-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathcovid19_processing.py
786 lines (677 loc) · 37.4 KB
/
covid19_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
from covid19_util import *
import datetime
import time
import geonamescache
from io import StringIO
import ipywidgets
from matplotlib import dates as mdates
from matplotlib import colors as mcolors
import pandas as pd
import requests
import scipy.optimize
import scipy.stats
from multi_checkbox_widget import multi_checkbox_widget
class Covid19Processing:
def __init__(self, show_result=True):
self.dataframes = {}
gc = geonamescache.GeonamesCache()
gc_data = list(gc.get_countries().values())
gc_states = gc.get_us_states()
for state in gc_states:
state_data = gc_states[state]
if not state_data["name"].endswith(", US"):
state_data["name"] += ", US"
gc_data += [state_data]
self.country_metadata = {}
populations = pd.read_csv("populations.csv", names=["country", "population"], index_col=0, header=0)
for country in populations.index:
if country in normalized_names:
populations.loc[normalized_names[country]] = populations.loc[country]
self.countries_to_plot = ["Brazil", "China", "Japan", "South Korea", "United States",
"India", "Italy", "Germany", "Russia", "Netherlands", "Spain", "World"]
for country_data in gc_data:
name = country_data["name"]
if name in normalized_names:
name = normalized_names[name]
population = populations.loc[name].population
if "continentcode" in country_data:
continent = continent_codes[country_data["continentcode"]]
else:
continent = "North America"
self.country_metadata[name] = {
"population": population,
"continent": continent
}
for metric in data_urls.keys():
url = base_url + data_urls[metric] # Combine URL parts
r = requests.get(url) # Retrieve from URL
self.dataframes[metric] = pd.read_csv(StringIO(r.text), sep=",") # Convert into Pandas dataframe
if show_result:
# Display the first lines
display(Markdown("### Raw confirmed cases data, per region/state"))
with pd.option_context("display.max_rows", 10, "display.max_columns", 14):
display(self.dataframes["confirmed"])
def process(self, rows=20, debug=False):
# Clean up
for metric in data_urls.keys():
if "states" not in metric:
is_country = True
by = "_by_country"
else:
is_country = False
by = "_by_state"
if is_country:
by_country = self.dataframes[metric].groupby("Country/Region").sum() # Group by country
dates = by_country.columns[2:] # Drop Lat/Long
else:
by_country = self.dataframes[metric].groupby("Province_State").sum()
dates = by_country.columns[11:] # Skip various clutter columns
metric = metric.split("_", 1)[0]
# Convert to columns to matplotlib dates
by_country = by_country.loc[:, dates]
dates = pd.to_datetime(dates)
by_country.columns = dates
if metric == "confirmed":
# Early China data points
early_china_data = {
"1/17/20": 45,
"1/18/20": 62,
"1/20/20": 218
}
if is_country:
# Insert data points
for d, n in early_china_data.items():
by_country.loc["China", pd.to_datetime(d)] = n
# Retain chronological column order
by_country = by_country.reindex(list(sorted(by_country.columns)), axis=1)
by_country = by_country.fillna(0)
# Correct an odd blip in the Japanese data.
# From 2/5 to 2/7, the Johns Hopkins data for Japan goes 22, 45, 25.
# I assume that the 45 is incorrect. Replace with 23.5, halfway between the values for 2/5 and 2/7
by_country.loc["Japan", pd.to_datetime("2/06/20")] = 23.5
# Correct a typo in US data, see https://github.com/CSSEGISandData/COVID-19/issues/2167
if by_country.loc["US", pd.to_datetime("4/13/20")] == 682619:
by_country.loc["US", pd.to_datetime("4/13/20")] -= 102000
# Change some weird country names to more commonly used ones
by_country = by_country.rename(index=normalized_names)
if not is_country:
by_country.index = [x+", US"for x in by_country.index]
by_country.sort_index(inplace=True)
# Store processed results for metric
self.dataframes[metric + by] = by_country.fillna(0).astype(int)
all_countries = self.dataframes["confirmed_by_country"].index
# Add in recovered and active
for by in ["_by_country", "_by_state"]:
if is_country:
print("Simulating active and recovered cases...")
for x in ["recovered", "active"]:
self.dataframes[x + by] = pd.DataFrame(columns=self.dataframes["confirmed"+by].columns)
self.dataframes[x + by].loc[:, :] = np.nan
for country in self.dataframes["confirmed" + by].index:
# lazy loading
if country in self.countries_to_plot:
self.compute_active_recovered_for(country)
# Add in continents
for metric in list(data_urls.keys()):
if "states" in metric:
continue
continent_data = {}
by_country = self.dataframes[metric+"_by_country"]
for country in all_countries:
if country in self.country_metadata:
continent = self.country_metadata[country]["continent"]
if continent in continent_data:
continent_data[continent] += by_country.loc[country, :]
else:
continent_data[continent] = by_country.loc[country, :]
elif metric == "confirmed" and debug:
print(f"Missing metadata for {country}!")
by_continent = pd.DataFrame(columns=by_country.columns)
for continent in continent_data:
by_continent.loc[continent, :] = continent_data[continent]
# Add in special regions
world = by_country.sum()
by_continent.loc["All except China", :] = world - by_country.loc["China", dates]
by_continent.loc["World", :] = world
by_continent = by_continent
self.dataframes[metric + "_by_continent"] = by_continent.fillna(0).astype(int)
for continent in continent_data:
for x in ["recovered_by_continent", "active_by_continent"]:
self.dataframes[x] = pd.DataFrame(columns=self.dataframes["confirmed_by_continent"].columns)
self.dataframes[x].loc[:, :] = np.nan
self.compute_active_recovered_for(continent)
# Add population for special regions and continents
continent_pop = {}
for country in all_countries:
if country in self.country_metadata:
continent = self.country_metadata[country]["continent"]
pop = self.country_metadata[country]["population"]
if continent in continent_pop:
continent_pop[continent] += pop
else:
continent_pop[continent] = pop
elif country in ["Diamond Princess", "MS Zaandam", "Winter Olympics 2022", "Summer Olympics 2020"]:
pass
else:
print(f"Country {country} not in country metadata")
continent_pop["World"] = sum(continent_pop.values())
continent_pop["All except China"] = continent_pop["World"] - self.country_metadata["China"]["population"]
for c in continent_pop:
if c not in self.country_metadata:
self.country_metadata[c] = {}
self.country_metadata[c]["population"] = continent_pop[c]
if rows > 0:
with pd.option_context("display.max_rows", rows, "display.min_rows", rows, "display.max_columns", 10):
display(Markdown("### Table of confirmed cases by country"))
display(self.dataframes["confirmed_by_country"])
display(Markdown("### Table of confirmed cases by continent/region"))
display(self.dataframes["confirmed_by_continent"])
def list_countries(self, columns=5):
confirmed_by_country = self.dataframes["confirmed_by_country"]
n_countries = len(confirmed_by_country)
display(Markdown(f"### {n_countries} countries/territories affected:\n"))
for i, k in enumerate(confirmed_by_country.index):
if len(k) > 19:
k = k[:18].strip() + "."
print(f"{k:20}", end=" " if (i + 1) % columns else "\n") # Every 5 items, end with a newline
def get_metric_data(self, metric):
metric = metric.replace("cases", "confirmed")
metric = metric.replace("million", "population")
if metric + "_by_country" in self.dataframes:
df = self.dataframes[metric + "_by_country"]
if (metric + "_by_state") in self.dataframes:
df = pd.concat([df, self.dataframes[metric + "_by_state"]])
if (metric + "_by_continent") in self.dataframes:
df = pd.concat([df, self.dataframes[metric + "_by_continent"]])
return df.drop_duplicates().squeeze()
elif metric.startswith("new") and metric.split(" ")[1] in self.dataframes:
return self.get_metric_data(metric.replace("new", "1-day"))
elif metric.startswith("recent") and metric.split(" ")[1] in self.dataframes:
return self.get_metric_data(metric.replace("recent", "30-day"))
elif "-day" in metric and metric.split(" ")[1] in self.dataframes:
days = metric.split("-")[0]
metric = metric.split(" ")[1]
combined = pd.concat(
[self.dataframes[metric + "_by_country"].diff(days, axis="columns"),
self.dataframes[metric + "_by_continent"].diff(days, axis="columns"),
self.dataframes[metric + "_by_state"].diff(days, axis="columns")
]
)
combined[combined < 1] = np.nan
return combined
elif metric in self.country_metadata["China"]:
all_regions = self.dataframes["confirmed_by_country"].index.tolist() +\
self.dataframes["confirmed_by_continent"].index.tolist() +\
self.dataframes["confirmed_by_state"].index.tolist()
s = pd.Series(
{country: self.country_metadata[country][metric] for country in self.country_metadata}, name=metric)
s = s[s.index.isin(all_regions)] # Remove countries not in JHU data
return s.round()
else:
return
def get_country_data(self, country):
data = {}
for metric in self.dataframes.keys():
if not metric.endswith("by_country"):
continue
series = self.dataframes[metric].loc[country, :]
series.name = metric
data[metric] = series
return pd.DataFrame(data)
def compute_active_recovered_for(self, country):
simulation = self.simulate_country_history(country, history_length=40)
if country.endswith(", US"):
by = "_by_state"
elif country in continent_codes.values():
by = "_by_continent"
else:
by = "_by_country"
self.dataframes["recovered" + by].loc[country, :] = simulation.recovered
self.dataframes["active" + by].loc[country, :] = simulation.active
def get_new_cases_details(self, country, avg_n=5, median_n=3):
confirmed = self.get_metric_data("confirmed").loc[country]
deaths = self.get_metric_data("deaths").loc[country]
df = pd.DataFrame(confirmed)
df = df.rename(columns={country: "confirmed_cases"})
df.loc[:, "new_cases"] = np.maximum(0, confirmed.diff())
df.loc[:, "new_deaths"] = np.maximum(0, deaths.diff())
df = df.fillna(0)
df.loc[:, "growth_factor"] = df.new_cases.diff() / df.new_cases.shift(1) + 1
df[~np.isfinite(df)] = np.nan
df.loc[:, "filtered_new_cases"] = \
scipy.ndimage.convolve(df.new_cases, np.ones(avg_n) / avg_n, origin=-avg_n // 2 + 1)
df.loc[:, "filtered_growth_factor"] = \
df.filtered_new_cases.diff() / df.filtered_new_cases.shift(1) + 1
df.filtered_growth_factor = scipy.ndimage.median_filter(df.filtered_growth_factor, median_n, mode="nearest")
return df
def set_default_countries(self, countries):
self.countries_to_plot = countries
def plot_interactive(self,
x_metric=["calendar_date", "day_number"],
y_metric=["confirmed", "deaths", "active", "new confirmed", "new deaths"],
min_cases=(0, 1000, 50),
use_log_scale=True,
smoothing_days=1
):
options_dict = {
x: ipywidgets.Checkbox(
description=x,
value=x in self.countries_to_plot,
style={"description_width": "0px", "overflow": "hidden"}
) for x in self.get_metric_data("confirmed").index
}
def plot_selected(**args):
try:
selected = [widget.description for widget in ui.children[1].children if widget.value]
except TypeError as e:
print(e)
if selected:
self.plot(x_metric, y_metric, selected, fixed_country_colors=True,
min_cases=min_cases, use_log_scale=use_log_scale, sigma=smoothing_days)
ui = multi_checkbox_widget(options_dict, self)
out = ipywidgets.interactive_output(plot_selected, options_dict)
display(ipywidgets.HBox([ui, out]))
def plot(self, x_metric, y_metric, countries_to_plot=None, colormap=cm, use_log_scale=True,
min_cases=1, sigma=5, fixed_country_colors=True):
# layout/style stuff
markers = ["o", "^", "v", "<", ">", "s", "X", "D", "*", "$Y$", "$Z$", "$@$", "$&$"]
short_metric_to_long = {
"confirmed": "Confirmed cases",
"deaths": "Deaths",
"active": "Active cases",
"growth_factor": f"{sigma}-day avg growth factor",
"deaths/confirmed": "Case fatality rate",
"new confirmed": "Daily new cases",
"confirmed/population": "Confirmed cases per 10k population",
"active/population": "Active cases per 10k population",
"deaths/population": "Deaths per 10k population",
"new confirmed/population": "Daily new cases per 10k population",
"new deaths/population": "Daily new deaths per 10k population",
"recent confirmed": "Recently confirmed cases",
"recent deaths": "Recent deaths",
"recent confirmed/population": "Recent cases per 10k population",
"recent deaths/population": "Recent deaths per 10k population",
"recent deaths/recent confirmed": "Recent case fatality rate"
}
fills = ["none", "full"] # alternate between filled and empty markers
if countries_to_plot is None:
countries_to_plot = self.countries_to_plot
length = None
m = len(markers)
cm = plt.cm.get_cmap(colormap)
n_colors = min(len(markers), len(countries_to_plot))
c_norm = matplotlib.colors.Normalize(vmin=0, vmax=n_colors)
scalar_map = matplotlib.cm.ScalarMappable(norm=c_norm, cmap=cm)
y_max = 0
ratio_parts = y_metric.split("/")
by_country = self.get_metric_data(y_metric)
if "active" in y_metric or "recovered" in y_metric:
active_countries = self.get_metric_data("active").index
for country in countries_to_plot:
if country not in active_countries:
print(f"Processing {country}...")
self.compute_active_recovered_for(country)
if by_country is not None:
by_country = self.get_metric_data(y_metric)
elif y_metric == "growth_factor":
by_country = self.get_metric_data("confirmed")
elif y_metric == "active":
by_country = self.get_metric_data("confirmed") - \
self.get_metric_data("deaths") - \
self.get_metric_data("recovered")
by_country = by_country.dropna("columns").astype(int)
elif len(ratio_parts) == 2 and self.get_metric_data(ratio_parts[0]) is not None\
and self.get_metric_data(ratio_parts[1]) is not None:
numerator = self.get_metric_data(ratio_parts[0]).drop_duplicates()
denominator = self.get_metric_data(ratio_parts[1]).drop_duplicates()
try:
numerator = numerator.loc[denominator.index, :]
except KeyError as e:
pass
if ratio_parts[1] != "population":
numerator = numerator[denominator > min_cases]
denominator = denominator[denominator > min_cases]
if 0 in denominator:
print("Denominator is zero for some countries!")
display(denominator[denominator == 0])
by_country = numerator.divide(denominator, 0) # numerator / denominator
if ratio_parts[1] == "population":
by_country *= 1e4
by_country[by_country == 0] = np.nan
else:
print(f"'{y_metric}' is an invalid y_metric!")
if len(by_country.columns) >= 28:
n = len(by_country.columns) // 14
mark_every = slice(-14, 0, -n)
else:
mark_every = None
highest = 0
for i, country in enumerate(countries_to_plot):
if country in by_country.index:
country_data = by_country.loc[country].dropna()
if country not in by_country.index:
print(f"Country '{country}' not found for {y_metric}!")
continue
marker_fill = fills[i % (2 * m) < m]
if fixed_country_colors:
color = string_to_color(country)
else:
color = scalar_map.to_rgba(i % n_colors)
hsv = mcolors.rgb_to_hsv(color[:3])
if 0.12 <= hsv[0] < 0.25:
hsv[0] -= 0.02
hsv[2] = min(hsv[2] - 0.02, 1)
color = mcolors.hsv_to_rgb(hsv)
if y_metric == "growth_factor":
df = self.get_new_cases_details(country, sigma)
if x_metric == "day_number":
df = df[df.iloc[:, 0] >= min_cases]
country_data = df.filtered_growth_factor
if x_metric == "calendar_date":
x_data = country_data.index
elif x_metric == "day_number":
if y_metric != "growth_factor" and len(ratio_parts) < 2:
country_data = country_data[country_data >= min_cases]
if country == "Outside China":
length = len(country_data)
x_data = list(range(len(country_data)))
if sigma > 0:
country_data = country_data.rolling(sigma).mean()
highest = max(highest, country_data.max())
plt.plot(x_data, country_data, marker=markers[i % m], label=country, markevery=mark_every,
markersize=8, color=color, alpha=0.8, fillstyle=marker_fill)
if country_data.max() is not np.nan:
mx = country_data.max()
if not np.isscalar(mx):
m = m.max()
y_max = max(y_max, mx)
if y_metric in short_metric_to_long:
long_y_metric = short_metric_to_long[y_metric]
else:
long_y_metric = y_metric
plt.ylabel(long_y_metric, fontsize=14)
if x_metric == "calendar_date":
plt.xlabel("Date", fontsize=14)
title = f"COVID-19 {long_y_metric}"
plt.title(title, fontsize=18)
n_days = (country_data.index.max() - country_data.index.min()).days + 1
n_months = n_days//30
month_interval = 1 + n_months//10
plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%m/%Y'))
plt.gca().xaxis.set_major_locator(mdates.MonthLocator(interval=month_interval, bymonthday=1))
elif x_metric == "day_number":
plt.xlim(0, length)
plt.xlabel("Day Number", fontsize=14)
if len(ratio_parts) < 2:
title = f"COVID-19 {long_y_metric}, from the first day with ≥{min_cases} cases"
else:
title = f"COVID-19 {long_y_metric} ratio in selected countries"
plt.title(title, fontsize=18)
if y_metric != "growth_factor" and len(ratio_parts) < 2:
floor = 10 ** math.floor(math.log(min_cases) / math.log(10))
floor = floor * (1 - (not use_log_scale)) * .9
ceil = highest * 1.2
plt.ylim(floor, ceil)
plt.legend(frameon=False, fontsize=11)
if y_metric == "growth_factor":
plt.gca().get_yaxis().set_major_formatter(matplotlib.ticker.FuncFormatter(lambda x, p: f"{x:,.2f}"))
elif ratio_parts[-1] == "population":
pass
elif len(ratio_parts) > 1:
plt.gca().get_yaxis().set_major_formatter(matplotlib.ticker.FuncFormatter(lambda x, p: f"{x:.1%}"))
if use_log_scale:
plt.yscale("log")
plt.gca().get_yaxis().set_major_formatter(matplotlib.ticker.FuncFormatter(lambda x, p: f"{x:.3f}"))
else:
pass
else:
set_y_axis_format(y_max, use_log_scale)
plt.xticks(fontsize=12)
plt.yticks(fontsize=12)
plt.gca().tick_params(which="major", color=light_grey)
set_plot_style()
plt.show()
def plot_pie(self, y_metrics, mode="country"):
plt.figure(figsize=(8, 8*len(y_metrics)))
for i, y_metric in enumerate(y_metrics):
plt.subplot(len(y_metrics), 1, i+1)
short_y = y_metric.split()[0]
data_for_pie = self.dataframes[short_y + "_by_"+mode].iloc[:, -1]
data_for_pie = data_for_pie[~data_for_pie.index.isin(["All except China", "World"])]
data_for_pie = data_for_pie.sort_values(ascending=False).fillna(0)
data_for_pie = np.maximum(0, data_for_pie)
country_names = [x if data_for_pie[x] / data_for_pie.sum() > .015 else "" for x in data_for_pie.index]
data_for_pie.plot.pie(startangle=270, autopct=get_pie_label, labels=country_names,
counterclock=False, pctdistance=.75,
colors=[string_to_color(x) for x in data_for_pie.index],
textprops={'fontsize': 12})
plt.ylabel("")
plt.title(f"{y_metric.capitalize()} as of {data_for_pie.name.date()}", fontsize=16)
plt.show()
def curve_fit(self, country="All except China", days=100, do_plot=True):
country_data = self.get_metric_data("confirmed").loc[country, :]
country_data = country_data[np.isfinite(country_data)]
x = np.arange(len(country_data), days + len(country_data))
current_day = country_data.index[-1]
if country in self.country_metadata:
population = self.country_metadata[country]["population"]
else:
population = 1e8
[L, k, x0], pcov = scipy.optimize.curve_fit(logistic_func, np.arange(len(country_data)),
country_data, max_nfev=10000,
p0=[country_data[-1], 0.5, np.clip(len(country_data), 1, 365)],
bounds=([country_data[-1], 0, 0], [population, 1, 800]),
method="trf"
)
# dates up to 'days' days after present
model_date_list = [country_data.index[-1] + datetime.timedelta(days=n) for n in range(days)]
model_date_list = [mdates.date2num(x) for x in model_date_list]
n = len(model_date_list)
logistic = logistic_func(x - 2, L, k, x0)
if do_plot:
plt.plot(country_data, label="Confirmed cases in " + country, markersize=3, zorder=1)
plt.plot(model_date_list, np.round(logistic),
label=f"{L:.0f} / (1 + e^(-{k:.3f} * (x - {x0:.1f})))", zorder=1)
plt.legend(loc="lower right")
plt.title(f"Logistic curve fit and extrapolation for {country}", fontsize=18)
plt.xlabel("Date", fontsize=14)
plt.ylabel("Cases", fontsize=14)
plt.scatter(mdates.date2num(current_day), country_data[-1], s=20, c="C00", zorder=2)
plt.annotate(
f"{datetime.datetime.strftime(current_day, '%m/%d')}: {kmb_number_format(country_data[-1], 3, 0)}",
(mdates.date2num(current_day) - 1, country_data[-1]), fontsize=18, ha="right")
plt.scatter(model_date_list[-1], logistic[-1], s=20, c="C01", zorder=2)
plt.annotate(
f"{mdates.num2date(model_date_list[-1]).strftime('%m/%d')}: {kmb_number_format(logistic[-1], 3, 0)}",
(model_date_list[-1] - 1, logistic[-1] * 1.08), fontsize=18, ha="right")
set_y_axis_format(logistic.max(), True)
plt.xticks(fontsize=12)
plt.yticks(fontsize=12)
plt.gca().tick_params(which="both", color=light_grey)
for spine in plt.gca().spines.values():
spine.set_visible(False)
bottom, top = plt.ylim()
plt.ylim((bottom, max(bottom+1, top)))
set_plot_style()
plt.show()
def simulate_country_history(self, country, history_length=40, show_result=False):
if country in self.country_metadata:
population = self.country_metadata[country]["population"]
else:
if country not in continent_codes.values():
print("Couldn't find population for", country)
population = np.nan
try:
confirmed = self.get_metric_data("confirmed").loc[country]
deaths = self.get_metric_data("deaths").loc[country]
except KeyError:
print("Couldn't find", country)
confirmed = self.dataframes["confirmed_by_state"].loc[country]
deaths = self.dataframes["deaths_by_state"].loc[country]
recovered = np.zeros(len(confirmed))
active = np.zeros(len(confirmed))
uninfected = (population - confirmed).fillna(population)
simulation = pd.DataFrame(data=[confirmed, deaths, recovered, active, uninfected],
index=["confirmed", "deaths", "recovered", "active", "uninfected"]).transpose()
simulation = simulation.fillna(0)
daily_death_distribution = death_chance_per_day(cfr=0.04, s=1.75, mu=0.5, sigma=10, length=history_length)
# reconstruct recovered and active case durations using fatality by case duration stats
for i, day in enumerate(confirmed.index):
case_history = np.zeros(history_length)
if i == 0:
new_recovered = 0
else:
new_cases = simulation.confirmed.diff()[i]
new_deaths = simulation.deaths.diff()[i]
new_deaths_by_case_duration = (new_deaths * daily_death_distribution)
# insert new cases for the day
case_history[0] = new_cases
# shift previous cases
case_history[1:] = simulation.iloc[i - 1, -history_length:-1]
case_history = case_history[:history_length]
# subtract deaths
case_history -= new_deaths_by_case_duration
# counteract difference between theoretical mortality distribution and reality
case_history = np.maximum(0, case_history)
new_recovered = simulation.recovered.iloc[i - 1] + max(0, case_history[-1])
for h in range(history_length):
simulation.at[day.to_datetime64(), f"active_{h}"] = case_history[h]
simulation.at[day.to_datetime64(), f"recovered"] = new_recovered
simulation.at[day.to_datetime64(), f"active"] = sum(case_history)
simulation = simulation.fillna(0).astype(int)
if show_result:
display(Markdown(f"<br>**Last 10 days in {country}, showing a 7-day case duration history:**"))
display(simulation.iloc[-10:, :])
return simulation
def simulate_country(
self,
country, # name of the country to simulate
days=30, # how many days into the future to simulate
cfr=0.03, # case fatality rate, 0 to 1
critical_rate=0.18, # https://jamanetwork.com/journals/jama/fullarticle/2763188, https://www.cdc.gov/mmwr/volumes/69/wr/mm6912e2.htm
cfr_without_icu=0.80, # unknown but high
icu_beds_per_100k=30, # https://www.forbes.com/sites/niallmccarthy/2020/03/12/the-countries-with-the-most-critical-care-beds-per-capita-infographic
icu_availability=0.2, #
history_length=28, # Length of case history
sigma_death_days=6, # Standard deviation in mortality over time distribution
r0=2.5,
mitigation_start=1.0, # Initial mitigation factor
mitigation_end=1.0, # Final mitigation factor. This will be linearly interpolated to a trend vector
mitigation_ramp_days=14, # Days for the mitigation factor to reach its final value
from_day=-1
):
population = self.country_metadata[country]["population"]
country_history = self.simulate_country_history(country, history_length)
today = country_history.index[-1]
if from_day != -1:
days = (today - country_history.index[from_day]).days
country_history = country_history[country_history.confirmed > 0]
country_history = country_history.iloc[:from_day+1, :]
available_icu_beds = int(population/100000 * icu_beds_per_100k * icu_availability)
# effective mitigation ramps up to given mitigation factor over mitigation_ramp_days days
daily_mitigation = np.append(np.linspace(mitigation_start, mitigation_end, mitigation_ramp_days),
max(0, days - mitigation_ramp_days) * [mitigation_end])
daily_death_chance = death_chance_per_day(cfr, 1.75, 0.5, sigma_death_days, history_length, do_plot=False)
# daily_death_chance_no_icu = death_chance_per_day(cfr_without_icu, 1.75, 0.5,
# sigma_death_days, history_length, do_plot=False)
# https://www.jwatch.org/na51083/2020/03/13/covid-19-incubation-period-update
# https://www.medrxiv.org/content/10.1101/2020.03.05.20030502v1.full.pdf
daily_transmission_chance = scipy.stats.norm.pdf(np.linspace(0, history_length, history_length+1),
loc=4.5, scale=1.6)
for d in range(days):
# column shortcuts
confirmed = country_history.confirmed
deaths = country_history.deaths
recovered = country_history.recovered
case_history = country_history.iloc[-1, -history_length:].copy()
last_day = confirmed.index[-1]
next_day = last_day + pd.DateOffset(1)
current_alive = population - deaths.iloc[-1]
current_uninfected = int(np.maximum(0, population - confirmed.iloc[-1]))
current_uninfected_ratio = current_uninfected / current_alive
current_mitigation = daily_mitigation[d]
# Infect
r_eff = r0 * current_mitigation * current_uninfected_ratio
new_cases = 0
for case_duration in range(history_length):
new_cases_for_case_duration = np.random.binomial(case_history[case_duration],
r_eff*daily_transmission_chance[case_duration])
new_cases += int(round(new_cases_for_case_duration))
# Deaths
new_deaths = 0
for case_duration in range(history_length):
cases = case_history[case_duration]
# TODO: assign patients to mild or critical only once
# critical_patients = (critical_rate * cases).round()
# critical_patients_in_icu = min(available_icu_beds, critical_patients)
# critical_patients_no_icu = max(0, critical_patients - available_icu_beds)
non_icu_patients = cases # - critical_patients
deaths_for_case_duration = np.random.binomial(non_icu_patients, # + critical_patients_in_icu,
daily_death_chance[case_duration])
# deaths_for_case_duration += np.random.binomial(critical_patients_no_icu,
# daily_death_chance_no_icu[case_duration])
case_history[case_duration] -= deaths_for_case_duration
new_deaths += deaths_for_case_duration
# Recoveries
new_recovered = case_history[-1]
# Shift case history
case_history[1:] = case_history[:-1]
case_history.iloc[0] = new_cases
country_history.at[next_day, "confirmed"] = confirmed.loc[last_day] + new_cases
country_history.at[next_day, "deaths"] = deaths.loc[last_day] + new_deaths
country_history.at[next_day, "recovered"] = recovered.loc[last_day] + new_recovered
country_history.at[next_day, "active"] = case_history.sum()
country_history.at[next_day, "uninfected"] = current_uninfected
country_history.iloc[-1, -history_length:] = case_history
return country_history, today
def plot_simulation(self, country, days, mitigation_trend, cfr=0.02, r0=2.5,
history_length=30, use_log_scale=True, scenario_name="", from_day=-1):
simulation, today = self.simulate_country(country=country, days=days, cfr=cfr,
mitigation_start=mitigation_trend[0],
mitigation_end=mitigation_trend[1],
mitigation_ramp_days=90,
r0=r0,
history_length=history_length,
from_day=from_day)
plt.figure(figsize=(13, 8))
metrics = ["confirmed cases", "deaths", "active cases", "recovered cases"]
c = ["tab:blue", "r", "tab:orange", "limegreen", "tab:purple"]
for i, metric in enumerate(metrics):
short_metric = metric.split()[0]
plt.plot(simulation.loc[:today, short_metric], c=c[i], label=f"{metric.capitalize()}")
plt.plot(simulation.loc[today:, short_metric], "-.", c=c[i], alpha=0.75)
plt.plot(simulation.loc[today - pd.DateOffset(1):, "confirmed"].diff(), "-.", c=c[i + 1], alpha=0.75)
plt.plot(simulation.loc[:today, "confirmed"].diff(), c=c[-1], label="Daily new cases")
plt.legend(loc="upper left")
set_y_axis_format(simulation.loc[:, "confirmed"].max().max(), log=use_log_scale)
title = f"{days}-day Covid-19 simulation, {country}"
if scenario_name:
title += ": " + scenario_name
plt.suptitle(title, fontsize=20, y=1.03)
plt.tight_layout()
set_plot_style()
plt.show()
simulation = simulation.astype(int)
display(Markdown(f"### {scenario_name} final tally:"))
peak_active = simulation.active.max()
peak_active_date = simulation.active[simulation.active == simulation.active.max()].index[0].date()
print(f"Confirmed: {kmb_number_format(simulation.confirmed[-1], 3 , False)},\n"
f"Deaths: {kmb_number_format(simulation.deaths[-1], 3 , False)},\n"
f"Recovered: {kmb_number_format(simulation.recovered[-1], 3 , False)},\n"
f"Peak active: {kmb_number_format(peak_active, 3, False)} at {peak_active_date},\n"
f"Uninfected: {kmb_number_format(simulation.uninfected[-1], 3 , False)}"
)
return simulation
def country_highlight(self, country, sigma=7):
plt.figure(figsize=(13, 8))
metrics = ["new_cases", "new_deaths"]
country_data = self.get_new_cases_details(country).round(2)[metrics]
display(country_data.tail(7).astype(int))
for metric in metrics:
data = country_data[metric].rolling(sigma).mean()
plt.plot(country_data.index, data, label=metric.capitalize().replace("_", " "))
plt.title(f"{country} daily changes as of {country_data.index[-1].date()}", fontsize=20)
set_plot_style()
plt.legend(loc="upper left", fontsize=11)
set_y_axis_format(country_data[metrics].max().max(), log=True)
plt.show()