You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardexpand all lines: docs/src/layers/attention_layer.md
+1-1
Original file line number
Diff line number
Diff line change
@@ -77,7 +77,7 @@ The Cayley transform maps from skew-symmetric matrices to orthonormal matrices[^
77
77
We can easily check that ``\mathrm{Cayley}(A)`` is orthogonal if ``A`` is skew-symmetric. For this consider ``\varepsilon \mapsto A(\varepsilon)\in\mathcal{S}_\mathrm{skew}`` with ``A(0) = \mathbb{I}`` and ``A'(0) = B``. Then we have:
In order to use the Cayley transform as an activation function we further need a mapping from the input ``Z`` to a skew-symmetric matrix. This is realized in two ways in `GeometricMachineLearning`: via a scalar-product with a skew-symmetric weighting and via a scalar-product with an arbitrary weighting.
0 commit comments