-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
118 lines (94 loc) · 4.35 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import os
from tensorflow.keras import layers
from tensorflow.keras import Model
!wget --no-check-certificate \
https://storage.googleapis.com/mledu-datasets/inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5 \
-O /tmp/inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5
from tensorflow.keras.applications.inception_v3 import InceptionV3
local_weights_file = '/tmp/inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5'
pre_trained_model = InceptionV3(input_shape = (150, 150, 3),
include_top = False,
weights = None)
pre_trained_model.load_weights(local_weights_file)
for layer in pre_trained_model.layers:
layer.trainable = False
# pre_trained_model.summary()
last_layer = pre_trained_model.get_layer('mixed7')
print('last layer output shape: ', last_layer.output_shape)
last_output = last_layer.output
from tensorflow.keras.optimizers import RMSprop
# Flatten the output layer to 1 dimension
x = layers.Flatten()(last_output)
x = layers.Dense(1024, activation='selu')(x)
x = layers.Dropout(0.1)(x)
x = layers.Dense(512, activation='selu')(x)
x = layers.Dropout(0.1)(x)
# Final Softmax layer for classification
x = layers.Dense(6, activation='softmax')(x)
model = Model( pre_trained_model.input, x)
model.compile(optimizer = RMSprop(lr=0.0001),
loss = 'categorical_crossentropy',
metrics = ['acc'])
from tensorflow.keras.preprocessing.image import ImageDataGenerator
train_dir = r"/content/drive/MyDrive/DatasetNew/DatasetNew"
validation_dir = r"/content/drive/MyDrive/Validation"
# Add our data-augmentation parameters to ImageDataGenerator
train_datagen = ImageDataGenerator(rescale = 1./255,
rotation_range=10,
width_shift_range=0.3,
height_shift_range=0.3,
# featurewise_std_normalization=True,
# samplewise_std_normalization=True,
brightness_range=(0.2,0.5),
# shear_range=0.2,
# zoom_range=0.2,
horizontal_flip=True,
fill_mode='nearest')
# Note that the validation data should not be augmented!
# test_datagen = ImageDataGenerator( rescale = 1.0/255. )
# Flow training images in batches of 20 using train_datagen generator
train_generator = train_datagen.flow_from_directory(train_dir,
batch_size = 20,
shuffle="True",
class_mode = 'categorical',
target_size = (150, 150))
# Flow validation images in batches of 20 using test_datagen generator
validation_generator = train_datagen.flow_from_directory(validation_dir,
batch_size = 20,
shuffle="True",
class_mode = 'categorical',
target_size = (150, 150))
import tensorflow as tf
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
class myCallback(tf.keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs={}):
if (logs.get('acc')>0.85):
self.model.stop_training = True
callbacks=myCallback()
history = model.fit(
train_generator,
validation_data = validation_generator,
steps_per_epoch = 20,
epochs = 500,
validation_steps = 20,
verbose = 1,callbacks=[callbacks])
model.save("activity34.h5")
import matplotlib.pyplot as plt
acc = history.history['acc']
# val_acc = history.history['val_acc']
loss = history.history['loss']
# val_loss = history.history['val_loss']
epochs = range(len(acc))
model.save("activity4.h5")
plt.plot(epochs, acc, 'r', label='Training accuracy')
plt.title('Training Accuracy')
plt.legend(loc=0)
plt.figure()
plt.show()
model.save("activity4.h5")
plt.plot(epochs, loss, 'r', label='Training Loss')
plt.title('Training Loss')
plt.legend(loc=0)
plt.figure()
plt.show()