-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfluid_solver.py
383 lines (287 loc) · 17.6 KB
/
fluid_solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
# fluid_solver.py
import os
import numpy as np
import matplotlib.pyplot as plt
class FluidSolver:
def __init__(self, grid_size, time_step, num_time_steps, turbulence_model, shock_model):
# Initialize the fluid solver with grid size, time step, number of time steps, turbulence model, and shock model
self.grid_size = grid_size
self.time_step = time_step
self.num_time_steps = num_time_steps
self.turbulence_model = turbulence_model
self.shock_model = shock_model
self.initialize_flow_field()
def initialize_flow_field(self):
# Set initial conditions for the flow field (e.g., velocity, pressure, density)
self.velocity = np.zeros((self.grid_size, self.grid_size, 2))
self.pressure = np.zeros((self.grid_size, self.grid_size))
self.density = np.ones((self.grid_size, self.grid_size))
# Initialize turbulence parameters
self.turbulent_viscosity = np.zeros((self.grid_size, self.grid_size))
self.turbulence_model.initialize(self.grid_size, self.time_step)
def set_boundary_conditions(self):
# Define boundary conditions for the flow field (e.g., inflow, outflow, walls)
# Example: Inflow boundary condition (constant velocity profile)
inflow_velocity = np.array([1.0, 0.0]) # Inflow velocity vector [u, v]
self.velocity[0, :, :] = inflow_velocity # Set constant inflow velocity at the left boundary
# Example: Outflow boundary condition (zero-gradient)
self.velocity[-1, :, :] = self.velocity[-2, :, :] # Zero-gradient for velocity at the right boundary
self.pressure[-1, :] = self.pressure[-2, :] # Zero-gradient for pressure at the right boundary
# Example: Wall boundary condition (no-slip condition)
self.velocity[:, 0, :] = np.array([0.0, 0.0]) # No-slip condition for velocity at the bottom wall
self.velocity[:, -1, :] = np.array([0.0, 0.0]) # No-slip condition for velocity at the top wall
# Additional boundary conditions can be implemented based on the problem requirements
# (e.g., periodic boundaries, slip conditions, specified pressure gradients, etc.)
def apply_turbulence_model(self):
# Implement turbulence modeling to compute turbulent viscosities and resolve turbulent structures
# Example: Large Eddy Simulation (LES) with Smagorinsky-Lilly subgrid-scale model
# Smagorinsky constant (tunable parameter)
Cs = 0.1
# Compute the local strain rate (e.g., magnitude of the velocity gradient tensor)
grad_u = np.gradient(self.velocity, axis=(1, 2))
strain_rate = np.sqrt(2 * np.sum(grad_u**2, axis=-1))
# Compute the grid-filtered velocity gradient tensor
du_dx = np.gradient(self.velocity[:, :, 0], axis=1)
du_dy = np.gradient(self.velocity[:, :, 1], axis=0)
S = np.array([[du_dx, du_dy], [du_dy, -du_dx]]) # Strain rate tensor
# Compute the subgrid-scale (SGS) viscosity using Smagorinsky-Lilly model
SGS_viscosity = (Cs * self.grid_size * strain_rate) ** 2
# Apply the SGS viscosity to the turbulent viscosity field
self.turbulent_viscosity = np.maximum(self.turbulent_viscosity, SGS_viscosity)
def apply_shock_model(self):
# Implement the numerical methods for modeling shock interactions and resolve shock structures
# Example: Total Variation Diminishing (TVD) scheme for shock-capturing
# Compute the local Mach number (e.g., magnitude of the velocity divided by the speed of sound)
speed_of_sound = np.sqrt(self.pressure / self.density)
local_mach_number = np.linalg.norm(self.velocity, axis=-1) / speed_of_sound
# Compute the artificial viscosity to capture shock waves
C_viscosity = 0.1 # Tunable parameter for artificial viscosity
artificial_viscosity = C_viscosity * (self.grid_size * speed_of_sound) ** 2
# Apply artificial viscosity to velocity and pressure fields
self.velocity += artificial_viscosity[:, :, np.newaxis] * np.gradient(self.velocity, axis=(1, 2))
self.pressure += artificial_viscosity * np.sum(np.gradient(self.velocity, axis=1), axis=0)
def update_flow_field(self):
# Update the flow field variables using the fluid equations, turbulence model, and shock model
# Step 1: Apply turbulence model to compute turbulent viscosities
self.apply_turbulence_model()
# Step 2: Apply shock model to model shock interactions
self.apply_shock_model()
# Step 3: Update flow field using finite-difference method and explicit time-stepping
# Time-stepping parameters
delta_t = self.time_step
# Update velocity
grad_p = np.gradient(self.pressure, axis=(1, 2))
self.velocity += delta_t * (-np.gradient(self.velocity[:, :, 0] * self.velocity[:, :, 0], axis=1) / self.density
- np.gradient(self.velocity[:, :, 0] * self.velocity[:, :, 1], axis=0) / self.density
- grad_p[0] / self.density
+ self.turbulent_viscosity * np.gradient(self.velocity, axis=(1, 2)))
# Update pressure
div_u = np.gradient(self.velocity[:, :, 0], axis=1) + np.gradient(self.velocity[:, :, 1], axis=0)
self.pressure += delta_t * (-self.density * np.sum(np.gradient(self.velocity, axis=1), axis=0)
- self.density * np.sum(np.gradient(self.velocity, axis=0), axis=1)
+ self.shock_model.compute_heat_release()
+ self.turbulent_viscosity * div_u)
# Update density (assuming incompressible flow)
self.density = np.ones_like(self.density) * self.density.mean()
def run_simulation(self):
# Run the fluid simulation for the specified number of time steps
# Create a directory to store simulation data and results
if not os.path.exists("simulation_data"):
os.makedirs("simulation_data")
for t in range(self.num_time_steps):
# Save the simulation data (velocity, pressure, density) at each time step
self.save_simulation_data(t)
# Update boundary conditions for the current time step
self.set_boundary_conditions()
# Update the flow field for the current time step
self.update_flow_field()
# Save the final simulation results (e.g., flow field, turbulence statistics)
self.save_simulation_results()
def save_simulation_data(self, time_step):
# Save the simulation data at the given time step to a file
velocity_file = f"simulation_data/velocity_t{time_step}.npy"
pressure_file = f"simulation_data/pressure_t{time_step}.npy"
density_file = f"simulation_data/density_t{time_step}.npy"
np.save(velocity_file, self.velocity)
np.save(pressure_file, self.pressure)
np.save(density_file, self.density)
def save_simulation_results(self):
# Save the final simulation results to a file (e.g., turbulence statistics)
# Implement saving additional simulation results if needed
# Example: Save turbulence statistics to a separate file
# ... (implementation of saving additional simulation results)
def get_results(self):
# Retrieve simulation results (e.g., flow field data, turbulence statistics, shock properties)
results = {
'velocity': self.velocity,
'pressure': self.pressure,
'density': self.density,
'turbulent_viscosity': self.turbulent_viscosity,
# Include additional simulation results if needed
# 'turbulence_statistics': turbulence_statistics,
# 'shock_properties': shock_properties,
}
return results
class TurbulenceModel:
def __init__(self, Cs):
# Initialize the turbulence model with the Smagorinsky constant (Cs)
self.Cs = Cs
def initialize(self, grid_size, time_step):
# Initialize turbulence model parameters (if any) based on grid_size and time_step
pass
def compute_turbulent_viscosity(self, velocity, density, turbulent_viscosity):
# Implement turbulence model to calculate turbulent viscosity
# Compute the local strain rate (e.g., magnitude of the velocity gradient tensor)
grad_u = np.gradient(velocity, axis=(1, 2))
strain_rate = np.sqrt(2 * np.sum(grad_u**2, axis=-1))
# Compute the grid-filtered velocity gradient tensor
du_dx = np.gradient(velocity[:, :, 0], axis=1)
du_dy = np.gradient(velocity[:, :, 1], axis=0)
S = np.array([[du_dx, du_dy], [du_dy, -du_dx]]) # Strain rate tensor
# Compute the subgrid-scale (SGS) viscosity using Smagorinsky-Lilly model
SGS_viscosity = (self.Cs * grid_size * strain_rate) ** 2
# Apply the SGS viscosity to the turbulent viscosity field
turbulent_viscosity[:, :] = np.maximum(turbulent_viscosity[:, :], SGS_viscosity)
class ShockModel:
def __init__(self, C_viscosity):
# Initialize the ShockModel with the artificial viscosity coefficient (C_viscosity)
self.C_viscosity = C_viscosity
def compute_shock_properties(self, velocity, pressure, density):
# Implement shock-capturing methods to handle shocks in the flow field
# Compute the speed of sound in the flow
speed_of_sound = np.sqrt(pressure / density)
# Compute the local Mach number (e.g., magnitude of the velocity divided by the speed of sound)
local_mach_number = np.linalg.norm(velocity, axis=-1) / speed_of_sound
# Compute the artificial viscosity to capture shock waves
artificial_viscosity = self.C_viscosity * (grid_size * speed_of_sound) ** 2
# Apply the artificial viscosity to the velocity and pressure fields
velocity += artificial_viscosity[:, :, np.newaxis] * np.gradient(velocity, axis=(1, 2))
pressure += artificial_viscosity * np.sum(np.gradient(velocity, axis=1), axis=0)
def compute_fluxes(self):
# Compute fluxes for the fluid solver (e.g., mass, momentum, energy)
# Finite volume method for incompressible flow
# Cell face areas (assuming uniform grid spacing in both x and y directions)
dx = 1.0 # Grid spacing in the x-direction
dy = 1.0 # Grid spacing in the y-direction
cell_face_area_x = dy
cell_face_area_y = dx
# Compute the convective fluxes (momentum fluxes) for each cell face
convective_flux_x = self.density * self.velocity[:, :, 0] * cell_face_area_x
convective_flux_y = self.density * self.velocity[:, :, 1] * cell_face_area_y
# Compute the diffusive fluxes (viscous fluxes) for each cell face using the turbulent viscosity
grad_u = np.gradient(self.velocity, axis=(1, 2))
diffusive_flux_x = -self.turbulent_viscosity * grad_u[0] * cell_face_area_x
diffusive_flux_y = -self.turbulent_viscosity * grad_u[1] * cell_face_area_y
# Compute the total fluxes (momentum fluxes) for each cell face
total_flux_x = convective_flux_x + diffusive_flux_x
total_flux_y = convective_flux_y + diffusive_flux_y
# Apply the fluxes to update the flow field variables using the finite volume method
delta_t = self.time_step
self.velocity[:, :, 0] += (delta_t / cell_face_area_x) * (np.roll(total_flux_x, -1, axis=1) - total_flux_x)
self.velocity[:, :, 1] += (delta_t / cell_face_area_y) * (np.roll(total_flux_y, -1, axis=0) - total_flux_y)
# For incompressible flow, the density and pressure are assumed to be constant,
# so the mass and energy fluxes are not explicitly computed and updated.
# For compressible flow, additional steps would be needed to compute mass and energy fluxes.
# Note: In this example, we have assumed an incompressible flow solver using the finite volume method.
# The specific implementation may vary depending on the numerical scheme and fluid properties considered.
def update_boundary_conditions(self):
# Update boundary conditions for each time step in the simulation
# Example: No-slip wall boundary conditions
# Top wall (y = grid_size - 1)
self.velocity[:, -1, :] = np.array([0.0, 0.0]) # No-slip condition for velocity
# Bottom wall (y = 0)
self.velocity[:, 0, :] = np.array([0.0, 0.0]) # No-slip condition for velocity
# Left wall (x = 0)
self.velocity[0, :, :] = np.array([0.0, 0.0]) # No-slip condition for velocity
# Right wall (x = grid_size - 1)
self.velocity[-1, :, :] = np.array([0.0, 0.0]) # No-slip condition for velocity
# Example: Periodic boundary conditions
# Periodic boundary in the x-direction (left-right boundaries)
self.velocity[0, :, :] = self.velocity[-2, :, :] # Copy values from the adjacent cell
self.velocity[-1, :, :] = self.velocity[1, :, :] # Copy values from the adjacent cell
# Periodic boundary in the y-direction (top-bottom boundaries)
self.velocity[:, 0, :] = self.velocity[:, -2, :] # Copy values from the adjacent cell
self.velocity[:, -1, :] = self.velocity[:, 1, :] # Copy values from the adjacent cell
# Additional boundary conditions can be implemented based on the problem requirements.
# For example, specifying inflow, outflow, or pressure boundary conditions.
# Note: The specific implementation of boundary conditions may vary depending on
# the flow problem, numerical method, and simulation domain characteristics.
def save_results_to_file(self):
# Save simulation results to files for post-processing and visualization
# Create a directory to store simulation results
if not os.path.exists("simulation_results"):
os.makedirs("simulation_results")
# Save flow field data (velocity, pressure, density) at each time step
for t in range(self.num_time_steps):
velocity_file = f"simulation_results/velocity_t{t}.npy"
pressure_file = f"simulation_results/pressure_t{t}.npy"
density_file = f"simulation_results/density_t{t}.npy"
np.save(velocity_file, self.velocity)
np.save(pressure_file, self.pressure)
np.save(density_file, self.density)
# Save additional simulation results (e.g., turbulent viscosity, turbulence statistics, etc.)
# You can add other data to save here, depending on your specific simulation and analysis needs.
def visualize_results(velocity, pressure, density):
# Implement functions to visualize the simulation results using Matplotlib
# Visualize velocity vector plot
plt.figure(figsize=(8, 6))
x, y = np.meshgrid(np.arange(velocity.shape[1]), np.arange(velocity.shape[0]))
plt.quiver(x, y, velocity[:, :, 0], velocity[:, :, 1], scale=10)
plt.title('Velocity Vector Field')
plt.xlabel('X')
plt.ylabel('Y')
plt.grid(True)
plt.colorbar()
plt.show()
# Visualize pressure contour plot
plt.figure(figsize=(8, 6))
plt.contourf(pressure, cmap='viridis')
plt.title('Pressure Contour')
plt.xlabel('X')
plt.ylabel('Y')
plt.colorbar()
plt.show()
# Visualize density plot
plt.figure(figsize=(8, 6))
plt.imshow(density, cmap='hot', origin='lower')
plt.title('Density Plot')
plt.xlabel('X')
plt.ylabel('Y')
plt.colorbar()
plt.show()
# You can add additional visualizations based on your specific simulation and analysis needs.
# fluid_solver.py
def analyze_turbulence_statistics(velocity):
# Implement functions to analyze turbulence statistics from the simulation results
# Compute turbulent kinetic energy (TKE)
u = velocity[:, :, 0]
v = velocity[:, :, 1]
mean_velocity_magnitude = np.sqrt(u ** 2 + v ** 2)
tke = 0.5 * (mean_velocity_magnitude ** 2)
# Compute turbulent intensity
turbulent_intensity = np.sqrt(2 * tke) / mean_velocity_magnitude
# You can add more turbulence statistics computations here based on your specific needs.
# Print or visualize the computed turbulence statistics
print("Turbulent Kinetic Energy (TKE):")
print(tke)
print("Turbulent Intensity:")
print(turbulent_intensity)
# You can also plot and analyze the turbulence statistics as needed.
# Note: The specific turbulence statistics to compute and analyze may vary depending
# on your research objectives and the information you want to extract from the simulation.
def main():
# Example usage of the FluidSolver class to set up and run the simulation
grid_size = 100
time_step = 0.01
num_time_steps = 100
turbulence_model = TurbulenceModel(Cs=0.1) # Specify the Smagorinsky constant (Cs) for the turbulence model
shock_model = ShockModel(C_viscosity=0.1) # Specify the artificial viscosity coefficient (C_viscosity) for the shock model
fluid_solver = FluidSolver(grid_size, time_step, num_time_steps, turbulence_model, shock_model)
fluid_solver.run_simulation()
velocity, pressure, density = fluid_solver.get_results()
# Visualize the simulation results
visualize_results(velocity, pressure, density)
# Analyze turbulence statistics from the simulation results
analyze_turbulence_statistics(velocity)
if __name__ == "__main__":
main()