-
Notifications
You must be signed in to change notification settings - Fork 1
/
vtk_export_guidel.py
418 lines (319 loc) · 13.2 KB
/
vtk_export_guidel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
# coding: utf-8
import os, re
import numpy as np
from osgeo import gdal
import flopy
from flopy.export import vtk as fv
import vtk
import flopy.utils.binaryfile as bf
from get_geological_structure import get_geological_structure as ggs
from workingFunctions import Functions # functions from the workingFunctions.py file
print('Import Georeferences')
def GetExtent(gt, geotx, geoty, cols, rows):
ext = []
xarr = [0, cols]
yarr = [0, rows]
for px in xarr:
for py in yarr:
x = geotx[0] + (px * gt[1]) + (py * gt[2])
y = geoty[0] + (px * gt[4]) + (py * gt[5])
ext.append([x, y])
print(x, y)
yarr.reverse()
return ext
modelfolder = 'H:/Users/gauvain/DEM/Guidel/'
modelname = 'Guidel1'
mf1 = flopy.modflow.Modflow()
dis = flopy.modflow.ModflowDis.load(modelfolder+modelname+'.dis',mf1)
cols = dis.ncol
rows = dis.nrow
# change directory to the script path
os.chdir(modelfolder) # use your own path
# open the DIS, BAS files
disLines = open(modelfolder + modelname + '.dis').readlines() # discretization data
basLines = open(modelfolder + modelname + '.bas').readlines() # active / inactive data
# create a empty dictionay to store the model features
modDis = {}
modBas = {}
# # Working with the DIS (Discretization Data) data
# ### General model features as modDis dict
# In[3]:
# get the extreme coordinates form the dis header
modDis["vertexXmin"] = 0
modDis["vertexYmin"] = 0
modDis["vertexXmax"] = 3670
modDis["vertexYmax"] = 2930
# get the number of layers, rows, columns, cell and vertex numbers
linelaycolrow = disLines[1].split()
modDis["cellLays"] = int(linelaycolrow[0])
modDis["cellRows"] = int(linelaycolrow[1])
modDis["cellCols"] = int(linelaycolrow[2])
modDis["vertexLays"] = modDis["cellLays"] + 1
modDis["vertexRows"] = modDis["cellRows"] + 1
modDis["vertexCols"] = modDis["cellCols"] + 1
modDis["vertexperlay"] = modDis["vertexRows"] * modDis["vertexCols"]
modDis["cellsperlay"] = modDis["cellRows"] * modDis["cellCols"]
# ### Get the DIS Breakers
# In[4]:
print('Import DIS')
# get the grid breakers
modDis['disBreakers'] = {}
breakerValues = ["INTERNAL", "CONSTANT"]
vertexLay = 0
for item in breakerValues:
for line in disLines:
if item in line:
if 'delr' in line: # DELR is cell width along rows
modDis['disBreakers']['DELR'] = disLines.index(line)
elif 'delc' in line: # DELC is cell width along columns
modDis['disBreakers']['DELC'] = disLines.index(line)
else:
modDis['disBreakers']['vertexLay' + str(vertexLay)] = disLines.index(line)
vertexLay += 1
# ### Get the DEL Info
# In[5]:
modDis['DELR'] = Functions.getListFromDEL(modDis['disBreakers']['DELR'], disLines, modDis['cellCols'])
modDis['DELC'] = Functions.getListFromDEL(modDis['disBreakers']['DELC'], disLines, modDis['cellRows'])
# ### Get the Cell Centroid Z
# In[6]:
modDis['cellCentroidZList'] = {}
for lay in range(modDis['vertexLays']):
# add auxiliar variables to identify breakers
lineaBreaker = modDis['disBreakers']['vertexLay' + str(lay)]
# two cases in breaker line
if 'INTERNAL' in disLines[lineaBreaker]:
lista = Functions.getListFromBreaker(lineaBreaker, modDis, disLines)
modDis['cellCentroidZList']['lay' + str(lay)] = lista
elif 'CONSTANT' in disLines[lineaBreaker]:
constElevation = float(disLines[lineaBreaker].split()[1])
modDis['cellCentroidZList']['lay' + str(lay)] = [constElevation for x in range(modDis["cellsperlay"])]
else:
pass
# ### List of arrays of cells and vertex coord
# In[7]:
modDis['vertexEasting'] = np.array(
[modDis['vertexXmin'] + np.sum(modDis['DELR'][:col]) for col in range(modDis['vertexCols'])])
modDis['vertexNorthing'] = np.array(
[modDis['vertexYmax'] - np.sum(modDis['DELC'][:row]) for row in range(modDis['vertexRows'])])
modDis['cellEasting'] = np.array(
[modDis['vertexXmin'] + np.sum(modDis['DELR'][:col]) + modDis['DELR'][col] / 2 for col in
range(modDis['cellCols'])])
modDis['cellNorthing'] = np.array(
[modDis['vertexYmax'] - np.sum(modDis['DELC'][:row]) - modDis['DELC'][row] / 2 for row in
range(modDis['cellRows'])])
# ### Interpolation from Z cell centroid to z vertex
# # Get the BAS Info
# ### Get the grid breakers
# In[8]:
print('Import DATA')
# empty dict to store BAS breakers
modBas['basBreakers'] = {}
breakerValues = ["INTERNAL", "CONSTANT"]
# store the breakers in the dict
lay = 0
for item in breakerValues:
for line in basLines:
if item in line:
if 'ibound' in line:
modBas['basBreakers']['lay' + str(lay)] = basLines.index(line)
lay += 1
else:
pass
# ### Store ibound per lay
# In[9]:
# empty dict to store cell ibound per layer
modBas['cellIboundList'] = {}
for lay in range(modDis['cellLays']):
# add auxiliar variables to identify breakers
lineaBreaker = modBas['basBreakers']['lay' + str(lay)]
# two cases in breaker line
if 'INTERNAL' in basLines[lineaBreaker]:
lista = Functions.getListFromBreaker(lineaBreaker, modDis, basLines)
modBas['cellIboundList']['lay' + str(lay)] = lista
elif 'CONSTANT' in basLines[lineaBreaker]:
constElevation = float(disLines[lineaBreaker].split()[1]) # todavia no he probado esto
modBas['cellIboundList']['lay' + str(lay)] = [constElevation for x in range(modDis["cellsperlay"])]
else:
pass
# ### Store Cell Centroids as a Numpy array
# In[10]:
# empty list to store cell centroid
cellCentroidList = []
# numpy array of cell centroid
for row in range(modDis['cellRows']):
for col in range(modDis['cellCols']):
cellCentroidList.append([modDis['cellEasting'][col], modDis['cellNorthing'][row]])
# store cell centroids as numpy array
modDis['cellCentroids'] = np.asarray(cellCentroidList)
modDis['vertexXgrid'] = np.repeat(modDis['vertexEasting'].reshape(modDis['vertexCols'], 1), modDis['vertexRows'],
axis=1).T
modDis['vertexYgrid'] = np.repeat(modDis['vertexNorthing'], modDis['vertexCols']).reshape(modDis['vertexRows'],
modDis['vertexCols'])
modDis['vertexZGrid'] = Functions.interpolateCelltoVertex(modDis, 'cellCentroidZList')
# # Lists for the VTK file
# ### Definition of xyz points for all vertex
# In[22]:
# empty list to store all vertex XYZ
vertexXYZPoints = []
# definition of xyz points for all vertex
for lay in range(modDis['vertexLays']):
for row in range(modDis['vertexRows']):
for col in range(modDis['vertexCols']):
xyz = [
modDis['vertexEasting'][col],
modDis['vertexNorthing'][row],
modDis['vertexZGrid']['lay' + str(lay)][row, col]
]
vertexXYZPoints.append(xyz)
# In[25]:
# empty list to store all ibound
listIBound = []
listHk = []
listFlow = []
# definition of IBOUND
for lay in range(modDis['cellLays']):
for item in modBas['cellIboundList']['lay' + str(lay)]:
listIBound.append(item)
# ### Definition of Cell Ibound List
# In[28]:
# # Hexahedrons and Quads sequences for the VTK File
# ### List of Layer Quad Sequences (Works only for a single layer)
# In[29]:
# empty list to store cell coordinates
listLayerQuadSequence = []
# definition of hexahedrons cell coordinates
for row in range(modDis['cellRows']):
for col in range(modDis['cellCols']):
pt0 = modDis['vertexCols'] * (row + 1) + col
pt1 = modDis['vertexCols'] * (row + 1) + col + 1
pt2 = modDis['vertexCols'] * (row) + col + 1
pt3 = modDis['vertexCols'] * (row) + col
anyList = [pt0, pt1, pt2, pt3]
listLayerQuadSequence.append(anyList)
# ### List of Hexa Sequences
# In[30]:
# empty list to store cell coordinates
listHexaSequence = []
# definition of hexahedrons cell coordinates
for lay in range(modDis['cellLays']):
for row in range(modDis['cellRows']):
for col in range(modDis['cellCols']):
pt0 = modDis['vertexperlay'] * (lay + 1) + modDis['vertexCols'] * (row + 1) + col
pt1 = modDis['vertexperlay'] * (lay + 1) + modDis['vertexCols'] * (row + 1) + col + 1
pt2 = modDis['vertexperlay'] * (lay + 1) + modDis['vertexCols'] * (row) + col + 1
pt3 = modDis['vertexperlay'] * (lay + 1) + modDis['vertexCols'] * (row) + col
pt4 = modDis['vertexperlay'] * (lay) + modDis['vertexCols'] * (row + 1) + col
pt5 = modDis['vertexperlay'] * (lay) + modDis['vertexCols'] * (row + 1) + col + 1
pt6 = modDis['vertexperlay'] * (lay) + modDis['vertexCols'] * (row) + col + 1
pt7 = modDis['vertexperlay'] * (lay) + modDis['vertexCols'] * (row) + col
anyList = [pt0, pt1, pt2, pt3, pt4, pt5, pt6, pt7]
listHexaSequence.append(anyList)
# ### Active Cells and Hexa Sequences
# In[32]:
listActiveHexaSequenceDef = []
listIBoundDef = []
listHkDef = []
listFlowDef = []
# filter hexahedrons and heads for active cells
for i in range(len(listIBound)):
if listIBound[i] > -10:
listActiveHexaSequenceDef.append(listHexaSequence[i])
listIBoundDef.append(listIBound[i])
# In[34]:
# # VTK creation
# ### Summary of lists for the vtk creation
# In[35]:
### Point sets
# vertexXYZPoints for XYZ in all cell vertex
# vertexWaterTableXYZPoints for XYZ in all water table quad vertex
# listDrainCellQuadXYZPoints for XYZ in all drain cells quad vertex
### Quad and Hexa secuences
# listHexaSequenceDef for Head Hexa Sequence in all active cells
# listActiveHexaSequenceDef for Active Hexa Sequence in all active cells
# listWaterTableQuadSequenceDef for Water Table Quad Sequence in all active cells
# listDrainsCellsSecuenceDef for Drain Cell Quad Sequence in drain cells
### Cell data
# listCellHeadDef for filtered active cells
# listIBoundDef
# listWaterTableCellDef for filtered water table cells
# listDrainsCellsIODef for filtered drains cells
### Point data
# listVertexHead for heads in all cells
# ### Heads on Vertex and Cells VTK
# In[36]:
# ### Active Cell VTK
# In[37]:
print('Create files')
textoVtk = open(modelfolder + 'output_files/VTU_Grid.vtu', 'w')
# add header
textoVtk.write('<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64">\n')
textoVtk.write(' <UnstructuredGrid>\n')
textoVtk.write(' <Piece NumberOfPoints="' + str(len(vertexXYZPoints)) + '" NumberOfCells="' + str(
len(listActiveHexaSequenceDef)) + '">\n')
# cell data
textoVtk.write(' <CellData Scalars="Model">\n')
textoVtk.write(' <DataArray type="Int32" Name="Active" format="ascii">\n')
for item in range(len(listIBoundDef)): # cell list
textvalue = str(int(listIBoundDef[item]))
if item == 0:
textoVtk.write(' ' + textvalue + ' ')
elif item % 20 == 0:
textoVtk.write(textvalue + '\n ')
else:
textoVtk.write(textvalue + ' ')
textoVtk.write('\n')
textoVtk.write(' </DataArray>\n')
textoVtk.write(' </CellData>\n')
# points definition
textoVtk.write(' <Points>\n')
textoVtk.write(' <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="ascii">\n')
for item in range(len(vertexXYZPoints)):
tuplevalue = tuple(vertexXYZPoints[item])
if item == 0:
textoVtk.write(" %.2f %.2f %.2f " % tuplevalue)
elif item % 4 == 0:
textoVtk.write('%.2f %.2f %.2f \n ' % tuplevalue)
elif item == len(vertexXYZPoints) - 1:
textoVtk.write("%.2f %.2f %.2f \n" % tuplevalue)
else:
textoVtk.write("%.2f %.2f %.2f " % tuplevalue)
textoVtk.write(' </DataArray>\n')
textoVtk.write(' </Points>\n')
# cell connectivity
textoVtk.write(' <Cells>\n')
textoVtk.write(' <DataArray type="Int64" Name="connectivity" format="ascii">\n')
for item in range(len(listActiveHexaSequenceDef)):
textoVtk.write(' ')
textoVtk.write('%s %s %s %s %s %s %s %s \n' % tuple(listActiveHexaSequenceDef[item]))
textoVtk.write(' </DataArray>\n')
# cell offsets
textoVtk.write(' <DataArray type="Int64" Name="offsets" format="ascii">\n')
for item in range(len(listActiveHexaSequenceDef)):
offset = str((item + 1) * 8)
if item == 0:
textoVtk.write(' ' + offset + ' ')
elif item % 20 == 0:
textoVtk.write(offset + ' \n ')
elif item == len(listActiveHexaSequenceDef) - 1:
textoVtk.write(offset + ' \n')
else:
textoVtk.write(offset + ' ')
textoVtk.write(' </DataArray>\n')
# cell types
textoVtk.write(' <DataArray type="UInt8" Name="types" format="ascii">\n')
for item in range(len(listActiveHexaSequenceDef)):
if item == 0:
textoVtk.write(' ' + '12 ')
elif item % 20 == 0:
textoVtk.write('12 \n ')
elif item == len(listActiveHexaSequenceDef) - 1:
textoVtk.write('12 \n')
else:
textoVtk.write('12 ')
textoVtk.write(' </DataArray>\n')
textoVtk.write(' </Cells>\n')
# footer
textoVtk.write(' </Piece>\n')
textoVtk.write(' </UnstructuredGrid>\n')
textoVtk.write('</VTKFile>\n')
textoVtk.close()