Skip to content

Latest commit

 

History

History
199 lines (150 loc) · 8.75 KB

README.md

File metadata and controls

199 lines (150 loc) · 8.75 KB

DPO: Dual-Perturbation Optimization for Test-time Adaptation in 3D Object Detection

Official code release for the paper "DPO: Dual-Perturbation Optimization for Test-time Adaptation in 3D Object Detection", published in ACM MM 2024.

[OpenReview] [arXiv]

Abstract

LiDAR-based 3D object detection has seen impressive advances in recent times. However, deploying trained 3D detectors in the real world often yields unsatisfactory performance when the distribution of the test data significantly deviates from the training data due to different weather conditions, object sizes, etc. A key factor in this performance degradation is the diminished generalizability of pre-trained models, which creates a sharp loss landscape during training. Such sharpness, when encountered during testing, can precipitate significant performance declines, even with minor data variations. To address the aforementioned challenges, we propose dual-perturbation optimization (DPO) for Test-time Adaptation in 3D Object Detection (TTA-3OD). We minimize the sharpness to cultivate a flat loss landscape to ensure model resiliency to minor data variations, thereby enhancing the generalization of the adaptation process. To fully capture the inherent variability of the test point clouds, we further introduce adversarial perturbation to the input BEV features to better simulate the noisy test environment. As the dual perturbation strategy relies on trustworthy supervision signals, we utilize a reliable Hungarian matcher to filter out pseudo-labels sensitive to perturbations. Additionally, we introduce early Hungarian cutoff to avoid error accumulation from incorrect pseudo-labels by halting the adaptation process. Extensive experiments across three types of transfer tasks demonstrate that the proposed DPO significantly surpasses previous state-of-the-art approaches, specifically on Waymo -> KITTI, outperforming the most competitive baseline by 57.72% in $AP_{3D}$ and reaching 91% of the fully supervised upper bound.

Installation

Environment

All the codes are tested in the following environment:

All packages/libraries tested for this project have been exported to in requirements.txt.

Note: wandb is required to record the information during adaptation.

Install pcdet v0.3

NOTE: Please re-install pcdet v0.3 by running python setup.py develop even if you have already installed previous version.

a. Install the dependent libraries as follows:

  • Install the dependent python libraries:
pip install -r requirements.txt 

b. Install this pcdet library by running the following command:

python setup.py develop

Dataset Preparation

Currently we provide the dataloader of KITTI dataset and NuScenes dataset, and the supporting of more datasets are on the way.

KITTI Dataset

  • Please download the official KITTI 3D object detection dataset and organize the downloaded files as follows (the road planes could be downloaded from [road plane], which are optional for data augmentation in the training):
  • NOTE: if you already have the data infos from pcdet v0.1, you can choose to use the old infos and set the DATABASE_WITH_FAKELIDAR option in tools/cfgs/dataset_configs/kitti_dataset.yaml as True. The second choice is that you can create the infos and gt database again and leave the config unchanged.
OpenPCDet
├── data
│   ├── kitti
│   │   │── ImageSets
│   │   │── training
│   │   │   ├──calib & velodyne & label_2 & image_2 & (optional: planes)
│   │   │── testing
│   │   │   ├──calib & velodyne & image_2
├── pcdet
├── tools
  • Generate the data infos by running the following command:
python -m pcdet.datasets.kitti.kitti_dataset create_kitti_infos tools/cfgs/dataset_configs/kitti_dataset.yaml

KITTI-C Dataset

Please follow Robo3D to download and prepare the KITTI-C dataset.

NuScenes Dataset

OpenPCDet
├── data
│   ├── nuscenes
│   │   │── v1.0-trainval (or v1.0-mini if you use mini)
│   │   │   │── samples
│   │   │   │── sweeps
│   │   │   │── maps
│   │   │   │── v1.0-trainval  
├── pcdet
├── tools
  • Install the nuscenes-devkit with version 1.0.5 by running the following command:
pip install nuscenes-devkit==1.0.5
  • Generate the data infos by running the following command (it may take several hours):
python -m pcdet.datasets.nuscenes.nuscenes_dataset --func create_nuscenes_infos \ 
    --cfg_file tools/cfgs/dataset_configs/nuscenes_dataset.yaml \
    --version v1.0-trainval

Waymo Open Dataset

  • Please download the official Waymo Open Dataset, including the training data training_0000.tar~training_0031.tar and the validation data validation_0000.tar~validation_0007.tar.
  • Unzip all the above xxxx.tar files to the directory of data/waymo/raw_data as follows (You could get 798 train tfrecord and 202 val tfrecord ):
OpenPCDet
├── data
│   ├── waymo
│   │   │── ImageSets
│   │   │── raw_data
│   │   │   │── segment-xxxxxxxx.tfrecord
|   |   |   |── ...
|   |   |── waymo_processed_data
│   │   │   │── segment-xxxxxxxx/
|   |   |   |── ...
│   │   │── pcdet_gt_database_train_sampled_xx/
│   │   │── pcdet_waymo_dbinfos_train_sampled_xx.pkl   
├── pcdet
├── tools
  • Install the official waymo-open-dataset by running the following command:
pip3 install --upgrade pip
# tf 2.0.0
pip3 install waymo-open-dataset-tf-2-0-0==1.2.0 --user
  • Extract point cloud data from tfrecord and generate data infos by running the following command (it takes several hours, and you could refer to data/waymo/waymo_processed_data to see how many records that have been processed):
python -m pcdet.datasets.waymo.waymo_dataset --func create_waymo_infos \
    --cfg_file tools/cfgs/dataset_configs/waymo_dataset.yaml

Note that you do not need to install waymo-open-dataset if you have already processed the data before and do not need to evaluate with official Waymo Metrics.

Get Started!

The dataset configs are located within tools/cfgs/dataset_configs, and the TTA configs are located within tools/cfgs/tta_ for different tta tasks.

Pretrain models on the source domain

python train.py --cfg_file ${CONFIG_FILE}

For example, pretrain a model on Waymo for TTA on KITTI:

python train.py --cfg_file cfgs/tta_w2k_models/secondiou/source_pretrain.yaml \
    --batch_size ${BATCH_SIZE}

Test pretained models

  • Test with a pretrained model:
python test.py --cfg_file ${CONFIG_FILE} --batch_size ${BATCH_SIZE} --ckpt ${CKPT}
  • To test all the saved checkpoints of a specific training setting and draw the performance curve on the Tensorboard, add the --eval_all argument:
python test.py --cfg_file ${CONFIG_FILE} --batch_size ${BATCH_SIZE} --eval_all
  • Notice that if you want to test on the setting with KITTI as target domain, please add --set DATA_CONFIG_TAR.FOV_POINTS_ONLY True to enable front view point cloud only:
python test.py --cfg_file ${CONFIG_FILE} --batch_size ${BATCH_SIZE} --eval_all --set DATA_CONFIG_TAR.FOV_POINTS_ONLY True

Test-Time Adaptation on the target domain

You need to set the --pretrained_model ${PRETRAINED_MODEL} to your model pre-trained on the source domain.

python tta_adapt.py --cfg_file cfgs/tta_w2k_models/secondiou/dpo.yaml \
    --batch_size ${BATCH_SIZE} --pretrained_model ${PRETRAINED_MODEL}

Acknowledgement

Our code is heavily based on and ST3D and OpenPCDet v0.3. Thanks for their awesome codebase.