-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplasma_physics.py
700 lines (542 loc) · 33.8 KB
/
plasma_physics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
import numpy as np
import scipy.constants as const
import numpy as np
import scipy.constants as const
class OhmicHeating:
def __init__(self, grid_size, plasma_density, electrical_conductivity, time_step):
self.grid_size = grid_size
self.plasma_density = plasma_density
self.electrical_conductivity = electrical_conductivity
self.time_step = time_step
self.initialize_ohmic_parameters()
def initialize_ohmic_parameters(self):
# Initialize Ohmic heating parameters
# Resistivity is the reciprocal of electrical conductivity
self.electrical_resistivity = 1.0 / self.electrical_conductivity
def calculate_electrical_current_density(self, electric_field):
# Calculate the electrical current density based on Ohm's law
# The electric field (E) and electrical resistivity (rho) are related to the current density (J) as:
# J = E / rho
return electric_field / self.electrical_resistivity
def calculate_joule_heating_rate(self, electrical_current_density, electric_field):
# Calculate the Joule heating rate in the plasma due to Ohmic heating
# The Joule heating rate is given by J.E, where J is the electrical current density and E is the electric field.
return np.sum(electrical_current_density * electric_field)
def update_electron_temperature(self, joule_heating_rate):
# Update the electron temperature based on the Joule heating rate
# The increase in electron temperature is proportional to the Joule heating rate
delta_t = self.time_step
self.electron_temperature += delta_t * joule_heating_rate / (3 * const.k * self.plasma_density)
def simulate_ohmic_heating(self, electric_field, num_time_steps):
# Simulate Ohmic heating over multiple time steps
for t in range(num_time_steps):
# Calculate the electrical current density based on Ohm's law
electrical_current_density = self.calculate_electrical_current_density(electric_field)
# Calculate the Joule heating rate in the plasma due to Ohmic heating
joule_heating_rate = self.calculate_joule_heating_rate(electrical_current_density, electric_field)
# Update the electron temperature based on the Joule heating rate
self.update_electron_temperature(joule_heating_rate)
# Return the updated electron temperature after Ohmic heating
return self.electron_temperature
import numpy as np
class LaserHeating:
def __init__(self, grid_size, laser_intensity, laser_wavelength, plasma_density, plasma_temperature, time_step):
self.grid_size = grid_size
self.laser_intensity = laser_intensity
self.laser_wavelength = laser_wavelength
self.plasma_density = plasma_density
self.plasma_temperature = plasma_temperature
self.time_step = time_step
self.initialize_laser_parameters()
def initialize_laser_parameters(self):
# Initialize laser parameters
# Calculate the laser wave number (k) from its wavelength (lambda)
self.laser_wave_number = 2 * np.pi / self.laser_wavelength
def calculate_laser_intensity_profile(self):
# Calculate the spatial distribution of the laser intensity
# You can model the laser beam profile based on the specific laser setup and optics.
# Example: Gaussian laser beam profile
laser_intensity_profile = self.laser_intensity * np.exp(-0.5 * ((self.grid_size / 2 - np.arange(self.grid_size)) / (self.grid_size / 6)) ** 2)
return laser_intensity_profile
def calculate_laser_plasma_interaction(self, laser_intensity_profile):
# Calculate the laser-plasma interaction and energy absorption in the plasma
# The laser's optical propagation and its interaction with the plasma are complex.
# You can use numerical methods like the finite-difference time-domain (FDTD) or ray tracing to simulate the interaction.
# The absorbed energy can lead to changes in plasma temperature and electron density.
# Example: Simple energy absorption model
energy_absorption_rate = 0.1 * laser_intensity_profile # Replace with appropriate absorption model
# Update plasma temperature based on the absorbed energy
delta_t = self.time_step
self.plasma_temperature += delta_t * energy_absorption_rate / (3 * const.k * self.plasma_density)
def simulate_laser_heating(self, num_time_steps):
# Simulate laser heating over multiple time steps
for t in range(num_time_steps):
# Calculate the laser intensity profile
laser_intensity_profile = self.calculate_laser_intensity_profile()
# Calculate the laser-plasma interaction and energy absorption
self.calculate_laser_plasma_interaction(laser_intensity_profile)
# Return the updated plasma temperature after laser heating
return self.plasma_temperature
class MultiphysicsPlasmaSimulation:
def __init__(self, grid_size, time_step, num_time_steps, plasma_density, plasma_temperature, laser_intensity, laser_wavelength):
# Initialize the multiphysics plasma simulation with relevant parameters
self.grid_size = grid_size
self.time_step = time_step
self.num_time_steps = num_time_steps
self.plasma_density = plasma_density
self.plasma_temperature = plasma_temperature
self.laser_intensity = laser_intensity
self.laser_wavelength = laser_wavelength
# Initialize the FluidSolver, PlasmaModel, and LaserHeating instances
self.fluid_solver = FluidSolver(grid_size, time_step, num_time_steps, turbulence_model, shock_model)
self.plasma_model = PlasmaModel(grid_size, time_step, num_time_steps, plasma_density, plasma_temperature)
self.laser_heating = LaserHeating(grid_size, laser_intensity, laser_wavelength, plasma_density, plasma_temperature, time_step)
def run_multiphysics_simulation(self):
# Run the multiphysics simulation over the specified number of time steps
for t in range(self.num_time_steps):
# Update the plasma properties using the PlasmaModel
self.plasma_model.apply_plasma_model()
# Calculate the fluid dynamics using the FluidSolver
self.fluid_solver.compute_fluxes()
# Simulate laser heating and update plasma temperature
updated_temperature = self.laser_heating.simulate_laser_heating(num_time_steps=1)
self.plasma_model.plasma_temperature = updated_temperature
# Update boundary conditions as needed
self.plasma_model.update_boundary_conditions()
self.fluid_solver.update_boundary_conditions()
# Save the simulation results
self.plasma_model.save_results_to_file()
self.fluid_solver.save_results_to_file()
# Return the final plasma and fluid simulation results
plasma_results = self.plasma_model.get_results()
fluid_results = self.fluid_solver.get_results()
return plasma_results, fluid_results
class TimeDependentHeating:
def __init__(self, heating_function):
# Initialize the TimeDependentHeating with the heating_function
self.heating_function = heating_function
def apply_time_dependent_heating(self, time):
# Apply time-dependent heating to the plasma properties at the given time
heating_rate = self.heating_function(time)
# Update the plasma properties (density or temperature) based on the heating rate
# For example, self.plasma_density += heating_rate * self.time_step
return updated_plasma_properties
class MultiphysicsPlasmaSimulation:
# ... (previous code)
def __init__(self, grid_size, time_step, num_time_steps, plasma_density, plasma_temperature, laser_intensity, laser_wavelength, heating_function):
# ... (previous initialization)
# Initialize the TimeDependentHeating instance with the heating function
self.time_dependent_heating = TimeDependentHeating(heating_function)
def run_multiphysics_simulation(self):
# ... (previous code)
for t in range(self.num_time_steps):
current_time = t * self.time_step
# Update the plasma properties using the PlasmaModel and TimeDependentHeating
updated_plasma_properties = self.time_dependent_heating.apply_time_dependent_heating(current_time)
self.plasma_model.plasma_density, self.plasma_model.plasma_temperature = updated_plasma_properties
# ... (continue with previous simulation steps)
# ... (return final simulation results)
class PlasmaHeatingSource:
def __init__(self, position, power_density_function):
# Initialize the PlasmaHeatingSource with its position and power density function
self.position = position
self.power_density_function = power_density_function
def calculate_power_density(self, position, time):
# Calculate the power density of the heating source at the given position and time
return self.power_density_function(position, time)
class MultiphysicsPlasmaSimulation:
# ... (previous code)
def __init__(self, grid_size, time_step, num_time_steps, plasma_density, plasma_temperature, plasma_heating_sources):
# ... (previous initialization)
# Initialize the plasma heating sources
self.plasma_heating_sources = plasma_heating_sources
def calculate_total_power_density(self, position, time):
# Calculate the total power density contributed by all plasma heating sources at a given position and time
total_power_density = 0.0
for heating_source in self.plasma_heating_sources:
power_density = heating_source.calculate_power_density(position, time)
total_power_density += power_density
return total_power_density
def apply_plasma_heating_interaction(self, time):
# Apply the interaction between plasma heating sources and the plasma
for i in range(self.grid_size):
for j in range(self.grid_size):
position = (i, j)
power_density = self.calculate_total_power_density(position, time)
# Update plasma properties based on the power density from heating sources
# For example, self.plasma_density[i, j] += heating_rate * self.time_step
def run_multiphysics_simulation(self):
# ... (previous code)
for t in range(self.num_time_steps):
current_time = t * self.time_step
# Apply plasma heating interaction for the current time step
self.apply_plasma_heating_interaction(current_time)
# ... (continue with previous simulation steps)
# ... (return final simulation results)
class PlasmaHeatingSource:
# ... (previous code)
def apply_boundary_conditions(self, plasma_boundary):
# Apply advanced boundary conditions for the heating source
# This method can be used to enforce the interaction between the heating source and the plasma boundary
# For example, you can ensure that the power density at the plasma boundary matches the desired value
pass
class MultiphysicsPlasmaSimulation:
# ... (previous code)
def apply_boundary_conditions(self, plasma_boundary):
# Apply advanced boundary conditions for the entire simulation
# This method can be used to enforce the interaction between all heating sources and the plasma boundary
for heating_source in self.plasma_heating_sources:
heating_source.apply_boundary_conditions(plasma_boundary)
# Additional boundary conditions for the plasma itself can also be applied here
# For example, enforcing no-flux or insulated boundary conditions for the plasma density and temperature
def run_multiphysics_simulation(self):
# ... (previous code)
# Get the plasma boundary from the plasma containment system
plasma_boundary = self.plasma_containment.get_boundary()
for t in range(self.num_time_steps):
current_time = t * self.time_step
# Apply plasma heating interaction for the current time step
self.apply_plasma_heating_interaction(current_time)
# Apply advanced boundary conditions for the heating sources and the plasma
self.apply_boundary_conditions(plasma_boundary)
# ... (continue with previous simulation steps)
# ... (return final simulation results)
class RFHeating:
def __init__(self, grid_size, plasma_density, electron_temperature, rf_power, rf_frequency, time_step):
self.grid_size = grid_size
self.plasma_density = plasma_density
self.electron_temperature = electron_temperature
self.rf_power = rf_power
self.rf_frequency = rf_frequency
self.time_step = time_step
self.initialize_rf_parameters()
def initialize_rf_parameters(self):
# Initialize RF heating parameters such as wave frequency and wave vector
self.wave_vector = np.array([1.0, 0.0]) # Wave propagation direction (along x-axis)
self.wave_length = 2 * np.pi / np.linalg.norm(self.wave_vector)
def calculate_rf_wave_amplitude(self):
# Calculate the amplitude of the RF wave based on the provided RF power and wave frequency
# For simplicity, we assume a constant amplitude, but more sophisticated models can be used
return np.sqrt(2 * self.rf_power)
def calculate_rf_wave_vector(self):
# Calculate the wave vector of the RF wave based on the wave frequency and propagation direction
omega = 2 * np.pi * self.rf_frequency
return omega * self.wave_vector / np.linalg.norm(self.wave_vector)
def calculate_electric_field_amplitude(self):
# Calculate the electric field amplitude of the RF wave using wave equation and plasma parameters
# Solving the wave equation numerically for the electric field amplitude (E) is complex and may require
# advanced numerical techniques such as finite-difference time-domain (FDTD) or spectral methods.
# For demonstration purposes, we use a simplified expression that assumes a uniform electric field:
return self.calculate_rf_wave_amplitude()
def calculate_energy_transfer_rate(self, electron_density, electric_field_amplitude):
# Calculate the rate of energy transfer from the RF wave to electrons through wave-particle interactions
# The energy transfer rate depends on the plasma density and electric field amplitude
# For advanced simulations, a more realistic model, such as the Landau damping or Fokker-Planck equation,
# can be used to calculate the energy transfer rate.
return 0.5 * electron_density * const.e**2 * np.abs(electric_field_amplitude)**2 / (const.m_e * const.epsilon_0)
def update_electron_temperature(self, energy_transfer_rate):
# Update the electron temperature based on the energy transfer rate
# The increase in electron temperature is proportional to the energy transfer rate
delta_t = self.time_step
self.electron_temperature += delta_t * energy_transfer_rate / (3 * const.k)
def simulate_rf_heating(self, num_time_steps):
# Simulate RF heating over multiple time steps
for t in range(num_time_steps):
# Calculate the amplitude and wave vector of the RF wave
electric_field_amplitude = self.calculate_electric_field_amplitude()
wave_vector = self.calculate_rf_wave_vector()
# Calculate the energy transfer rate from the RF wave to electrons
energy_transfer_rate = self.calculate_energy_transfer_rate(self.plasma_density, electric_field_amplitude)
# Update the electron temperature based on the energy transfer rate
self.update_electron_temperature(energy_transfer_rate)
# Return the updated electron temperature after RF heating
return self.electron_temperature
class NeutralBeamInjection:
def __init__(self, grid_size, plasma_density, injection_rate, injected_particle_energy_mean, injected_particle_energy_std):
self.grid_size = grid_size
self.plasma_density = plasma_density
self.injection_rate = injection_rate
self.injected_particle_energy_mean = injected_particle_energy_mean
self.injected_particle_energy_std = injected_particle_energy_std
self.initialize_beam_parameters()
def initialize_beam_parameters(self):
# Initialize beam parameters such as injection direction and injection profile
# For simplicity, we assume a uniform injection rate and direction here
self.injection_direction = np.array([1.0, 0.0]) # Injection along the x-axis
self.injection_profile = np.ones((self.grid_size, self.grid_size))
def inject_neutral_particles(self, plasma_density, injection_rate, injection_profile):
# Simulate the injection of neutral particles into the plasma
# The injected particle density is proportional to the injection rate and the injection profile
return injection_rate * injection_profile
def sample_injected_particle_energy(self):
# Sample the energy of injected neutral particles from a normal distribution
return np.random.normal(self.injected_particle_energy_mean, self.injected_particle_energy_std)
def ionize_neutral_particles(self, neutral_density, injected_particle_energy):
# Simulate the ionization of neutral particles
# For simplicity, assume all neutral particles are ionized with a sampled energy
return neutral_density * injected_particle_energy
def scatter_and_charge_exchange(self, ion_density, plasma_density):
# Simulate scattering and charge exchange processes
# For simplicity, assume that scattering and charge exchange do not change the ion energy
return ion_density
def calculate_energy_deposition(self, ion_density, injected_particle_energy):
# Calculate the energy deposition profile of fast ions within the plasma
# Energy deposition is proportional to the ion density and their energy
return ion_density * injected_particle_energy
def simulate_heating(self, num_time_steps):
# Simulate neutral beam injection heating over multiple time steps
ion_density = np.zeros_like(self.plasma_density)
for t in range(num_time_steps):
# Inject neutral particles into the plasma with a time-varying profile
injection_profile = self.injection_profile * np.sin(2 * np.pi * t / num_time_steps)
neutral_density = self.inject_neutral_particles(self.plasma_density, self.injection_rate, injection_profile)
# Sample the energy of injected neutral particles
injected_particle_energy = self.sample_injected_particle_energy()
# Ionize the neutral particles
ion_density += self.ionize_neutral_particles(neutral_density, injected_particle_energy)
# Scatter and charge exchange the ions
ion_density = self.scatter_and_charge_exchange(ion_density, self.plasma_density)
# Calculate energy deposition and contribute to plasma heating
energy_deposition = self.calculate_energy_deposition(ion_density, injected_particle_energy)
self.plasma_density += energy_deposition
# Return the updated plasma density after heating
return self.plasma_density
class PlasmaModel:
def __init__(self, grid_size, time_step, num_time_steps, plasma_density, plasma_temperature):
# Initialize the PlasmaModel with grid size, time step, number of time steps,
# plasma density, and plasma temperature
self.grid_size = grid_size
self.time_step = time_step
self.num_time_steps = num_time_steps
self.plasma_density = plasma_density
self.plasma_temperature = plasma_temperature
self.initialize_plasma_properties()
def initialize_plasma_properties(self):
# Set initial conditions for plasma properties (e.g., electron density, electron temperature)
# You can also initialize other plasma properties as needed for your simulation
self.electron_density = np.ones((self.grid_size, self.grid_size)) * self.plasma_density
self.electron_temperature = np.ones((self.grid_size, self.grid_size)) * self.plasma_temperature
self.ion_density = np.zeros((self.grid_size, self.grid_size))
self.ion_temperature = np.zeros((self.grid_size, self.grid_size))
self.electron_velocity = np.zeros((self.grid_size, self.grid_size, 2))
self.ion_velocity = np.zeros((self.grid_size, self.grid_size, 2))
self.electric_field = np.zeros((self.grid_size, self.grid_size, 2))
self.magnetic_field = np.zeros((self.grid_size, self.grid_size, 2))
def apply_plasma_model(self):
# Implement advanced plasma physics model to update plasma properties
# Time-stepping parameters
delta_t = self.time_step
# Update plasma density and temperature (assuming no sources or sinks)
self.electron_density += delta_t * (self.compute_density_diffusion() + self.compute_density_production())
self.ion_density += delta_t * (self.compute_ion_density_diffusion() + self.compute_ion_density_production())
self.electron_temperature += delta_t * (self.compute_temperature_diffusion() + self.compute_temperature_production())
self.ion_temperature += delta_t * (self.compute_ion_temperature_diffusion() + self.compute_ion_temperature_production())
# Update plasma velocity and electric field
self.electron_velocity += delta_t * self.compute_electron_velocity()
self.ion_velocity += delta_t * self.compute_ion_velocity()
self.electric_field += delta_t * self.compute_electric_field()
# Update magnetic field
self.magnetic_field += delta_t * self.compute_magnetic_field()
# You can include additional plasma physics model equations here based on your simulation needs.
# For example, you can add momentum equations, energy equations, or other relevant equations.
def compute_magnetic_field(self):
# Calculate magnetic field based on solenoid coil system
mu_0 = 4 * np.pi * 1e-7 # Permeability of free space (T m/A)
I = 1.0 # Current in the coil (A)
# Solenoid parameters (example values)
coil_radius = 0.1 # Radius of the solenoid coil (m)
coil_length = 0.5 # Length of the solenoid coil (m)
num_coil_turns = 100 # Number of turns of wire in the solenoid coil
# Create a grid of points where we want to calculate the magnetic field
x = np.linspace(-coil_length/2, coil_length/2, self.grid_size)
y = np.linspace(-coil_radius, coil_radius, self.grid_size)
xx, yy = np.meshgrid(x, y)
# Initialize magnetic field components
Bx = np.zeros_like(xx)
By = np.zeros_like(yy)
Bz = np.zeros_like(xx) # We assume the magnetic field has no component along the z-axis
# Calculate magnetic field contributions from each turn of the coil
for i in range(num_coil_turns):
# Location of the current element of the coil (assuming it lies on the y-axis)
coil_y = i * coil_radius * 2 / num_coil_turns
# Vector pointing from the coil element to the point where the field is being calculated
rx = xx
ry = yy - coil_y
# Distance from the coil element to the point where the field is being calculated
r = np.sqrt(rx**2 + ry**2)
# Cross product between the current element of the coil and the vector r
cross_product = np.cross([0, I * coil_radius, 0], [rx, ry, 0])
# Calculate the magnetic field contribution for this coil element
dB = mu_0 * I * cross_product / (4 * np.pi * r**3)
# Add the magnetic field contribution to the total magnetic field
Bx += dB[0]
By += dB[1]
# Combine the components of the magnetic field
B = np.sqrt(Bx**2 + By**2 + Bz**2)
# Store the calculated magnetic field in the class instance
self.magnetic_field = B
def plasma_heating(self):
# Simulate plasma heating mechanisms (e.g., neutral beam injection, RF heating)
# Implement heating equations based on containment geometry and heating sources
# Example: Simulate neutral beam injection heating
pass
def plasma_fueling(self):
# Simulate plasma fueling mechanisms (e.g., pellet injection, gas puffing)
# Implement fueling equations based on containment geometry and fueling sources
# Example: Simulate pellet injection for plasma fueling
pass
def plasma_equilibrium(self):
# Achieve plasma equilibrium by solving equilibrium equations
# Incorporate external forces, magnetic fields, and pressure balance
# Example: Solve pressure balance equations for plasma equilibrium
pass
def particle_transport(self):
# Simulate particle transport (e.g., diffusion, convection) within the plasma
# Implement equations for particle transport based on containment geometry
# Example: Implement particle diffusion equations in magnetic confinement
pass
def energy_transport(self):
# Simulate energy transport (e.g., heat conduction) within the plasma
# Implement equations for energy transport based on containment geometry
# Example: Implement heat conduction equations in magnetic confinement
pass
def stability_analysis(self):
# Perform stability analysis to investigate plasma stability criteria
# Identify and handle plasma instabilities and disruptions
# Example: Perform MHD stability analysis to check for instabilities
pass
def diagnostic_outputs(self):
# Enhance the save_results_to_file method to include diagnostic outputs
# Save magnetic field profiles, temperature profiles, density profiles, etc.
# Example: Save magnetic field and temperature profiles to file
pass
def run_simulation(self):
# Run the plasma containment simulation for the specified number of time steps
for t in range(self.num_time_steps):
# Save the simulation data at each time step
self.save_results_to_file()
# Update boundary conditions for the current time step
self.update_boundary_conditions()
# Compute magnetic field based on the containment geometry and magnetic coils
self.compute_magnetic_field()
# Simulate plasma heating mechanisms
self.plasma_heating()
# Simulate plasma fueling mechanisms
self.plasma_fueling()
# Achieve plasma equilibrium
self.plasma_equilibrium()
# Simulate particle transport within the plasma
self.particle_transport()
# Simulate energy transport within the plasma
self.energy_transport()
# Perform stability analysis
self.stability_analysis()
# Apply the plasma model to update plasma properties for the current time step
self.apply_plasma_model()
# Save the final simulation results
self.save_results_to_file()
def get_results(self):
# Retrieve simulation results (e.g., electron density, electron temperature)
results = {
'electron_density': self.electron_density,
'electron_temperature': self.electron_temperature,
# Include additional plasma properties if needed
# 'plasma_property1': plasma_property1,
# 'plasma_property2': plasma_property2,
# ...
}
return results
def compute_density_diffusion(self):
# Compute density diffusion term (e.g., using the diffusion coefficient)
# You can implement the specific diffusion equation based on your simulation requirements
diffusion_coefficient = 1.0 # Replace with the appropriate value for your plasma
return diffusion_coefficient * np.gradient(self.electron_density, axis=(0, 1))
def compute_ion_density_diffusion(self):
# Compute ion density diffusion term (e.g., using the diffusion coefficient)
# You can implement the specific diffusion equation based on your simulation requirements
diffusion_coefficient = 0.8 # Replace with the appropriate value for your plasma
return diffusion_coefficient * np.gradient(self.ion_density, axis=(0, 1))
def compute_density_production(self):
# Compute density production term (e.g., due to ionization, recombination, etc.)
# You can implement the specific production equation based on your simulation requirements
production_rate = 0.1 # Replace with the appropriate value for your plasma
return production_rate * np.ones((self.grid_size, self.grid_size))
def compute_ion_density_production(self):
# Compute ion density production term (e.g., due to ionization, recombination, etc.)
# You can implement the specific production equation based on your simulation requirements
production_rate = 0.08 # Replace with the appropriate value for your plasma
return production_rate * np.ones((self.grid_size, self.grid_size))
def compute_temperature_diffusion(self):
# Compute temperature diffusion term (e.g., using the thermal diffusivity)
# You can implement the specific diffusion equation based on your simulation requirements
thermal_diffusivity = 0.05 # Replace with the appropriate value for your plasma
return thermal_diffusivity * np.gradient(self.electron_temperature, axis=(0, 1))
def compute_ion_temperature_diffusion(self):
# Compute ion temperature diffusion term (e.g., using the thermal diffusivity)
# You can implement the specific diffusion equation based on your simulation requirements
thermal_diffusivity = 0.04 # Replace with the appropriate value for your plasma
return thermal_diffusivity * np.gradient(self.ion_temperature, axis=(0, 1))
def compute_temperature_production(self):
# Compute temperature production term (e.g., due to heating, cooling, etc.)
# You can implement the specific production equation based on your simulation requirements
production_rate = 0.01 # Replace with the appropriate value for your plasma
return production_rate * np.ones((self.grid_size, self.grid_size))
def compute_ion_temperature_production(self):
# Compute ion temperature production term (e.g., due to heating, cooling, etc.)
# You can implement the specific production equation based on your simulation requirements
production_rate = 0.008 # Replace with the appropriate value for your plasma
return production_rate * np.ones((self.grid_size, self.grid_size))
def compute_electron_velocity(self):
# Compute electron velocity based on the electric field and magnetic field
# You can implement the specific electron velocity equation based on your simulation requirements
return np.zeros((self.grid_size, self.grid_size, 2))
def compute_ion_velocity(self):
# Compute ion velocity based on the electric field and magnetic field
# You can implement the specific ion velocity equation based on your simulation requirements
return np.zeros((self.grid_size, self.grid_size, 2))
def compute_electric_field(self):
# Compute electric field based on the electron and ion densities and temperatures
# You can implement the specific electric field equation based on your simulation requirements
return np.zeros((self.grid_size, self.grid_size, 2))
def compute_magnetic_field(self):
# Compute magnetic field based on the electron and ion densities and temperatures
# You can implement the specific magnetic field equation based on your simulation requirements
return np.zeros((self.grid_size, self.grid_size, 2))
def update_boundary_conditions(self):
# Update boundary conditions for each time step in the simulation
# You can implement specific boundary conditions based on your simulation requirements
pass
def save_results_to_file(self):
# Save plasma model results to files for post-processing and visualization
# You can save electron density, electron temperature, ion density, ion temperature,
# electric field, magnetic field, or any other relevant plasma properties
# at each time step to analyze the simulation results later.
pass
def run_simulation(self):
# Run the plasma simulation for the specified number of time steps
for t in range(self.num_time_steps):
# Save the simulation data at each time step
self.save_results_to_file()
# Update boundary conditions for the current time step
self.update_boundary_conditions()
# Apply the plasma model to update plasma properties for the current time step
self.apply_plasma_model()
# Save the final simulation results (e.g., plasma profiles, particle distributions, etc.)
self.save_results_to_file()
def get_results(self):
# Retrieve simulation results (e.g., electron density, electron temperature, ion density, ion temperature)
results = {
'electron_density': self.electron_density,
'electron_temperature': self.electron_temperature,
'ion_density': self.ion_density,
'ion_temperature': self.ion_temperature,
'electron_velocity': self.electron_velocity,
'ion_velocity': self.ion_velocity,
'electric_field': self.electric_field,
'magnetic_field': self.magnetic_field,
# Include additional plasma properties if needed
# 'plasma_property1': plasma_property1,
# 'plasma_property2': plasma_property2,
# ...
}
return results