diff --git a/tests/test_run.py b/tests/test_run.py index 6537c5f9..eb9f32c6 100644 --- a/tests/test_run.py +++ b/tests/test_run.py @@ -2,6 +2,8 @@ import shutil import tempfile import pytest +import json +import pandas from numpy.testing import assert_allclose def test_run(): @@ -278,6 +280,65 @@ def transform(x): assert abs(r['ncall'] - ncalls) <= 2 * sampler.mpi_size, (i, r['ncall'], ncalls, r['ncall'] - ncalls) assert paramnames == r['paramnames'], 'paramnames should be in results' + results2 = json.load(open(folder + '/info/results.json')) + print('CSV content:') + print(open(folder + '/info/post_summary.csv').read()) + post_summary = pandas.read_csv(folder + '/info/post_summary.csv') + print(post_summary, post_summary.columns) + for k, v in r.items(): + if k in results2: + print("checking results[%s] ..." % k) + assert results2[k] == r[k], (k, results2[k], r[k]) + + assert r['paramnames'] == paramnames + samples = np.loadtxt(folder + '/chains/equal_weighted_post.txt', skiprows=1) + data = np.loadtxt(folder + '/chains/weighted_post.txt', skiprows=1) + data_u = np.loadtxt(folder + '/chains/weighted_post_untransformed.txt', skiprows=1) + assert (data[:,:2] == data_u[:,:2]).all() + + assert_allclose(samples.mean(axis=0), r['posterior']['mean']) + assert_allclose(np.median(samples, axis=0), r['posterior']['median']) + assert_allclose(np.std(samples, axis=0), r['posterior']['stdev']) + for k, v in r.items(): + if k == 'posterior': + for k1, v1 in v.items(): + if k1 == 'information_gain_bits': + continue + for param, value in zip(paramnames, v[k1]): + print("checking %s of parameter '%s':" % (k1, param), value) + assert np.isclose(post_summary[param + '_' + k1].values, value), (param, k1, post_summary[param + '_' + k1].values, value) + elif k == 'samples': + assert_allclose(samples, r['samples']) + elif k == 'paramnames': + assert v == paramnames + elif k == 'weighted_samples': + print(k, v.keys()) + assert_allclose(data[:,0], v['weights']) + assert_allclose(data[:,1], v['logl']) + assert_allclose(data[:,2:], v['points']) + assert_allclose(data_u[:,2:], v['upoints']) + elif k == 'maximum_likelihood': + print(k, v.keys()) + assert_allclose(data[-1,1], v['logl']) + assert_allclose(data[-1,2:], v['point']) + assert_allclose(data_u[-1,2:], v['point_untransformed']) + + elif k.startswith('logzerr') or '_bs' in k or 'Herr' in k: + print(" skipping", k, np.shape(v)) + #assert_allclose(r[k], v, atol=0.5) + elif k == 'insertion_order_MWW_test': + print('insertion_order_MWW_test:', r[k], v) + assert r[k] == v, (r[k], v) + else: + print(" ", k, np.shape(v)) + assert_allclose(r[k], v) + + logw = r['weighted_samples']['logw'] + v = r['weighted_samples']['points'] + L = r['weighted_samples']['logl'] + + assert results2['niter'] == len(r['samples']) + # the results are not exactly the same, because the sampling adds #ncalls = loglike.ncalls #sampler = ReactiveNestedSampler(paramnames, @@ -340,7 +401,6 @@ def transform(x): def test_reactive_run_warmstart_gauss(): from ultranest import ReactiveNestedSampler - from ultranest import read_file center = 0 def loglike(z): @@ -353,7 +413,6 @@ def transform(x): return x * 20000 - 10000 paramnames = ['a'] - ndim = len(paramnames) folder = tempfile.mkdtemp() np.random.seed(1) @@ -450,4 +509,5 @@ def transform(x): #test_run() #test_reactive_run_warmstart_gauss() #test_reactive_run_extraparams() - test_dlogz_reactive_run() + test_reactive_run_resume_eggbox('hdf5') + #test_dlogz_reactive_run() diff --git a/ultranest/integrator.py b/ultranest/integrator.py index a335340e..a7dff8dc 100644 --- a/ultranest/integrator.py +++ b/ultranest/integrator.py @@ -2671,8 +2671,8 @@ def _update_results(self, main_iterator, saved_logl, saved_nodeids): np.savetxt( os.path.join(self.logs['info'], 'post_summary.csv'), - [np.hstack([results['posterior'][k] for k in ('mean', 'stdev', 'median', 'errlo', 'errup')])], - header=', '.join(['"{0}_mean", "{0}_stdev", "{0}_median", "{0}_errlo", "{0}_errup"'.format(k) + [[results['posterior'][k][i] for i in range(self.num_params) for k in ('mean', 'stdev', 'median', 'errlo', 'errup')]], + header=','.join(['"{0}_mean","{0}_stdev","{0}_median","{0}_errlo","{0}_errup"'.format(k) for k in self.paramnames + self.derivedparamnames]), delimiter=',', comments='', )