multiLocalFDR is a package for multi-dimensional local-FDR estimation using a semiparametric mixture method. The two pillars of the proposed approach are Efron's empirical null principle and log-concave density estimation for the alternative distribution. A unique feature of our method is that it can be extended to compute the local false discovery rates by combining multiple lists of p-values.
localFDR()
provides estimates of local-fdr for given lists of p-values.SPestimate()
provides estimates of null and alternative distribution of our method.normmix()
provides estimates of null and alternative distribution of normal mixture model.arrangeNE()
arranges given data as an increasing order for multi-dimensional data.
You can learn more about them in
vignette("multiLocalFDR")
.
You can install multiLocalFDR from GitHub.
# install.packages("devtools")
devtools::install_github("JungiinChoi/multiLocalFDR")
multiLocalFDR imports the modified version of fmlogcondens from my GitHub.
If you already have the original fmlogcondens, multiLocalFDR will overwrite this package and give a warning.
# install.packages("devtools")
devtools::install_github("JungiinChoi/multiLocalFDR")
#> Warning message:
#> package 'multiLocalFDR' overwrites 'fmlogcondens' to modified version.
library(multiLocalFDR)
starwars %>%
filter(species == "Droid")
#> # A tibble: 6 x 14
#> name height mass hair_color skin_color eye_color birth_year sex gender
#> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
#> 1 C-3PO 167 75 <NA> gold yellow 112 none masculi…
#> 2 R2-D2 96 32 <NA> white, blue red 33 none masculi…
#> 3 R5-D4 97 32 <NA> white, red red NA none masculi…
#> 4 IG-88 200 140 none metal red 15 none masculi…
#> 5 R4-P17 96 NA none silver, red red, blue NA none feminine
#> # … with 1 more row, and 5 more variables: homeworld <chr>, species <chr>,
#> # films <list>, vehicles <list>, starships <list>
starwars %>%
select(name, ends_with("color"))
#> # A tibble: 87 x 4
#> name hair_color skin_color eye_color
#> <chr> <chr> <chr> <chr>
#> 1 Luke Skywalker blond fair blue
#> 2 C-3PO <NA> gold yellow
#> 3 R2-D2 <NA> white, blue red
#> 4 Darth Vader none white yellow
#> 5 Leia Organa brown light brown
#> # … with 82 more rows
starwars %>%
mutate(name, bmi = mass / ((height / 100) ^ 2)) %>%
select(name:mass, bmi)
#> # A tibble: 87 x 4
#> name height mass bmi
#> <chr> <int> <dbl> <dbl>
#> 1 Luke Skywalker 172 77 26.0
#> 2 C-3PO 167 75 26.9
#> 3 R2-D2 96 32 34.7
#> 4 Darth Vader 202 136 33.3
#> 5 Leia Organa 150 49 21.8
#> # … with 82 more rows
starwars %>%
arrange(desc(mass))
#> # A tibble: 87 x 14
#> name height mass hair_color skin_color eye_color birth_year sex gender
#> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
#> 1 Jabba … 175 1358 <NA> green-tan,… orange 600 herm… mascu…
#> 2 Grievo… 216 159 none brown, whi… green, ye… NA male mascu…
#> 3 IG-88 200 140 none metal red 15 none mascu…
#> 4 Darth … 202 136 none white yellow 41.9 male mascu…
#> 5 Tarfful 234 136 brown brown blue NA male mascu…
#> # … with 82 more rows, and 5 more variables: homeworld <chr>, species <chr>,
#> # films <list>, vehicles <list>, starships <list>
starwars %>%
group_by(species) %>%
summarise(
n = n(),
mass = mean(mass, na.rm = TRUE)
) %>%
filter(
n > 1,
mass > 50
)
#> # A tibble: 8 x 3
#> species n mass
#> <chr> <int> <dbl>
#> 1 Droid 6 69.8
#> 2 Gungan 3 74
#> 3 Human 35 82.8
#> 4 Kaminoan 2 88
#> 5 Mirialan 2 53.1
#> # … with 3 more rows
If you encounter a clear bug, please file an issue with a minimal reproducible example on GitHub. For questions and other discussion, feel free to contact me: Jungin Choi (serimtech07 at snu.ac.kr).