forked from DataXujing/YOLO-V3-Tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_pro.py
189 lines (133 loc) · 5.77 KB
/
data_pro.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import os
import pandas
import shutil
import random
import cv2
import numpy as np
import xml.etree.ElementTree as ET
# 这部分休要修改
class Data_preprocess(object):
'''
解析xml数据
'''
def __init__(self,data_path):
self.data_path = data_path
self.image_size = 416
self.batch_size = 32
self.cell_size = 13
self.classes = ["hat","person"]
self.num_classes = len(self.classes)
self.box_per_cell = 5
self.class_to_ind = dict(zip(self.classes, range(self.num_classes)))
self.count = 0
self.epoch = 1
self.count_t = 0
def load_labels(self, model):
if model == 'train':
txtname = os.path.join(self.data_path, 'ImageSets/Main/train.txt')
if model == 'test':
txtname = os.path.join(self.data_path, 'ImageSets/Main/test.txt')
if model == "val":
txtname = os.path.join(self.data_path, 'ImageSets/Main/val.txt')
with open(txtname, 'r') as f:
image_ind = [x.strip() for x in f.readlines()] # 文件名去掉 .jpg
my_index = 0
for ind in image_ind:
class_inds, x1s, y1s, x2s, y2s,img_width,img_height = self.load_data(ind)
if len(class_inds) == 0:
pass
else:
annotation_label = ""
#box_x: label_index, x_min,y_min,x_max,y_max
for label_i in range(len(class_inds)):
annotation_label += " " + str(class_inds[label_i])
annotation_label += " " + str(x1s[label_i])
annotation_label += " " + str(y1s[label_i])
annotation_label += " " + str(x2s[label_i])
annotation_label += " " + str(y2s[label_i])
with open("./data/my_data/label/"+model+".txt","a") as f:
f.write(str(my_index) + " " + data_path+"/JPEGImages/"+ind+".jpg"+" "+str(img_width) +" "+str(img_height)+ annotation_label + "\n")
my_index += 1
print(my_index)
def load_data(self, index):
label = np.zeros([self.cell_size, self.cell_size, self.box_per_cell, 5 + self.num_classes])
filename = os.path.join(self.data_path, 'Annotations', index + '.xml')
tree = ET.parse(filename)
image_size = tree.find('size')
image_width = int(float(image_size.find('width').text))
image_height = int(float(image_size.find('height').text))
# h_ratio = 1.0 * self.image_size / image_height
# w_ratio = 1.0 * self.image_size / image_width
objects = tree.findall('object')
class_inds = []
x1s = []
y1s = []
x2s = []
y2s = []
for obj in objects:
box = obj.find('bndbox')
x1 = int(float(box.find('xmin').text))
y1 = int(float(box.find('ymin').text))
x2 = int(float(box.find('xmax').text))
y2 = int(float(box.find('ymax').text))
# x1 = max(min((float(box.find('xmin').text)) * w_ratio, self.image_size), 0)
# y1 = max(min((float(box.find('ymin').text)) * h_ratio, self.image_size), 0)
# x2 = max(min((float(box.find('xmax').text)) * w_ratio, self.image_size), 0)
# y2 = max(min((float(box.find('ymax').text)) * h_ratio, self.image_size), 0)
if obj.find('name').text in self.classes:
class_ind = self.class_to_ind[obj.find('name').text]
# class_ind = self.class_to_ind[obj.find('name').text.lower().strip()]
# boxes = [0.5 * (x1 + x2) / self.image_size, 0.5 * (y1 + y2) / self.image_size, np.sqrt((x2 - x1) / self.image_size), np.sqrt((y2 - y1) / self.image_size)]
# cx = 1.0 * boxes[0] * self.cell_size
# cy = 1.0 * boxes[1] * self.cell_size
# xind = int(np.floor(cx))
# yind = int(np.floor(cy))
# label[yind, xind, :, 0] = 1
# label[yind, xind, :, 1:5] = boxes
# label[yind, xind, :, 5 + class_ind] = 1
if x1 >= x2 or y1 >= y2:
pass
else:
class_inds.append(class_ind)
x1s.append(x1)
y1s.append(y1)
x2s.append(x2)
y2s.append(y2)
return class_inds, x1s, y1s, x2s, y2s, image_width, image_height
def data_split(img_path):
'''
数据分割
'''
files = os.listdir(img_path)
test_part = random.sample(files,int(351*0.2))
val_part = random.sample(test_part,int(int(351*0.2)*0.5))
val_index = 0
test_index = 0
train_index = 0
for file in files:
if file in val_part:
with open("./data/my_data/ImageSets/Main/val.txt","a") as val_f:
val_f.write(file[:-4] + "\n" )
val_index += 1
elif file in test_part:
with open("./data/my_data/ImageSets/Main/test.txt","a") as test_f:
test_f.write(file[:-4] + "\n")
test_index += 1
else:
with open("./data/my_data/ImageSets/Main/train.txt","a") as train_f:
train_f.write(file[:-4] + "\n")
train_index += 1
print(train_index,test_index,val_index)
if __name__ == "__main__":
# 分割train, val, test
# img_path = "./data/my_data/ImageSets"
# data_split(img_path)
print("===========split data finish============")
# 做YOLO V3需要的训练集
base_path = os.getcwd()
data_path = os.path.join(base_path,"data/my_data") # 绝对路径
data_p = Data_preprocess(data_path)
data_p.load_labels("train")
data_p.load_labels("test")
data_p.load_labels("val")
print("==========data pro finish===========")