-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmodel.py
402 lines (333 loc) · 13.8 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
import math
import random
import torch, inspect
from torch import nn, optim
from torch.nn import functional as F
from op import FusedLeakyReLU, fused_leaky_relu, upfirdn2d, conv2d_gradfix
from layers import (
PixelNorm, ToRGB, ConstantInput, StyledConv, Blur, EqualConv2d,
ModulatedConv2d, EqualLinear, FromRGB,
SelfAttention, CrossAttention, TextEncoder,
)
def append_if(condition, var, elem):
if (condition):
var.append(elem)
class Generator(nn.Module):
def __init__(
self, size, z_dim, n_mlp, tin_dim=0, tout_dim=0,
channel_multiplier=2, blur_kernel=[1, 3, 3, 1], lr_mlp=0.01,
use_self_attn=False, use_text_cond=False, use_multi_scale=False,
attn_res=[8, 16, 32],
):
super().__init__()
self.size = size
self.use_multi_scale = use_multi_scale
self.use_self_attn = use_self_attn
self.use_text_cond = use_text_cond
if use_text_cond:
self.style_dim = z_dim + tout_dim
self.text_encoder = TextEncoder(tin_dim, tout_dim)
else:
self.style_dim = z_dim
layers = [PixelNorm()]
for i in range(n_mlp):
layers.append(
EqualLinear(
self.style_dim, self.style_dim, lr_mul=lr_mlp, activation="fused_lrelu"
)
)
self.style = nn.Sequential(*layers)
self.channels = {
4: 512, 8: 512, 16: 512, 32: 512, 64: 256 * channel_multiplier,
128: 128 * channel_multiplier, 256: 64 * channel_multiplier,
512: 32 * channel_multiplier, 1024: 16 * channel_multiplier,
}
n_kernels = {
4: 1, 8: 1, 16: 2, 32: 4, 64: 8,
128: 8, 256: 8, 512: 8, 1024: 8,
}
self.input = ConstantInput(self.channels[4])
self.conv1 = StyledConv(
self.channels[4], self.channels[4], 3, self.style_dim, blur_kernel=blur_kernel
)
self.to_rgb1 = ToRGB(self.channels[4], self.style_dim, upsample=False)
self.log_size = int(math.log(size, 2))
self.num_layers = (self.log_size - 2) * 2 + 1
self.convs = nn.ModuleList()
self.attns = nn.ModuleList()
self.upsamples = nn.ModuleList()
self.to_rgbs = nn.ModuleList()
self.noises = nn.Module()
in_channel = self.channels[4]
for layer_idx in range(self.num_layers):
res = (layer_idx + 5) // 2
shape = [1, 1, 2 ** res, 2 ** res]
self.noises.register_buffer(f"noise_{layer_idx}", torch.randn(*shape))
for i in range(3, self.log_size + 1):
res = 2 ** i
out_channel = self.channels[res]
self.convs.append(StyledConv(
in_channel, out_channel, 3, self.style_dim, upsample=True,
blur_kernel=blur_kernel, n_kernel=n_kernels[res],
))
self.convs.append(StyledConv(
out_channel, out_channel, 3, self.style_dim, blur_kernel=blur_kernel,
n_kernel=n_kernels[res],
))
self.attns.append(
SelfAttention(out_channel) if use_self_attn and res in attn_res else None
)
self.attns.append(
CrossAttention(out_channel, tout_dim) if use_text_cond and res in attn_res else None
)
self.to_rgbs.append(ToRGB(out_channel, self.style_dim))
in_channel = out_channel
self.n_latent = self.log_size * 2 - 2
def make_noise(self):
device = self.input.input.device
noises = [torch.randn(1, 1, 2 ** 2, 2 ** 2, device=device)]
for i in range(3, self.log_size + 1):
for _ in range(2):
noises.append(torch.randn(1, 1, 2 ** i, 2 ** i, device=device))
return noises
def mean_latent(self, n_latent):
latent_in = torch.randn(
n_latent, self.style_dim, device=self.input.input.device
)
latent = self.style(latent_in).mean(0, keepdim=True)
return latent
def get_latent(self, input):
return self.style(input)
def forward(
self, styles, text_embeds=None,
return_latents=False, inject_index=None, truncation=1, truncation_latent=None,
input_is_latent=False, noise=None, randomize_noise=True,
):
if self.use_text_cond:
seq_len = text_embeds.shape[1]
text_embeds = self.text_encoder(text_embeds)
t_local, t_global = torch.split(text_embeds, [seq_len-1, 1], dim=1)
# batch, tout_dim
t_global = t_global.squeeze(dim=1)
styles = [torch.cat([style_, t_global], dim=1) for style_ in styles]
if not input_is_latent:
styles = [self.style(s) for s in styles]
if noise is None:
if randomize_noise:
noise = [None] * self.num_layers
else:
noise = [
getattr(self.noises, f"noise_{i}") for i in range(self.num_layers)
]
if truncation < 1:
style_t = []
for style in styles:
style_t.append(
truncation_latent + truncation * (style - truncation_latent)
)
styles = style_t
if len(styles) < 2:
inject_index = self.n_latent
if styles[0].ndim < 3:
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
else:
latent = styles[0]
else:
if inject_index is None:
inject_index = random.randint(1, self.n_latent - 1)
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
latent2 = styles[1].unsqueeze(1).repeat(1, self.n_latent - inject_index, 1)
latent = torch.cat([latent, latent2], 1)
images = []
out = self.input(latent)
out = self.conv1(out, latent[:, 0], noise=noise[0])
skip = self.to_rgb1(out, latent[:, 1])
append_if(self.use_multi_scale, images, skip)
i = 1
for conv1, conv2, noise1, noise2, to_rgb, self_attn, cross_attn in zip(
self.convs[::2], self.convs[1::2], noise[1::2], noise[2::2], self.to_rgbs,
self.attns[::2], self.attns[1::2],
):
out = conv1(out, latent[:, i], noise=noise1)
out = conv2(out, latent[:, i + 1], noise=noise2)
if self_attn: out = self_attn(out)
if cross_attn: out = cross_attn(out, t_local)
skip = to_rgb(out, latent[:, i + 2], skip)
append_if(self.use_multi_scale, images, skip)
i += 2
# images: [4x, 8x, ..., 32x, 64x] or [64x]
if not self.use_multi_scale:
images = [skip]
if return_latents:
return images, latent
else:
return images, None
def set_optim(self, lr=0.0025, betas=(0, 0.99), weight_decay= 0.00001, attn_weight_decay=0.01):
if not (self.use_self_attn or self.use_text_cond):
g_optim = optim.AdamW(self.parameters(), lr=lr, betas=betas, weight_decay=weight_decay)
else:
param_dict = {pn: p for pn, p in self.named_parameters()}
decay, attn_decay = set(param_dict.keys()), set()
attn_types = (SelfAttention, CrossAttention)
for mn, m in self.named_modules():
if isinstance(m, attn_types):
for pn, p in m.named_parameters():
# full param name
mpn = '%s.%s' % (mn, pn) if mn else pn
attn_decay.add(mpn)
decay.remove(mpn)
optim_groups = [
{"params": [param_dict[pn] for pn in sorted(list(decay))], "weight_decay": weight_decay},
{"params": [param_dict[pn] for pn in sorted(list(attn_decay))], "weight_decay": attn_weight_decay},
]
# new PyTorch nightly has a new 'fused' option for AdamW that is much faster
use_fused = 'fused' in inspect.signature(torch.optim.AdamW).parameters
print(f"using fused AdamW: {use_fused}")
extra_args = dict(fused=True) if use_fused else dict()
g_optim = optim.AdamW(optim_groups, lr=lr, betas=betas, **extra_args)
return g_optim
class ConvLayer(nn.Sequential):
def __init__(
self,
in_channel,
out_channel,
kernel_size,
downsample=False,
blur_kernel=[1, 3, 3, 1],
bias=True,
activate=True,
):
layers = []
if downsample:
factor = 2
p = (len(blur_kernel) - factor) + (kernel_size - 1)
pad0 = (p + 1) // 2
pad1 = p // 2
layers.append(Blur(blur_kernel, pad=(pad0, pad1)))
stride = 2
self.padding = 0
else:
stride = 1
self.padding = kernel_size // 2
layers.append(
EqualConv2d(
in_channel,
out_channel,
kernel_size,
padding=self.padding,
stride=stride,
bias=bias and not activate,
)
)
if activate:
layers.append(FusedLeakyReLU(out_channel, bias=bias))
super().__init__(*layers)
class ResBlock(nn.Module):
def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1]):
super().__init__()
self.conv1 = ConvLayer(in_channel, in_channel, 3)
self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=True)
self.skip = ConvLayer(
in_channel, out_channel, 1, downsample=True, activate=False, bias=False
)
def forward(self, input):
out = self.conv1(input)
out = self.conv2(out)
skip = self.skip(input)
out = (out + skip) / math.sqrt(2)
return out
class Predictor(nn.Module):
def __init__(self, in_channel, tin_dim=0):
super().__init__()
if tin_dim != 0:
self.text_block = nn.ModuleList()
inc, outc = in_channel, 256
for i in range(4):
self.text_block.append(nn.ModuleList([
ModulatedConv2d(inc, outc, 1, tin_dim),
nn.LeakyReLU()
]))
inc = outc
self.text_block.append(nn.Conv2d(outc, 1, 1))
else:
self.text_block = None
self.image_block = nn.Sequential(
nn.Conv2d(in_channel, 256, 1),
nn.LeakyReLU(),
nn.Conv2d(256, 1, 1),
)
def forward(self, image_embeds, text_embeds=None):
# [n, c, h, w] --> [n, 256, h, w]
score = self.image_block(image_embeds)
score = torch.mean(score, dim=[1, 2, 3]) # [n]
# [n, tin_dim]
if self.text_block is not None:
text_score = image_embeds
for conv, act in self.text_block[:-1]:
text_score = act(conv(text_score, text_embeds))
text_score = self.text_block[-1](text_score)
score += torch.mean(text_score, dim=[1, 2, 3])
return score
class Discriminator(nn.Module):
def __init__(self, size, tin_dim=0, tout_dim=0, channel_multiplier=2,
blur_kernel=[1, 3, 3, 1], use_multi_scale=False, use_self_attn=False,
use_text_cond=False,
):
super().__init__()
channels = {
2: 512, 4: 512, 8: 512, 16: 512, 32: 512, 64: 256 * channel_multiplier,
128: 128 * channel_multiplier, 256: 64 * channel_multiplier,
512: 32 * channel_multiplier, 1024: 16 * channel_multiplier,
}
self.use_multi_scale = use_multi_scale
self.use_self_attn = use_self_attn
self.use_text_cond = use_text_cond
self.convs = nn.ModuleList([ResBlock(3, channels[size])])
self.attns = nn.ModuleList([None])
self.heads = nn.ModuleList([None])
self.predictors = nn.ModuleList([nn.ModuleList([
Predictor(channels[size], tout_dim) if use_multi_scale else None
])])
log_size = int(math.log(size, 2))
in_channel = channels[size]
count = 2
for i in range(log_size, 2, -1):
out_channel = channels[2 ** (i - 1)]
self.convs.append(ResBlock(in_channel, out_channel, blur_kernel))
self.attns.append(SelfAttention(out_channel) if use_self_attn else None)
# input is [32x, 16x, 8x, 4x, 2x]
self.heads.append(FromRGB(3, in_channel) if use_multi_scale else None)
self.predictors.append(
nn.ModuleList([
Predictor(out_channel, tout_dim) for _ in range(count)
]) if use_multi_scale else None
)
count += 1
in_channel = out_channel
self.text_encoder = TextEncoder(tin_dim, tout_dim) if use_text_cond else None
loss_ratio = torch.tensor([2.] + [1.] * (len(self.predictors)-1))
self.loss_ratio = (loss_ratio / torch.sum(loss_ratio)).detach()
def forward(self, inputs, text_embeds=None):
if self.use_text_cond:
batch = text_embeds.shape[0]
# [n, seq_len, tin_dim] --> [n, tout_dim]
text_embeds = self.text_encoder(text_embeds)[:, -1]
i, score = -1, 0
features = [inputs[i]]
for conv, attn, head, pred in zip(
self.convs, self.attns, self.heads, self.predictors,
):
if head is not None:
features.append(head(inputs[i]))
pred_inp = []
for f in features:
out = conv(f)
if attn: out = attn(out)
pred_inp.append(out)
for j in range(len(features) if self.use_multi_scale else 0):
score += self.loss_ratio[j] * pred[j](pred_inp[j])
features = pred_inp
i = i - 1 if self.use_multi_scale else -1
if not self.use_multi_scale:
score += torch.mean(out, dim=[1, 2, 3])
return score