forked from openai/openai-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
jobs.py
696 lines (573 loc) · 26.9 KB
/
jobs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
from __future__ import annotations
from typing import Union, Iterable, Optional
from typing_extensions import Literal
import httpx
from .... import _legacy_response
from ...._types import NOT_GIVEN, Body, Query, Headers, NotGiven
from ...._utils import (
maybe_transform,
async_maybe_transform,
)
from ...._compat import cached_property
from .checkpoints import (
Checkpoints,
AsyncCheckpoints,
CheckpointsWithRawResponse,
AsyncCheckpointsWithRawResponse,
CheckpointsWithStreamingResponse,
AsyncCheckpointsWithStreamingResponse,
)
from ...._resource import SyncAPIResource, AsyncAPIResource
from ...._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper
from ....pagination import SyncCursorPage, AsyncCursorPage
from ...._base_client import (
AsyncPaginator,
make_request_options,
)
from ....types.fine_tuning import job_list_params, job_create_params, job_list_events_params
from ....types.fine_tuning.fine_tuning_job import FineTuningJob
from ....types.fine_tuning.fine_tuning_job_event import FineTuningJobEvent
__all__ = ["Jobs", "AsyncJobs"]
class Jobs(SyncAPIResource):
@cached_property
def checkpoints(self) -> Checkpoints:
return Checkpoints(self._client)
@cached_property
def with_raw_response(self) -> JobsWithRawResponse:
return JobsWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> JobsWithStreamingResponse:
return JobsWithStreamingResponse(self)
def create(
self,
*,
model: Union[str, Literal["babbage-002", "davinci-002", "gpt-3.5-turbo", "gpt-4o-mini"]],
training_file: str,
hyperparameters: job_create_params.Hyperparameters | NotGiven = NOT_GIVEN,
integrations: Optional[Iterable[job_create_params.Integration]] | NotGiven = NOT_GIVEN,
seed: Optional[int] | NotGiven = NOT_GIVEN,
suffix: Optional[str] | NotGiven = NOT_GIVEN,
validation_file: Optional[str] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> FineTuningJob:
"""
Creates a fine-tuning job which begins the process of creating a new model from
a given dataset.
Response includes details of the enqueued job including job status and the name
of the fine-tuned models once complete.
[Learn more about fine-tuning](https://platform.openai.com/docs/guides/fine-tuning)
Args:
model: The name of the model to fine-tune. You can select one of the
[supported models](https://platform.openai.com/docs/guides/fine-tuning/which-models-can-be-fine-tuned).
training_file: The ID of an uploaded file that contains training data.
See [upload file](https://platform.openai.com/docs/api-reference/files/create)
for how to upload a file.
Your dataset must be formatted as a JSONL file. Additionally, you must upload
your file with the purpose `fine-tune`.
The contents of the file should differ depending on if the model uses the
[chat](https://platform.openai.com/docs/api-reference/fine-tuning/chat-input) or
[completions](https://platform.openai.com/docs/api-reference/fine-tuning/completions-input)
format.
See the [fine-tuning guide](https://platform.openai.com/docs/guides/fine-tuning)
for more details.
hyperparameters: The hyperparameters used for the fine-tuning job.
integrations: A list of integrations to enable for your fine-tuning job.
seed: The seed controls the reproducibility of the job. Passing in the same seed and
job parameters should produce the same results, but may differ in rare cases. If
a seed is not specified, one will be generated for you.
suffix: A string of up to 18 characters that will be added to your fine-tuned model
name.
For example, a `suffix` of "custom-model-name" would produce a model name like
`ft:gpt-4o-mini:openai:custom-model-name:7p4lURel`.
validation_file: The ID of an uploaded file that contains validation data.
If you provide this file, the data is used to generate validation metrics
periodically during fine-tuning. These metrics can be viewed in the fine-tuning
results file. The same data should not be present in both train and validation
files.
Your dataset must be formatted as a JSONL file. You must upload your file with
the purpose `fine-tune`.
See the [fine-tuning guide](https://platform.openai.com/docs/guides/fine-tuning)
for more details.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
return self._post(
"/fine_tuning/jobs",
body=maybe_transform(
{
"model": model,
"training_file": training_file,
"hyperparameters": hyperparameters,
"integrations": integrations,
"seed": seed,
"suffix": suffix,
"validation_file": validation_file,
},
job_create_params.JobCreateParams,
),
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=FineTuningJob,
)
def retrieve(
self,
fine_tuning_job_id: str,
*,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> FineTuningJob:
"""
Get info about a fine-tuning job.
[Learn more about fine-tuning](https://platform.openai.com/docs/guides/fine-tuning)
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not fine_tuning_job_id:
raise ValueError(f"Expected a non-empty value for `fine_tuning_job_id` but received {fine_tuning_job_id!r}")
return self._get(
f"/fine_tuning/jobs/{fine_tuning_job_id}",
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=FineTuningJob,
)
def list(
self,
*,
after: str | NotGiven = NOT_GIVEN,
limit: int | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> SyncCursorPage[FineTuningJob]:
"""
List your organization's fine-tuning jobs
Args:
after: Identifier for the last job from the previous pagination request.
limit: Number of fine-tuning jobs to retrieve.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
return self._get_api_list(
"/fine_tuning/jobs",
page=SyncCursorPage[FineTuningJob],
options=make_request_options(
extra_headers=extra_headers,
extra_query=extra_query,
extra_body=extra_body,
timeout=timeout,
query=maybe_transform(
{
"after": after,
"limit": limit,
},
job_list_params.JobListParams,
),
),
model=FineTuningJob,
)
def cancel(
self,
fine_tuning_job_id: str,
*,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> FineTuningJob:
"""
Immediately cancel a fine-tune job.
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not fine_tuning_job_id:
raise ValueError(f"Expected a non-empty value for `fine_tuning_job_id` but received {fine_tuning_job_id!r}")
return self._post(
f"/fine_tuning/jobs/{fine_tuning_job_id}/cancel",
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=FineTuningJob,
)
def list_events(
self,
fine_tuning_job_id: str,
*,
after: str | NotGiven = NOT_GIVEN,
limit: int | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> SyncCursorPage[FineTuningJobEvent]:
"""
Get status updates for a fine-tuning job.
Args:
after: Identifier for the last event from the previous pagination request.
limit: Number of events to retrieve.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not fine_tuning_job_id:
raise ValueError(f"Expected a non-empty value for `fine_tuning_job_id` but received {fine_tuning_job_id!r}")
return self._get_api_list(
f"/fine_tuning/jobs/{fine_tuning_job_id}/events",
page=SyncCursorPage[FineTuningJobEvent],
options=make_request_options(
extra_headers=extra_headers,
extra_query=extra_query,
extra_body=extra_body,
timeout=timeout,
query=maybe_transform(
{
"after": after,
"limit": limit,
},
job_list_events_params.JobListEventsParams,
),
),
model=FineTuningJobEvent,
)
class AsyncJobs(AsyncAPIResource):
@cached_property
def checkpoints(self) -> AsyncCheckpoints:
return AsyncCheckpoints(self._client)
@cached_property
def with_raw_response(self) -> AsyncJobsWithRawResponse:
return AsyncJobsWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> AsyncJobsWithStreamingResponse:
return AsyncJobsWithStreamingResponse(self)
async def create(
self,
*,
model: Union[str, Literal["babbage-002", "davinci-002", "gpt-3.5-turbo", "gpt-4o-mini"]],
training_file: str,
hyperparameters: job_create_params.Hyperparameters | NotGiven = NOT_GIVEN,
integrations: Optional[Iterable[job_create_params.Integration]] | NotGiven = NOT_GIVEN,
seed: Optional[int] | NotGiven = NOT_GIVEN,
suffix: Optional[str] | NotGiven = NOT_GIVEN,
validation_file: Optional[str] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> FineTuningJob:
"""
Creates a fine-tuning job which begins the process of creating a new model from
a given dataset.
Response includes details of the enqueued job including job status and the name
of the fine-tuned models once complete.
[Learn more about fine-tuning](https://platform.openai.com/docs/guides/fine-tuning)
Args:
model: The name of the model to fine-tune. You can select one of the
[supported models](https://platform.openai.com/docs/guides/fine-tuning/which-models-can-be-fine-tuned).
training_file: The ID of an uploaded file that contains training data.
See [upload file](https://platform.openai.com/docs/api-reference/files/create)
for how to upload a file.
Your dataset must be formatted as a JSONL file. Additionally, you must upload
your file with the purpose `fine-tune`.
The contents of the file should differ depending on if the model uses the
[chat](https://platform.openai.com/docs/api-reference/fine-tuning/chat-input) or
[completions](https://platform.openai.com/docs/api-reference/fine-tuning/completions-input)
format.
See the [fine-tuning guide](https://platform.openai.com/docs/guides/fine-tuning)
for more details.
hyperparameters: The hyperparameters used for the fine-tuning job.
integrations: A list of integrations to enable for your fine-tuning job.
seed: The seed controls the reproducibility of the job. Passing in the same seed and
job parameters should produce the same results, but may differ in rare cases. If
a seed is not specified, one will be generated for you.
suffix: A string of up to 18 characters that will be added to your fine-tuned model
name.
For example, a `suffix` of "custom-model-name" would produce a model name like
`ft:gpt-4o-mini:openai:custom-model-name:7p4lURel`.
validation_file: The ID of an uploaded file that contains validation data.
If you provide this file, the data is used to generate validation metrics
periodically during fine-tuning. These metrics can be viewed in the fine-tuning
results file. The same data should not be present in both train and validation
files.
Your dataset must be formatted as a JSONL file. You must upload your file with
the purpose `fine-tune`.
See the [fine-tuning guide](https://platform.openai.com/docs/guides/fine-tuning)
for more details.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
return await self._post(
"/fine_tuning/jobs",
body=await async_maybe_transform(
{
"model": model,
"training_file": training_file,
"hyperparameters": hyperparameters,
"integrations": integrations,
"seed": seed,
"suffix": suffix,
"validation_file": validation_file,
},
job_create_params.JobCreateParams,
),
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=FineTuningJob,
)
async def retrieve(
self,
fine_tuning_job_id: str,
*,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> FineTuningJob:
"""
Get info about a fine-tuning job.
[Learn more about fine-tuning](https://platform.openai.com/docs/guides/fine-tuning)
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not fine_tuning_job_id:
raise ValueError(f"Expected a non-empty value for `fine_tuning_job_id` but received {fine_tuning_job_id!r}")
return await self._get(
f"/fine_tuning/jobs/{fine_tuning_job_id}",
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=FineTuningJob,
)
def list(
self,
*,
after: str | NotGiven = NOT_GIVEN,
limit: int | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> AsyncPaginator[FineTuningJob, AsyncCursorPage[FineTuningJob]]:
"""
List your organization's fine-tuning jobs
Args:
after: Identifier for the last job from the previous pagination request.
limit: Number of fine-tuning jobs to retrieve.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
return self._get_api_list(
"/fine_tuning/jobs",
page=AsyncCursorPage[FineTuningJob],
options=make_request_options(
extra_headers=extra_headers,
extra_query=extra_query,
extra_body=extra_body,
timeout=timeout,
query=maybe_transform(
{
"after": after,
"limit": limit,
},
job_list_params.JobListParams,
),
),
model=FineTuningJob,
)
async def cancel(
self,
fine_tuning_job_id: str,
*,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> FineTuningJob:
"""
Immediately cancel a fine-tune job.
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not fine_tuning_job_id:
raise ValueError(f"Expected a non-empty value for `fine_tuning_job_id` but received {fine_tuning_job_id!r}")
return await self._post(
f"/fine_tuning/jobs/{fine_tuning_job_id}/cancel",
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=FineTuningJob,
)
def list_events(
self,
fine_tuning_job_id: str,
*,
after: str | NotGiven = NOT_GIVEN,
limit: int | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> AsyncPaginator[FineTuningJobEvent, AsyncCursorPage[FineTuningJobEvent]]:
"""
Get status updates for a fine-tuning job.
Args:
after: Identifier for the last event from the previous pagination request.
limit: Number of events to retrieve.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not fine_tuning_job_id:
raise ValueError(f"Expected a non-empty value for `fine_tuning_job_id` but received {fine_tuning_job_id!r}")
return self._get_api_list(
f"/fine_tuning/jobs/{fine_tuning_job_id}/events",
page=AsyncCursorPage[FineTuningJobEvent],
options=make_request_options(
extra_headers=extra_headers,
extra_query=extra_query,
extra_body=extra_body,
timeout=timeout,
query=maybe_transform(
{
"after": after,
"limit": limit,
},
job_list_events_params.JobListEventsParams,
),
),
model=FineTuningJobEvent,
)
class JobsWithRawResponse:
def __init__(self, jobs: Jobs) -> None:
self._jobs = jobs
self.create = _legacy_response.to_raw_response_wrapper(
jobs.create,
)
self.retrieve = _legacy_response.to_raw_response_wrapper(
jobs.retrieve,
)
self.list = _legacy_response.to_raw_response_wrapper(
jobs.list,
)
self.cancel = _legacy_response.to_raw_response_wrapper(
jobs.cancel,
)
self.list_events = _legacy_response.to_raw_response_wrapper(
jobs.list_events,
)
@cached_property
def checkpoints(self) -> CheckpointsWithRawResponse:
return CheckpointsWithRawResponse(self._jobs.checkpoints)
class AsyncJobsWithRawResponse:
def __init__(self, jobs: AsyncJobs) -> None:
self._jobs = jobs
self.create = _legacy_response.async_to_raw_response_wrapper(
jobs.create,
)
self.retrieve = _legacy_response.async_to_raw_response_wrapper(
jobs.retrieve,
)
self.list = _legacy_response.async_to_raw_response_wrapper(
jobs.list,
)
self.cancel = _legacy_response.async_to_raw_response_wrapper(
jobs.cancel,
)
self.list_events = _legacy_response.async_to_raw_response_wrapper(
jobs.list_events,
)
@cached_property
def checkpoints(self) -> AsyncCheckpointsWithRawResponse:
return AsyncCheckpointsWithRawResponse(self._jobs.checkpoints)
class JobsWithStreamingResponse:
def __init__(self, jobs: Jobs) -> None:
self._jobs = jobs
self.create = to_streamed_response_wrapper(
jobs.create,
)
self.retrieve = to_streamed_response_wrapper(
jobs.retrieve,
)
self.list = to_streamed_response_wrapper(
jobs.list,
)
self.cancel = to_streamed_response_wrapper(
jobs.cancel,
)
self.list_events = to_streamed_response_wrapper(
jobs.list_events,
)
@cached_property
def checkpoints(self) -> CheckpointsWithStreamingResponse:
return CheckpointsWithStreamingResponse(self._jobs.checkpoints)
class AsyncJobsWithStreamingResponse:
def __init__(self, jobs: AsyncJobs) -> None:
self._jobs = jobs
self.create = async_to_streamed_response_wrapper(
jobs.create,
)
self.retrieve = async_to_streamed_response_wrapper(
jobs.retrieve,
)
self.list = async_to_streamed_response_wrapper(
jobs.list,
)
self.cancel = async_to_streamed_response_wrapper(
jobs.cancel,
)
self.list_events = async_to_streamed_response_wrapper(
jobs.list_events,
)
@cached_property
def checkpoints(self) -> AsyncCheckpointsWithStreamingResponse:
return AsyncCheckpointsWithStreamingResponse(self._jobs.checkpoints)