXG7bjUwkXoIgtHYmo5lNv57iyF/nAYjq4sutd3VBrVE2Tn/afErj91IWtwd9RmL1dplSjX1kfxy7DCf/cCKpX38DQMCkOwi6Z9pVky+LZGHliV9Zm7AFgFsjbuLumAmi0KpwRS0i8YqIiKg82VX+oYq7GmsSiZcgCG3F4X2pbFwdi8Ui4ePnxJ0P9GzwvK9rMRZmURq3h9KTOzHmp1dvV7r6YDD4kr39KAD+E24jePq910yk1iZs5tvjawAYHtqfh3pOQ2HFyvtC29HQz2+r/FnyxBNPiL8OBEEQblA9+gXj4e3AT18fJitDy9IPdzN5eg+Cwy5/N6I1qFx9cB0wEZf+d6DPSKTk2B+Uxu3BVJiFnCycQmRoUyTS1/wPCQi5RvJ1a8QoHNQO/PfQt2xL3kupsZyn+v4LtULVaO9BuDGJyvXNRIx4CYLQ1hQXVrDqq4NkpWuRy2WMmdCJnv1Dmqx/i0FHWcJflBzbWnmXZDZoKwvv49G/C+2fnoXC5uojcQfSjvHhvmWYLCaivcJ5fuCj2KquXlNMuLG0iEuNl0pOTqaoqAhXV1dCQkKseeo2RSRegiC0RUaDmbWrjnPqWAYAPfoFMeb2aBTKpl0fUZ+dgvbw72Rv2UbxORMADoFK/G8fi0vv8VesDQYQm53Au7s/Q2fSE+YazMtDZuIkqtwLVVpM4rVx40beffddsrL+XizVx8eHF198kTFjxlijizZFJF6CILRVkiSxd3sSf2xIAAkCQ924c3oP7B01TR6LRVdGypefkvn7XwDY+4JjkBzH6EE497kVjXfIZY87m5/Cwl2LKTGU4e/ow6tDn8TDzq0JIxdaqhaReO3cuZNHH32U9u3bc9ttt+Hl5UV2djZr164lKSmJJUuWMGTIlVeQvxGJxEsQhLbuTFw2a747il5nwsnFhrse6IVvgHOzxJKx7jeSl34JgIMfOPiDTAa27bri0v8ObIM71TomXZvFgh0fkV9RiLudK68NeQo/J5+mDl1oYVpE4jVlyhQcHBz4/PPPkcv/Hk6WJIkZM2ZQVlbGDz/80NBu2hSReAmCcCPIyy5l1VcHyc8tQ6mSc+tdXYju5t8ssWSsW0/y0q8AcI0JQGOTjqyqLphNUBSug+7EJji6xiT8vLICFuz8iIySbBw1Dswe8hShroHNEr/QMjT089sqF90TEhKYNm1ajaQLKstLTJs2jdOnT1ujG0EQBKGV8fB24MGnBxIW4YnJaGH1t0fZtiEBydL093X5jR9H6IMPAFB4Ig2571icuo8GhRLd+Tgyv3udjBWzKT93jItjEh72bswf/hztXIMo0Zcyb/u/OZN3rsljF9oOqyRecrkco9F42X0mk0mUmhAEQbiB2diqmPpgb/oNbQfA7j/O8vM3RzAazE0ei9+t4wj51/0AZPxvA+XFLgQ9/ilOPcciU6jQpyWQ9f0bZHz9KhWppwBwsnFkzrD/I8IjjHJjBW/s/IhTOWeaPHahbbBK4tW5c2eWLl2KTqersd1gMPDll1/SpUsXa3QjCIIgtFJyuYybxkdx25QuyBUy4k9k8vWneynR6q59sJX53zaekAemA3Dh+1VkbPgDj9EzCHziU5x6j0OmVKNPP03mt3PI/GEB+qxk7FS2vDLkSTp7R6A36Xlr12KOZZ5q8tiF1s8qc7wOHTrE/fffj4uLC2PGjMHDw4Pc3Fw2b95MUVERX3/9Nd27d7dGvG2GmOMlCMKNKjUpnx+XH6Ki3IiTsw1THuyFj3/TT7pPX/M/UpavACBo2hQC75oMgKmkkKLdP6E9thUslaNy9p0G4jZkKpKTOx/s/YIjGSdRyBU8028GvQO6NnnsQvNpEZPrAQ4cOMD777/PiRMnkCQJuVxOTEwMzz33HL169bJGF22KSLwEQbiRFeSV8cOyg+TllKJSK7jj7m6ERzf9HYNpq3+tXtsx+N67CZh0R/U+Y0EmBbt+oOzU7soNcgVOPcfi2P8OPjn+I39dOIJcJmdmn+kMDO7d5LELzaPFJF4XVVRUoNVqcXJywtbW1pqnblNE4iUIwo1OV2Hk5xWHOXcmD2Qw8pZI+g1t1+TzgtN+WUPqim8BCPnXdPxvu7XGfn3WOQq2r6TiXOX6j3JbR5wG3clKcza7Ug8gQ8Yjve5meLsBTRq30DxaxF2Nl7K1tcXb21skXYIgCMJV2diqmDqjNz36BYMEW9fHs/7HE5hNliaNI2DiBAKn3gVAypdfk/nbxhr7NT7t8J06G5+pr6HyDMRSUULR5mWMP36UYZ5RSEh8dvBbNp7Z3qRxC61TvRfJzsjIwNPTE5VKRUZGxjXb+/n51bcrQRAEoY1SKOTcPDEaD28HNv/vFEcPXKAgv5w77++BrZ26yeIIvGsyktFI2s+rOff5UmQqJT6jbqrRxq5dV2xnvE/J0S0U7PwBc146o/LSkbUPYxslfHX0R/RmA7dHjm6yuIXWp96XGiMjI1m1ahUxMTFERERcc2g4Pj6+XgG2VeJSoyAIQk2J8dn88s1RDHoT7p72THuoN67u9k3WvyRJpCxfQcava0Emo8NTM/EaPvSybc0VpRTt+ZnigxuQLGa2ejjxh0vlYtqTO93C5OhxTRa30LQa+vld7xGvt956i8DAyuq9CxcurO9pBEEQBAGADpHePPBkf75feoD83DK+/GgPUx7sjX+QS5P0L5PJCLn/PiSjkczfNpL48SfIVCo8B9Weu6WwdcB95P04dh1J3qYvuCk1FpXJxCYPB3469RsWSeLO6HGijqVQi1Um1x88eJCoqCjs7Wv/ZVJWVkZcXJy4s/EfxIiXIAjC5ZUU6/h+6QGyMrTNcsejZLGQtOS/ZG/eCnI5ES88h3u/vlduL0mUndpN/tbl7FDp+c3DEYDb2w9javfJIvlqY1rE5Pr77ruPpKSky+5LTk7mvvvus0Y3giAIwg3A0dmG6U/0JyzCE6PBzI/LD3Fwd0qT9S+Tywl77JHKy4wWC6ff+zcFBw9dub1MhkP0IAIe/Yhb2g9lXF4pAL+e3c7ybR9jsTTtzQJCy2aVxOtqg2Ymk6nWGo6CIAiCcDUaGyVT/tWLbn0CkSTYuCaWLevimmyNR5lcTvuZj+MxaACSyUTC24soPHrsqscobOzxGD2Du+54ndt1KgA25sXz+U8vYSzObfyghVah3hlRaWkpGRkZ1Xc05ubmVr+++HXu3DnWrFmDh4eH1QIWBEEQbgwKhZxxk2MYNjYcgH07zvHLt0cwGZtmjUeZQkGH/3sK9359KpOvt96h6MTJax6n8Q1j6j0fMMWlMu5tlLDkx5coPrQJSRKjXze6es/xWrx4MZ988sk120mSxCOPPMIzzzxTn27aLDHHSxAEoe5OHE5j7arjWMwSgSGu3PWvXtjZN025CYvRSMI771F48BByjYZOr7+GU1RknY7deOx/fHV6EwADisqZ5BCC97iZKJ09GzNkoRE1W+X6o0ePcvToUSRJYtGiRdxzzz21anWp1Wo6duxI795iKYV/EomXIAjC9Uk+m8ePXx1Cr2v6chMWo5H4N9+m6OgxFLa2dJo3B8fwjnU6dsvZnXxx+AcA+hWVc1uJBc9RD+LQeYiYeN8KtYglgxYvXszkyZPx9vZu6KluGCLxEgRBuH45WSWs/GI/2iIddg5qpj7YC/8g1ybp26zXE//GWxSfjEVhb0f0G/NwCGtXp2O3ndvDfw9+iwT0LSrn1rxSHML74Dn2ERT2Tb9AuFB/LeKuxpkzZ4qkSxAEQWh0Xj6OPPjUQHz8nSgvNfD1p/s4E5fdJH0rNBoiZ7+MU1Qk5rJyTs2dR1nq+TodO7zdAB7rfR8yZPzlYsdaTyfKTu8n7YtnKDtzsJEjF1oSqy2SnZKSwqpVq0hKSkKn09XsRCbj66+/tkY3bYYY8RIEQag/vc7Ez98cJikhF5lcxvjJMXTtHdgkfZvKyzk1dz6lZxJRubrQeeECbH1963TszuS/+PTACiQkBukV3HwhExng1HMsbiPuQ65sumWShPppESNeZ86cYcKECWzbto0///wTrVZLamoqBw4c4MKFC1ctNyEIgiAI1+tiuYkuPQOQLBJrVx1n9x9nm+TzRmlnR6e5s7ELCcZYWMSp115Hn5tXp2OHhPblkV73APCnxswf0TFIgPbQRjK+ehlDXlojRi60BFZJvD744AMGDhzIb7/9hiRJvPnmm+zcuZPPPvsMvV7P//3f/1mjG0EQBEGoplDIuXVKF/oPCwNg24YEfv/fqSap9aV0cKDTvDnY+Pmhz80jds48DEVFdTp2eLv+PNxzGgBbdVnsHngTMjsnDDkppH/5AiXHt4kBizbMKolXXFwct99+e3Wh1ItVeocOHcq//vUvPvjgA2t0IwiCIAg1yGQyRo6LZNRtUQAc+DOF1d8dxWRq/FpfahcXoufPRePliS4jg1Nz5mEsKanTsSPDBvGv7ncB8FvWcfYPvhnbkM5IRj256z8h93//waIvb8zwhWZilcRLq9Xi7OyMXC5HqVSi1Wqr90VHR3Pq1ClrdNPsdDods2fPZvTo0YwdO5b//Oc/zR2SIAiCAPQd3I4Jd3dDLpdx6lgG3y89iF5navR+NZ4edJo/F5WrC+Wp54mb9yam8oo6HTumw1Cmd50EwOqz29jTpReuQ+8GmZzSU3+Stux59BlnGzN8oRlYJfHy9vamqGqINTg4mIMH/75D4/Tp05ddPLs1euedd/Dw8OD3339n48aNTJs2rblDEgRBEKp07u7P1Bm9UakVJCfmsWLJPkpL9I3er62vL9Hz56J0dKQ0MZH4Nxdi1tet31vCR3BPlwkA/HhqPTvd7PG77w2UTh6YCrNI//rVqor34tJjW2GVxKt79+4cOXIEgPHjx/PFF1/w6quv8vrrr/PBBx8wbNgwa3RTS2pqKnPmzOG2224jKiqKcePGXbZdcnIyDz74IF27dqVfv34sWLCg1p2X11JWVsbGjRt5/PHHq7d5eorKw4IgCC1JWLgn9z3WDzt7NZlpxXz18R4K8soavV+7oCA6vf4aCjs7tLGnOP3OIixGY52OvTViFFM63wrAyhO/srUsDf8Z72MX3gcsJvJ//4LcdR9jMTZ+Eik0PqskXo899hjDhw8H4KGHHmLq1Kls3bqVjRs3MnbsWF588UVrdFNLYmIiO3fuJDg4mLCwsMu20Wq1TJ8+nbKyMj766CNefPFF1q1bx+zZs6+rrwsXLuDm5saiRYu44447eOCBB4iPj7fG2xAEQRCsyD/IhQee7I+Lmy2F+eV8tXgvmWnFjd6vQ/swol57BblaTeHho5x5/0Mkc93mmt0RNZbJnW4BYMWxX/j9wgG8Jz6P24jplZceT+4kY/krGAuzGvMtCE3AanW8moPFYqme0P/SSy8RGxvL+vXra7T5/PPP+fTTT9m2bRtubm4ArFu3jlmzZrFhw4bqhG3q1KlkZ9cuwhcWFsYXX3xBbGwsEydOZPHixdx0001s376dN954g23bttUrdlHHSxAEoXGVaHWs/OIA2Rla1Boldz3Qk9AOHo3eb9Gx48S98RaSyYTnsKF0eOoJZPJrj3NIksSq2LWsjqtc23FGjymMaj+EitRYctZ8gLmsGLmNPV63Po1dhx6N/C6EK2kRdbyai7wO/5B37dpFv379qpMugNGjR6NWq9m5c2f1tu+//55t27bV+vriiy8A8PX1xdbWlptuugmAYcOGUVpaSkFBgZXflSAIgmANjk42TH+8H8Fh7hj0JlZ+cYD4E5mN3q9L1y6Ev/AcyOXkbt/Buc+X1WmOlkwm467oW7k1YhQASw//wNak3dgGR+P/r0Vo/Dti0ZWR9eNbFOxahSRZGvutCI3AKonXvn372LhxY/XrvLw8HnroIQYMGMALL7yAvo6TDBtDUlJSrcuQarWaoKAgkpKS6nwed3d3OnfuzOHDhwE4ceIENjY2uLpeeY2wESNGXPErM7Pxf/gFQRBudDa2Ku5+qDeRMT6YzRZ+XnGYYwcuNHq/7n160/H/ngKZjKyNm0hd8W2dk6+7Y27nlo6VoypfHFrJrpT9KJ3c8bt3Pk49xgBQ9OePZK16C3NFaaO+D8H6rJJ4ffTRRzWSmEWLFnHo0CG6devG77//ztKlS63RTb1otVqcnJxqbXdycqK4+Pqu+c+bN4/33nuP8ePH88Ybb/DRRx+JleUFQRBaOKVKwcR7utO1dyCSBGtXHeevXecavV/PIYMIe+xhANJX/0raT7/U6TiZTMZ9XScyuv0QJCQ+OfA1+9OOIlOo8BjzEJ63PolMqaYi6SgZy18S1e5bGaU1TpKSksJDDz0EgMlkYsuWLcyaNYu7776bZcuW8csvv/DEE09YoyurkSTpupOmdu3a8f3339e5/dWu/168RiwIgiA0PrlCzvg7Y7CxVfHXznNs/l8cunIjQ0Z3bNQ/oH1Gj8Ks05Hy5dec/+57FLY2+I2//B34l5LJZDzQ/U70JgM7Uvbx4b5lvDjwMbr6dsKx81DUXiFk//Q2xoJMMpa/jNeEZ7EL69Zo70OwHquMeJWWllaPKp06dYqKiorqxCImJqZZL6s5OTnVKOh6UUlJyWVHwgRBEIS2SSaTcdP4SIaOCQdg15bEJlliyP+2WwmcWlmlPnnpV2RvrdukbLlMzqO97qFfYA/MFjOL9vyXuJwzAGi8Q/B/4B1sAiOx6MvJWvUWxQfWi3pfrYBVEi93d3dSUlIA2Lt3L35+fvj4+ACV9a+USqsMrNVLWFhYrblcBoOB8+fPX7EEhSAIgtA2yWQyBt/UgTETOgGVSwytXXUci7lxJ6oH3jUZv9sra3WdXbyEvN176nScXC7nyT730903GqPZyNt/fsrZ/BQAFPbO+E6bi0PMcJAs5G/5irwNnyGZ61Y/TGgeVkm8Bg0axL///W/efvttli9fzsiRI6v3nTt3Dn9/f2t0Uy+DBw/mr7/+orCwsHrbli1bMBgMDBkypNniEgRBEJpP74Gh3D61KzK5jOOH0vhpxWFMxsZb31EmkxFy/314j74JJIkz//6IwiNH63SsUqHk2f4P0cmrIzqTnjd3fUxqUeW8LplShee4x3EbWVnvq+TYVjJXzsdcXvtKj9AyWCXxeuaZZ4iIiODHH38kMjKSxx57rHrf+vXr6datca47V1RUsGnTJjZt2kR6ejqlpaXVry+WeZgyZQqOjo48/vjj/Pnnn/z666+88cYbjB8/Xox4CYIg3MBiegZw5/QeKJRyTsdm8/2ygxj0jbe+o0wmI+yRh/AYOADJZCLh7UVo4xPqdKxaqebFgY/R0b0dZYZyFuz4iAxtVvV5Xfrcis+dLyHT2KE7H0f6ly9iyDnfaO9FqL9GL6BaWlqKWq1GrVZb/dxpaWlXnKS+YsUK+vTpA1QuGbRgwQIOHz6MjY0N48aNY9asWdjY2Fg9proSBVQFQRBahuSzeaz68iAGvRn/IBemPdQbWzvrf2ZdZDEaiX/rHYqOHEVhb0/nt+ZjHxJSp2PLDOXM2/5vUorScLd1Zd6I5/Cyd6/eb8i9QNZPb2MqzEKmscNn4vPYhsY00ju5MTX087tVV65vzUTiJQiC0HKkny9k5RcHqCg34uXjyN2P9MHRqfH+ODfrdJyaO5+ShNOoXF3ovPBNbH196nSsVlfC3G0fkF6ShbeDJ/OHP4errfPf5y4vIfvnd9BdiAe5As9bHsMxpnHWTL4RNVvl+oyMDIxVC4BmZGRc80sQBEEQWir/IFemP9EfBycNOVklLF+8l6KC8kbrT2FjQ9Rrr2AXHISxsIhTc+ehz6/bSihONo68NvRpvOzdyS7N5Y0d/0Gr/7uQqsLOEZ9pc7CPGgAWM7nrFlP454/ijscWot4jXpGRkaxatYqYmBgiIiKuWQdFLChdU2ONeJXrjHyzMZ5C7d+rBUjU/F98rf/jl/6TuHbbf7y+jr7++U+vVtN/nvs62l//e/7nqRrwPq7j+1vZ15Ve1C0OmaxyjoeMqseq1/Lq5yCj6rm8Zjt51c+tXC6r2e7S/Ze2k9XcX/1IzbY19lfFKJf/fY7qdlTF9I++5f/so9Z7qzxp5Skv0/6S4+QyGTL5pee/5JxyWY33VhnXlfuu9f6rznm593at76tCLkMuv+RRIa+xXWgehfllfPPZfooKynFyseG+x/rh5mHfaP0ZCgo5+fJsdFlZ2AUHEf3mfFSOjnU6Nqc0jznb3qegoohQ10DmDn0GO7Vt9X5JslC4YyVFe9cA4BAzDM+bH0GmUDXKe7lRNNulxjVr1jB06FBcXV1ZvXr1NROvCRMm1CvAtqqxEq8TZ3N5dcleq55TEISmJZNRlYDJUcipeqyZrCnkcuSXvlZU7ZdVJnEKuQylQo5KKa/1WGObUo7qH8+VVW1qPlegUStQq+RoVEo06qrXSnmbW8FDW1zBN0v+Ij+3DAcnDfc+0hdPn7olQ/Why87mxIuvYiwsxDG8I53mz0VRxznI6dos5m57H62+lHCPMF4d8iQ2Sk2NNtojm8nb9AVIFmxDY/C+YxZym8ZLJts6McerlWqsxMtskdgfm0lhSc31Mf/5e7HWr8l/NJBdeVeto6917qsdX+vYBvZ1aYNrxSH7Z4trxFKjfQPe8z/31z72GnFd8lyq+o8kSViqXlikym0WSUKSJKSq/RJV7Sx/t/vnPslS+dwiSVXn4LLnkC7ts+pR4pJ2lzxaqn7FWKTL7/87riu1+7vvv+OSau7nkr7++XiVvi2XeU813hs1v181+obq79ff34t/9FV97ov9Xfx+Vb7fRq7b2WQqE7DKREyjusxj1XNbjRJbGyV2GlXVoxI7GyV2NirsbJSV+zWVr1VKq9x0X2+lJXq+/e9f5GSWYGev5p5H+uDj73ztA+upLPU8sa+8hqm0FJeuXYic/TJyVd1GplIKLzBv+78pM1bQ1SeKFwY+hlJRs35meeJhstd8gGTUofYKwueu2Sid3K9wRuFqWlzilZycTFFREa6uroTU8S6NG5GYXC8IQmXyVZmEmS9+mS1/bzNXbrNIldsvtrFYLj3G8o/jL+6zYDJbMJosmEwWjPV4bjJVvjaazRhNFgxGM3qDGb3RjMncuFmjSimvSsIqEzEnOzUOdioc7dU42l38qnptq8bRXoWjnRoHWxUKhXWStvIyA999vp/MtOLKxbYf7o1/kKtVzn05JafPEDtnHhadDvcB/Qh/7hlkCkWdjj2dl8QbO/6DwWykf1BPnur7AHJZze+DPjOpcmHtsiIUjm74Tn0NtWdQY7yVNq3FJF4bN27k3XffJSsrq3qbj48PL774ImPGjLFGF22KSLwEQWjNzGYLemNlEnYxGbv4aLjMNr3BTIXeRIXeRLnOSLmu6rneREXV63K9Cb2h4UVM7W2UuDhqcHG0wc3JBldHDS6OmqrnNrg6aXB1tMHJXn3N+XS6CiMrlx4gLaUQtUbJ1Bm9CG7XeCNFRceOE/fGW0gmE96jRhL2+KN1vpR7LPMU7+xegtliZlT7wTzYfUqtY43FOWT98CbGvDTkNg743PUKNgHhjfFW2qwWkXjt3LmTRx99lPbt23Pbbbfh5eVFdnY2a9euJSkpiSVLlogq8f8gEi9BEITazGYLFQYz5TojFVXJWWmFkZJyQ+VX2aXPDZRUGCkpM1BabqBMd33FT+VyGS4OGjxdbPFwtcXL1Q5PF1u8XG3xdLXDy9UWe1sVRoOZH748SMrZfFRqBXc90JN2HT0b6TsAeXv2cfq9D8BiwX/iBELuu6fOx+49f4j/7PsSCYmJUTdzV+fxtdqYy0vIWvUm+oxEZCoN3hOfFwtsX4cWkXhNmTIFBwcHPv/8c+Tyv4c2JUlixowZlJWV8cMPPzS0mzZFJF6CIAjWZTJbKC2vTMyKSvUUanUUltR+LCrRU1ymv+YdyAC2GgWernb4uNqhzi5DX1CBXCFj7OQYuvcMaLQbC7I2byXpkyUABE+/l4A7bq/zsZvP7mTp4crP3Pu7TebmjsNrtbEYdGT/soiKc8dArsBr/JM4RA+yRuhtXkM/v62yenVCQgIffPBBjaQLKicJT5s2jVmzZlmjG0EQBEG4IqVCXnWJUUOg99XvQjSZLRSX6inQ6sgrqiCnsILcwgpyCsvJLSwnt6iC4lIDFXoz57NKOJ9VggwIQ46rGdb9cIxPfz6OvZc9fh4O+HnaE+TjRLCPIwFeDqiUdZubdSU+o0ZiKi0l9etvSP36G5QODviMGnntA4FR7YdQoi9jVew6lh/9CQe1PYND+tRoI1fb4HPnS+SsW0zZqd3k/O9DzBVanHvd0qC4hWuzSuIll8uri6n+k8lkanO3GguCIAitm1Ihx93ZFndnWzoEXn7CvM5gqkzKCirIyCslI6+MjJwSypOLsDNYCDJJJGeUkJxRc0FqhVyGn6cDwT6OBPtWJmPt/F3wcrW9rs/DgDtux1RSQvrqX0la8l9UTo649+1z7QOBO6LGUmIoY8OZbXx6YAV2Klt6+tdcOkimUOF129Pk2zqhPbSB/M1fYi4rxnXIVPG53Yiscqlx+vTplJeX880339RY/9BgMHDvvfdiZ2fHV1991dBu2hRxqVEQBKF1slgk1q46zolDaQD4d/FBb6ciNUtLaqb2inPNHO1UtA9woX2gCx0CXQgLcMHT5erJmCRJJH3yGdlbtiJTqeg07zWcO3WqW5yShSUHvmFnyl+oFCpeHfwkUV4dLttH0Z5fKNz5fWWc3W7CY8xDyOQNG7Vrq1rEHK9Dhw5x//334+LiwpgxY/Dw8CA3N5fNmzdTVFTE119/Tffu3RvaTZsiEi9BEITWS7JIbFwTy6G9qQDcPLEzPfsHI0kS+cW66iQsNauElAwt57O1ly3B4eygpkOgK1GhbkSFutMh0AW1qmbCI5nNJLyziIL9B1HY29H5rTfqvKi22WLm/T2fcyjjBLYqG14f9iyhroGXbXtpoVX7TgPxGv8kMoVVLoy1KS0i8QI4cOAA77//PidOnECSJORyOTExMTz33HP06tXLGl20KSLxEgRBaN0kSWLz2jj270oGYOyEaHoNDLlsW6PJTEqmlrMXiki8UERSWjGpWVrM/6iiq1TI6RDoUpmItXMnMsQNRzs1Zr2euNffQBsXj8rVlZh33sLG26tOcRpMBt7ctZj43EScNA7MHzELP0fvy7Ytjd9Lzq8fgsWMXcdeeE14FrlSXefvyY2gxSReF1VUVKDVanFycsLW1vbaB9ygROIlCILQ+kmSxNb18ezbcQ6A0bd3os+g0DodqzeaSckoJiG1kLjkfOKSCyi6zKojYQEudOvoSZcAO8xffEjF+QvY+PkR8/YCVM51q6Zfbqhg3vZ/k1x0AU87N+aPmIW73eXntpUnHib7l0VIZiO2oV3wnvwicpXmsm1vRC0u8SooKECn09Xa7ufnZ81uWj2ReAmCILQNkiSxbUMCe7YlATDq1ij6DmlXr/Nk5pcRd66gKhHLJz23rEYbN5mOe9M2YVuhRRUSSveF81Ha2dXp/MU6LXO2vU9mSQ4BTr7MG/4sjhqHy7atSDlJ1o9vIxl12ARG4nPXK8g1deunrWsRiVdpaSkLFy7kt99+Q6/XX7ZNfHx8Q7tpU0TiJQiC0HZIksT2TafZvfUsACPHRdJ/WFiDz5tfXMHxxFyOnsnl2Jlcikr0uBmKuSdtE3YWPWlOAWhvv5++XQKJCnW75nJJuWX5zPnjffIrCmnvFsJrQ5/GVnX5Bbl1aafJ+mEBFn05Gt8wfKa8hsKu8RYLby1aROL1yiuvsH79eiZNmkR4eDhqde3rwRMmTGhoN22KSLwEQRDaFkmS2Pn7GXZtSQRgxC0RDBje3qrnT8nUcuxMLucOnKDH3lWoJBOxDqGs9x6Io72aXlE+9OnkQ/dwL2w0l58Yn6bNZO4f71NiKCPGO5KXBj1ea1Hti/RZ58j8/g0s5VpUnkH4TpuD0qHx1qtsDVpE4jVgwAAefvhhpk+f3tBT3TBE4iUIgtA27dx8hp2/nwFg2NhwBo2sXcLBGrL3H+Ls2++AxcIxj2g2OXernBQGqJVyekR6M7ibP72ifND8407Js/kpzNvxIXqTnoFBvZjZ9/5ai2pfZMi9QObKeZhLC1G5+eJ79zyUTo23XmVL19DPb6ss4a7X6+nYsaM1TiUIgiAIrdqQUR0ZNrZy4entG0+zc/OZRunHu09POjw9E4CuebG8HlnGbYPD8Hazw2CysO9kJu+sOMS9czfxwcrDHIrPxmS2ANDePYTn+j+MQiZn9/mDfHts9RX7UXsG4nffApTOnhgLMsn4dg4mbV6jvKcbgVUSryFDhnD48GFrnEoQBEEQWr1BIzsw/OYIAHb+foYdv5/GyveyAeA1dAgh/6q82qRbv5rxDjl88cpI/vPsUCYOa4+Xqy0VehPbD6cxb+lf3D//d5atjeV8lpauvlE81vs+ANaf+YO1CVuu2I/K1Qe/e99A6eKNqTCLjG/mYCrOtfr7uRFY5VLj2bNneeqpp5g8eTLDhg3DxcWlVpvLbbuRiUuNgiAIbd/e7UlsXV95c9mgkR0YOqZjoyzHk7J8Belr/gdyOZGvvoRbzx5AZZX906mF7Dyaxu7j6RSXGqqPCQ925abeQZQ6JLDq1P8AmNnn/lrrOl7KpM2rTLqKslG6eOF3z3yUzp5Wfz8tWYuY4xURUZnVX+0fk7irsSaReAmCINwY/tp5js1r4wAYOKI9w8aGWz35kiwWEj/6hNztO5Cr1XR643WcIsJrtDGbLRxOyGHLgdT/b+++w6q40geOf+deQJCOFEEFFRTFRmJBVLBrjL1r7DEaxfJLNhpUXGOyxpKoSSyJazQmRkVdY00xiQ1LFHvvqCgCihQp0rm/P1jZZVG5wngBfT/Pw7PLzJw575x7F9+dOfMejl28l1e8tZyJlired7jLWbSKhkC/ALydn74sUVbiAyLXfERWfDRGNo44D/4YY2v9irm+DEpF4rV48eJCv0Tjx48vbjcvFUm8hBDi1RF64Ca/b70AgF/7GrR+w7OQFs8vJyuLy7PnEn/iFEYWFtSbM4vyrk9eHig+KY29xyP482g4EfeTAR3G1c9iZB+FsWLMjNbv4+nw9EKwWYmxuXO94qMxsv538mXzaiRfpSLxEs9PEi8hhHi1hO6/we/bcu98texQk5Yd1X8pLTstjQszPibpylVMKlSg/rzZlHOwf+rxOp2Oizfj+OXQTf46F4HW4zha61jIMqFDhYH083sdK/MnLxmUlRhL1NqPyIyLwsjaAefBn7wSyVepeKtRCCGEEM/m41+d9t28gNySE4/rfalJa2pK7enTMKtciYzYWC7M/AeZSUlPPV5RFOpUr8CHQxqxMqgj3Vz7oaRag1EGO+9t5O2521m+9Rz34h4VaGtkVQHnQR9jbOdM1sMYon78O5kJ91S/ppdNke94RUZG4uDggLGxMZGRkYUeL0sG5Sd3vIQQ4tV0aM91dv9yGYA2b9aiRVv1iqw+lh4Tw9nAaWTExmFZuxZ1Pp6Btpx+6y0+SH7IlD/mkZgZT06KJemXfNBgjF+DSvRq7UH1SvnXh8xKiiNqzUdkxkViZGWf+9jRtqLq11RalNijxtq1a7Nhwwbq169PrVq1Cp3jJZPr85PESwghXl0Hd19nz6+5yZfaFe4fe3T7NmenBJGd8ogKvj54Tv4ARastvCEQnRzD33d9zsP0JMpnViT2dH3Q5T4k86lTkQEdPPGobJN3fFZSPFFrZ5AZG4nWyh6Xlzj5KrHEa8uWLbRq1QpbW1s2b95caOIlSwblJ4mXEEK82vb/eY19O68A0L5rbXxbFX9tx//18PwFLnz0CbqsLJw7v0m1UW/r/UbljbjbzNy7kLSsdOpVqEe5qMYcOhPJv1+GxKdORQZ28MT93wlYbvL1EZmxdzGydsRlyMtZakIm15dRkngJIYQI+f1qXmX7Dt28aNqyuup9xBw4xNX5CwGoOnwolXp217vt2ehLzDmwlOycbDrVaE27Sm+wcdc1Qk5F8Dh7aFq3Im91rEU1F+vc5GvN33Mn3D8uumppp/o1lSSZXC+EEEKUUS071sSvfe5ajn9sv0jogZuq9+Hg1zyvuv2t71cTs/+A3m3rV6zNeJ/ctr9d28uJuMN8MKghSye3oeVrlVEUOHI+mv9buI8vgk8Sn2Wau5ajjSNZ8dFErZ1JdspD1a+pLJPESwghhChBrTrWpPm/J9j/vvUCxw7eUr2PSt274dy1CwDXvlpCwtlzerdt7tqYYd59AFh3dishN49QxcmSSYNzE7DmDVzQ6WDP8Tu8O3cXa/ZHY917OlorezJj7xK1bibZj57+ZuWrRhIvIYQQogQpikKbTp40a507x+u3Lec5/le46v1Ue3sYFZr7osvK4vKcz0i5pX8fnT3b0q1WewCWHfuRs9G5L8xVcbJkytDGzJ/oR53qFcjMyuGnvdcZu/QMF2qMQGthS8b920QFf0J2Worq11QWSeIlhBBClDBFUWjbuVbeHK9ffzrHySO31e1Do6HmexOxquNF9qNHXPxkFukxD/Ru/1b9HjRzbUS2LocFh5ZzKz4ib5+nmx1zAprz95E+VHGyJOlRJt/8eY/lqR3JKWdBRvQNooP/QU56qqrXVBZJ4iWEEEKUAoqi0L5rbXz8c5fq+XnTWc6diCik1fPRmJhQe1ogZlUqkxEbx8VPZpGVrN+dKI2iYVyToXg51CA1K405B5bw4FFcvvibeFVk8QetGN/XG2sLE87GmPD5/dakK6akR14jesOn5GSkqXpNZY0kXkIIIUQpoSgKHbp50dDXDXSwdf0ZLp2NUrUPIwsL6nw0HWNbWx7dvsOlOfPIyczUq62x1pjJLcZQ2cqZ+NSHzNm/lJSM/FXttVoNHZu6sWxKO7r5VydaZ8eihLak6oxJu3OJyI1z0WXp19/LqFiV65+HVK7PT8pJCCGEeBpdjo7tG85w5ngEGq1C/xGNqFHbSdU+Um7e4tzU6WSnpmLfojk1P3gPRaPf/ZgHKXEE7fqM+LSH1HGsSZD/BIy0Rk88Njw6keVbzvHw5iXGWf1JOSWLzEre1Bw6DUWjX0HX0qTE6njpU63+v0nl+vwk8RJCCPEsOTk6tqw9xYXTkWiNNAwc2YTqNZ++4HVRJJw+w8VPPkWXnY1Lj25UGzFM77a34u8wY88C0rLS8XNrwnif4U/NC3Q6HX+djeLPbTsZqPkNYyWH2xb18X77Q2wszdS6HIMoscRLn2r1/00q1+cniZcQQojCZGfnsOmHE1y5cA9jEy2DRvvgWk3dgqT394Vw7YtFAFR7ZwQu/y47oY/TUReZe2ApObocetZ+g4H1n12c9VFaJjs3bKHenY1oFR2Hs7xw6TyKVg2rPFdOUZKkcn0ZJYmXEEIIfWRlZbN+5XFuXI3BpJwRQ8Y0pZKrjap9RGzaTPiPa0FR8PzwA+yb+erddu+Nv/jm2I8AjG70Fu3c/Qptc3XvLxj99R0AO1Prc8+1AxP6eWNvU/rvfknleiGEEOIlZmSkpf+IRri525GRnsXa5aHci0xUtY9KvXtSsdMboNNxdeFXPLxwUe+2ras3o2+dzgB8eyKYE5GFF2et2bozNu3eBuANs7NYhe9j/Od72HP8Di/7/SDV7njdunWLDRs2EBYWRlpa/ldFFUXhhx9+UKObl4bc8RJCCPE80tOyWLP8CHfDEzC3MGFYQDPsnSxUO78uO5vL8+YTF3oUIwsL6s39lPJVKuvXVqdj2bE17L35F+W0JnzU+n08KlQttF38wU3EhwQDEJzsy5GMGjStW5GAPg2wtTQtzuW8MKXijtfVq1fp2bMne/bs4cCBAyQmJhIeHs7Ro0e5c+flyV5DQkLo0aMH3bt3p1evXhw/frykQxJCCPGKKGdqxKBRPlSsZEVKcgY/LjtM3AP1qsErWi01P3gPS09PspKTufjxP8iIi9evraIwqtFbNKjoRXp2BvMOfM295JhC29k07411024ADLA4wuvlwjlyPprxn+/l0Nnnq55QVqiSeC1cuJAWLVrwyy+/oNPp+PTTTwkJCWHZsmWkp6fz3nvvqdFNiZs2bRrz589n27ZtTJgwgVmzZpV0SEIIIV4hpmbGDB7dFAcnC5IS0/lx2REexqtXDV5brhy1p0/F1MWF9JgHXJw1h+xU/c5vpNHyt2ajqGpTmYfpSczev4Sk9ORntlEUBbs2Q7H0boeCjmGWB2npFE9iSgZzfzjGV+tPkZqepcallRqqJF4XL16kR48eaP5d/yMnJweAVq1a8fbbb7Nw4UI1uikgPDycGTNm0L17d7y8vOjS5clvYty8eZORI0fi7e2Nr68vs2bNKvA4VF9JSUl5/+nkpG5NFSGEEKIw5S1MGDymKXb25jyMT+XHZUdITlSvGryxlSVeM4IwsrIiJSyMKwu+QJedrVdbM2NTpviPw768HVFJ9/ns4DIysjKe2UZRFOw7jca8djPIyaa37ndG+pigUWDXsdu8/8U+rkckqHBlpYMqiVdiYiLW1tZoNBqMjIxITPzPpL+6dety4cIFNbop4Nq1a4SEhODm5oa7u/tTYxs2bBgpKSksWrSIwMBAduzYwfTp05+7vy+++IKxY8fSqlUr5s+fX6RzCCGEEMVlaWXKkDFNsbY1I+5BCj/+M5RHyc9OcJ6HmXNFvKZPRWNiQvyxE9xY8Z3e04bszGyY6j8Oc2MzrjwIY0noD+Tocp7ZRtFocew+ETP319BlZeB9J5hPB1bF3tqUuzEpTF60n60hYeTklP2pS6okXk5OTiQkJADg5ubGsWPH8vZduXIFc3NzNbopoE2bNoSEhLBo0SLq1KnzxGPWr19PYmIiX3/9Nf7+/vTo0YPp06ezY8cOwsLC8o4bOHAgbdq0KfAzatQoALKzs1m2bBkrVqxg3759zJw5k/Hjx78089eEEEKULda2Zgwd2xRLq3LERCexZvkR0lLVW4rH0rMmNd6fCIpC9K87idy+Q++2VaxdmNxiDEYaI45EnGTd2W2FtlG0xjj1nky5yp7kpKVgeWgJX4yuh289Z7Kydazcfp6PVx4hPqlsr/WoSuL1+uuvc/LkSQC6du3Kt99+S1BQEDNnzmThwoW0bt1ajW4K0OixtMH+/fvx9fXFzu4/Bec6duyIiYkJISEheduCg4PZs2dPgZ9vv/0WyH2cmpCQQN26dYHcpC8yMpL4eP0mHgohhBBqs61gzpAxvphbmBB9N5H13x0jM0O/x4L6sG/mS9URQwG4tWo1D/46rHdbL8eajG08BIDtl/9gV9jBQttojMtRsd9UjO0rk50UR9LWuXzYtxYBvetjYqTh5OX7vLdwHxduxBbtgkqBJy+s9JzGjh3L/fv3ARg1ahQPHjxgx47czLhTp04EBgaq0U2RhIWF0bt373zbTExMcHV1zXfHqzAVK1bkzp07REREULlyZU6ePImJiQm2trZPbfP4ldMniYqKwtnZWe/+hRBCiCexd7Jg0LtN+WHpX9y+Ece/Vp+g//BGaI3UKdXp0q0radH3iP51J9e+WISJnR1WtTz1autXtQn3UmLYeP5nVpwIxtG8AvUr1n5mG62ZJc4DZ3D3h2lkxt7l3sbZdBw0E69qFZj34zHu3Etm2jeHGNGlDt39q5eZivePqfKpuLq60qhRIwC0Wi3Tp08nNDSU0NBQ5s6di4WFenVGnldiYiJWVlYFtltZWfHw4UO9z+Pg4EBQUBBjxoyhW7duzJo1iy+++KLMfeBCCCFePhVdrBj4ThOMjDVcv3SfrcGnVZsPpSgK1d95G9vGjcjJyODSp3NJjYrWu31vrzfxd/MhR5fDgr+WczvhbqFtjKwq4Dzw72jMLEiPvMa9zQtwdSzPgv9rif9rlcjJyX30OG/1cR6lqfd41RBUueNVFul0uudOmnr06EGPHj30Pv5ZxdWedTdMCCGEeF6u1ezoN7wR6787xoXTkZiaGfNm77qq3CBQtFo8J73PuWkzSAkL4+Inn1J/3myMrSwLb6sovNt4EDGP4rgUc415B77m03YfYmNm/cx2JvaVqdhvGlFrZ5IadpKYX77Boet4Jg1qSO2qdqzcfp5DZyO5FZXI1OGNcatY8CZLaVTkO16RkZFkZmbm/ffCfkqKlZVVvrcsH0tKSnrinTAhhBCirPKo5UjPt14DBU4cDmfPb1dUO7fW1BSv6VMp52BPWmQkl+fMIydDvzcpjbXGTGo+GmcLR2IexTHv4DekF1JmAsC0sidOvSaBoiH53D7i9q5BURS6tKjOnHEt/v3WYzIffLW/zBRcLXLi1bZtWy5dugTkTjRv27btM39Kiru7e4G5XBkZGdy+ffupJSiEEEKIsqqOtwtd+tQD4NDu6/y1V//5zIUxsbPFa0YQWvPyJF68xLVFS9DlPLtUxGOW5SyY6j8OSxNzwuLCWRy6qtAyEwDlazTEofNYAB4e3kpCaO4c8lpudnz5t1Z413AgPSObuT8cY93vl0t9yYkiP2qcPXs2VapUAWDOnDmqBaQ2f39/vvnmG+Lj4/Mmwv/5559kZGTQsmXLEo5OCCGEUN/rTd1IfZTJ7l8us+vnS5iaGfF6UzdVzl3e1ZVaUz7k4sezeHDgEOUcHak6dLBebStaOjK5xRg+2fcVRyNOs+7sVgY36FVoO8sGbchOeUjc3jXE7foerbk1lnX9sbYox8xRTVn180W27Q8j+I8r3IpK5P2Br2NWrnTOpipyVD179sz775UrV8bLy+uJ9bpSUlK4eFH/Vc6fR2pqal5JiLt375KcnMzOnTsBaNKkCXZ2dgwYMIA1a9YQEBBAQEAAsbGxzJ07l65du8odLyGEEC+t5m08SEvN5NCeMH7edA5TM2O8Griocm6b+vXwGDeWa18t5u5PWzB1cqRixw56ta3l4EFAkyEsOrKK7Zf/xMncgfYefoW2s/btQVZKAolHfyZmxxK05a0oX90brVbDO93rUtXZiqWbznD4XBRRDw4QNKIJFSu8mDqixaHoVKgAWrt2bTZs2ED9+vUL7Dt//jx9+/bNeyyppoiIiKc+xly9ejU+Pj5A7pJBs2bN4sSJE5iamtKlSxcmTZqEqWnJrXxe3NXNhRBCiMLodDp+/ekcJw7fRqNVGPB2YzxqOap2/tvrN3IneANoNHhNn4ptw9f1brvpwq9sPL8DjaJhit84vJ29Cm2j0+UQs20RyRcOoJiY4jJkFuUqVsvbf/lWHLO/P0p8UjqW5U2YNaYZ1Ss9exL/8yruv9+qlJN4Vu6WlZWlV6HToqhcuTJXrlx54s/jpAugWrVqrFy5ktOnT3PkyBGmT59eokmXEEIIYQiKotCpVz3qeLuQk61j4/fHuX0zTrXzV+nfF8c2rSAnh8ufLSD5xk292/b26oR/1dwyE1/89a1eZSYURYND13GYutVFl5FG9IbZZCU+yNtfq6odC99riUdla5IeZbD/VERRLuuFKnJGlJycnO+NxZiYmAJvMt64cYMtW7Zgb2+vWsBCCCGE0J9Go9BjoDcetRzIyswheMVRoiMLvu1fFIqi4B4wBuv69chJS+PSP2aT/kC/qvKKojCm0WC8HGqQmpXG3ANfk5BaeH1NRWuMU58PMXaoQnZyHFHrZ5GdlpK3397GjLnj/Zg2vAn92tUs8rW9KEV+1LhkyRKWLl1a6HE6nY53332X999/vyjdvLTkUaMQQghDyszIZs3yUO7cjMPcwoTh45tRwUGdAudZySmcnTKN1DsRlK/qRr05szAqX16vtsnpKQTt/oyopPu427oxs83fKGdkUnifiQ+4u2oq2clxmFath/OAIBStcXEvpVDF/fe7yInXqVOnOHXqFDqdjs8//5zBgwfj4pJ/0p6JiQk1a9akSZMmRQruZSaJlxBCCENLS81k9deHiY5MxNrWjBHjm2FlY6bOue/f5+yHU8mMT8DGuwG1/z4NjZF+7/BFJ8cQtOszktKTaVLJm781G6XXNKX06JtE/jgdXUYaFvVa4tB1wgtfUabEEq//tmTJEvr27YuTk1NxT/XKkMRLCCFESUhJSuf7pX8RG5OCg5MFw8c3w6x84XeY9JF8PYxz0/5OTno6ju3a4jF+rN6J0OWYMD7Z9yVZOVl08WzHUO/ehTcCHoWdInrDbNDlYNO8D3atBhbnEgpVKibXjx8/XpIuIYQQogwwtyzH4HebYmVtSsy9ZIJXHCMzI1uVc1t4uOM5+W+g0XB/127ubt6qd9taDu4ENBkKwM9XdvHH9f16tSvv/hr2b44BIOHQJhJP7XruuA1J9dcN4+LiStWSQUIIIYTIz9rWjEGjfTA1MyYiPJ5/rT5BdrZ+FegLY9e4EdXfGQFA+Oo1xB4+onfbFm6N6V+3KwDfndzA6Sj96oBaebfFpkVfAB789k8ehZ16zqgNR5XEKzk5maCgILy9vWnevHmpWjJICCGEEAU5VLRk4DtNMDLWcP3SfXZsPItOpeV2nDu/iXPnNwG4uvArkq5d17ttL69OtKzalBxdDl8eXkFEYpRe7Wz9+2NRrxXocri3eT7p0TeKEvoLp0o9/dmzZ/Pzzz/Tp08fPD09MTFR51mxEEIIIV6cKlVt6TO0IRtWHefs8QjMLUxo37XwQqb6qDZyOGnRUcSfOMWlT+fQ4PN5lHMovLyUoiiMbvQW91MecCnmOvMOfMPsdh9iWe7Zb2AqioJD5zFkJ8WSeusc0RtmU2n4HIysHVS5HrWoMrm+efPmjB49mmHDhqkR0ytBJtcLIYQoLc4cj2Bb8GkA2nWpTbPW6iypl/XoEeemBPEo/Pa/y0x8ilF5/d6iTExLYtquedxPicXLoQbTW07ESFv4/aKctBTurp5OZsxtbJr1xK61futI6qtUTK5PT0+nZs3SV6RMCCGEEIVr0Kgy7brUBmDXz5c4c1ydiu9G5ctTe/pUjG1seHQrnKsLvkCXrd9EfitTSwL9AjAzMuVizDVWnAh+5ko5j2lMzXEe+HesfXvkPnosZVRJvFq2bMmJEyfUOJUQQgghSkCz1u74tqoOwPYNZ7h68Z4q5zV1dKR20BQ0JibEHz/BzVU/6N22irUL7zUbiaIo7Ln5F79c3aNXOyNLOyq0GYKJfeWihv3CqJJ4jR07ll9//ZVVq1Zx69YtEhISCvwIIYQQonRr17k29RtVRpejY9PqE9xRaV1Hy5o1qPHeBACidvxC1G879W77mnNdhjbIren145mfOBl5TpWYSooqc7xq1aqVe7JnFEm7dOlScbt5qcgcLyGEEKVRdnYOG1cd59ql+5iaGTN8fDMcK1qqcu47//qJ22vWgUaD19+nYfv6a3q10+l0LD++jt03DmJmZMo/2k7C1aaSKjE9r+L++63KW43jxo174SX6hRBCCPHiabUa+gxtyI/LjhARHs/a5aG8PaE51rbFX1qocp9epEVGcn/PPq58vpD68z6lvKtroe0URWFkwwFEJ9/nwv2rzDuY+6ajtalVsWMyNFXueInnJ3e8hBBClGapjzL4fslfxNxLxt7RguHjmlHeovjlonIyM7nw0SckXrhIOUcH6n8+FxMbG73aJqUnE7TrM6KTY/C0d2dGq//D2AALY/+3UvFW42NJSUkcOHCA7du38/DhQzVPLYQQQggDMitvwqDRPljZmPLgfjLrv1NnaSGNsTG1pnyIqXNF0u/HcHn2PLLT0/Vqa1nOgkC/AMobm3HlQRj/PL5WrzcdSxPVEq+lS5fi5+fHqFGjCAwMJCIi91XUYcOGsXz5crW6EUIIIYSBWNnkX1po85qT5KhQ3d7YyhKvvwdhZGFB0pWrXF+0FF2OfksWVbKqyN+ajUKjaNh/K5Ttl/8sdjyGpEritXbtWpYuXUqfPn345z//mS/7bN26Nfv27VOjGyGEEEIYmIOTJQNGNkZrpOHKhXvs3HJelbtMZpVcqDVlMopWy4ODh7gdvEHvtvUr1mb4a7lrM647u5WjEaeLHY+hqJZ4DR8+nOnTp9OiRYt8+9zc3AgPD1ejGyGEEEKUANdqdvQa9BoocPyvcA7tCVPlvNb16uIeMAaAiI2buL8vRO+2b9RoRQcPf3ToWBz6Pbfi76gS04umSuJ1584d/Pz8nrjP3NycxMRENboRQgghRAmpXd+ZN7rXAWDPr5c5q1J1e6d2bajUuycA1xd/TeJF/ctPjXitH/WcapGelc68g9+QkFr655erknhZWlry4MGDJ+67e/cuFSpUUKMbIYQQQpSgJn7V8lW3D7sSo8p53Qa/RQXfpuiysrg0ex6pUdF6tdNqtLzf7B1cLJ2IfRTP5weXkZGdqUpML4oqiZevry8rVqzg0aNHedsURSErK4vg4OACjx+FEEIIUTa161ybuq+5kJOj418/nCD6bvHvMikaDTXen4iFhztZSUlc+senZCUn69XWwsScQL8AzE3Kcy3uFsuPle43HVVJvCZOnEhkZCSdO3dm7ty5KIrCmjVr6Nu3L+Hh4QQEBKjRjRBCCCFKmKJR6DagAVU9KpCRnsW6b4+SEPeo8IaF0JYrR+2gqZhUqEDq3Uguz5tPTlaWXm2dLR3/86ZjeCg7ruwqdjwviiqJl5ubG8HBwVSvXp3g4NzVw7dt24atrS3r1q3DxcVFjW6EEEIIUQoYGWnpN7wRjs6WJCels+7bo6Q+yij2eU3sbPH6+zQ0pqY8PHuOG8tX6n33qp5Trbw3Hdee2cLJyPPFjudFUK2Ol4eHBytXruTkyZOEhIRw4sQJvvvuO9zd3dXqQgghhBClhKmZMW+90wQr68cFVo+TlVn8Aqvm1ariOel9UBTu/f4H0b/qv6B2R4+WtK3eAh06vjqykshE/eaKGVKxE6+0tDT8/PzYs2cPACYmJjg5OWFqalrs4IQQQghRelnZmPHWaB/KmRpx52YcW9adUqXAql3jRrgNHQzAjRXfkXDmrF7tFEVh5Ov9qe3gQWpmGntvHi52LGorduJlampKeno6ZmbFXzxTCCGEEGWLY0VL+r/dGK1Ww6Wz0fyx7YIqk9sr9eyOQ6uWkJPDlc8WkBoVpVc7I60Rk1uMYXCDnnTw8C92HGpT5VFj06ZNOXy49GWVQgghhHjxqrpXoMdAbwCOHrzF4X03in1ORVHwGDcGi5o1yEpO5tKsuWSlpOjV1sLEnG61OuBgXvrKWamSeI0ZM4ZffvmFJUuWcPXqVeLj40lISMj3I4QQQoiXV53XXGjfzQuAXT9f4tzJu8U+p8bEhNpTAzGpYEdqRARXF3yJLrv488hKkqJT4X5grVq1/nNCRXniMZcu6V+J9lXQtm1bAHbv3l3CkQghhBDq+X3bBUL330SjVRg0yodqNeyLfc7k62GcmzqdnIwMXHp0o9qIYSpEWjTF/ffbSI0gxo0b99SESwghhBCvjg5dvUh6mMbFM1Fs/P44w8c1w8nFqljntPBwx2PieK7OX0jk1u2Yu7ni2Ka1ShEbliqJ14QJE9Q4jRBCCCHKOEWj0GOgN8lJ6dy+Ece6FUd5e0JzrG2L9xKeg19zHt2+TcTGTVxfugxTFxesanmqFLXhqFbHCyApKYkDBw6wfft2Hj4s/QtVCiGEEEJ9RsZa+o9ohL2TBUkP01i34ihpqcVfQ9F1YH/smvqgy8ri8pzPSI958jrRpZlqidfSpUvx8/Nj1KhRBAYGEhGRu2r5sGHDWL58uVrdCCGEEKIMMCtvwqBRPlhYlSMmOokNq46RlVW8ifGKRkPN9yZQvqobmQkJXJo9l+y0NJUiNgxVEq+1a9eydOlS+vTpwz//+c989Ttat27Nvn371OhGCCGEEGWIta0Zb43ywaScEeFhcWxddxpdMQusas3MqB00BWNrK1Ju3OTaoiWlelHs/6Va4jV8+HCmT59OixYt8u1zc3MjPDxcjW6EEEIIUcZUdLGi3/CGaDQKF89E8efPxa9yYOroSK0pH6IYGRF76DB3NvxLhUgNQ5XE686dO/j5+T1xn7m5OYmJiWp0I4QQQogyqHpNB7oNaADAkZAbHD14s9jntPKqjfuYUQDcCd7Ag7/KRiF3VRIvS0tLHjx48gS3u3fvUqFC6ascK4QQQgjDqd+wMq075b6F+PvWC1w5X/wFrJ3at8O5axcArn25mOQbxU/oXjRVEi9fX19WrFjBo0eP8rYpikJWVhbBwcEFHj8KIYQQ4tXToq0Hr/lUQaeDn9ac5O7t+GKfs9qIodi85k1OejqXPp1LRilfLUeVxGvixIlERkbSuXNn5s6di6IorFmzhr59+xIeHk5AQIAa3QghhBCiDFMUhTd718O9lgNZmTmsX3mM+Fj91l986jm1Wjwn/Q1TFxcyHjzg8pzPyMksfumKF0WVxMvNzY3g4GCqV69OcHAwOp2Obdu2YWtry7p163BxcVGjG4OYNm0afn5+eHp6kpWVlW9fWFgYvXv3pmPHjgwdOpT79++XUJRCCCFE2aTVaugzpCEVXaxISc5g3bdHSX2UUaxzGlmY4zV9Klpzc5IuXyHsm+Wl9k3HIidely9fJj09Pe93Dw8PVq5cycmTJwkJCeHEiRN89913uLu7qxKoofTo0YMtW7Y8cd9HH33E6NGj+f3332nVqhULFiwwcHRCCCFE2VfO1IiB7zTBysaU2JgU1n93nKzM4tX4Mqvkgufkv4FGw/3de4jc/rNK0aqryIlXz549uXLlCgBDhw4lLCwMABMTE5ycnDA1NVUlwPDwcGbMmEH37t3x8vKiS5cuTzzu5s2bjBw5Em9vb3x9fZk1axZpRSiq1qRJE+ztCy7o+eDBA8LCwujQoQMA/fr1448//nju8wshhBACLK1NeeudJpQzNeLOzTi2rT9T7Bpftq95U+3t3AW0b32/moSz59QIVVVFTrxMTEzIyMi9NXj06FFSUor3jPZprl27RkhICG5ubk+9e5aYmMiwYcNISUlh0aJFBAYGsmPHDqZPn65aHNHR0Tg7O+ctBm5hYYGxsTHx8cWfGCiEEEK8ihydreg7rBEajcKF05Hs/vVysc/p3KUzTu3bQU4OD8+dVyFKdRV5kewqVaqwatWqvDISoaGhREc//dXQx3eKnlebNm1o164dAFOmTOH8+YKDuH79ehITE9m6dSt2dnYAaLVaJk2axNixY/MStoEDB3Lv3r0C7d3d3fn222+fGcfTnhU/TsSEEEII8fyq17Sna/8GbAs+zV97w7B3tMC7SZUin09RFNwD3sWhpR8WHqVvulORE6+AgAA+/PBDdu/ejaIoz5zvpCgKly4VrVKtRlP4Tbn9+/fj6+ubl3QBdOzYkWnTphESEpKXeAUHBxcpBgBnZ2eio6PR6XQoikJycjKZmZnY2NgU+ZxCCCGEgAaNKhMXk8KBXdf4+V9nsbEzo6pHwWk/+lI0Gqzr1VUxQvUUOfF68803adq0KTdv3mTQoEHMmDEDDw8PNWPT2+O3Df+biYkJrq6ueXPPisve3p5q1aqxa9cu2rdvz6ZNm2jfvv0z27Rt2/ap+6KionB2dlYlNiGEEKKsa9WxJrExyVw8E8W/fjjB2xObU8HBoqTDUl2RE6/Lly9TrVo1GjZsSM+ePfHz86NKlaLfGiyOxMRErKysCmy3srLi4cOHz3WuyZMnExoaCuQ+5mzUqBELFy4EYObMmQQGBjJ//nwcHR2ZP39+8YMXQgghBIpGoftAbxLiU4m8nUDwimOM/L/mmJU3KenQVFXkxKtnz55s2LCB+vXrc/fu3byJ9qXJ48eCz+Pzzz9/6r4aNWqwefNmvc+1e/fup+571t0wIYQQ4lVkbKxlwIhGrFx0iLgHKfzrhxMMGuWD1kiVsqOlQql/q1EfVlZWT1yIOykp6Yl3woQQQghROllYmTLg7caYlNNy63osv/50rtQWQy2KUv9Woz7c3d0LzOXKyMjg9u3bBeZ+CSGEEKJ0c3Kxotfg19nw3TFOHb2DtV15/NvXKOmwVFHq32rUh7+/P9988w3x8fHY2toC8Oeff5KRkUHLli1fWL9CCCGEeDFqejnxRo+6/LblPPt2XsHSqhyv+biWdFjFVurfakxNTSUkJASAu3fvkpyczM6dO4HcKvN2dnYMGDCANWvWEBAQQEBAALGxscydO5euXbuWuSWLhBBCCJGrcYuqJCWmcXD3dX7edA5be3Oqulco6bCKRdGp8OB06tSpBAQEvJC3GiMiIp46EX316tX4+PgAuUsGzZo1ixMnTmBqakqXLl2YNGmSaksXqe3xNT1rAr4QQgjxqtPpdGxZe4rzpyIpb2HCqPf8sLY1K7F4ivvvtyqJl3h+kngJIYQQ+snMyGbV4kNERybi5GLFsABfTM2MSySW4v77XeRHjZGRkTg4OGBsbExkZGShx7u4uBS1KyGEEEK8woxNtPT7d5mJe5GJbPz+OG+NaoKRkbakQ3tuRU682rZtm1fHq02bNoXWy3qRk+uFEEII8XKzsSvPW+804Yev/+LW9Vh+/tc5ug9oUObWTC5y4jV79uy8OV2zZ88ucxcuhBBCiLLFubI1/YY3Yu23Rzl7PAKXytY08atW0mE9l2JVrn+sV69eqgQjhBBCCPEs1Ws60L5Lbf7YfpHft1/EoaIl1WoUfUFtQyty4vVYXFwc69ev5/jx49y/fx8AR0dHfHx86NevX15dLSGEEEIINfj4VyPyTgLnT0Wy8fvjDB/fDCfnsrFSTbEWPzp8+DAdOnRg0aJFhIaGkpCQQHx8PKGhoXzxxRe88cYbHDt2TK1YhRBCCCFQFIVu/RvgWt2O9LQs1n17lKTEtJIOSy9FTrzi4uJ47733sLS05Msvv+T48eMcPHiQQ4cOcfz4cRYuXIiZmRkTJ04kPj5ezZiFEEII8YozMtbSf0Qj7J0sSHqYxr9+OEF2Vk5Jh1WoIidemzZtIicnh+DgYN544w3MzP5TzMzMzIw333yTdevWkZWVxaZNm1QJVgghhBDiMbPyJgx4uzGmZsZE3Irnty3nS/2C2kVOvA4ePEjv3r2pWLHiU49xcXGhV69eHDhwoKjdCCGEEEI8lZ29OT0HeYMCJ4/cJnT/zZIO6ZmKnHjduHGDhg0bFnpco0aNuHHjRlG7EUIIIYR4phq1nWjfpTYAf+y4yKWzUSUc0dMVOfFKTEzEzs6u0OPs7OxITEwsajdCCCGEEIVq2rI6jZq5gQ62Bp/mXlTpzD2KnHhlZGRgbFz4OklGRkZkZmYWtRshhBBCiEIpisIbPepQvaY9mRnZbFx1nNRHGSUdVgHFquN148YNtNpnr5MkjxmFEEIIYQgarYZeg19nxZcHiI99xJGQm7Tu5FnSYeVTrMRr6tSphR6j0+lkOSEhhBBCGER5cxMGjGzC3t8u4+7pUNLhFFDkxGvOnDlqxiGEEEIIoQrHipb0H9G4pMN4IlXWahRCCCGEEIUr1pJBQgghhBBCf5J4CSGEEEIYiCReQgghhBAGIomXEEIIIYSBSOIlhBBCCGEgkngJIYQQQhiIJF5CCCGEEAYiiZcQQgghhIFI4iWEEEIIYSCSeAkhhBBCGIgkXkIIIYQQBiKJlxBCCCGEgUjiJYQQQghhIEYlHcCr6v79+2RnZ9O2bduSDkUIIYQQeoqKikKr1Ra5vdzxKiHlypXDyMiI7OxsEhMTyc7Ozrdf3+1POi4qKoqoqKgXfxGFxPqi2utz/LOOkTEve2P+pG0y5jLmard/UWP+tH0y5mVzzI2MjChXrpxe1/dEOlGizp8/r6tZs6bu/PnzRdr+pOPatGmja9OmzYsPvpBYX1R7fY5/1jEy5mVvzJ+0TcZcxlzt9i9qzJ+2T8b81RxzueMlhBBCCGEgkngJIYQQQhiIJF5CCCGEEAYiiZcQQgghhIFI4lXCHBwcGD9+PA4ODkXa/rTjDKm4MTxve32Of9YxMuZlb8yLErPaZMwN72UZ86ftkzF/Ncdc0el0OoP0JAzmcW2w3bt3l3Akrw4Zc8OTMTc8GXPDkzE3vBc95pJ4CSGEEEIYiDxqFEIIIYQwEEm8hBBCCCEMRBIvIYQQQggDkcRLCCGEEMJAjEo6AFHy3n33XaKiolAUBXt7e2bNmoWzs3NJh/VSi4+PZ/LkyURERGBsbEz9+vX56KOPMDExKenQXmrTpk3jwIED3L9/nwsXLmBkJH8C1RQWFsaHH35IcnIyTk5OzJ8/H0dHx5IO66Um32nDUuNvt7zVKEhKSsLS0hKA1atXc+bMGRYsWFDCUb3cEhISuHbtGo0bNyYnJ4dJkybh5eXFO++8U9KhvdSOHj1K9erVad68ufwj9QIMHjyYIUOG0LFjR7777juuXLnCvHnzSjqsl5p8pw1Ljb/d8qixFAoPD2fGjBl0794dLy8vunTp8sTjbt68yciRI/H29sbX15dZs2aRlpb23P09TroAkpOTixx3WWfIcbexsaFx48YAaDQa6tatS2RkZLGvoawx9He9SZMm2NvbFzfsl4pan8GDBw8ICwujQ4cOAPTr148//vjDINdQ1qj5vZfvtH7UGnM1/nZLalwKXbt2jZCQEBo0aEBOTg5PuimZmJjIsGHDcHFxYdGiRcTFxTFnzhwSEhKYP3/+c/f5wQcfEBoairW1NatWrVLjMsqckhh3gPT0dLZs2cLkyZOLewllTkmNufgPtT6D6OhonJ2dURQFAAsLC4yNjYmPj8fW1tag11Tayffe8F7EmBf1b7ckXqVQmzZtaNeuHQBTpkzh/PnzBY5Zv349iYmJbN26FTs7OwC0Wi2TJk1i7NixuLu7AzBw4EDu3btXoL27uzvffvtt3u8LFixAp9OxYsUKvv76a2bOnPkCrqx0K4lxz8nJITAwkKZNm+Lv7/8iLqtUK4kxF/mp9Rk8bdbK40RM/Iea33uhH7XHvDh/uyXxKoU0msKfAO/fvx9fX9+8LwdAx44dmTZtGiEhIXlfkODgYL37VRSF/v3707Jly1cy8SqJcf/4448xMjJi2rRpRQu6jCup77r4D7U+A2dnZ6Kjo9HpdCiKQnJyMpmZmdjY2LzA6MsmNb/3Qj9qj3lx/nbLHK8yKiwsrMD/8ExMTHB1dSUsLEzv86SkpBAdHZ33+86dO6lRo4Zqcb5s1Bp3gM8++4x79+4xd+5cuSvwDGqOuSgafT4De3t7qlWrxq5duwDYtGkT7du3N3isLwv53huevmNe3L/dcserjEpMTMTKyqrAdisrKx4+fKj3eVJTUxk/fjzp6ekAODs78/nnn6sW58tGrXG/du0aK1eupHr16vTu3RuAZs2aERgYqFqsLwu1xhxg8uTJhIaGArmPHho1asTChQtVifNlpu9nMHPmTAIDA/PKSMhcpKLTd8zlO60efcZcjb/dkni9ZB7f5teXvb09mzZteoERvRqed9xr1KjBlStXXmBEL7/nHXNA/k+Fyv73M6hRowabN28uwYhefv875vKdfvH+e8zV+NstjxrLKCsrKxITEwtsT0pKemLGLtQh4254MuYlTz4Dw5MxNzxDjbkkXmWUu7t7gef8GRkZ3L59WyZdvkAy7oYnY17y5DMwPBlzwzPUmEviVUb5+/tz5MgR4uPj87b9+eefZGRk0LJlyxKM7OUm4254MuYlTz4Dw5MxNzxDjbnM8SqFUlNTCQkJAeDu3bskJyezc+dOILdKsZ2dHQMGDGDNmjUEBAQQEBBAbGwsc+fOpWvXrvL/hopIxt3wZMxLnnwGhidjbnilacxlrcZSKCIigrZt2z5x3+rVq/Hx8QFylzaYNWsWJ06cwNTUlC5dujBp0iRMTU0NGe5LQ8bd8GTMS558BoYnY254pWnMJfESQgghhDAQmeMlhBBCCGEgkngJIYQQQhiIJF5CCCGEEAYiiZcQQgghhIFI4iWEEEIIYSCSeAkhhBBCGIgkXkIIIYQQBiKJlxBCCCGEgUjiJYQQQghhIJJ4CSFK3ObNm/H09HzqT2hoaEmH+MJERETku9bH68cBLF68GE9PT+Li4orVx65du/D09CQ4OPipxxw6dAhPT09WrVoFwKeffpoX02uvvVas/oUQ/yGLZAshSo05c+ZQvXr1Ats9PDxKIBrDGjt2LK1ataJq1aqqn7tVq1Y4ODjw008/MXDgwCces3nzZoyNjenevTsAw4cPp3Pnznz99dccO3ZM9ZiEeFVJ4iWEKDVq1KhBvXr1SjoMMjMzURQFIyPD/Yl0dXXF29v7hZzbyMiI7t27s2LFCq5evUrNmjXz7U9MTOTPP/+kTZs22NnZAVCpUiUqVaqU97sQQh3yqFEIUaZ4enryySefsHXrVjp16kSDBg3o1q0be/fuLXDsrVu3+OCDD/D19aVu3bp06tSJtWvX5jsmNDQUT09Ptm7dyty5c/Hz86NevXqEh4cDsHHjRjp27EjdunV588032bFjB1OmTKFNmzYA6HQ6OnTowMiRIwv0n5KSQsOGDfn4449Vu/6wsDDatm1L3759iY2NBSAmJoYZM2bg7+9P3bp1adOmDUuWLCErKyuvXZ8+fYDcO1v/6+effyY9PZ3evXurFqcQ4snkjpcQotTIycnJlywAKIqCVqvNt23fvn2cO3eOiRMnUr58eVasWMH48ePZuXMnVapUAeD69esMGDAAZ2dnAgMDcXBw4ODBg8yaNYv4+HjGjx+f75wLFy7E29ubjz/+GI1GQ4UKFdiwYQMzZsygY8eOTJ06laSkJJYsWUJmZma++AYPHszs2bO5detWvkeFW7duJTk5mUGDBqkyPkePHmX8+PE0atSIBQsWYGZmRkxMDH379kWj0TBu3DhcXV05deoU33zzDXfv3mXOnDkAVKtWjYYNG7J9+3Y++OADjI2N8867efNmnJycaNGihSpxCiGeThIvIUSp0a9fvwLbtFotFy9ezLctPT2dVatWYWFhAUCdOnXw8/Pjt99+Y/To0UDufDFzc3OCg4PzjmvevDkZGRksX76cIUOGYG1tnXdOV1dXFi1alPd7Tk4OixcvpkGDBvm2N2zYkA4dOuDo6Ji3rVevXnz55ZesXbuWoKCgvO3r1q3Dx8dHlTlq27ZtIygoiAEDBjBt2jQ0mtwHFosXL+bhw4f88ssvuLi4AODr64upqSnz5s1j5MiRef336dOHqVOnsm/fPtq3bw/AtWvXOHfuHGPGjCmQ4Aoh1CePGoUQpca8efPYtGlTvp+NGzcWOM7HxycvmQKwt7enQoUK3L17F8hNzI4cOUL79u0xNTUlKysr78ff35/09HROnz6d75wdOnTI9/vNmzeJiYmhU6dO+ba7uLgUeMvPwsKCXr16sWXLFh49egTA4cOHuX79OoMHDy7yeDy2bNkypk6dyqRJk5g+fXpe0gW5d/98fHxwdHQscJ2Qe5fssU6dOmFubs5PP/2Ut+2nn35CURR5zCiEgcgdLyFEqeHu7q7X5HobG5sC20xMTEhPTwcgISGBrKwsfvzxR3788ccnniM+Pj7f7w4ODk/cX6FChQJt7e3t85K8x4YMGcLatWvZsWMH/fv3Z+3atVSsWJG2bdsWej2F2b59O05OTrz55psF9sXGxrJ3717q1KnzxLb/fZ1mZmZ07tyZzZs3ExMTg62tLdu3b6dx48a4uroWO04hROEk8RJCvHSsrKzQarV0796dt95664nHVK5cOd/viqLk+93W1hYgbwL7f3vw4EGBbW5ubvj7+7N27Vr8/f3Zs2cPEyZMUOXx3YoVK3j//fcZNGgQ33//PZUqVcoXp6enJ++9994T2/73I1HIfdy4ceNGtm7dSrVq1YiNjSUwMLDYMQoh9COJlxDipWNmZoaPjw8XL17E09MTExOT5z5HtWrVcHBw4LfffmPEiBF52yMjIzl16lSBhAZg6NChvP322wQGBqLRaJ44Z60oXFxcWLt2LSNGjMhLvh5P4m/VqhUhISG4urrmm7P2NA0aNKBmzZps3ryZqlWrYmlpSceOHVWJUwhROJnjJYQoNa5du8bp06cL/BSlcntQUBBRUVEMGjSIzZs3Exoayp49e/j+++8ZOnRooe01Gg0TJkzgzJkzTJw4kZCQEHbs2MGIESNwcHAocIcMcifve3h4EBoaSqdOnZ74mLKoHB0d+fHHH7Gzs2Pw4MFcvXoVgIkTJ2JsbMyAAQNYt24dhw8fJiQkhLVr1/Luu+8SHR1d4Fy9e/fmxo0b7N27l86dO2NqaqpanEKIZ5M7XkKIUmPq1KlP3D5r1iz69u37XOfy8PBg8+bNfP3113z55ZfExcVhaWmJm5sbLVu21Osc/fv3R1EUVqxYwbhx46hUqRKjR49m9+7dREVFPbFNp06dWLx4sSqT6v+XnZ0dP/zwA6NHj2bIkCGsWLGCevXqsWnTJr7++mtWrlzJvXv3MDc3p1KlSvj5+WFlZVXgPN26dWP+/PlkZmbKpHohDEzR6XS6kg5CCCHKisTERDp27Ei7du34xz/+UWB/r169UBQl35uDzxIREUHbtm359NNP6dGjB1qt9ol30wwtJyeHnJwcgoKC+OOPPzh16lRJhyTES0HueAkhxFPExMSwbNkyfHx8sLGxITIyku+//56UlJR8jyuTk5O5evUq+/bt48KFCyxduvS5+woKCiIoKIivvvqKN954Q83LKJI5c+awevVqAMqXL1/C0Qjx8pA7XkII8RQPHz4kMDCQc+fO8fDhQ0xNTWnQoAETJ06kQYMGeceFhoYydOhQbGxsGDx4MBMmTNC7j4yMDK5cuZL3u76T5F+0qKiovLc3tVotXl5eJRyREC8HSbyEEEIIIQxE3moUQgghhDAQSbyEEEIIIQxEEi8hhBBCCAORxEsIIYQQwkAk8RJCCCGEMBBJvIQQQgghDEQSLyGEEEIIA5HESwghhBDCQCTxEkIIIYQwkP8H7qv6iNhAjdgAAAAASUVORK5CYII=",
+ "text/plain": [
+ "