From 80f11cbb1ced0cbbcb160f94c09a50de3f0e6d48 Mon Sep 17 00:00:00 2001 From: "Documenter.jl" Date: Fri, 26 Jul 2024 16:52:11 +0000 Subject: [PATCH] build based on e808df6 --- dev/.documenter-siteinfo.json | 2 +- dev/api/index.html | 4 ++-- dev/examples/index.html | 2 +- dev/externals/index.html | 2 +- dev/index.html | 2 +- dev/overview/index.html | 2 +- dev/references/index.html | 2 +- 7 files changed, 8 insertions(+), 8 deletions(-) diff --git a/dev/.documenter-siteinfo.json b/dev/.documenter-siteinfo.json index ed0c0b6..6e6d217 100644 --- a/dev/.documenter-siteinfo.json +++ b/dev/.documenter-siteinfo.json @@ -1 +1 @@ -{"documenter":{"julia_version":"1.10.4","generation_timestamp":"2024-07-26T11:34:44","documenter_version":"1.5.0"}} \ No newline at end of file +{"documenter":{"julia_version":"1.10.4","generation_timestamp":"2024-07-26T16:52:06","documenter_version":"1.5.0"}} \ No newline at end of file diff --git a/dev/api/index.html b/dev/api/index.html index fc6f8f2..603d138 100644 --- a/dev/api/index.html +++ b/dev/api/index.html @@ -1,3 +1,3 @@ -API · Krotov.jl

API

Krotov.KrotovResultType

Result object returned by optimize_krotov.

Attributes

The attributes of a KrotovResult object include

  • iter: The number of the current iteration
  • J_T: The value of the final-time functional in the current iteration
  • J_T_prev: The value of the final-time functional in the previous iteration
  • tlist: The time grid on which the control are discretized.
  • guess_controls: A vector of the original control fields (each field discretized to the points of tlist)
  • optimized_controls: A vector of the optimized control fields. Calculated only at the end of the optimization, not after each iteration.
  • tau_vals: For any trajectory that defines a target_state, the complex overlap of that target state with the propagated state. For any trajectory for which the target_state is nothing, the value is zero.
  • records: A vector of tuples with values returned by a callback routine passed to optimize
  • converged: A boolean flag on whether the optimization is converged. This may be set to true by a check_convergence function.
  • message: A message string to explain the reason for convergence. This may be set by a check_convergence function.

All of the above attributes may be referenced in a check_convergence function passed to optimize(problem; method=Krotov)

source
Krotov.KrotovWrkType

Krotov workspace.

The workspace is for internal use. However, it is also accessible in a callback function. The callback may use or modify some of the following attributes:

  • trajectories: a copy of the trajectories defining the control problem
  • adjoint_trajectories: The trajectories with the adjoint generator
  • kwargs: The keyword arguments from the ControlProblem or the call to optimize.
  • controls: A tuple of the original controls (probably functions)
  • ga_a_int: The current value of $∫gₐ(t)dt$ for each control
  • update_shapes: The update shapes $S(t)$ for each pulse, discretized on the intervals of the time grid.
  • lambda_vals: The current value of λₐ for each control
  • result: The current result object
  • fw_storage: The storage of states for the forward propagation
  • fw_propagators: The propagators used for the forward propagation
  • bw_propagators: The propagators used for the backward propagation
  • use_threads: Flag indicating whether the propagations are performed in parallel.
source
QuantumControlBase.optimizeMethod
using Krotov
-result = optimize(problem; method=Krotov, kwargs...)

optimizes the given control problem using Krotov's method, returning a KrotovResult.

Keyword arguments that control the optimization are taken from the keyword arguments used in the instantiation of problem; any of these can be overridden with explicit keyword arguments to optimize.

Required problem keyword arguments

  • J_T: A function J_T(Ψ, trajectories) that evaluates the final time functional from a list Ψ of forward-propagated states and problem.trajectories. The function J_T may also take a keyword argument tau. If it does, a vector containing the complex overlaps of the target states (target_state property of each trajectory in problem.trajectories) with the propagated states will be passed to J_T.

Recommended problem keyword arguments

  • lambda_a=1.0: The inverse Krotov step width λₐ for every pulse.
  • update_shape=(t->1.0): A function S(t) for the "update shape" that scales the update for every pulse.

If different controls require different lambda_a or update_shape, a dict pulse_options must be given instead of a global lambda_a and update_shape; see below.

Optional problem keyword arguments

The following keyword arguments are supported (with default values):

  • pulse_options: A dictionary that maps every control (as obtained by get_controls from the problem.trajectories) to the following dict:

    • :lambda_a: The value for inverse Krotov step width λₐ.
    • :update_shape: A function S(t) for the "update shape" that scales the Krotov pulse update.

    This overrides the global lambda_a and update_shape arguments.

  • chi: A function chi(Ψ, trajectories) that receives a list Ψ of the forward propagated states and returns a vector of states $|χₖ⟩ = -∂J_T/∂⟨Ψₖ|$. If not given, it will be automatically determined from J_T via make_chi with the default parameters. Similarly to J_T, if chi accepts a keyword argument tau, it will be passed a vector of complex overlaps.

  • sigma=nothing: A function that calculates the second-order contribution. If not given, the first-order Krotov method is used.

  • iter_start=0: The initial iteration number.

  • iter_stop=5000: The maximum iteration number.

  • prop_method: The propagation method to use for each trajectory; see below.

  • print_iters=true: Whether to print information after each iteration.

  • store_iter_info=Set(): Which fields from print_iters to store in result.records. A subset of Set(["iter.", "J_T", "∫gₐ(t)dt", "J", "ΔJ_T", "ΔJ", "secs"]).

  • callback: A function (or tuple of functions) that receives the Krotov workspace, the iteration number, the list of updated pulses, and the list of guess pulses as positional arguments. The function may return a tuple of values which are stored in the KrotovResult object result.records. The function can also mutate any of its arguments, in particular the updated pulses. This may be used, e.g., to apply a spectral filter to the updated pulses or to perform similar manipulations. Note that print_iters=true (default) adds an automatic callback to print information after each iteration. With store_iter_info, that callback automatically stores a subset of the printed information.

  • check_convergence: A function to check whether convergence has been reached. Receives a KrotovResult object result, and should set result.converged to true and result.message to an appropriate string in case of convergence. Multiple convergence checks can be performed by chaining functions with . The convergence check is performed after any callback.

  • verbose=false: If true, print information during initialization.

  • rethrow_exceptions: By default, any exception ends the optimization but still returns a KrotovResult that captures the message associated with the exception. This is to avoid losing results from a long-running optimization when an exception occurs in a later iteration. If rethrow_exceptions=true, instead of capturing the exception, it will be thrown normally.

Trajectory propagation

Krotov's method involves the forward and backward propagation for every Trajectory in the problem. The keyword arguments for each propagation (see propagate) are determined from any properties of each Trajectory that have a prop_ prefix, cf. init_prop_trajectory.

In situations where different parameters are required for the forward and backward propagation, instead of the prop_ prefix, the fw_prop_ and bw_prop_ prefixes can be used, respectively. These override any setting with the prop_ prefix. This applies both to the properties of each Trajectory and the problem keyword arguments.

Note that the propagation method for each propagation must be specified. In most cases, it is sufficient (and recommended) to pass a global prop_method problem keyword argument.

source
+API · Krotov.jl

API

Krotov.KrotovResultType

Result object returned by optimize_krotov.

Attributes

The attributes of a KrotovResult object include

  • iter: The number of the current iteration
  • J_T: The value of the final-time functional in the current iteration
  • J_T_prev: The value of the final-time functional in the previous iteration
  • tlist: The time grid on which the control are discretized.
  • guess_controls: A vector of the original control fields (each field discretized to the points of tlist)
  • optimized_controls: A vector of the optimized control fields. Calculated only at the end of the optimization, not after each iteration.
  • tau_vals: For any trajectory that defines a target_state, the complex overlap of that target state with the propagated state. For any trajectory for which the target_state is nothing, the value is zero.
  • records: A vector of tuples with values returned by a callback routine passed to optimize
  • converged: A boolean flag on whether the optimization is converged. This may be set to true by a check_convergence function.
  • message: A message string to explain the reason for convergence. This may be set by a check_convergence function.

All of the above attributes may be referenced in a check_convergence function passed to optimize(problem; method=Krotov)

source
Krotov.KrotovWrkType

Krotov workspace.

The workspace is for internal use. However, it is also accessible in a callback function. The callback may use or modify some of the following attributes:

  • trajectories: a copy of the trajectories defining the control problem
  • adjoint_trajectories: The trajectories with the adjoint generator
  • kwargs: The keyword arguments from the ControlProblem or the call to optimize.
  • controls: A tuple of the original controls (probably functions)
  • ga_a_int: The current value of $∫gₐ(t)dt$ for each control
  • update_shapes: The update shapes $S(t)$ for each pulse, discretized on the intervals of the time grid.
  • lambda_vals: The current value of λₐ for each control
  • result: The current result object
  • fw_storage: The storage of states for the forward propagation
  • fw_propagators: The propagators used for the forward propagation
  • bw_propagators: The propagators used for the backward propagation
  • use_threads: Flag indicating whether the propagations are performed in parallel.
source
QuantumControlBase.optimizeMethod
using Krotov
+result = optimize(problem; method=Krotov, kwargs...)

optimizes the given control problem using Krotov's method, returning a KrotovResult.

Keyword arguments that control the optimization are taken from the keyword arguments used in the instantiation of problem; any of these can be overridden with explicit keyword arguments to optimize.

Required problem keyword arguments

  • J_T: A function J_T(Ψ, trajectories) that evaluates the final time functional from a list Ψ of forward-propagated states and problem.trajectories. The function J_T may also take a keyword argument tau. If it does, a vector containing the complex overlaps of the target states (target_state property of each trajectory in problem.trajectories) with the propagated states will be passed to J_T.

Recommended problem keyword arguments

  • lambda_a=1.0: The inverse Krotov step width λₐ for every pulse.
  • update_shape=(t->1.0): A function S(t) for the "update shape" that scales the update for every pulse.

If different controls require different lambda_a or update_shape, a dict pulse_options must be given instead of a global lambda_a and update_shape; see below.

Optional problem keyword arguments

The following keyword arguments are supported (with default values):

  • pulse_options: A dictionary that maps every control (as obtained by get_controls from the problem.trajectories) to the following dict:

    • :lambda_a: The value for inverse Krotov step width λₐ.
    • :update_shape: A function S(t) for the "update shape" that scales the Krotov pulse update.

    This overrides the global lambda_a and update_shape arguments.

  • chi: A function chi(Ψ, trajectories) that receives a list Ψ of the forward propagated states and returns a vector of states $|χₖ⟩ = -∂J_T/∂⟨Ψₖ|$. If not given, it will be automatically determined from J_T via make_chi with the default parameters. Similarly to J_T, if chi accepts a keyword argument tau, it will be passed a vector of complex overlaps.

  • sigma=nothing: A function that calculates the second-order contribution. If not given, the first-order Krotov method is used.

  • iter_start=0: The initial iteration number.

  • iter_stop=5000: The maximum iteration number.

  • prop_method: The propagation method to use for each trajectory; see below.

  • print_iters=true: Whether to print information after each iteration.

  • store_iter_info=Set(): Which fields from print_iters to store in result.records. A subset of Set(["iter.", "J_T", "∫gₐ(t)dt", "J", "ΔJ_T", "ΔJ", "secs"]).

  • callback: A function (or tuple of functions) that receives the Krotov workspace, the iteration number, the list of updated pulses, and the list of guess pulses as positional arguments. The function may return a tuple of values which are stored in the KrotovResult object result.records. The function can also mutate any of its arguments, in particular the updated pulses. This may be used, e.g., to apply a spectral filter to the updated pulses or to perform similar manipulations. Note that print_iters=true (default) adds an automatic callback to print information after each iteration. With store_iter_info, that callback automatically stores a subset of the printed information.

  • check_convergence: A function to check whether convergence has been reached. Receives a KrotovResult object result, and should set result.converged to true and result.message to an appropriate string in case of convergence. Multiple convergence checks can be performed by chaining functions with . The convergence check is performed after any callback.

  • verbose=false: If true, print information during initialization.

  • rethrow_exceptions: By default, any exception ends the optimization but still returns a KrotovResult that captures the message associated with the exception. This is to avoid losing results from a long-running optimization when an exception occurs in a later iteration. If rethrow_exceptions=true, instead of capturing the exception, it will be thrown normally.

Trajectory propagation

Krotov's method involves the forward and backward propagation for every Trajectory in the problem. The keyword arguments for each propagation (see propagate) are determined from any properties of each Trajectory that have a prop_ prefix, cf. init_prop_trajectory.

In situations where different parameters are required for the forward and backward propagation, instead of the prop_ prefix, the fw_prop_ and bw_prop_ prefixes can be used, respectively. These override any setting with the prop_ prefix. This applies both to the properties of each Trajectory and the problem keyword arguments.

Note that the propagation method for each propagation must be specified. In most cases, it is sufficient (and recommended) to pass a global prop_method problem keyword argument.

source
diff --git a/dev/examples/index.html b/dev/examples/index.html index 9d7509b..8825ce2 100644 --- a/dev/examples/index.html +++ b/dev/examples/index.html @@ -1,2 +1,2 @@ -Examples · Krotov.jl
+Examples · Krotov.jl
diff --git a/dev/externals/index.html b/dev/externals/index.html index e0a2171..d816a94 100644 --- a/dev/externals/index.html +++ b/dev/externals/index.html @@ -267,4 +267,4 @@ norm_min=1e-15, enlarge=true )

uses Arnoldi iteration with state as the starting vector. It approximates the eigenvalues of H with between m_min and m_max Ritz values, until the lowest and highest eigenvalue are stable to a relative precision of prec. The norm_min parameter is passed to the underlying arnoldi!.

If enlarge=true (default) the returned E_min and E_max will be enlarged via a heuristic to slightly over-estimate the spectral radius instead of under-estimating it.

source
QuantumPropagators.SpectralRange.specrangeMethod
E_min, E_max = specrange(H, :diag)

uses exact diagonization via the standard eigvals function to obtain the smallest and largest eigenvalue. This should only be used for relatively small matrices.

source
QuantumPropagators.SpectralRange.specrangeMethod
E_min, E_max = specrange(H, :manual; E_min, E_max)

directly returns the given E_min and E_max without considering H.

source
QuantumPropagators.SpectralRange.specrangeMethod

Calculate the spectral range of a Hamiltonian H on the real axis.

E_min, E_max = specrange(H; method=:auto, kwargs...)

calculates the approximate lowest and highest eigenvalues of H. Any imaginary part in the eigenvalues is ignored: the routine is intended for (although not strictly limited to) a Hermitian H.

This delegates to

specrange(H, method; kwargs...)

for the different methods.

The default method=:auto chooses the best method for the given H. This is :diag for small matrices, and :arnoldi otherwise. If both E_min and E_max are given in the kwargs, those will be returned directly (method=:manual).

Keyword arguments not relevant to the underlying implementation will be ignored.

source
QuantumPropagators.Newton.NewtonWrkType
NewtonWrk(v0, m_max=10)

Workspace for the Newton-with-restarted-Arnoldi propagation routine.

Initializes the workspace for the propagation of a vector v0, using a maximum Krylov dimension of m_max in each restart iteration. Note that m_max should be smaller than the length of v0.

source
QuantumPropagators.Newton.extend_leja!Method
extend_leja!(leja, n, newpoints, n_use)

Given an array of n (ordered) Leja points, extract n_use points from newpoints, and append them to the existing Leja points. The array leja should be sufficiently large to hold the new Leja points, which are appended after index n_old. It will be re-allocated if necessary and may have a size of up to 2*(n+n_use).

Arguments

  • leja: Array of leja values. Must contain the "old" leja values to be kept in leja(0:n-1). On output, n_use new leja points will be in leja(n+:n+n_use-1), for the original value of n. The leja array must use zero-based indexing.
  • n: On input, number of "old" leja points in leja. On output, total number of leja points (i.e. n=n+n_use)
  • newpoints: On input, candidate points for new leja points. The n_use best values will be chosen and added to leja. On output, the values of new_points are undefined.
  • n_use: Number of points that should be added to leja
source
QuantumPropagators.Newton.extend_newton_coeffs!Method
extend_newton_coeffs!(a, n_a, leja, func, n_leja, radius)

Extend the array a of existing Newton coefficients for the expansion of the func from n_a coefficients to n_leja coefficients. Return a new value n_a=n_a+n_leja with the total number of Newton coefficients in the updated a.

Arguments

  • a: On input, a zero-based array of length n_a or greater, containing Newton coefficients. On output, array containing a total n_leja coefficients. The array a will be resized if necessary, and may have a length greater than n_leja on output
  • n_a: The number of Newton coefficients in a, on input. Elements of a beyond the first n_a elements will be overwritten.
  • leja: Array of normalized Leja points, containing at least n_leja elements.
  • func: Function for which to calculate Newton coefficients
  • n_leja: The number of elements in leja to use for calculating new coefficients, and the total number of Newton coefficients on output
  • radius: Normalization radius for divided differences
source
QuantumPropagators.Newton.newton!Method
newton!(Ψ, H, dt, wrk; func=(z -> exp(-1im*z)), norm_min=1e-14, relerr=1e-12,
-        max_restarts=50, _...)

Evaluate Ψ = func(H*dt) Ψ using a Newton-with-restarted-Arnoldi scheme.

Arguments

  • Ψ: The state to propagate, will be overwritten in-place with the propagated state
  • H: Operator acting on Ψ. Together with dt, this is the argument to func
  • dt: Implicit time step. Together with H, this is the argument to func
  • wkr: Work array, initialized with NewtonWrk
  • func: The function to apply to H dt, taking a single (scalar) complex-valued argument z in place of H dt. The default func is to evaluate the time evaluations operator for the Schrödinger equation
  • norm_min: the minimum norm at which to consider a state similar to Ψ as zero
  • relerr: The relative error defining the convergence condition for the restart iteration. Propagation stops when the norm of the accumulated Ψ is stable up to the given relative error
  • max_restarts: The maximum number of restart iterations. Exceeding max_restarts will throw an AssertionError.

All other keyword arguments are ignored.

source
QuantumPropagators.Cheby.ChebyWrkType

Workspace for the Chebychev propagation routine.

ChebyWrk(Ψ, Δ, E_min, dt; limit=1e-12)

initializes the workspace for the propagation of a state similar to Ψ under a Hamiltonian with eigenvalues between E_min and E_min + Δ, and a time step dt. Chebychev coefficients smaller than the given limit are discarded.

source
QuantumPropagators.Cheby.cheby!Method

Evaluate Ψ = exp(-𝕚 * H * dt) Ψ in-place.

cheby!(Ψ, H, dt, wrk; E_min=nothing, check_normalization=false)

Arguments

  • Ψ: on input, initial vector. Will be overwritten with result.
  • H: Hermitian operator
  • dt: time step
  • wrk: internal workspace
  • E_min: minimum eigenvalue of H, to be used instead of the E_min from the initialization of wrk. The same wrk may be used for different values E_min, as long as the spectra radius Δ and the time step dt are the same as those used for the initialization of wrk.
  • check_normalizataion: perform checks that the H does not exceed the spectral radius for which the workspace was initialized.

The routine will not allocate any internal storage. This implementation requires copyto! lmul!, and axpy! to be implemented for Ψ, and the three-argument mul! for Ψ and H.

source
QuantumPropagators.Cheby.chebyMethod

Evaluate Ψ = exp(-𝕚 * H * dt) Ψ.

Ψ_out = cheby(Ψ, H, dt, wrk; E_min=nothing, check_normalization=false)

acts like cheby! but does not modify Ψ in-place.

source
QuantumPropagators.Cheby.cheby_coeffs!Function

Calculate Chebychev coefficients in-place.

n::Int = cheby_coeffs!(coeffs, Δ, dt, limit=1e-12)

overwrites the first n values in coeffs with new coefficients larger than limit for the given new spectral radius Δ and time step dt. The coeffs array will be resized if necessary, and may have a length > n on exit.

See also cheby_coeffs for an non-in-place version.

source
QuantumPropagators.Cheby.cheby_coeffsMethod

Calculate Chebychev coefficients.

a::Vector{Float64} = cheby_coeffs(Δ, dt; limit=1e-12)

return an array of coefficients larger than limit.

Arguments

  • Δ: the spectral radius of the underlying operator
  • dt: the time step

See also cheby_coeffs! for an in-place version.

source
+ max_restarts=50, _...)

Evaluate Ψ = func(H*dt) Ψ using a Newton-with-restarted-Arnoldi scheme.

Arguments

All other keyword arguments are ignored.

source
QuantumPropagators.Cheby.ChebyWrkType

Workspace for the Chebychev propagation routine.

ChebyWrk(Ψ, Δ, E_min, dt; limit=1e-12)

initializes the workspace for the propagation of a state similar to Ψ under a Hamiltonian with eigenvalues between E_min and E_min + Δ, and a time step dt. Chebychev coefficients smaller than the given limit are discarded.

source
QuantumPropagators.Cheby.cheby!Method

Evaluate Ψ = exp(-𝕚 * H * dt) Ψ in-place.

cheby!(Ψ, H, dt, wrk; E_min=nothing, check_normalization=false)

Arguments

  • Ψ: on input, initial vector. Will be overwritten with result.
  • H: Hermitian operator
  • dt: time step
  • wrk: internal workspace
  • E_min: minimum eigenvalue of H, to be used instead of the E_min from the initialization of wrk. The same wrk may be used for different values E_min, as long as the spectra radius Δ and the time step dt are the same as those used for the initialization of wrk.
  • check_normalizataion: perform checks that the H does not exceed the spectral radius for which the workspace was initialized.

The routine will not allocate any internal storage. This implementation requires copyto! lmul!, and axpy! to be implemented for Ψ, and the three-argument mul! for Ψ and H.

source
QuantumPropagators.Cheby.chebyMethod

Evaluate Ψ = exp(-𝕚 * H * dt) Ψ.

Ψ_out = cheby(Ψ, H, dt, wrk; E_min=nothing, check_normalization=false)

acts like cheby! but does not modify Ψ in-place.

source
QuantumPropagators.Cheby.cheby_coeffs!Function

Calculate Chebychev coefficients in-place.

n::Int = cheby_coeffs!(coeffs, Δ, dt, limit=1e-12)

overwrites the first n values in coeffs with new coefficients larger than limit for the given new spectral radius Δ and time step dt. The coeffs array will be resized if necessary, and may have a length > n on exit.

See also cheby_coeffs for an non-in-place version.

source
QuantumPropagators.Cheby.cheby_coeffsMethod

Calculate Chebychev coefficients.

a::Vector{Float64} = cheby_coeffs(Δ, dt; limit=1e-12)

return an array of coefficients larger than limit.

Arguments

  • Δ: the spectral radius of the underlying operator
  • dt: the time step

See also cheby_coeffs! for an in-place version.

source
diff --git a/dev/index.html b/dev/index.html index f9cda47..7f7feef 100644 --- a/dev/index.html +++ b/dev/index.html @@ -1,2 +1,2 @@ -Home · Krotov.jl
+Home · Krotov.jl
diff --git a/dev/overview/index.html b/dev/overview/index.html index 5cd1b26..9cbfd66 100644 --- a/dev/overview/index.html +++ b/dev/overview/index.html @@ -1,2 +1,2 @@ -Overview · Krotov.jl
+Overview · Krotov.jl
diff --git a/dev/references/index.html b/dev/references/index.html index beb64a4..97a35f6 100644 --- a/dev/references/index.html +++ b/dev/references/index.html @@ -1,2 +1,2 @@ -References · Krotov.jl

References

[1]
V. F. Krotov. Global Methods in Optimal Control (Dekker, New York, NY, USA, 1996).
[2]
J. Somlói, V. A. Kazakov and D. J. Tannor. Controlled dissociation of I$_2$ via optical transitions between the X and B electronic states. Chem. Phys. 172, 85 (1993).
[3]
A. Bartana, R. Kosloff and D. J. Tannor. Laser cooling of internal degrees of freedom. II. J. Chem. Phys. 106, 1435 (1997).
[4]
J. P. Palao and R. Kosloff. Optimal control theory for unitary transformations. Phys. Rev. A 68, 062308 (2003).
[5]
D. M. Reich, M. Ndong and C. P. Koch. Monotonically convergent optimization in quantum control using Krotov's method. J. Chem. Phys. 136, 104103 (2012).
[6]
M. H. Goerz, D. Basilewitsch, F. Gago-Encinas, M. G. Krauss, K. P. Horn, D. M. Reich and C. P. Koch. Krotov: A Python implementation of Krotov's method for quantum optimal control. SciPost Phys. 7, 080 (2019).
[7]
M. H. Goerz, S. C. Carrasco and V. S. Malinovsky. Quantum Optimal Control via Semi-Automatic Differentiation. Quantum 6, 871 (2022).
[8]
M. H. Goerz, D. M. Reich and C. P. Koch. Optimal control theory for a unitary operation under dissipative evolution. New J. Phys. 16, 055012 (2014).
[9]
S. Machnes, E. Assémat, D. Tannor and F. K. Wilhelm. Tunable, Flexible, and Efficient Optimization of Control Pulses for Practical Qubits. Phys. Rev. Lett. 120, 150401 (2018).
[10]
T. Caneva, T. Calarco and S. Montangero. Chopped random-basis quantum optimization. Phys. Rev. A 84, 022326 (2011).
+References · Krotov.jl

References

[1]
V. F. Krotov. Global Methods in Optimal Control (Dekker, New York, NY, USA, 1996).
[2]
J. Somlói, V. A. Kazakov and D. J. Tannor. Controlled dissociation of I$_2$ via optical transitions between the X and B electronic states. Chem. Phys. 172, 85 (1993).
[3]
A. Bartana, R. Kosloff and D. J. Tannor. Laser cooling of internal degrees of freedom. II. J. Chem. Phys. 106, 1435 (1997).
[4]
J. P. Palao and R. Kosloff. Optimal control theory for unitary transformations. Phys. Rev. A 68, 062308 (2003).
[5]
D. M. Reich, M. Ndong and C. P. Koch. Monotonically convergent optimization in quantum control using Krotov's method. J. Chem. Phys. 136, 104103 (2012).
[6]
M. H. Goerz, D. Basilewitsch, F. Gago-Encinas, M. G. Krauss, K. P. Horn, D. M. Reich and C. P. Koch. Krotov: A Python implementation of Krotov's method for quantum optimal control. SciPost Phys. 7, 080 (2019).
[7]
M. H. Goerz, S. C. Carrasco and V. S. Malinovsky. Quantum Optimal Control via Semi-Automatic Differentiation. Quantum 6, 871 (2022).
[8]
M. H. Goerz, D. M. Reich and C. P. Koch. Optimal control theory for a unitary operation under dissipative evolution. New J. Phys. 16, 055012 (2014).
[9]
S. Machnes, E. Assémat, D. Tannor and F. K. Wilhelm. Tunable, Flexible, and Efficient Optimization of Control Pulses for Practical Qubits. Phys. Rev. Lett. 120, 150401 (2018).
[10]
T. Caneva, T. Calarco and S. Montangero. Chopped random-basis quantum optimization. Phys. Rev. A 84, 022326 (2011).