-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpractice.py
46 lines (37 loc) · 1.01 KB
/
practice.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
# -*- coding: utf-8 -*-
# @Time : 11/12/20 3:17 PM
# @Author : Jingnan
# @Email : [email protected]
import matplotlib.pyplot as plt
import numpy as np
import random
from jjnutils.util import load_itk
img, _, _ = load_itk("/data/jjia/mt/data/lesion/valid/ori_ct/Covid_lesion/volume-covid19-A-0698.nii.gz")
img = img[20, :, :, ...]
noise = np.random.normal(0, 0.05, img.shape)
img_addnnoise = img + noise
plt.figure()
plt.subplot(3,3,1)
plt.imshow(noise)
plt.subplot(3,3,2)
plt.imshow(img)
plt.subplot(3,3,3)
plt.imshow(img_addnnoise)
normized_img = (img - np.mean(img)) / np.std(img)
normized_img_addnoise = normized_img + noise
plt.subplot(3,3,4)
plt.imshow(noise)
plt.subplot(3,3,5)
plt.imshow(normized_img)
plt.subplot(3,3,6)
plt.imshow(normized_img_addnoise)
noise_2 = np.random.normal(0, 0.1, img.shape)
normized_img_addnoise2 = normized_img + noise_2
plt.subplot(3,3,7)
plt.imshow(noise_2)
plt.subplot(3,3,8)
plt.imshow(normized_img)
plt.subplot(3,3,9)
plt.imshow(normized_img_addnoise2)
plt.show()
print('a')