Skip to content

MLaaS platform based on ADMIRABLE and BEST-AI research groups methods.

License

Notifications You must be signed in to change notification settings

JoseBarbero/UBUMLaaS

Folders and files

NameName
Last commit message
Last commit date
Oct 13, 2020
Aug 21, 2020
Aug 21, 2020
Nov 5, 2019
Nov 22, 2019
Jul 28, 2020
Oct 21, 2019
Jul 28, 2020
Aug 17, 2020
Nov 14, 2019
Jul 28, 2020
Aug 20, 2020
Jul 28, 2020
Nov 14, 2019
Aug 19, 2020
Nov 19, 2019
Oct 25, 2019
Aug 17, 2020
Nov 14, 2019
Aug 17, 2020

Repository files navigation

UBUMLaaS admirable-logo

Travis (.org) Code Climate maintainability GitHub repo size GitHub

Machine Learning as a Service (MLaaS) platform based on ADMIRABLE and BEST-AI research groups methods.


This application is described as one of the result of two different projects (with objectives partially overlapping, and being this application in the intersection of the objectives):

  1. Project "Algoritmos de ensembles para problemas de salidas múltiples - nuevos desarrollos y aplicaciones" from "Ministerio de Economía y Competitividad" (reference: TIN2015-67534-P)
  2. Project "Minería de datos para la mejora del mantenimiento y disponibilidad de máquinas de altas presiones" from "Consejería de Educación de la Junta de Castilla y León" (reference: BU085P17)


Installation (Linux)

  1. Clone this repository
    $ git clone https://github.com/JoseBarbero/UBUMLaaS.git
  2. Go to UBUMLaaS repository's folder
    $ cd UBUMLaaS
  3. Create a conda environment
    $ conda env create -f UBUMLaaS_env.yml
  4. Activate environment
    $ conda activate UBUMLaaS
  5. Modify env_variables.sh with properly values
    export SECRET_KEY=<app secret key>
    export EMAIL_AC=<email>
    export EMAIL_PASS=<email-password>
    export EMAIL_URL=<email-url>
    export FLASK_ENV=development #development or production
    LIBFOLDER=/absolute/path/to/UBUMLaaS
  6. With the conda environment UBUMLaaS, execute the script to export environment variables when activate conda env.
    $ source env_vars_to_conda.sh
  7. Create database
    $ mv data_base.sqlite ubumlaas/data.sqlite
    Opt: Download a database and put it in ./ubumlaas/
  8. Install Redis-Server
    $ sudo apt install redis-server
    $ sudo service redis-server start
    $ sudo systemctl enable redis-server #If you want to initialize the service in startup
    Caution: Close all workers of RQ before stop redis-server

Execution

  1. Inside the UBUMLaaS repository's folder, activate conda environment if not activated.
    $ conda activate UBUMLaaS
  2. Execute to run the server
    python app.py

Update database

  1. Execute migrate.py
    $ python migrate.py