-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathM_ResilienceCalculus.py
357 lines (276 loc) · 14.8 KB
/
M_ResilienceCalculus.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
import numpy as np
import pandas as pd
import re
from PySide6.QtSql import QSqlDatabase, QSqlQuery
from M_HazardClasses import ClassHazard, BuildingHazard
from M_OperateDatabases import fetch_table_from_database
from C_SITUATION import SITUATION
def Caculate_OverallDimensionRating(
Weights: pd.DataFrame,
FunctionalDimensionRating: float,
PerformanceDimensionRating: float):
Dim_weights = Weights["Dimensions"]
D1_Weight = Dim_weights.at["1", "Weight"]
D2_Weight = Dim_weights.at["2", "Weight"]
OverallRating = FunctionalDimensionRating * D1_Weight + PerformanceDimensionRating * D2_Weight
return OverallRating
def Caculate_PerformanceDimensionRating(
Weights: pd.DataFrame,
SPR_Integral: float,
SCR_Integral: float):
Obj_weights = Weights["Objectives"]
Obj_weights = Obj_weights[Obj_weights.index.str.startswith("2")]
SP_Weight = Obj_weights.at["2.1", "Weight"]
SC_Weight = Obj_weights.at["2.2", "Weight"]
PDRating = SPR_Integral * SP_Weight + SCR_Integral * SC_Weight
return PDRating
def Calculate_SystemPerformanceRating(
AnswersDatabase = QSqlDatabase,
IndicatorsLibrary = pd.DataFrame,
IndicatorsSetup = pd.DataFrame,
Situation = SITUATION):
SelectedIndicators = IndicatorsSetup[IndicatorsSetup['SelectedState'] == 1]
#SelectedIndicators.set_index("IndicatorID", inplace=True)
SPR_Indicators = IndicatorsLibrary[IndicatorsLibrary.index.str.startswith("SRP")]
# SPR_Indicators.set_index("IndicatorID", inplace=True)
SPR_Answers = pd.DataFrame(index = Situation.rainfall, columns = SPR_Indicators.index)
SPR_Answers.index.name = "RainfallID"
for rainfall in Situation.rainfall:
for indicatorID, _ in SPR_Indicators.iterrows():
if indicatorID.startswith("SRP"): #verify if needed
query = QSqlQuery(AnswersDatabase)
if query.exec(f"SELECT Value FROM {indicatorID} WHERE RainfallID = {rainfall};"):
if query.next():
answer = query.value(0)
if answer:
answer = float(answer)
elif answer is None or answer == '':
answer = np.nan
SPR_Answers.at[rainfall, indicatorID] = answer
else:
print(f"Error in query at Calculate_SystemPerformanceRating: {AnswersDatabase.lastError().text()}")
common_indices = SPR_Answers.T.index.intersection(SelectedIndicators.index)
SPR_filtered = SPR_Answers.loc[:, common_indices]
SPR_filtered["Average"] = SPR_filtered.mean(axis=1, skipna=True)
return SPR_filtered
def Caculate_ConsequencesRating(
StudyDatabase: QSqlDatabase,
AnswersDatabase: QSqlDatabase,
IndicatorsLibrary: pd.DataFrame,
IndicatorsSetup: pd.DataFrame,
Situation = SITUATION):
SelectedIndicators = IndicatorsSetup[IndicatorsSetup['SelectedState'] == 1]
Consequences_indicators = []
for ind_id, ind_prop in IndicatorsLibrary.iterrows():
ind_class = re.sub(r'\d', '', ind_id)
if ind_class != "SRP":
Consequences_indicators.append(ind_id)
ConsequencesIndicatorsSetup = IndicatorsSetup[IndicatorsSetup.index.isin(Consequences_indicators)]
SCR_Answers = pd.DataFrame(index = Situation.rainfall, columns = Consequences_indicators)
for ind_id, ind_prop in (ConsequencesIndicatorsSetup[ConsequencesIndicatorsSetup["SelectedState"]==1]).iterrows():
ind_ans = fetch_table_from_database(AnswersDatabase, f"{ind_id}")
ind_ans.set_index("RainfallID", inplace=True)
ind_unit = ind_prop["SelectedUnit"]
if "[%]" in ind_unit:
unit_type = 1
else:
unit_type = 2
if ind_id != "B1":
for rainfall, values in ind_ans.iterrows():
IndResilience = 0
if any(value == '' for value in values):
IndResilience = 0
# QMessageBox.critical("Consequences Rating Calculus ", f"Indicator {ind_id} has empty values at rainfall {rainfall}-RT")
else:
values = values.astype(float).tolist()
IndResilience = ClassHazard(
Methodology = ind_id,
ClassesValues = values,
UnitType = unit_type).calculateHazard()
SCR_Answers.at[rainfall, ind_id] = IndResilience
print(f"{ind_id} - {rainfall} years: {IndResilience}")
elif ind_id == "B1":
for rainfall in Situation.rainfall:
values = ind_ans[ind_ans.index == rainfall]
CustomUses = fetch_table_from_database(StudyDatabase, "B1UsesSetup")
IndResilience = BuildingHazard(
Methodology = ind_id,
UserCustomUses = CustomUses,
BuildingAnswers = values).calculateHazard()
SCR_Answers.at[rainfall, ind_id] = IndResilience
print(f"{ind_id} - {rainfall} years: {IndResilience}")
common_indices = SCR_Answers.T.index.intersection(SelectedIndicators.index)
SCR_filtered = SCR_Answers.loc[:, common_indices]
SCR_filtered["Average"] = SCR_filtered.mean(axis=1)
return SCR_filtered
""" for ind_id, ind_prop in SelectedIndicators.iterrows():
IndAns = fetch_table_from_database(AnswersDatabase, f"{ind_id}")
IndAns.set_index("ScenarioID", inplace=True)
if not ind_id.startswith("SRP"):
ind_unit = ind_prop["SelectedUnit"]
if "[%]" in ind_unit:
unit_type = 1
else:
unit_type = 2
if not ind_id.startswith(("SRP", "B1")):
for scn_id, values in IndAns.iterrows():
IndResilience = 0
if any(value == '' for value in values):
IndResilience = None
else:
values = values.astype(float).tolist()
IndResilience = ClassHazard(
Methodology = ind_id,
ClassesValues = values,
UnitType = unit_type).calculateHazard()
PerformanceConsequenceRating.loc[ind_id, scn_id] = IndResilience
return PerformanceConsequenceRating.T
"""
def Calculate_FunctionalRating(Weights: pd.DataFrame,
Metrics: pd.DataFrame,
MetricsOptions: pd.DataFrame,
MetricsAnswers:pd.DataFrame
):
def singlechoicescore(AnswerIndex = int, OptionsNumber = int):
score = min(1, AnswerIndex/(OptionsNumber - 1))
return round(score, 2)
def multiplechoisescore(AnswersIndexes = list, OptionsNumber = int):
if 0 in AnswersIndexes:
score = 0
else:
score = len(AnswersIndexes)/(OptionsNumber - 1) # -1 to not count the option index 0 (No, None, etc.)
return round(score, 2)
MetricsOptionsNumber = pd.DataFrame(index = Metrics.index, columns=['OptionsNumber'])
for metricID, row in MetricsOptions.iterrows():
OptionsNr = 0
for column_name, value in row.items():
if value:
OptionsNr += 1
MetricsOptionsNumber.loc[metricID, "OptionsNumber"] = OptionsNr
MetricScore = pd.DataFrame(index = Metrics.index, columns=['Score', 'DimensionID', 'ObjectiveID', 'CriteriaID'])
for metricID, row in MetricsAnswers.iterrows():
answer_nr_options = MetricsOptionsNumber.loc[metricID, "OptionsNumber"]
dimension_int = metricID.split('.')[0]
objective_int = metricID.split('.')[1]
criteria_int = metricID.split('.')[2]
dimension_id = f"{dimension_int}"
objective_id = f"{dimension_int}.{objective_int}"
criteria_id = f"{dimension_int}.{objective_int}.{criteria_int}"
if not row["answer"]: # If no answer -> the answer does not count for the score -> the criteria cant reach rating 1
score = 'NA'
else:
if Metrics.loc[metricID, "AnswerType"] == "Single choice":
answer_index = int(row["answer"].split("_")[0])
score = singlechoicescore(answer_index, answer_nr_options)
elif Metrics.loc[metricID, "AnswerType"] == "Multiple choice":
answer_indexes = []
for answer in row["answer"].split(";"):
answer_indexes.append(int(answer.split("_")[0]))
score = multiplechoisescore(answer_indexes, answer_nr_options)
MetricScore.loc[metricID, "Score"] = score
MetricScore.loc[metricID, "DimensionID"] = dimension_id
MetricScore.loc[metricID, "ObjectiveID"] = objective_id
MetricScore.loc[metricID, "CriteriaID"] = criteria_id
CriteriaRating = MetricScore.drop_duplicates(subset = "CriteriaID").set_index("CriteriaID", drop=True).copy()
CriteriaRating.drop("Score", axis = 1, inplace = True)
CriteriaRating = CriteriaRating.join(Weights["Criteria"]["Weight"], how = "right")
CriteriaRating["Rating"] = 0
CriteriaRating["AnsweredMetrics"] = 0
CriteriaRating["TotalMetrics"] = 0
CriteriaRating["Space"] = 0
for metricID, prop in MetricScore.iterrows():
CriteriaRating.at[prop["CriteriaID"], "TotalMetrics"] += 1
if prop["Score"] != 'NA':
CriteriaRating.at[prop["CriteriaID"], "AnsweredMetrics"] += 1
CriteriaRating.at[prop["CriteriaID"], "Rating"] += prop["Score"]
CriteriaRating["Completness"] = CriteriaRating["AnsweredMetrics"] / CriteriaRating["TotalMetrics"]
CriteriaRating["Missing"] = 1 - CriteriaRating["Completness"]
CriteriaRating["Rating"] = CriteriaRating["Rating"] / CriteriaRating["TotalMetrics"]
CriteriaRating["Space"] = CriteriaRating["Completness"] - CriteriaRating["Rating"]
print(CriteriaRating)
ObjectivesRating = MetricScore.drop_duplicates(subset = "ObjectiveID").set_index("ObjectiveID", drop=True).copy()
ObjectivesRating.drop("Score", axis = 1, inplace = True)
ObjectivesRating.drop("CriteriaID", axis = 1, inplace = True)
ObjectivesRating = ObjectivesRating.join(Weights["Objectives"]["Weight"].loc[ObjectivesRating.index], how = "right")
ObjectivesRating["Completness"] = 0
ObjectivesRating["Missing"] = 0
ObjectivesRating["Rating"] = 0
ObjectivesRating["Space"] = 0
for obj_id, obj_prop in ObjectivesRating.iterrows():
completness = 0
missing = 0
rating = 0
space = 0
w_sum = 0
for crit_id, crit_prop in CriteriaRating[CriteriaRating["ObjectiveID"] == obj_id].iterrows():
completness += crit_prop["Completness"] * crit_prop["Weight"]
missing += crit_prop["Missing"] * crit_prop["Weight"]
rating += crit_prop["Rating"] * crit_prop["Weight"]
space += crit_prop["Space"] * crit_prop["Weight"]
w_sum += crit_prop["Weight"]
ObjectivesRating.at[obj_id, "Completness"] = completness / w_sum
ObjectivesRating.at[obj_id, "Missing"] = missing / w_sum
ObjectivesRating.at[obj_id, "Rating"] = rating / w_sum
ObjectivesRating.at[obj_id, "Space"] = space / w_sum
print(ObjectivesRating)
DimensionRating = MetricScore.drop_duplicates(subset = "DimensionID").set_index("DimensionID", drop=True).copy()
DimensionRating.drop("Score", axis = 1, inplace = True)
DimensionRating.drop("ObjectiveID", axis = 1, inplace = True)
DimensionRating.drop("CriteriaID", axis = 1, inplace = True)
DimensionRating = DimensionRating.join(Weights["Dimensions"]["Weight"].loc[DimensionRating.index], how = "right")
DimensionRating["Completness"] = 0
DimensionRating["Missing"] = 0
DimensionRating["Rating"] = 0
DimensionRating["Space"] = 0
for dim_id, dim_prop in DimensionRating.iterrows():
completness = 0
missing = 0
rating = 0
space = 0
w_sum = 0
for obj_id, obj_prop in ObjectivesRating[ObjectivesRating["DimensionID"] == dim_id].iterrows():
completness += obj_prop["Completness"] * obj_prop["Weight"]
missing += obj_prop["Missing"] * obj_prop["Weight"]
rating += obj_prop["Rating"] * obj_prop["Weight"]
space += obj_prop["Space"] * obj_prop["Weight"]
w_sum += obj_prop["Weight"]
DimensionRating.at[dim_id, "Completness"] = completness / w_sum
DimensionRating.at[dim_id, "Missing"] = missing / w_sum
DimensionRating.at[dim_id, "Rating"] = rating / w_sum
DimensionRating.at[dim_id, "Space"] = space / w_sum
print(DimensionRating)
return DimensionRating, ObjectivesRating, CriteriaRating
def Calculate_Completeness(Functional_Answers: pd.DataFrame):
MetricAnswerStatus = pd.DataFrame(index = Functional_Answers.index,
columns=['AnswerStatus', 'Dimension', 'Objective', 'ObjectiveID'])
for metricID, metric in Functional_Answers.iterrows():
dimension = metricID.split('.')[0]
objective = metricID.split('.')[1]
if metric["answer"]:
MetricAnswerStatus.at[metricID, "AnswerStatus"] = 1
else:
MetricAnswerStatus.at[metricID, "AnswerStatus"] = 0
MetricAnswerStatus.at[metricID, "Dimension"] = dimension
MetricAnswerStatus.at[metricID, "Objective"] = objective
MetricAnswerStatus.at[metricID, "ObjectiveID"] = f'{dimension}.{objective}'
MetricAnswerStatus.set_index("ObjectiveID", inplace = True)
# Group by Objective and calculate the summary statistics
summary_df = MetricAnswerStatus.groupby('ObjectiveID').agg({'AnswerStatus': ['count', 'sum', 'mean']})
# Rename the columns
summary_df.columns = ['CountOptions', 'CountAnswers', 'Completness']
summary_df["Completness"] = summary_df["Completness"] * 100
summary_df["Missing"] = 100 - summary_df["Completness"]
return summary_df
def Calculate_Integral(Dataframe: pd.DataFrame):
x_values = Dataframe.index.values
y_values = Dataframe["Average"].values.astype(float)
if len(x_values) > 1:
# Calculate the area under the values
average_area = np.trapz(y_values, x_values)
# Calculate the total width of the x-axis range
total_width = x_values[-1] - x_values[0]
# Calculate the normalized integral
NormalizedIntegral = average_area / total_width
elif len(x_values) == 1:
NormalizedIntegral = Dataframe["Average"].values[0]
return NormalizedIntegral