diff --git a/README.md b/README.md index ab131721232336..f2cdd59b9d1f0f 100644 --- a/README.md +++ b/README.md @@ -172,7 +172,7 @@ To use Spark NLP you need the following requirements: **GPU (optional):** -Spark NLP 5.1.4 is built with ONNX 1.15.1 and TensorFlow 2.7.1 deep learning engines. The minimum following NVIDIA® software are only required for GPU support: +Spark NLP 5.2.0 is built with ONNX 1.15.1 and TensorFlow 2.7.1 deep learning engines. The minimum following NVIDIA® software are only required for GPU support: - NVIDIA® GPU drivers version 450.80.02 or higher - CUDA® Toolkit 11.2 @@ -188,7 +188,7 @@ $ java -version $ conda create -n sparknlp python=3.7 -y $ conda activate sparknlp # spark-nlp by default is based on pyspark 3.x -$ pip install spark-nlp==5.1.4 pyspark==3.3.1 +$ pip install spark-nlp==5.2.0 pyspark==3.3.1 ``` In Python console or Jupyter `Python3` kernel: @@ -233,7 +233,7 @@ For more examples, you can visit our dedicated [examples](https://github.com/Joh ## Apache Spark Support -Spark NLP *5.1.4* has been built on top of Apache Spark 3.4 while fully supports Apache Spark 3.0.x, 3.1.x, 3.2.x, 3.3.x, 3.4.x, and 3.5.x +Spark NLP *5.2.0* has been built on top of Apache Spark 3.4 while fully supports Apache Spark 3.0.x, 3.1.x, 3.2.x, 3.3.x, 3.4.x, and 3.5.x | Spark NLP | Apache Spark 3.5.x | Apache Spark 3.4.x | Apache Spark 3.3.x | Apache Spark 3.2.x | Apache Spark 3.1.x | Apache Spark 3.0.x | Apache Spark 2.4.x | Apache Spark 2.3.x | |-----------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------| @@ -273,7 +273,7 @@ Find out more about `Spark NLP` versions from our [release notes](https://github ## Databricks Support -Spark NLP 5.1.4 has been tested and is compatible with the following runtimes: +Spark NLP 5.2.0 has been tested and is compatible with the following runtimes: **CPU:** @@ -340,7 +340,7 @@ Spark NLP 5.1.4 has been tested and is compatible with the following runtimes: ## EMR Support -Spark NLP 5.1.4 has been tested and is compatible with the following EMR releases: +Spark NLP 5.2.0 has been tested and is compatible with the following EMR releases: - emr-6.2.0 - emr-6.3.0 @@ -387,11 +387,11 @@ Spark NLP supports all major releases of Apache Spark 3.0.x, Apache Spark 3.1.x, ```sh # CPU -spark-shell --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.4 +spark-shell --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.0 -pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.4 +pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.0 -spark-submit --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.4 +spark-submit --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.0 ``` The `spark-nlp` has been published to @@ -400,11 +400,11 @@ the [Maven Repository](https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/s ```sh # GPU -spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:5.1.4 +spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:5.2.0 -pyspark --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:5.1.4 +pyspark --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:5.2.0 -spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:5.1.4 +spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:5.2.0 ``` @@ -414,11 +414,11 @@ the [Maven Repository](https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/s ```sh # AArch64 -spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:5.1.4 +spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:5.2.0 -pyspark --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:5.1.4 +pyspark --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:5.2.0 -spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:5.1.4 +spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:5.2.0 ``` @@ -428,11 +428,11 @@ the [Maven Repository](https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/s ```sh # M1/M2 (Apple Silicon) -spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:5.1.4 +spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:5.2.0 -pyspark --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:5.1.4 +pyspark --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:5.2.0 -spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:5.1.4 +spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:5.2.0 ``` @@ -446,7 +446,7 @@ set in your SparkSession: spark-shell \ --driver-memory 16g \ --conf spark.kryoserializer.buffer.max=2000M \ - --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.4 + --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.0 ``` ## Scala @@ -464,7 +464,7 @@ coordinates: com.johnsnowlabs.nlp spark-nlp_2.12 - 5.1.4 + 5.2.0 ``` @@ -475,7 +475,7 @@ coordinates: com.johnsnowlabs.nlp spark-nlp-gpu_2.12 - 5.1.4 + 5.2.0 ``` @@ -486,7 +486,7 @@ coordinates: com.johnsnowlabs.nlp spark-nlp-aarch64_2.12 - 5.1.4 + 5.2.0 ``` @@ -497,7 +497,7 @@ coordinates: com.johnsnowlabs.nlp spark-nlp-silicon_2.12 - 5.1.4 + 5.2.0 ``` @@ -507,28 +507,28 @@ coordinates: ```sbtshell // https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp -libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp" % "5.1.4" +libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp" % "5.2.0" ``` **spark-nlp-gpu:** ```sbtshell // https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-gpu -libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-gpu" % "5.1.4" +libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-gpu" % "5.2.0" ``` **spark-nlp-aarch64:** ```sbtshell // https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-aarch64 -libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-aarch64" % "5.1.4" +libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-aarch64" % "5.2.0" ``` **spark-nlp-silicon:** ```sbtshell // https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-silicon -libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-silicon" % "5.1.4" +libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-silicon" % "5.2.0" ``` Maven @@ -550,7 +550,7 @@ If you installed pyspark through pip/conda, you can install `spark-nlp` through Pip: ```bash -pip install spark-nlp==5.1.4 +pip install spark-nlp==5.2.0 ``` Conda: @@ -579,7 +579,7 @@ spark = SparkSession.builder .config("spark.driver.memory", "16G") .config("spark.driver.maxResultSize", "0") .config("spark.kryoserializer.buffer.max", "2000M") - .config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.4") + .config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.0") .getOrCreate() ``` @@ -650,7 +650,7 @@ Use either one of the following options - Add the following Maven Coordinates to the interpreter's library list ```bash -com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.4 +com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.0 ``` - Add a path to pre-built jar from [here](#compiled-jars) in the interpreter's library list making sure the jar is @@ -661,7 +661,7 @@ com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.4 Apart from the previous step, install the python module through pip ```bash -pip install spark-nlp==5.1.4 +pip install spark-nlp==5.2.0 ``` Or you can install `spark-nlp` from inside Zeppelin by using Conda: @@ -689,7 +689,7 @@ launch the Jupyter from the same Python environment: $ conda create -n sparknlp python=3.8 -y $ conda activate sparknlp # spark-nlp by default is based on pyspark 3.x -$ pip install spark-nlp==5.1.4 pyspark==3.3.1 jupyter +$ pip install spark-nlp==5.2.0 pyspark==3.3.1 jupyter $ jupyter notebook ``` @@ -706,7 +706,7 @@ export PYSPARK_PYTHON=python3 export PYSPARK_DRIVER_PYTHON=jupyter export PYSPARK_DRIVER_PYTHON_OPTS=notebook -pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.4 +pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.0 ``` Alternatively, you can mix in using `--jars` option for pyspark + `pip install spark-nlp` @@ -733,7 +733,7 @@ This script comes with the two options to define `pyspark` and `spark-nlp` versi # -s is for spark-nlp # -g will enable upgrading libcudnn8 to 8.1.0 on Google Colab for GPU usage # by default they are set to the latest -!wget https://setup.johnsnowlabs.com/colab.sh -O - | bash /dev/stdin -p 3.2.3 -s 5.1.4 +!wget https://setup.johnsnowlabs.com/colab.sh -O - | bash /dev/stdin -p 3.2.3 -s 5.2.0 ``` [Spark NLP quick start on Google Colab](https://colab.research.google.com/github/JohnSnowLabs/spark-nlp/blob/master/examples/python/quick_start_google_colab.ipynb) @@ -756,7 +756,7 @@ This script comes with the two options to define `pyspark` and `spark-nlp` versi # -s is for spark-nlp # -g will enable upgrading libcudnn8 to 8.1.0 on Kaggle for GPU usage # by default they are set to the latest -!wget https://setup.johnsnowlabs.com/colab.sh -O - | bash /dev/stdin -p 3.2.3 -s 5.1.4 +!wget https://setup.johnsnowlabs.com/colab.sh -O - | bash /dev/stdin -p 3.2.3 -s 5.2.0 ``` [Spark NLP quick start on Kaggle Kernel](https://www.kaggle.com/mozzie/spark-nlp-named-entity-recognition) is a live @@ -775,9 +775,9 @@ demo on Kaggle Kernel that performs named entity recognitions by using Spark NLP 3. In `Libraries` tab inside your cluster you need to follow these steps: - 3.1. Install New -> PyPI -> `spark-nlp==5.1.4` -> Install + 3.1. Install New -> PyPI -> `spark-nlp==5.2.0` -> Install - 3.2. Install New -> Maven -> Coordinates -> `com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.4` -> Install + 3.2. Install New -> Maven -> Coordinates -> `com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.0` -> Install 4. Now you can attach your notebook to the cluster and use Spark NLP! @@ -828,7 +828,7 @@ A sample of your software configuration in JSON on S3 (must be public access): "spark.kryoserializer.buffer.max": "2000M", "spark.serializer": "org.apache.spark.serializer.KryoSerializer", "spark.driver.maxResultSize": "0", - "spark.jars.packages": "com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.4" + "spark.jars.packages": "com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.0" } }] ``` @@ -837,7 +837,7 @@ A sample of AWS CLI to launch EMR cluster: ```.sh aws emr create-cluster \ ---name "Spark NLP 5.1.4" \ +--name "Spark NLP 5.2.0" \ --release-label emr-6.2.0 \ --applications Name=Hadoop Name=Spark Name=Hive \ --instance-type m4.4xlarge \ @@ -901,7 +901,7 @@ gcloud dataproc clusters create ${CLUSTER_NAME} \ --enable-component-gateway \ --metadata 'PIP_PACKAGES=spark-nlp spark-nlp-display google-cloud-bigquery google-cloud-storage' \ --initialization-actions gs://goog-dataproc-initialization-actions-${REGION}/python/pip-install.sh \ - --properties spark:spark.serializer=org.apache.spark.serializer.KryoSerializer,spark:spark.driver.maxResultSize=0,spark:spark.kryoserializer.buffer.max=2000M,spark:spark.jars.packages=com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.4 + --properties spark:spark.serializer=org.apache.spark.serializer.KryoSerializer,spark:spark.driver.maxResultSize=0,spark:spark.kryoserializer.buffer.max=2000M,spark:spark.jars.packages=com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.0 ``` 2. On an existing one, you need to install spark-nlp and spark-nlp-display packages from PyPI. @@ -940,7 +940,7 @@ spark = SparkSession.builder .config("spark.kryoserializer.buffer.max", "2000m") .config("spark.jsl.settings.pretrained.cache_folder", "sample_data/pretrained") .config("spark.jsl.settings.storage.cluster_tmp_dir", "sample_data/storage") - .config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.4") + .config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.0") .getOrCreate() ``` @@ -954,7 +954,7 @@ spark-shell \ --conf spark.kryoserializer.buffer.max=2000M \ --conf spark.jsl.settings.pretrained.cache_folder="sample_data/pretrained" \ --conf spark.jsl.settings.storage.cluster_tmp_dir="sample_data/storage" \ - --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.4 + --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.0 ``` **pyspark:** @@ -967,7 +967,7 @@ pyspark \ --conf spark.kryoserializer.buffer.max=2000M \ --conf spark.jsl.settings.pretrained.cache_folder="sample_data/pretrained" \ --conf spark.jsl.settings.storage.cluster_tmp_dir="sample_data/storage" \ - --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.4 + --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.0 ``` **Databricks:** @@ -1239,7 +1239,7 @@ spark = SparkSession.builder .config("spark.driver.memory", "16G") .config("spark.driver.maxResultSize", "0") .config("spark.kryoserializer.buffer.max", "2000M") - .config("spark.jars", "/tmp/spark-nlp-assembly-5.1.4.jar") + .config("spark.jars", "/tmp/spark-nlp-assembly-5.2.0.jar") .getOrCreate() ``` @@ -1248,7 +1248,7 @@ spark = SparkSession.builder version (3.0.x, 3.1.x, 3.2.x, 3.3.x, 3.4.x, and 3.5.x) - If you are local, you can load the Fat JAR from your local FileSystem, however, if you are in a cluster setup you need to put the Fat JAR on a distributed FileSystem such as HDFS, DBFS, S3, etc. ( - i.e., `hdfs:///tmp/spark-nlp-assembly-5.1.4.jar`) + i.e., `hdfs:///tmp/spark-nlp-assembly-5.2.0.jar`) Example of using pretrained Models and Pipelines in offline: diff --git a/build.sbt b/build.sbt index ab4480b192823f..e044783b44ac20 100644 --- a/build.sbt +++ b/build.sbt @@ -6,7 +6,7 @@ name := getPackageName(is_silicon, is_gpu, is_aarch64) organization := "com.johnsnowlabs.nlp" -version := "5.1.4" +version := "5.2.0" (ThisBuild / scalaVersion) := scalaVer diff --git a/docs/_layouts/landing.html b/docs/_layouts/landing.html index 40a26f72e5d375..c5c2f7a4858a0a 100755 --- a/docs/_layouts/landing.html +++ b/docs/_layouts/landing.html @@ -201,7 +201,7 @@

{{ _section.title }}

{% highlight bash %} # Using PyPI - $ pip install spark-nlp==5.1.4 + $ pip install spark-nlp==5.2.0 # Using Anaconda/Conda $ conda install -c johnsnowlabs spark-nlp diff --git a/docs/en/concepts.md b/docs/en/concepts.md index f2e19127611594..85d15eab96d730 100644 --- a/docs/en/concepts.md +++ b/docs/en/concepts.md @@ -66,7 +66,7 @@ $ java -version $ conda create -n sparknlp python=3.7 -y $ conda activate sparknlp # spark-nlp by default is based on pyspark 3.x -$ pip install spark-nlp==5.1.4 pyspark==3.3.1 jupyter +$ pip install spark-nlp==5.2.0 pyspark==3.3.1 jupyter $ jupyter notebook ``` diff --git a/docs/en/examples.md b/docs/en/examples.md index 319b43664fd3f6..a7efd34e02a683 100644 --- a/docs/en/examples.md +++ b/docs/en/examples.md @@ -18,7 +18,7 @@ $ java -version # should be Java 8 (Oracle or OpenJDK) $ conda create -n sparknlp python=3.7 -y $ conda activate sparknlp -$ pip install spark-nlp==5.1.4 pyspark==3.3.1 +$ pip install spark-nlp==5.2.0 pyspark==3.3.1 ```
@@ -40,7 +40,7 @@ This script comes with the two options to define `pyspark` and `spark-nlp` versi # -p is for pyspark # -s is for spark-nlp # by default they are set to the latest -!bash colab.sh -p 3.2.3 -s 5.1.4 +!bash colab.sh -p 3.2.3 -s 5.2.0 ``` [Spark NLP quick start on Google Colab](https://colab.research.google.com/github/JohnSnowLabs/spark-nlp/blob/master/examples/python/quick_start_google_colab.ipynb) is a live demo on Google Colab that performs named entity recognitions and sentiment analysis by using Spark NLP pretrained pipelines. diff --git a/docs/en/hardware_acceleration.md b/docs/en/hardware_acceleration.md index bbba02def8f91d..dd33bccc585f76 100644 --- a/docs/en/hardware_acceleration.md +++ b/docs/en/hardware_acceleration.md @@ -49,7 +49,7 @@ Since the new Transformer models such as BERT for Word and Sentence embeddings a | DeBERTa Large | +477%(5.8x) | | Longformer Base | +52%(1.5x) | -Spark NLP 5.1.4 is built with TensorFlow 2.7.1 and the following NVIDIA® software are only required for GPU support: +Spark NLP 5.2.0 is built with TensorFlow 2.7.1 and the following NVIDIA® software are only required for GPU support: - NVIDIA® GPU drivers version 450.80.02 or higher - CUDA® Toolkit 11.2 diff --git a/docs/en/install.md b/docs/en/install.md index 7a148496246749..25955c0cea63ea 100644 --- a/docs/en/install.md +++ b/docs/en/install.md @@ -17,22 +17,22 @@ sidebar: ```bash # Install Spark NLP from PyPI -pip install spark-nlp==5.1.4 +pip install spark-nlp==5.2.0 # Install Spark NLP from Anacodna/Conda conda install -c johnsnowlabs spark-nlp # Load Spark NLP with Spark Shell -spark-shell --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.4 +spark-shell --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.0 # Load Spark NLP with PySpark -pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.4 +pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.0 # Load Spark NLP with Spark Submit -spark-submit --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.4 +spark-submit --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.0 # Load Spark NLP as external JAR after compiling and building Spark NLP by `sbt assembly` -spark-shell --jars spark-nlp-assembly-5.1.4.jar +spark-shell --jars spark-nlp-assembly-5.2.0.jar ```
@@ -55,7 +55,7 @@ $ java -version # should be Java 8 (Oracle or OpenJDK) $ conda create -n sparknlp python=3.8 -y $ conda activate sparknlp -$ pip install spark-nlp==5.1.4 pyspark==3.3.1 +$ pip install spark-nlp==5.2.0 pyspark==3.3.1 ``` Of course you will need to have jupyter installed in your system: @@ -83,7 +83,7 @@ spark = SparkSession.builder \ .config("spark.driver.memory","16G")\ .config("spark.driver.maxResultSize", "0") \ .config("spark.kryoserializer.buffer.max", "2000M")\ - .config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.4")\ + .config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.0")\ .getOrCreate() ``` @@ -100,7 +100,7 @@ spark = SparkSession.builder \ com.johnsnowlabs.nlp spark-nlp_2.12 - 5.1.4 + 5.2.0 ``` @@ -111,7 +111,7 @@ spark = SparkSession.builder \ com.johnsnowlabs.nlp spark-nlp-gpu_2.12 - 5.1.4 + 5.2.0 ``` @@ -122,7 +122,7 @@ spark = SparkSession.builder \ com.johnsnowlabs.nlp spark-nlp-silicon_2.12 - 5.1.4 + 5.2.0 ``` @@ -133,7 +133,7 @@ spark = SparkSession.builder \ com.johnsnowlabs.nlp spark-nlp-aarch64_2.12 - 5.1.4 + 5.2.0 ``` @@ -145,28 +145,28 @@ spark = SparkSession.builder \ ```scala // https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp -libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp" % "5.1.4" +libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp" % "5.2.0" ``` **spark-nlp-gpu:** ```scala // https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-gpu -libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-gpu" % "5.1.4" +libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-gpu" % "5.2.0" ``` **spark-nlp-silicon:** ```scala // https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-silicon -libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-silicon" % "5.1.4" +libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-silicon" % "5.2.0" ``` **spark-nlp-aarch64:** ```scala // https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-aarch64 -libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-aarch64" % "5.1.4" +libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-aarch64" % "5.2.0" ``` Maven Central: [https://mvnrepository.com/artifact/com.johnsnowlabs.nlp](https://mvnrepository.com/artifact/com.johnsnowlabs.nlp) @@ -248,7 +248,7 @@ maven coordinates like these: com.johnsnowlabs.nlp spark-nlp-silicon_2.12 - 5.1.4 + 5.2.0 ``` @@ -256,7 +256,7 @@ or in case of sbt: ```scala // https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp -libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-silicon" % "5.1.4" +libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-silicon" % "5.2.0" ``` If everything went well, you can now start Spark NLP with the `m1` flag set to `true`: @@ -293,7 +293,7 @@ spark = sparknlp.start(apple_silicon=True) ## Installation for Linux Aarch64 Systems -Starting from version 5.1.4, Spark NLP supports Linux systems running on an aarch64 +Starting from version 5.2.0, Spark NLP supports Linux systems running on an aarch64 processor architecture. The necessary dependencies have been built on Ubuntu 16.04, so a recent system with an environment of at least that will be needed. @@ -341,7 +341,7 @@ This script comes with the two options to define `pyspark` and `spark-nlp` versi # -p is for pyspark # -s is for spark-nlp # by default they are set to the latest -!wget http://setup.johnsnowlabs.com/colab.sh -O - | bash /dev/stdin -p 3.2.3 -s 5.1.4 +!wget http://setup.johnsnowlabs.com/colab.sh -O - | bash /dev/stdin -p 3.2.3 -s 5.2.0 ``` [Spark NLP quick start on Google Colab](https://colab.research.google.com/github/JohnSnowLabs/spark-nlp/blob/master/examples/python/quick_start_google_colab.ipynb) is a live demo on Google Colab that performs named entity recognitions and sentiment analysis by using Spark NLP pretrained pipelines. @@ -363,7 +363,7 @@ Run the following code in Kaggle Kernel and start using spark-nlp right away. ## Databricks Support -Spark NLP 5.1.4 has been tested and is compatible with the following runtimes: +Spark NLP 5.2.0 has been tested and is compatible with the following runtimes: **CPU:** @@ -445,7 +445,7 @@ Spark NLP 5.1.4 has been tested and is compatible with the following runtimes: 3.1. Install New -> PyPI -> `spark-nlp` -> Install - 3.2. Install New -> Maven -> Coordinates -> `com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.4` -> Install + 3.2. Install New -> Maven -> Coordinates -> `com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.0` -> Install 4. Now you can attach your notebook to the cluster and use Spark NLP! @@ -465,7 +465,7 @@ Note: You can import these notebooks by using their URLs. ## EMR Support -Spark NLP 5.1.4 has been tested and is compatible with the following EMR releases: +Spark NLP 5.2.0 has been tested and is compatible with the following EMR releases: - emr-6.2.0 - emr-6.3.0 @@ -528,7 +528,7 @@ A sample of your software configuration in JSON on S3 (must be public access): "spark.kryoserializer.buffer.max": "2000M", "spark.serializer": "org.apache.spark.serializer.KryoSerializer", "spark.driver.maxResultSize": "0", - "spark.jars.packages": "com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.4" + "spark.jars.packages": "com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.0" } } ] @@ -538,7 +538,7 @@ A sample of AWS CLI to launch EMR cluster: ```sh aws emr create-cluster \ ---name "Spark NLP 5.1.4" \ +--name "Spark NLP 5.2.0" \ --release-label emr-6.2.0 \ --applications Name=Hadoop Name=Spark Name=Hive \ --instance-type m4.4xlarge \ @@ -803,7 +803,7 @@ We recommend using `conda` to manage your Python environment on Windows. Now you can use the downloaded binary by navigating to `%SPARK_HOME%\bin` and running -Either create a conda env for python 3.6, install *pyspark==3.3.1 spark-nlp numpy* and use Jupyter/python console, or in the same conda env you can go to spark bin for *pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.4*. +Either create a conda env for python 3.6, install *pyspark==3.3.1 spark-nlp numpy* and use Jupyter/python console, or in the same conda env you can go to spark bin for *pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.0*. @@ -831,12 +831,12 @@ spark = SparkSession.builder \ .config("spark.driver.memory","16G")\ .config("spark.driver.maxResultSize", "0") \ .config("spark.kryoserializer.buffer.max", "2000M")\ - .config("spark.jars", "/tmp/spark-nlp-assembly-5.1.4.jar")\ + .config("spark.jars", "/tmp/spark-nlp-assembly-5.2.0.jar")\ .getOrCreate() ``` - You can download provided Fat JARs from each [release notes](https://github.com/JohnSnowLabs/spark-nlp/releases), please pay attention to pick the one that suits your environment depending on the device (CPU/GPU) and Apache Spark version (3.x) -- If you are local, you can load the Fat JAR from your local FileSystem, however, if you are in a cluster setup you need to put the Fat JAR on a distributed FileSystem such as HDFS, DBFS, S3, etc. (i.e., `hdfs:///tmp/spark-nlp-assembly-5.1.4.jar`) +- If you are local, you can load the Fat JAR from your local FileSystem, however, if you are in a cluster setup you need to put the Fat JAR on a distributed FileSystem such as HDFS, DBFS, S3, etc. (i.e., `hdfs:///tmp/spark-nlp-assembly-5.2.0.jar`) Example of using pretrained Models and Pipelines in offline: diff --git a/docs/en/spark_nlp.md b/docs/en/spark_nlp.md index 41c988ba3348c9..1992a65722fa27 100644 --- a/docs/en/spark_nlp.md +++ b/docs/en/spark_nlp.md @@ -25,7 +25,7 @@ Spark NLP is built on top of **Apache Spark 3.x**. For using Spark NLP you need: **GPU (optional):** -Spark NLP 5.1.4 is built with TensorFlow 2.7.1 and the following NVIDIA® software are only required for GPU support: +Spark NLP 5.2.0 is built with TensorFlow 2.7.1 and the following NVIDIA® software are only required for GPU support: - NVIDIA® GPU drivers version 450.80.02 or higher - CUDA® Toolkit 11.2 diff --git a/python/README.md b/python/README.md index ab131721232336..f2cdd59b9d1f0f 100644 --- a/python/README.md +++ b/python/README.md @@ -172,7 +172,7 @@ To use Spark NLP you need the following requirements: **GPU (optional):** -Spark NLP 5.1.4 is built with ONNX 1.15.1 and TensorFlow 2.7.1 deep learning engines. The minimum following NVIDIA® software are only required for GPU support: +Spark NLP 5.2.0 is built with ONNX 1.15.1 and TensorFlow 2.7.1 deep learning engines. The minimum following NVIDIA® software are only required for GPU support: - NVIDIA® GPU drivers version 450.80.02 or higher - CUDA® Toolkit 11.2 @@ -188,7 +188,7 @@ $ java -version $ conda create -n sparknlp python=3.7 -y $ conda activate sparknlp # spark-nlp by default is based on pyspark 3.x -$ pip install spark-nlp==5.1.4 pyspark==3.3.1 +$ pip install spark-nlp==5.2.0 pyspark==3.3.1 ``` In Python console or Jupyter `Python3` kernel: @@ -233,7 +233,7 @@ For more examples, you can visit our dedicated [examples](https://github.com/Joh ## Apache Spark Support -Spark NLP *5.1.4* has been built on top of Apache Spark 3.4 while fully supports Apache Spark 3.0.x, 3.1.x, 3.2.x, 3.3.x, 3.4.x, and 3.5.x +Spark NLP *5.2.0* has been built on top of Apache Spark 3.4 while fully supports Apache Spark 3.0.x, 3.1.x, 3.2.x, 3.3.x, 3.4.x, and 3.5.x | Spark NLP | Apache Spark 3.5.x | Apache Spark 3.4.x | Apache Spark 3.3.x | Apache Spark 3.2.x | Apache Spark 3.1.x | Apache Spark 3.0.x | Apache Spark 2.4.x | Apache Spark 2.3.x | |-----------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------| @@ -273,7 +273,7 @@ Find out more about `Spark NLP` versions from our [release notes](https://github ## Databricks Support -Spark NLP 5.1.4 has been tested and is compatible with the following runtimes: +Spark NLP 5.2.0 has been tested and is compatible with the following runtimes: **CPU:** @@ -340,7 +340,7 @@ Spark NLP 5.1.4 has been tested and is compatible with the following runtimes: ## EMR Support -Spark NLP 5.1.4 has been tested and is compatible with the following EMR releases: +Spark NLP 5.2.0 has been tested and is compatible with the following EMR releases: - emr-6.2.0 - emr-6.3.0 @@ -387,11 +387,11 @@ Spark NLP supports all major releases of Apache Spark 3.0.x, Apache Spark 3.1.x, ```sh # CPU -spark-shell --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.4 +spark-shell --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.0 -pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.4 +pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.0 -spark-submit --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.4 +spark-submit --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.0 ``` The `spark-nlp` has been published to @@ -400,11 +400,11 @@ the [Maven Repository](https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/s ```sh # GPU -spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:5.1.4 +spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:5.2.0 -pyspark --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:5.1.4 +pyspark --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:5.2.0 -spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:5.1.4 +spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:5.2.0 ``` @@ -414,11 +414,11 @@ the [Maven Repository](https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/s ```sh # AArch64 -spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:5.1.4 +spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:5.2.0 -pyspark --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:5.1.4 +pyspark --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:5.2.0 -spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:5.1.4 +spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:5.2.0 ``` @@ -428,11 +428,11 @@ the [Maven Repository](https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/s ```sh # M1/M2 (Apple Silicon) -spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:5.1.4 +spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:5.2.0 -pyspark --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:5.1.4 +pyspark --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:5.2.0 -spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:5.1.4 +spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:5.2.0 ``` @@ -446,7 +446,7 @@ set in your SparkSession: spark-shell \ --driver-memory 16g \ --conf spark.kryoserializer.buffer.max=2000M \ - --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.4 + --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.0 ``` ## Scala @@ -464,7 +464,7 @@ coordinates: com.johnsnowlabs.nlp spark-nlp_2.12 - 5.1.4 + 5.2.0 ``` @@ -475,7 +475,7 @@ coordinates: com.johnsnowlabs.nlp spark-nlp-gpu_2.12 - 5.1.4 + 5.2.0 ``` @@ -486,7 +486,7 @@ coordinates: com.johnsnowlabs.nlp spark-nlp-aarch64_2.12 - 5.1.4 + 5.2.0 ``` @@ -497,7 +497,7 @@ coordinates: com.johnsnowlabs.nlp spark-nlp-silicon_2.12 - 5.1.4 + 5.2.0 ``` @@ -507,28 +507,28 @@ coordinates: ```sbtshell // https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp -libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp" % "5.1.4" +libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp" % "5.2.0" ``` **spark-nlp-gpu:** ```sbtshell // https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-gpu -libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-gpu" % "5.1.4" +libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-gpu" % "5.2.0" ``` **spark-nlp-aarch64:** ```sbtshell // https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-aarch64 -libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-aarch64" % "5.1.4" +libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-aarch64" % "5.2.0" ``` **spark-nlp-silicon:** ```sbtshell // https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-silicon -libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-silicon" % "5.1.4" +libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-silicon" % "5.2.0" ``` Maven @@ -550,7 +550,7 @@ If you installed pyspark through pip/conda, you can install `spark-nlp` through Pip: ```bash -pip install spark-nlp==5.1.4 +pip install spark-nlp==5.2.0 ``` Conda: @@ -579,7 +579,7 @@ spark = SparkSession.builder .config("spark.driver.memory", "16G") .config("spark.driver.maxResultSize", "0") .config("spark.kryoserializer.buffer.max", "2000M") - .config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.4") + .config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.0") .getOrCreate() ``` @@ -650,7 +650,7 @@ Use either one of the following options - Add the following Maven Coordinates to the interpreter's library list ```bash -com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.4 +com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.0 ``` - Add a path to pre-built jar from [here](#compiled-jars) in the interpreter's library list making sure the jar is @@ -661,7 +661,7 @@ com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.4 Apart from the previous step, install the python module through pip ```bash -pip install spark-nlp==5.1.4 +pip install spark-nlp==5.2.0 ``` Or you can install `spark-nlp` from inside Zeppelin by using Conda: @@ -689,7 +689,7 @@ launch the Jupyter from the same Python environment: $ conda create -n sparknlp python=3.8 -y $ conda activate sparknlp # spark-nlp by default is based on pyspark 3.x -$ pip install spark-nlp==5.1.4 pyspark==3.3.1 jupyter +$ pip install spark-nlp==5.2.0 pyspark==3.3.1 jupyter $ jupyter notebook ``` @@ -706,7 +706,7 @@ export PYSPARK_PYTHON=python3 export PYSPARK_DRIVER_PYTHON=jupyter export PYSPARK_DRIVER_PYTHON_OPTS=notebook -pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.4 +pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.0 ``` Alternatively, you can mix in using `--jars` option for pyspark + `pip install spark-nlp` @@ -733,7 +733,7 @@ This script comes with the two options to define `pyspark` and `spark-nlp` versi # -s is for spark-nlp # -g will enable upgrading libcudnn8 to 8.1.0 on Google Colab for GPU usage # by default they are set to the latest -!wget https://setup.johnsnowlabs.com/colab.sh -O - | bash /dev/stdin -p 3.2.3 -s 5.1.4 +!wget https://setup.johnsnowlabs.com/colab.sh -O - | bash /dev/stdin -p 3.2.3 -s 5.2.0 ``` [Spark NLP quick start on Google Colab](https://colab.research.google.com/github/JohnSnowLabs/spark-nlp/blob/master/examples/python/quick_start_google_colab.ipynb) @@ -756,7 +756,7 @@ This script comes with the two options to define `pyspark` and `spark-nlp` versi # -s is for spark-nlp # -g will enable upgrading libcudnn8 to 8.1.0 on Kaggle for GPU usage # by default they are set to the latest -!wget https://setup.johnsnowlabs.com/colab.sh -O - | bash /dev/stdin -p 3.2.3 -s 5.1.4 +!wget https://setup.johnsnowlabs.com/colab.sh -O - | bash /dev/stdin -p 3.2.3 -s 5.2.0 ``` [Spark NLP quick start on Kaggle Kernel](https://www.kaggle.com/mozzie/spark-nlp-named-entity-recognition) is a live @@ -775,9 +775,9 @@ demo on Kaggle Kernel that performs named entity recognitions by using Spark NLP 3. In `Libraries` tab inside your cluster you need to follow these steps: - 3.1. Install New -> PyPI -> `spark-nlp==5.1.4` -> Install + 3.1. Install New -> PyPI -> `spark-nlp==5.2.0` -> Install - 3.2. Install New -> Maven -> Coordinates -> `com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.4` -> Install + 3.2. Install New -> Maven -> Coordinates -> `com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.0` -> Install 4. Now you can attach your notebook to the cluster and use Spark NLP! @@ -828,7 +828,7 @@ A sample of your software configuration in JSON on S3 (must be public access): "spark.kryoserializer.buffer.max": "2000M", "spark.serializer": "org.apache.spark.serializer.KryoSerializer", "spark.driver.maxResultSize": "0", - "spark.jars.packages": "com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.4" + "spark.jars.packages": "com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.0" } }] ``` @@ -837,7 +837,7 @@ A sample of AWS CLI to launch EMR cluster: ```.sh aws emr create-cluster \ ---name "Spark NLP 5.1.4" \ +--name "Spark NLP 5.2.0" \ --release-label emr-6.2.0 \ --applications Name=Hadoop Name=Spark Name=Hive \ --instance-type m4.4xlarge \ @@ -901,7 +901,7 @@ gcloud dataproc clusters create ${CLUSTER_NAME} \ --enable-component-gateway \ --metadata 'PIP_PACKAGES=spark-nlp spark-nlp-display google-cloud-bigquery google-cloud-storage' \ --initialization-actions gs://goog-dataproc-initialization-actions-${REGION}/python/pip-install.sh \ - --properties spark:spark.serializer=org.apache.spark.serializer.KryoSerializer,spark:spark.driver.maxResultSize=0,spark:spark.kryoserializer.buffer.max=2000M,spark:spark.jars.packages=com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.4 + --properties spark:spark.serializer=org.apache.spark.serializer.KryoSerializer,spark:spark.driver.maxResultSize=0,spark:spark.kryoserializer.buffer.max=2000M,spark:spark.jars.packages=com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.0 ``` 2. On an existing one, you need to install spark-nlp and spark-nlp-display packages from PyPI. @@ -940,7 +940,7 @@ spark = SparkSession.builder .config("spark.kryoserializer.buffer.max", "2000m") .config("spark.jsl.settings.pretrained.cache_folder", "sample_data/pretrained") .config("spark.jsl.settings.storage.cluster_tmp_dir", "sample_data/storage") - .config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.4") + .config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.0") .getOrCreate() ``` @@ -954,7 +954,7 @@ spark-shell \ --conf spark.kryoserializer.buffer.max=2000M \ --conf spark.jsl.settings.pretrained.cache_folder="sample_data/pretrained" \ --conf spark.jsl.settings.storage.cluster_tmp_dir="sample_data/storage" \ - --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.4 + --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.0 ``` **pyspark:** @@ -967,7 +967,7 @@ pyspark \ --conf spark.kryoserializer.buffer.max=2000M \ --conf spark.jsl.settings.pretrained.cache_folder="sample_data/pretrained" \ --conf spark.jsl.settings.storage.cluster_tmp_dir="sample_data/storage" \ - --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.4 + --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.0 ``` **Databricks:** @@ -1239,7 +1239,7 @@ spark = SparkSession.builder .config("spark.driver.memory", "16G") .config("spark.driver.maxResultSize", "0") .config("spark.kryoserializer.buffer.max", "2000M") - .config("spark.jars", "/tmp/spark-nlp-assembly-5.1.4.jar") + .config("spark.jars", "/tmp/spark-nlp-assembly-5.2.0.jar") .getOrCreate() ``` @@ -1248,7 +1248,7 @@ spark = SparkSession.builder version (3.0.x, 3.1.x, 3.2.x, 3.3.x, 3.4.x, and 3.5.x) - If you are local, you can load the Fat JAR from your local FileSystem, however, if you are in a cluster setup you need to put the Fat JAR on a distributed FileSystem such as HDFS, DBFS, S3, etc. ( - i.e., `hdfs:///tmp/spark-nlp-assembly-5.1.4.jar`) + i.e., `hdfs:///tmp/spark-nlp-assembly-5.2.0.jar`) Example of using pretrained Models and Pipelines in offline: diff --git a/python/docs/conf.py b/python/docs/conf.py index 2e9ecc6385bd75..1fa63e4c2b5fa4 100644 --- a/python/docs/conf.py +++ b/python/docs/conf.py @@ -23,7 +23,7 @@ author = "John Snow Labs" # The full version, including alpha/beta/rc tags -release = "5.1.4" +release = "5.2.0" pyspark_version = "3.2.3" # -- General configuration --------------------------------------------------- diff --git a/python/setup.py b/python/setup.py index 38d28d3339fb82..5283ae20da0ca3 100644 --- a/python/setup.py +++ b/python/setup.py @@ -41,7 +41,7 @@ # project code, see # https://packaging.python.org/en/latest/single_source_version.html - version='5.1.4', # Required + version='5.2.0', # Required # This is a one-line description or tagline of what your project does. This # corresponds to the 'Summary' metadata field: diff --git a/python/sparknlp/__init__.py b/python/sparknlp/__init__.py index 6dafd53a57e17f..049823768b689f 100644 --- a/python/sparknlp/__init__.py +++ b/python/sparknlp/__init__.py @@ -128,7 +128,7 @@ def start(gpu=False, The initiated Spark session. """ - current_version = "5.1.4" + current_version = "5.2.0" if params is None: params = {} @@ -309,4 +309,4 @@ def version(): str The current Spark NLP version. """ - return '5.1.4' + return '5.2.0' diff --git a/scripts/colab_setup.sh b/scripts/colab_setup.sh index 66fc63fae4fddb..2a40b58a0c62f5 100644 --- a/scripts/colab_setup.sh +++ b/scripts/colab_setup.sh @@ -1,7 +1,7 @@ #!/bin/bash #default values for pyspark, spark-nlp, and SPARK_HOME -SPARKNLP="5.1.4" +SPARKNLP="5.2.0" PYSPARK="3.2.3" while getopts s:p:g option diff --git a/scripts/kaggle_setup.sh b/scripts/kaggle_setup.sh index cf07f133fd051d..a850a969ddac08 100644 --- a/scripts/kaggle_setup.sh +++ b/scripts/kaggle_setup.sh @@ -1,7 +1,7 @@ #!/bin/bash #default values for pyspark, spark-nlp, and SPARK_HOME -SPARKNLP="5.1.4" +SPARKNLP="5.2.0" PYSPARK="3.2.3" while getopts s:p:g option diff --git a/scripts/sagemaker_setup.sh b/scripts/sagemaker_setup.sh index ab85b329fc5256..15bddb60f0d8b1 100644 --- a/scripts/sagemaker_setup.sh +++ b/scripts/sagemaker_setup.sh @@ -1,7 +1,7 @@ #!/bin/bash # Default values for pyspark, spark-nlp, and SPARK_HOME -SPARKNLP="5.1.4" +SPARKNLP="5.2.0" PYSPARK="3.2.3" echo "Setup SageMaker for PySpark $PYSPARK and Spark NLP $SPARKNLP" diff --git a/src/main/scala/com/johnsnowlabs/nlp/SparkNLP.scala b/src/main/scala/com/johnsnowlabs/nlp/SparkNLP.scala index 794c122008ba70..55d7cecbf3c88c 100644 --- a/src/main/scala/com/johnsnowlabs/nlp/SparkNLP.scala +++ b/src/main/scala/com/johnsnowlabs/nlp/SparkNLP.scala @@ -20,7 +20,7 @@ import org.apache.spark.sql.SparkSession object SparkNLP { - val currentVersion = "5.1.2" + val currentVersion = "5.2.0" val MavenSpark3 = s"com.johnsnowlabs.nlp:spark-nlp_2.12:$currentVersion" val MavenGpuSpark3 = s"com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:$currentVersion" val MavenSparkSilicon = s"com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:$currentVersion" diff --git a/src/main/scala/com/johnsnowlabs/util/Build.scala b/src/main/scala/com/johnsnowlabs/util/Build.scala index b70e4bb8923139..7bf01c8aa86a9a 100644 --- a/src/main/scala/com/johnsnowlabs/util/Build.scala +++ b/src/main/scala/com/johnsnowlabs/util/Build.scala @@ -17,5 +17,5 @@ package com.johnsnowlabs.util object Build { - val version: String = "5.1.2" + val version: String = "5.2.0" }