-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathreconstruction.py
79 lines (64 loc) · 3.17 KB
/
reconstruction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import os
from tqdm import tqdm
import torch
from torch.utils.data import DataLoader
from logger import Logger, Visualizer
import numpy as np
import imageio
def reconstruction(config, generator, kp_detector, checkpoint, log_dir, dataset, bg_predictor=None):
png_dir = os.path.join(log_dir, 'reconstruction/png')
log_dir = os.path.join(log_dir, 'reconstruction')
if checkpoint is not None:
Logger.load_cpk(checkpoint, generator=generator, kp_detector=kp_detector, bg_predictor=bg_predictor)
else:
print('warining: reconstruction without checkpoiont, make sure you are using the trained models...')
# raise AttributeError("Checkpoint should be specified for mode='reconstruction'.")
dataloader = DataLoader(dataset, batch_size=1, shuffle=False, num_workers=2)
if not os.path.exists(log_dir):
os.makedirs(log_dir)
if not os.path.exists(png_dir):
os.makedirs(png_dir)
loss_list = []
if bg_predictor is not None:
bg_predictor.eval()
generator.eval()
kp_detector.eval()
from frames_dataset import read_video
for it, x in tqdm(enumerate(dataloader)):
if config['reconstruction_params']['num_videos'] is not None:
if it > config['reconstruction_params']['num_videos']:
break
with torch.no_grad():
predictions = []
visualizations = []
if torch.cuda.is_available():
x['video'] = x['video'].cuda()
kp_source = kp_detector(x['video'][:, :, 0])
for frame_idx in range(x['video'].shape[2]):
source = x['video'][:, :, 0]
driving = x['video'][:, :, frame_idx]
kp_driving = kp_detector(driving)
if bg_predictor is not None:
bg_params = bg_predictor(source,driving)
else:
bg_params = None
out = generator(source, kp_source=kp_source, kp_driving=kp_driving, bg_params=bg_params)
out['kp_source'] = kp_source
out['kp_driving'] = kp_driving
# out['kp_norm'] = kp_driving
del out['sparse_deformed']
del out['deformed']
# del out['occlusion_map']
# del out['prediction']
predictions.append(np.transpose(out['prediction'].data.cpu().numpy(), [0, 2, 3, 1])[0])
visualization = Visualizer(**config['visualizer_params']).visualize(source=source,
driving=driving, out=out,animate=False)
visualizations.append(visualization)
loss_list.append(torch.abs(out['prediction'] - driving).mean().cpu().numpy())
predictions = np.concatenate(predictions, axis=1)
imageio.imsave(os.path.join(png_dir, x['name'][0] + '.png'), (255 * predictions).astype(np.uint8))
image_name = x['name'][0] + config['reconstruction_params']['format']
imageio.mimsave(os.path.join(log_dir, image_name), visualizations)
# print(len(loss_list))
print("Reconstruction loss: %s" % np.mean(loss_list))
return loss_list