forked from micropython/micropython
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmachine_i2s.c
846 lines (726 loc) · 31 KB
/
machine_i2s.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2021 Mike Teachman
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include <stdbool.h>
#include "py/obj.h"
#include "py/runtime.h"
#include "py/misc.h"
#include "py/stream.h"
#include "py/objstr.h"
#include "modmachine.h"
#include "mphalport.h"
#if MICROPY_PY_MACHINE_I2S
#include "driver/i2s.h"
#include "soc/i2s_reg.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/queue.h"
#include "esp_task.h"
// The I2S module has 3 modes of operation:
//
// Mode1: Blocking
// - readinto() and write() methods block until the supplied buffer is filled (read) or emptied (write)
// - this is the default mode of operation
//
// Mode2: Non-Blocking
// - readinto() and write() methods return immediately.
// - buffer filling and emptying happens asynchronously to the main MicroPython task
// - a callback function is called when the supplied buffer has been filled (read) or emptied (write)
// - non-blocking mode is enabled when a callback is set with the irq() method
// - a FreeRTOS task is created to implement the asynchronous background operations
// - a FreeRTOS queue is used to transfer the supplied buffer to the background task
//
// Mode3: Uasyncio
// - implements the stream protocol
// - uasyncio mode is enabled when the ioctl() function is called
// - the I2S event queue is used to detect that I2S samples can be read or written from/to DMA memory
//
// The samples contained in the app buffer supplied for the readinto() and write() methods have the following convention:
// Mono: little endian format
// Stereo: little endian format, left channel first
//
// I2S terms:
// "frame": consists of two audio samples (Left audio sample + Right audio sample)
//
// Misc:
// - for Mono configuration:
// - readinto method: samples are gathered from the L channel only
// - write method: every sample is output to both the L and R channels
// - for readinto method the I2S hardware is read using 8-byte frames
// (this is standard for almost all I2S hardware, such as MEMS microphones)
// - all sample data transfers use DMA
#define I2S_TASK_PRIORITY (ESP_TASK_PRIO_MIN + 1)
#define I2S_TASK_STACK_SIZE (2048)
#define DMA_BUF_LEN_IN_I2S_FRAMES (256)
// The transform buffer is used with the readinto() method to bridge the opaque DMA memory on the ESP devices
// with the app buffer. It facilitates audio sample transformations. e.g. 32-bits samples to 16-bit samples.
// The size of 240 bytes is an engineering optimum that balances transfer performance with an acceptable use of heap space
#define SIZEOF_TRANSFORM_BUFFER_IN_BYTES (240)
#define NUM_I2S_USER_FORMATS (4)
#define I2S_RX_FRAME_SIZE_IN_BYTES (8)
typedef enum {
MONO,
STEREO
} format_t;
typedef enum {
BLOCKING,
NON_BLOCKING,
UASYNCIO
} io_mode_t;
typedef enum {
I2S_TX_TRANSFER,
I2S_RX_TRANSFER,
} direction_t;
typedef struct _non_blocking_descriptor_t {
mp_buffer_info_t appbuf;
mp_obj_t callback;
direction_t direction;
} non_blocking_descriptor_t;
typedef struct _machine_i2s_obj_t {
mp_obj_base_t base;
i2s_port_t port;
mp_hal_pin_obj_t sck;
mp_hal_pin_obj_t ws;
mp_hal_pin_obj_t sd;
int8_t mode;
i2s_bits_per_sample_t bits;
format_t format;
int32_t rate;
int32_t ibuf;
mp_obj_t callback_for_non_blocking;
io_mode_t io_mode;
uint8_t transform_buffer[SIZEOF_TRANSFORM_BUFFER_IN_BYTES];
QueueHandle_t i2s_event_queue;
QueueHandle_t non_blocking_mode_queue;
TaskHandle_t non_blocking_mode_task;
} machine_i2s_obj_t;
STATIC mp_obj_t machine_i2s_deinit(mp_obj_t self_in);
// The frame map is used with the readinto() method to transform the audio sample data coming
// from DMA memory (32-bit stereo, with the L and R channels reversed) to the format specified
// in the I2S constructor. e.g. 16-bit mono
STATIC const int8_t i2s_frame_map[NUM_I2S_USER_FORMATS][I2S_RX_FRAME_SIZE_IN_BYTES] = {
{ 6, 7, -1, -1, -1, -1, -1, -1 }, // Mono, 16-bits
{ 4, 5, 6, 7, -1, -1, -1, -1 }, // Mono, 32-bits
{ 6, 7, 2, 3, -1, -1, -1, -1 }, // Stereo, 16-bits
{ 4, 5, 6, 7, 0, 1, 2, 3 }, // Stereo, 32-bits
};
void machine_i2s_init0() {
for (i2s_port_t p = 0; p < I2S_NUM_MAX; p++) {
MP_STATE_PORT(machine_i2s_obj)[p] = NULL;
}
}
// The following function takes a sample buffer and swaps L/R channels
//
// Background: For 32-bit stereo, the ESP-IDF API has a L/R channel orientation that breaks
// convention with other ESP32 channel formats
//
// appbuf[] = [L_0-7, L_8-15, L_16-23, L_24-31, R_0-7, R_8-15, R_16-23, R_24-31] = [Left channel, Right channel]
// dma[] = [R_0-7, R_8-15, R_16-23, R_24-31, L_0-7, L_8-15, L_16-23, L_24-31] = [Right channel, Left channel]
//
// where:
// L_0-7 is the least significant byte of the 32 bit sample in the Left channel
// L_24-31 is the most significant byte of the 32 bit sample in the Left channel
//
// Example:
//
// appbuf[] = [0x99, 0xBB, 0x11, 0x22, 0x44, 0x55, 0xAB, 0x77] = [Left channel, Right channel]
// dma[] = [0x44, 0x55, 0xAB, 0x77, 0x99, 0xBB, 0x11, 0x22] = [Right channel, Left channel]
// where:
// LEFT Channel = 0x99, 0xBB, 0x11, 0x22
// RIGHT Channel = 0x44, 0x55, 0xAB, 0x77
//
// samples in appbuf are in little endian format:
// 0x77 is the most significant byte of the 32-bit sample
// 0x44 is the least significant byte of the 32-bit sample
STATIC void swap_32_bit_stereo_channels(mp_buffer_info_t *bufinfo) {
int32_t swap_sample;
int32_t *sample = bufinfo->buf;
uint32_t num_samples = bufinfo->len / 4;
for (uint32_t i = 0; i < num_samples; i += 2) {
swap_sample = sample[i + 1];
sample[i + 1] = sample[i];
sample[i] = swap_sample;
}
}
STATIC int8_t get_frame_mapping_index(i2s_bits_per_sample_t bits, format_t format) {
if (format == MONO) {
if (bits == I2S_BITS_PER_SAMPLE_16BIT) {
return 0;
} else { // 32 bits
return 1;
}
} else { // STEREO
if (bits == I2S_BITS_PER_SAMPLE_16BIT) {
return 2;
} else { // 32 bits
return 3;
}
}
}
STATIC i2s_bits_per_sample_t get_dma_bits(uint8_t mode, i2s_bits_per_sample_t bits) {
if (mode == (I2S_MODE_MASTER | I2S_MODE_TX)) {
return bits;
} else { // Master Rx
// read 32 bit samples for I2S hardware. e.g. MEMS microphones
return I2S_BITS_PER_SAMPLE_32BIT;
}
}
STATIC i2s_channel_fmt_t get_dma_format(uint8_t mode, format_t format) {
if (mode == (I2S_MODE_MASTER | I2S_MODE_TX)) {
if (format == MONO) {
return I2S_CHANNEL_FMT_ONLY_LEFT;
} else { // STEREO
return I2S_CHANNEL_FMT_RIGHT_LEFT;
}
} else { // Master Rx
// read stereo frames for all I2S hardware
return I2S_CHANNEL_FMT_RIGHT_LEFT;
}
}
STATIC uint32_t get_dma_buf_count(uint8_t mode, i2s_bits_per_sample_t bits, format_t format, int32_t ibuf) {
// calculate how many DMA buffers need to be allocated
uint32_t dma_frame_size_in_bytes =
(get_dma_bits(mode, bits) / 8) * (get_dma_format(mode, format) == I2S_CHANNEL_FMT_RIGHT_LEFT ? 2: 1);
uint32_t dma_buf_count = ibuf / (DMA_BUF_LEN_IN_I2S_FRAMES * dma_frame_size_in_bytes);
return dma_buf_count;
}
STATIC uint32_t fill_appbuf_from_dma(machine_i2s_obj_t *self, mp_buffer_info_t *appbuf) {
// copy audio samples from DMA memory to the app buffer
// audio samples are read from DMA memory in chunks
// loop, reading and copying chunks until the app buffer is filled
// For uasyncio mode, the loop will make an early exit if DMA memory becomes empty
// Example:
// a MicroPython I2S object is configured for 16-bit mono (2 bytes per audio sample).
// For every frame coming from DMA (8 bytes), 2 bytes are "cherry picked" and
// copied to the supplied app buffer.
// Thus, for every 1 byte copied to the app buffer, 4 bytes are read from DMA memory.
// If a 8kB app buffer is supplied, 32kB of audio samples is read from DMA memory.
uint32_t a_index = 0;
uint8_t *app_p = appbuf->buf;
uint8_t appbuf_sample_size_in_bytes = (self->bits / 8) * (self->format == STEREO ? 2: 1);
uint32_t num_bytes_needed_from_dma = appbuf->len * (I2S_RX_FRAME_SIZE_IN_BYTES / appbuf_sample_size_in_bytes);
while (num_bytes_needed_from_dma) {
size_t num_bytes_requested_from_dma = MIN(sizeof(self->transform_buffer), num_bytes_needed_from_dma);
size_t num_bytes_received_from_dma = 0;
TickType_t delay;
if (self->io_mode == UASYNCIO) {
delay = 0; // stop i2s_read() operation if DMA memory becomes empty
} else {
delay = portMAX_DELAY; // block until supplied buffer is filled
}
esp_err_t ret = i2s_read(
self->port,
self->transform_buffer,
num_bytes_requested_from_dma,
&num_bytes_received_from_dma,
delay);
// the following is a workaround for a bug in ESP-IDF v4.4
// https://github.com/espressif/esp-idf/issues/8121
#if (ESP_IDF_VERSION_MAJOR == 4) && (ESP_IDF_VERSION_MINOR >= 4)
if ((delay != portMAX_DELAY) && (ret == ESP_ERR_TIMEOUT)) {
ret = ESP_OK;
}
#endif
check_esp_err(ret);
// process the transform buffer one frame at a time.
// copy selected bytes from the transform buffer into the user supplied appbuf.
// Example:
// a MicroPython I2S object is configured for 16-bit mono. This configuration associates to
// a frame map index of 0 = { 6, 7, -1, -1, -1, -1, -1, -1 } in the i2s_frame_map array
// This mapping indicates:
// appbuf[x+0] = frame[6]
// appbuf[x+1] = frame[7]
// frame bytes 0-5 are not used
uint32_t t_index = 0;
uint8_t f_index = get_frame_mapping_index(self->bits, self->format);
while (t_index < num_bytes_received_from_dma) {
uint8_t *transform_p = self->transform_buffer + t_index;
for (uint8_t i = 0; i < I2S_RX_FRAME_SIZE_IN_BYTES; i++) {
int8_t t_to_a_mapping = i2s_frame_map[f_index][i];
if (t_to_a_mapping != -1) {
*app_p++ = transform_p[t_to_a_mapping];
a_index++;
}
t_index++;
}
}
num_bytes_needed_from_dma -= num_bytes_received_from_dma;
if ((self->io_mode == UASYNCIO) && (num_bytes_received_from_dma < num_bytes_requested_from_dma)) {
// Unable to fill the entire app buffer from DMA memory. This indicates all DMA RX buffers are empty.
// Clear the I2S event queue so ioctl() indicates that the I2S object cannot currently
// supply more audio samples
xQueueReset(self->i2s_event_queue);
break;
}
}
return a_index;
}
STATIC size_t copy_appbuf_to_dma(machine_i2s_obj_t *self, mp_buffer_info_t *appbuf) {
if ((self->bits == I2S_BITS_PER_SAMPLE_32BIT) && (self->format == STEREO)) {
swap_32_bit_stereo_channels(appbuf);
}
size_t num_bytes_written = 0;
TickType_t delay;
if (self->io_mode == UASYNCIO) {
delay = 0; // stop i2s_write() operation if DMA memory becomes full
} else {
delay = portMAX_DELAY; // block until supplied buffer is emptied
}
esp_err_t ret = i2s_write(self->port, appbuf->buf, appbuf->len, &num_bytes_written, delay);
// the following is a workaround for a bug in ESP-IDF v4.4
// https://github.com/espressif/esp-idf/issues/8121
#if (ESP_IDF_VERSION_MAJOR == 4) && (ESP_IDF_VERSION_MINOR >= 4)
if ((delay != portMAX_DELAY) && (ret == ESP_ERR_TIMEOUT)) {
ret = ESP_OK;
}
#endif
check_esp_err(ret);
if ((self->io_mode == UASYNCIO) && (num_bytes_written < appbuf->len)) {
// Unable to empty the entire app buffer into DMA memory. This indicates all DMA TX buffers are full.
// Clear the I2S event queue so ioctl() indicates that the I2S object cannot currently
// accept more audio samples
xQueueReset(self->i2s_event_queue);
// Undo the swap transformation as the buffer has not been completely emptied.
// The uasyncio stream writer will use the same buffer in a future write call.
if ((self->bits == I2S_BITS_PER_SAMPLE_32BIT) && (self->format == STEREO)) {
swap_32_bit_stereo_channels(appbuf);
}
}
return num_bytes_written;
}
// FreeRTOS task used for non-blocking mode
STATIC void task_for_non_blocking_mode(void *self_in) {
machine_i2s_obj_t *self = (machine_i2s_obj_t *)self_in;
non_blocking_descriptor_t descriptor;
for (;;) {
if (xQueueReceive(self->non_blocking_mode_queue, &descriptor, portMAX_DELAY)) {
if (descriptor.direction == I2S_TX_TRANSFER) {
copy_appbuf_to_dma(self, &descriptor.appbuf);
} else { // RX
fill_appbuf_from_dma(self, &descriptor.appbuf);
}
mp_sched_schedule(descriptor.callback, MP_OBJ_FROM_PTR(self));
}
}
}
STATIC void machine_i2s_init_helper(machine_i2s_obj_t *self, size_t n_pos_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum {
ARG_sck,
ARG_ws,
ARG_sd,
ARG_mode,
ARG_bits,
ARG_format,
ARG_rate,
ARG_ibuf,
};
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_sck, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_ws, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_sd, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_mode, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_format, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_rate, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_ibuf, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_pos_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
//
// ---- Check validity of arguments ----
//
// are Pins valid?
int8_t sck = args[ARG_sck].u_obj == MP_OBJ_NULL ? -1 : mp_hal_get_pin_obj(args[ARG_sck].u_obj);
int8_t ws = args[ARG_ws].u_obj == MP_OBJ_NULL ? -1 : mp_hal_get_pin_obj(args[ARG_ws].u_obj);
int8_t sd = args[ARG_sd].u_obj == MP_OBJ_NULL ? -1 : mp_hal_get_pin_obj(args[ARG_sd].u_obj);
// is Mode valid?
i2s_mode_t mode = args[ARG_mode].u_int;
if ((mode != (I2S_MODE_MASTER | I2S_MODE_RX)) &&
(mode != (I2S_MODE_MASTER | I2S_MODE_TX))) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid mode"));
}
// is Bits valid?
i2s_bits_per_sample_t bits = args[ARG_bits].u_int;
if ((bits != I2S_BITS_PER_SAMPLE_16BIT) &&
(bits != I2S_BITS_PER_SAMPLE_32BIT)) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid bits"));
}
// is Format valid?
format_t format = args[ARG_format].u_int;
if ((format != STEREO) &&
(format != MONO)) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid format"));
}
// is Rate valid?
// Not checked: ESP-IDF I2S API does not indicate a valid range for sample rate
// is Ibuf valid?
// Not checked: ESP-IDF I2S API will return error if requested buffer size exceeds available memory
self->sck = sck;
self->ws = ws;
self->sd = sd;
self->mode = mode;
self->bits = bits;
self->format = format;
self->rate = args[ARG_rate].u_int;
self->ibuf = args[ARG_ibuf].u_int;
self->callback_for_non_blocking = MP_OBJ_NULL;
self->i2s_event_queue = NULL;
self->non_blocking_mode_queue = NULL;
self->non_blocking_mode_task = NULL;
self->io_mode = BLOCKING;
i2s_config_t i2s_config;
i2s_config.communication_format = I2S_COMM_FORMAT_I2S;
i2s_config.mode = mode;
i2s_config.bits_per_sample = get_dma_bits(mode, bits);
i2s_config.channel_format = get_dma_format(mode, format);
i2s_config.sample_rate = self->rate;
i2s_config.intr_alloc_flags = ESP_INTR_FLAG_LOWMED;
i2s_config.dma_buf_count = get_dma_buf_count(mode, bits, format, self->ibuf);
i2s_config.dma_buf_len = DMA_BUF_LEN_IN_I2S_FRAMES;
i2s_config.use_apll = false;
i2s_config.tx_desc_auto_clear = true;
i2s_config.fixed_mclk = 0;
#if (ESP_IDF_VERSION_MAJOR == 4) && (ESP_IDF_VERSION_MINOR >= 4)
i2s_config.mclk_multiple = I2S_MCLK_MULTIPLE_DEFAULT;
i2s_config.bits_per_chan = 0;
#endif
// I2S queue size equals the number of DMA buffers
check_esp_err(i2s_driver_install(self->port, &i2s_config, i2s_config.dma_buf_count, &self->i2s_event_queue));
// apply low-level workaround for bug in some ESP-IDF versions that swap
// the left and right channels
// https://github.com/espressif/esp-idf/issues/6625
#if CONFIG_IDF_TARGET_ESP32S3
REG_SET_BIT(I2S_TX_CONF_REG(self->port), I2S_TX_MSB_SHIFT);
REG_SET_BIT(I2S_TX_CONF_REG(self->port), I2S_RX_MSB_SHIFT);
#else
REG_SET_BIT(I2S_CONF_REG(self->port), I2S_TX_MSB_RIGHT);
REG_SET_BIT(I2S_CONF_REG(self->port), I2S_RX_MSB_RIGHT);
#endif
i2s_pin_config_t pin_config;
#if (ESP_IDF_VERSION_MAJOR == 4) && (ESP_IDF_VERSION_MINOR >= 4)
pin_config.mck_io_num = I2S_PIN_NO_CHANGE;
#endif
pin_config.bck_io_num = self->sck;
pin_config.ws_io_num = self->ws;
if (mode == (I2S_MODE_MASTER | I2S_MODE_RX)) {
pin_config.data_in_num = self->sd;
pin_config.data_out_num = I2S_PIN_NO_CHANGE;
} else { // TX
pin_config.data_in_num = I2S_PIN_NO_CHANGE;
pin_config.data_out_num = self->sd;
}
check_esp_err(i2s_set_pin(self->port, &pin_config));
}
STATIC void machine_i2s_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
machine_i2s_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_printf(print, "I2S(id=%u,\n"
"sck="MP_HAL_PIN_FMT ",\n"
"ws="MP_HAL_PIN_FMT ",\n"
"sd="MP_HAL_PIN_FMT ",\n"
"mode=%u,\n"
"bits=%u, format=%u,\n"
"rate=%d, ibuf=%d)",
self->port,
mp_hal_pin_name(self->sck),
mp_hal_pin_name(self->ws),
mp_hal_pin_name(self->sd),
self->mode,
self->bits, self->format,
self->rate, self->ibuf
);
}
STATIC mp_obj_t machine_i2s_make_new(const mp_obj_type_t *type, size_t n_pos_args, size_t n_kw_args, const mp_obj_t *args) {
mp_arg_check_num(n_pos_args, n_kw_args, 1, MP_OBJ_FUN_ARGS_MAX, true);
i2s_port_t port = mp_obj_get_int(args[0]);
if (port < 0 || port >= I2S_NUM_MAX) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid id"));
}
machine_i2s_obj_t *self;
if (MP_STATE_PORT(machine_i2s_obj)[port] == NULL) {
self = m_new_obj_with_finaliser(machine_i2s_obj_t);
self->base.type = &machine_i2s_type;
MP_STATE_PORT(machine_i2s_obj)[port] = self;
self->port = port;
} else {
self = MP_STATE_PORT(machine_i2s_obj)[port];
machine_i2s_deinit(self);
}
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw_args, args + n_pos_args);
machine_i2s_init_helper(self, n_pos_args - 1, args + 1, &kw_args);
return MP_OBJ_FROM_PTR(self);
}
STATIC mp_obj_t machine_i2s_obj_init(size_t n_pos_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
machine_i2s_obj_t *self = pos_args[0];
machine_i2s_deinit(self);
machine_i2s_init_helper(self, n_pos_args - 1, pos_args + 1, kw_args);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(machine_i2s_init_obj, 1, machine_i2s_obj_init);
STATIC mp_obj_t machine_i2s_deinit(mp_obj_t self_in) {
machine_i2s_obj_t *self = MP_OBJ_TO_PTR(self_in);
i2s_driver_uninstall(self->port);
if (self->non_blocking_mode_task != NULL) {
vTaskDelete(self->non_blocking_mode_task);
self->non_blocking_mode_task = NULL;
}
if (self->non_blocking_mode_queue != NULL) {
vQueueDelete(self->non_blocking_mode_queue);
self->non_blocking_mode_queue = NULL;
}
self->i2s_event_queue = NULL;
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(machine_i2s_deinit_obj, machine_i2s_deinit);
STATIC mp_obj_t machine_i2s_irq(mp_obj_t self_in, mp_obj_t handler) {
machine_i2s_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (handler != mp_const_none && !mp_obj_is_callable(handler)) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid callback"));
}
if (handler != mp_const_none) {
self->io_mode = NON_BLOCKING;
// create a queue linking the MicroPython task to a FreeRTOS task
// that manages the non blocking mode of operation
self->non_blocking_mode_queue = xQueueCreate(1, sizeof(non_blocking_descriptor_t));
// non-blocking mode requires a background FreeRTOS task
if (xTaskCreatePinnedToCore(
task_for_non_blocking_mode,
"i2s_non_blocking",
I2S_TASK_STACK_SIZE,
self,
I2S_TASK_PRIORITY,
(TaskHandle_t *)&self->non_blocking_mode_task,
MP_TASK_COREID) != pdPASS) {
mp_raise_msg(&mp_type_RuntimeError, MP_ERROR_TEXT("failed to create I2S task"));
}
} else {
if (self->non_blocking_mode_task != NULL) {
vTaskDelete(self->non_blocking_mode_task);
self->non_blocking_mode_task = NULL;
}
if (self->non_blocking_mode_queue != NULL) {
vQueueDelete(self->non_blocking_mode_queue);
self->non_blocking_mode_queue = NULL;
}
self->io_mode = BLOCKING;
}
self->callback_for_non_blocking = handler;
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(machine_i2s_irq_obj, machine_i2s_irq);
// Shift() is typically used as a volume control.
// shift=1 increases volume by 6dB, shift=-1 decreases volume by 6dB
STATIC mp_obj_t machine_i2s_shift(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_buf, ARG_bits, ARG_shift};
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_buf, MP_ARG_REQUIRED | MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_bits, MP_ARG_REQUIRED | MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_shift, MP_ARG_REQUIRED | MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
};
// parse args
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(args[ARG_buf].u_obj, &bufinfo, MP_BUFFER_RW);
int16_t *buf_16 = bufinfo.buf;
int32_t *buf_32 = bufinfo.buf;
uint8_t bits = args[ARG_bits].u_int;
int8_t shift = args[ARG_shift].u_int;
uint32_t num_audio_samples;
switch (bits) {
case 16:
num_audio_samples = bufinfo.len / 2;
break;
case 32:
num_audio_samples = bufinfo.len / 4;
break;
default:
mp_raise_ValueError(MP_ERROR_TEXT("invalid bits"));
break;
}
for (uint32_t i = 0; i < num_audio_samples; i++) {
switch (bits) {
case 16:
if (shift >= 0) {
buf_16[i] = buf_16[i] << shift;
} else {
buf_16[i] = buf_16[i] >> abs(shift);
}
break;
case 32:
if (shift >= 0) {
buf_32[i] = buf_32[i] << shift;
} else {
buf_32[i] = buf_32[i] >> abs(shift);
}
break;
}
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(machine_i2s_shift_fun_obj, 0, machine_i2s_shift);
STATIC MP_DEFINE_CONST_STATICMETHOD_OBJ(machine_i2s_shift_obj, MP_ROM_PTR(&machine_i2s_shift_fun_obj));
STATIC const mp_rom_map_elem_t machine_i2s_locals_dict_table[] = {
// Methods
{ MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&machine_i2s_init_obj) },
{ MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_stream_readinto_obj) },
{ MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&mp_stream_write_obj) },
{ MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&machine_i2s_deinit_obj) },
{ MP_ROM_QSTR(MP_QSTR_irq), MP_ROM_PTR(&machine_i2s_irq_obj) },
{ MP_ROM_QSTR(MP_QSTR___del__), MP_ROM_PTR(&machine_i2s_deinit_obj) },
// Static method
{ MP_ROM_QSTR(MP_QSTR_shift), MP_ROM_PTR(&machine_i2s_shift_obj) },
// Constants
{ MP_ROM_QSTR(MP_QSTR_RX), MP_ROM_INT(I2S_MODE_MASTER | I2S_MODE_RX) },
{ MP_ROM_QSTR(MP_QSTR_TX), MP_ROM_INT(I2S_MODE_MASTER | I2S_MODE_TX) },
{ MP_ROM_QSTR(MP_QSTR_STEREO), MP_ROM_INT(STEREO) },
{ MP_ROM_QSTR(MP_QSTR_MONO), MP_ROM_INT(MONO) },
};
MP_DEFINE_CONST_DICT(machine_i2s_locals_dict, machine_i2s_locals_dict_table);
STATIC mp_uint_t machine_i2s_stream_read(mp_obj_t self_in, void *buf_in, mp_uint_t size, int *errcode) {
machine_i2s_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (self->mode != (I2S_MODE_MASTER | I2S_MODE_RX)) {
*errcode = MP_EPERM;
return MP_STREAM_ERROR;
}
uint8_t appbuf_sample_size_in_bytes = (self->bits / 8) * (self->format == STEREO ? 2: 1);
if (size % appbuf_sample_size_in_bytes != 0) {
*errcode = MP_EINVAL;
return MP_STREAM_ERROR;
}
if (size == 0) {
return 0;
}
if (self->io_mode == NON_BLOCKING) {
non_blocking_descriptor_t descriptor;
descriptor.appbuf.buf = (void *)buf_in;
descriptor.appbuf.len = size;
descriptor.callback = self->callback_for_non_blocking;
descriptor.direction = I2S_RX_TRANSFER;
// send the descriptor to the task that handles non-blocking mode
xQueueSend(self->non_blocking_mode_queue, &descriptor, 0);
return size;
} else { // blocking or uasyncio mode
mp_buffer_info_t appbuf;
appbuf.buf = (void *)buf_in;
appbuf.len = size;
uint32_t num_bytes_read = fill_appbuf_from_dma(self, &appbuf);
return num_bytes_read;
}
}
STATIC mp_uint_t machine_i2s_stream_write(mp_obj_t self_in, const void *buf_in, mp_uint_t size, int *errcode) {
machine_i2s_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (self->mode != (I2S_MODE_MASTER | I2S_MODE_TX)) {
*errcode = MP_EPERM;
return MP_STREAM_ERROR;
}
if (size == 0) {
return 0;
}
if (self->io_mode == NON_BLOCKING) {
non_blocking_descriptor_t descriptor;
descriptor.appbuf.buf = (void *)buf_in;
descriptor.appbuf.len = size;
descriptor.callback = self->callback_for_non_blocking;
descriptor.direction = I2S_TX_TRANSFER;
// send the descriptor to the task that handles non-blocking mode
xQueueSend(self->non_blocking_mode_queue, &descriptor, 0);
return size;
} else { // blocking or uasyncio mode
mp_buffer_info_t appbuf;
appbuf.buf = (void *)buf_in;
appbuf.len = size;
size_t num_bytes_written = copy_appbuf_to_dma(self, &appbuf);
return num_bytes_written;
}
}
STATIC mp_uint_t machine_i2s_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) {
machine_i2s_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_uint_t ret;
mp_uint_t flags = arg;
self->io_mode = UASYNCIO; // a call to ioctl() is an indication that uasyncio is being used
if (request == MP_STREAM_POLL) {
ret = 0;
if (flags & MP_STREAM_POLL_RD) {
if (self->mode != (I2S_MODE_MASTER | I2S_MODE_RX)) {
*errcode = MP_EPERM;
return MP_STREAM_ERROR;
}
i2s_event_t i2s_event;
// check event queue to determine if a DMA buffer has been filled
// (which is an indication that at least one DMA buffer is available to be read)
// note: timeout = 0 so the call is non-blocking
if (xQueueReceive(self->i2s_event_queue, &i2s_event, 0)) {
if (i2s_event.type == I2S_EVENT_RX_DONE) {
// getting here means that at least one DMA buffer is now full
// indicating that audio samples can be read from the I2S object
ret |= MP_STREAM_POLL_RD;
}
}
}
if (flags & MP_STREAM_POLL_WR) {
if (self->mode != (I2S_MODE_MASTER | I2S_MODE_TX)) {
*errcode = MP_EPERM;
return MP_STREAM_ERROR;
}
i2s_event_t i2s_event;
// check event queue to determine if a DMA buffer has been emptied
// (which is an indication that at least one DMA buffer is available to be written)
// note: timeout = 0 so the call is non-blocking
if (xQueueReceive(self->i2s_event_queue, &i2s_event, 0)) {
if (i2s_event.type == I2S_EVENT_TX_DONE) {
// getting here means that at least one DMA buffer is now empty
// indicating that audio samples can be written to the I2S object
ret |= MP_STREAM_POLL_WR;
}
}
}
} else {
*errcode = MP_EINVAL;
ret = MP_STREAM_ERROR;
}
return ret;
}
STATIC const mp_stream_p_t i2s_stream_p = {
.read = machine_i2s_stream_read,
.write = machine_i2s_stream_write,
.ioctl = machine_i2s_ioctl,
.is_text = false,
};
MP_DEFINE_CONST_OBJ_TYPE(
machine_i2s_type,
MP_QSTR_I2S,
MP_TYPE_FLAG_ITER_IS_STREAM,
make_new, machine_i2s_make_new,
print, machine_i2s_print,
protocol, &i2s_stream_p,
locals_dict, &machine_i2s_locals_dict
);
MP_REGISTER_ROOT_POINTER(struct _machine_i2s_obj_t *machine_i2s_obj[I2S_NUM_MAX]);
#endif // MICROPY_PY_MACHINE_I2S